Two—chains and square roots of Thompson’s group F

THOMAS KOBERDA AND YASH LODHA

AssTtrAaCT. We study two-generated subgroups {f,g> < Homeo™ (1) such that
{f?, &%) is isomorphic to Thompson’s group F, and such that the supports of f
and g form a chain of two intervals. We show that this class contains uncount-
ably many isomorphism types. These include examples with nonabelian free sub-
groups, examples which do not admit faithful actions by C? diffeomorphisms on
I-manifolds, examples which do not admit faithful actions by PL homeomor-
phisms on an interval, and examples which are not finitely presented. We thus
answer questions due to M. Brin. We also show that many relatively uncompli-
cated groups of homeomorphisms can have very complicated square roots, thus
establishing the behavior of square roots of F as part of a general phenomenon
among subgroups of Homeo™ (7).

1. INTRODUCTION

Thompson’s group F is a remarkable group of PL homeomorphisms of the in-
terval that occurs naturally and abundantly as a group of homeomorphisms of the
real line, and that has been extensively studied since the 1970s. The group F has
been shown to satisfy various exotic properties, and has been proposed as a coun-
terexample to well-known conjectures in group theory [7, [10]. Among the most
well-known facts about Thompson’s group F' are the following:

Theorem 1.1 (Brin—Squier, [3]). The group F satisfies no law and contains no
nonabelian free subgroups.

Theorem 1.2 (Ghys—Sergiescu, [17]). The group F admits a faithful action by C*
diffeomorphisms of the circle.

Theorem 1.3 (Thompson, see [[11]). The group F is finitely presented.

In this article, we study a certain class of groups which we call square roots of
Thompson’s group F. These are two—generated subgroups {f, g> < Homeo™ (1) of
the group of orientation-preserving homeomorphisms of the interval, which satisfy

(8" =(A,B|[A, (AB)*B(AB)"] fork € {1,2}) = F,
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and for which the supports supp f and supp g of f and g respectively form a two—
chain of intervals. That is, supp f and supp g are both open intervals, and the inter-
section supp f M supp g is a proper subinterval of both supp f and supp g.

Among other things, we demonstrate that (the second part of) Theorem [L.1] The-
orem[L.2] and Theorem [I.3]all fail for square roots of F. In particular, we show that
there are square roots of F which contain nonabelian free subgroups, that there are
square roots of F which do not admit faithful actions by C? diffeomorphisms on the
interval, circle, or real line, and that there are uncountably many isomorphism types
of square roots of F.

1.1. Main results. We denote the set of isomorphism classes of square roots of F
by .. The goal of this paper is to produce interesting elements of .. Note that .
contains F for example, since squaring the generators in the standard presentation
for F as given in the previous subsection results in a group isomorphic to F.

In this article we use two different finite presentations of the group F. The first
presentation, which was mentioned in the previous section is:

(A,B | [A,(AB)"'B(AB)], [A, (AB)*B(AB)*]) = F.

The second presentation is obtained by performing a Tietze transformation to pro-
duce generators a = AB, b = B, and is given by:

{a,b | [ab~',a 'ba],[ab~",a *ba*]) = F.
Next, we describe a certain subgroup P of F, which will be needed to state and
prove our results. We fix two copies of F:

Fi={pip: | [ppy ' py peeils [pips s P2 papt])s

Fr={q |04 4 w0l 19145 47 ¢40))-
We will write P for the subgroup of F; x F, generated by (pi, g») and (pa, q). Note
that the group P is a subgroup of F which itself contains F as a subgroup. The fact
that P < F is an elementary exercise that we leave to the reader, and that F' < P is
a direct consequence of Brin’s Ubiquity Theorem (see [4]).

We denote the free group on two generators by F,, and we call a group H =
(hy, hy) a marked extension of P if there exists a sequence of surjective homomor-
phisms

F, - H— P
where h; — (pi1,q2) and hy — (p2,¢q1) under the second map. Even though the
map H — P may be suppressed from the notation, we always think of a marked
extension of P as equipped with such a homomorphism. A (countable) group is left
orderable if it admits a left invariant total ordering, or equivalently if it admits a
faithful action by orientation preserving homeomorphisms of the real line [14, [20]].
Our main result is the following:
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Theorem 1.4. Let H be a marked, left orderable extension of P. Then there exists
a square root of Thompson’s group G € . such that H < G.

Since the free group F; is left orderable and is naturally a marked extension of
P, we immediately obtain the following:

Corollary 1.5. There exists a square root G € . such that F, < G.

We will show that square roots of F can contain torsion—free nilpotent groups
of arbitrary nilpotence degree. As a consequence of Theorem [[.4] and the Plante—
Thurston Theorem [21], we have the following:

Corollary 1.6. There exists a square root G € . such that G does not admit a
faithful action by C? diffeomorphisms on a compact one—manifold or on the real
line.

Corollary L6l gives an example of a subgroup {f, g» < Homeo™ (1) which admits
no faithful C? action on the interval, the circle, or the real line, but where {f?2, g*)
admits a faithful C* action on every one—manifold (cf. [17, [18]).

Nonabelian nilpotent groups cannot act by piecewise—linear homeomorphisms
on/oronS!':

Corollary 1.7. There exists a square root G € . such that G does not admit a
faithful action by PL homeomorphisms of a compact one—manifold.

Corollary [L7] stands in contrast to the standard definition of F, which is as a
group of PL homeomorphisms of the interval. Corollary [[.7] answers a question
due to M. Brin.

In order to show that square roots of F' may not be finitely presented, we prove
the following result which is similar in spirit to some of the methods in [[18]:

Theorem 1.8. The class . contains uncountably many distinct isomorphism types.

Since there are only countably many isomorphism types of finitely presented
groups, we immediately obtain the following:

Corollary 1.9. There exists an element G € . which admits no finite presentation.

1.2. Square roots of other groups. Essential in the discussion of square roots
of F in this paper is the dynamical realization of F on a two—chain of intervals,
which is a dynamical setup in which F occurs naturally (see Subsection 2.2)). If
one abandons the dynamical framework of chains of intervals, the group theoretic
diversity phenomena witnessed by Theorems [[.4] and [[.8| become so common as to
be a general feature of homeomorphism groups.

To be precise, let H = (hy,...,h,y < Homeo™ (I) be a finitely generated sub-
group. An n—generated subgroup G = {(gi,...,g,» < Homeo™ (/) is called a square
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root of H if
H={g....&)
If H = (hy,...,h,)is a generating set for a group H, we will define the skew
subdirect product of H to be the subgroup of H x H generated by {(h;, h ")} |,

and we will denote this group by H.

Theorem 1.10. Let Z = {t,...,t, 11 | 11 = -+ = t,11), and let H < Homeo™ (I)
be an n—generated group. Then there exists a square root G of Z such that H < G.

Corollary 1.11. There exist uncountably many isomorphism types of three—generated
subgroup of Homeo™ (I) such that the squares of the generators generate a cyclic
group. Moreover; there exists a three—generated subgroup of Homeo™ (I) such that
the squares of the generators generate a cyclic group and which contain nonabelian
free groups.

Theorem 1.12. Let L = Z ! Z be the lamplighter group. Then L has uncountably
many isomorphism types of square roots.

In Subsection 4.4] we will define the notion of a formal square root of a finitely
generated group. We will show that formal square roots of left orderable groups are
again left orderable, and generally contain nonabelian free groups.

1.3. Notes and references.

1.3.1. Remarks on context. The bulk of the present work could just as well be a
discussion of the very general setup of two—generated subgroups of Homeo™ (/)
whose generators are supported on intervals J; and J,, which in turn form a chain.
It is well-known that under suitable dynamical hypotheses (cf. Subsection [1.3.2]
below), the resulting subgroup is isomorphic to F. The class .7 of square roots of
F is merely the first instance of interesting algebraic behavior for such homeomor-
phism groups which does not follow from the properties of Thompson’s group F.
In particular, the results of this article apply to higher roots of F' beyond the square
root.

1.3.2. Relation to other authors’ work. To the authors’ knowledge, it was M. Brin
who first asked what sorts of groups can occur as square roots of F, and in partic-
ular if square roots of F can contain nonabelian free groups, whether they can fail
to be finitely presented, and whether they can fail to act by PL homeomorphisms
on the interval. The main results of this paper form a natural complement to the
joint work of the authors with S. Kim in [18]. In that paper, Kim and the authors
introduced the notions of a prechain group and of a chain group. In the termi-
nology of [[18]], square roots of F form a restricted subclass of 2—prechain groups,
namely those which square to become 2—chain groups. The class of 2—chain groups
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in turn consists of just one isomorphism type (i.e. Thompson’s group F). Chain
groups with “fast” dynamics also fall into very few isomorphism types (namely the
Higman-Thompson groups {F,},>>, and their subgroup structure has been stud-
ied independently by Bleak—Brin—Kassabov—Moore—Zarmesky [2] (cf. [6]). For
generalities on Thompson’s group F, the reader is directed to the classical Cannon—
Floyd—Parry notes [[11], as well as Burillo’s book [8]].

2. SQUARE ROOTS OF F

In this section we establish the main result, after gathering some relevant prelim-
inary facts. All actions will be right actions, and the words will be read from left to
right. In particular, for homeomorphisms f, g € Homeo™ (R) and x € R, we fix the
convention:

2.1. Roots of homeomorphisms. We record the following well-known fact, whose
proof we recall for the convenience of the reader:

Lemma 2.1. Let f € Homeo™ (I). Then for all n € N, there exists an element
g = g, € Homeo™ (1) such that g" = f. Moreover, there are uncountably many
possible choices of such a map g.

Proof. By considering the components of the support of f separately, we may con-
sider the case where f has no fixed points in the interval (0, 1). In this case, f is
topologically conjugate to the homeomorphism of R U {to0} given by x — x + 1.

We now define g(z) = z + 1/n for z € Z{1/n). We extend g to all of R in the
following manner. First, we choose an arbitrary orientation-preserving homeomor-
phism

ho: [0,1/n] — [1/n,2/n]
Next, we inductively define homeomorphisms

m m+ 1 m+1 m+2

B+ [, 1=1 ; ]

n n n n

for all m € Z, such that
hyn—nyo---oh=x+1

for each k € Z. It is clear then that the homeomorphisms #,, piece together to give a
homeomorphism g of R U {400}, whose n" power is translation by one. Moreover,
the arbitrariness of the choices made guarantees that there are uncountably many
choices for g. |
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J
Ji 2

Ficure 1. A chain of two intervals.

2.2. 2-prechain groups and variations thereupon. Let 7 = {J;,/J,} be two
nonempty open subintervals of R. We call _# a chain of intervals if J; n J, is a
proper nonempty subinterval of J; and of J,. See Figure[ll

If f € Homeo™ (R), we write supp f = {x € R | f(x) # x}. Let f and g satisfy
supp f = J; and suppg = J,. In the terminology of [18], the group {f,g) is a
2—prechain group. Note that, up to replacing f and g by their inverses, we may
assume f(x),g(x) = xforx e R.

Writing J; = (a,c) and J, = (b,d) with a < b < ¢ < d, we have the following
basic dynamical stability result, which can also be found in [18]:

Lemma 2.2. Suppose g o f(b) = c. Then (f,g) = F.

Under the dynamical hypotheses of Lemma[2.2] the group (f, g) is a chain group.
There is another configuration of intervals and homeomorphisms closely related to
chain groups, which naturally gives rise to F, which we will need in the sequel, and
which we will describe in the next subsection.

2.3. Nested generators for F. A natural generating set for F emerges as homeo-
morphisms supported on a nested pair of intervals, satisfying elementary dynamical
conditions. This shall be useful in our construction to follow.

Lemma 2.3. Let [a, by]| and |a, by] be compact intervals in R such that by < b,. Let
f, g be homeomorphisms satisfying:

(1) The supports of gand f are contained in |a,b,] and [a, by] respectively.
(2) f is a decreasing map on (a, b,).
(3) f,g agree on the interval [a, f(by)].
Then {f,g) = F.
Lemma 2.4. Let |a,, b] and |a,, b| be compact intervals in R such that a; < a,. Let
f, & be homeomorphisms satisfying:
(1) The supports of f and g are contained in [a,, b] and [ay, b] respectively.
(2) f is an increasing map on (ay,b).
(3) f,g agree on the interval [f(a,), b].
Then {f,g) = F.

Proofs of Lemmas 2.3 and The proofs of both lemmas above follow from check-
ing that the homeomorphisms f and g in each lemma satisfy the relations

[fe ' fefl=1  [fe . f2ef1=1
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Since f and g do not commute, and since every proper quotient of F' is abelian
(see [[L1]), they generate a group isomorphic to F'. O

2.4. Orderable extensions of P. We will use the following standard facts from the
theory of orderable groups:

Lemma 2.5 (See [20,[14]). Let 1 - K — G — Q — 1 be an exact sequence of
groups, and suppose that Q and K are left orderable. Then G admits a left ordering
which agrees with any prescribed ordering on K. Moreover, any countable, left
orderable group can be embedded in Homeo™ (I).

The following lemma is obvious, after the observation that F' x F is left orderable,
applying the Brin—Squier Theorem [3]], and Brin’s Ubiquity Theorem [4]:

Lemma 2.6. The group P is a two—generated sub-direct product of F x F. Itis a
left orderable group which contains no free subgroups.

Let Z < F, = (A, B) be such that F,/% =~ P. Note that since P < F x F, we
have Z # 1. Let Z, denote the k' term of the derived series of Z and let Z* denote
the k" term of the lower central series of %, with the convention Z; = Z' = %.

Lemma 2.7. For each k > 1, the groups
Sk = <A,B | %k> and Nk = <A,B | %k>
are marked, left orderable extensions of P.

Proof. Itis clear that for each k, the groups S and N, are quotients of the free group
F, via the canonical map. Since %, Z* = 2%, we have that S; and N, both surject
to P simply by imposing the relations in Z. It therefore suffices to show that S and
Nj are both left orderable, which since P is left orderable, reduces to showing that
R | Ry and # /%" are left orderable by Lemma

Since Z is an infinitely generated free group, these quotients are merely the
universal k—step solvable and nilpotent quotients of the infinitely generated free
group. We proceed by induction on k. The case k = 1 is trivial, and in the case k =
2, we obtain the group Z* which is easily seen to be left orderable. By induction,
R | Ry (resp. R/H*) is left orderable, and %,/ %\ (resp. Z*/%*T!) is again
isomorphic to Z*, so the conclusion follows by applying Lemma 2.5 again. O

2.5. Building square roots of F. In this section we provide a recipe that produces
a square root of F that contains a given group H as a subgroup, provided H is an
orderable marked extension of P.

Step 1: Partition [1,2) into left closed, right open intervals {Ji,..., Ji¢} so that
J; occurs to the left of J; in R whenever i < j. Moreover, we require that these
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intervals are of the same length. For ease of notation, we denote by Jx for some
X c {1,...,16} the union | J, J;. For example,

.....

Step 2: Construct homeomorphisms f and g of the real line that satisfy the fol-
lowing:
(1) f and g are increasing maps on (0, 2) and on (1, 3), respectively, and equal
the identity outside these respective intervals.
(2) f maps J; isometrically onto J; 4 for 1 <i < 11.
(3) g maps J; isometrically onto J;, 4 for2 <i < 12.
(4) The map gf~! has two components of support, which are

[0, 1] o J], J{12 16} U [2, 3]

.....

.....

To ensure that the components of support of gf~! are precisely as stated in (4), we
choose g such that it is sufficiently slow on J;, and f so that it is sufficiently slow on

,,,,,

.....

Step 3: Let H = (hy, h,) be a marked, left orderable extension of P. We identify
the elements /; and h, with their dynamical realizations, both supported on the
interval Jg. Define a map A3 as:

hy =g 'hag = f'haf.
By definition, A3 is supported on the interval Jyo. Finally, we define homeomor-
phisms
A =hi'hf, =g
Our goal for the rest of this section will be to demonstrate the following:

Proposition 2.8. The group (1,, ;) is a marked square root of F which contains
H as a subgroup.

The group (4, A, ) is manifestly orderable, since it is presented as a group of ori-
entation preserving homeomorphisms of the interval. It is clear by our construction
that A7 and A3 satisfy the dynamical condition of Lemma[2.2] and hence generate a
copy of F. So it suffices to show that H < {(1;, 2»).

Proposition 2.9. The elements /12/11_1 and /11_1/12 generate an isomorphic copy of H.
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Proof. The element /lz/ll_l has four components of support:
[0,1] U Ji, Js, Jio, Joo,.16y U [2,3].

.....

Note that:
LA Mg = hy, LA Mo = = o f.
We denote by p, the following restriction:
A0 1] U Jy = gf {0, 1] U i

We denote by ¢, the following restriction:

[0, 1] U Jg,..55, J10s Jia, Jis v [2,3].
Note that
' 00 = ' f.
Denote by p; the following restriction:

.....

First observe that the restrictions on Jj, are:

A Mo = 1o, LA Mo = h3ldio = [~ haf Mo
It follows that this restriction to J;( corresponds to the isomorphism
H — {4, 22 Mo, 124, 110,
given by
hy — LA Mo, hi — A7 5 Mo,

since these restrictions generate a dynamical realization of H on J.
Next observe that

LA N s = Iy s, A s = id] s,

Since H is a marked extension of P, every relation in H is necessarily a product of
commutators. It follows that the abelianization of H is Z*>. We have then that this
restriction to J¢ corresponds to the quotient

H — {7 221 Jg, 1227 1),

given by
hy = 47 s, by = A7 A M.
which is a homomorphism whose kernel is the normal closure of 4; in H.
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Next, we observe that by construction, the maps p;, p, and ¢, g, satisfy the dy-
namical conditions described in Lemmas 2.3l and 2.4] respectively. Define

ji=sup(Jy),  jo=inf(Ji).

By construction, we have

pi(jn) = 4, () = f'e(ih) = g(f 7' (jin) < 1,

and
pil[0,1] = A7 2 10,1] = £7110,1] = 222471 1[0,1] = p2 1[0, 1].
It follows that:

(pr.p2y ={pi.p2 | [pipy ' Py papi)s [Pipy s PP papi]) = F.

Next, observe that by construction we have

a1(j2) = LA, (o) = gf () = f 1(g(j)) > 2,
and
¢ 1[2,3] = 4, 12,3] = g1[2,3] = 24, ' 1[2,3] = a1 1[2.3].
It follows that:

1,92 =g ¢ | [19, ' ay ' a1). [919; ', 4, 4247]) = F.

In particular, the subgroup of {p;, p2) x {qi1, g2) generated by the elements (py, ¢»)
and (p,, q,) is isomorphic to P.
Now we claim that the map

hy = L7 = A7,
extends to an embedding

<l’l1, h2> — </ll, /12>

This is true for the component Jy(, where this is a dynamical realization of H. So
it suffices to show that each relation in &, and h, is satisfied by the restrictions of
/11_1/12 and /lz/ll_l on other components. As we saw before, for Jg, this via the Z-
quotient given by killing the normal closure of the generator #; € H, which factors
through the abelianization map. For the components

[0, I]UJ{I ..... 5}» Jio..., 16}U[2,3],

the action of H is precisely as P, and since H is a marked extension of P, whence
the desired conclusion. O
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2.6. Smoothability. To construct square roots of F which are not conjugate into
Diff*(I) or Diff*(R), the group of C? orientation-preserving diffeomorphisms of the
interval and the real line respectively, we use the following result due to Plante—
Thurston and its generalizations due to Farb—Franks:

Theorem 2.10 (See [21, [15]). Let N < Diff*(M) be a finitely generated nilpotent
subgroup, where here M is a compact one—manifold. Then N is abelian. Moreover,
any nilpotent subgroup of Diff*(R) is metabelian.

Proof of Corollary[L.8 Let N, = F5/%* be as in LemmaR277l Then Z/%* < N,.
Taking a finite subset of a free generating set S for &%, we have that the image of S in
N generates a nilpotent subgroup I's < N;. It is straightforward to check that I'y is
aretract of Z/%"*, and is therefore a nonabelian nilpotent subgroup of N; whenever
k = 3. Applying Theorem [1.4] and Theorem [2.10] gives the desired conclusion in
the case where M is compact. Choosing a k >» 0 such that N, contains a nilpotent
subgroup which is not metabelian, we get the desired conclusion for R as well. O

Corollary [I.7] similarly follows from Theorem [I.4] and Theorem 4.1 of [13].

3. UNCOUNTABILITY OF .¥ AND INFINITELY PRESENTED EXAMPLES

In this section, we prove Theorem [L.8l For this, we retain the notation from the
previous discussion.

3.1. Sources of uncountability. A construction of B. Neumann on the existence
of uncountably many distinct isomorphism classes of two—generated groups as out-
lined by de la Harpe in [12] has the advantage that the resulting groups are all left
orderable, as observed in [[18]]. We summarize the relevant conclusions here:

Proposition 3.1. There exists an uncountable class N of pairwise non—isomorphic
groups such that if N € A then N is two—generated, left orderable, and N = 77.
In particular, N can be realized as a subgroup of Homeo™ (R).

3.2. Equations over Homeo " (R). In order to prove Theorem we will con-
struct an explicit orderable marked extension of P which contains a given element
of 4 as a subgroup. To do this, we will need to solve equations over Homeo™ (R).

Let {fi,..., fx-g} < Homeo™ (R) be given, and let w € F, be a reduced word
in the free group on n fixed generators, where here k < n. An equation over
Homeo™ (R) is an expression of the form

W(f],...,fk,xl,...,xn,k) = g.

A tuple {y,...,y,_x} © Homeo™(R) is a solution to the equation if this expres-
sion becomes an equality after substituting y; for x; for each i, and interpreting the
expression in Homeo™ (R).
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We will restrict out attention to the case where n = 2. Even here, equations may
not admit solutions. A trivial example can be given by taking f # g and setting w
to be the first free generator. A slightly less trivial example can be given by taking
f to be fixed point free, taking g to have at least one fixed point, and setting w to be
a conjugate of the first free generator.

We will concern ourselves with a particular commutator word w with free gener-
ators s and ¢, so that under the map F, — P given by s — (p1,q2) and t — (p2, q1),
the element w lies in the kernel.

The following lemma is key in proving Theorem [L.8k

Lemma 3.2. Fix a group N € A and let T be the map 1(t) = t + 1. There is a

homeomorphism k € Homeo™ (I) and a nontrivial commutator word w € ker{F, —
P} such that:

(1) The group {k,T) contains N as a subgroup.
(2) The equation w(t, x) = k admits a solution y € Homeo™ (R).

We first show how Lemma 3.2 implies Theorem

Proof of Theorem[L.8l We recall some of the notation and the construction in Sub-
section We will use informal language below, since we already have a precise
description in that subsection.

Given any hy, h, € Homeo™ (I), we can build a square root G € . generated by
A1, A such that the group H = </l]_1/12, /12/11_1> satisfies the following.

(1) H acts as a dynamical realization of P on

(2) {A247") acts faithfully by Z on the interval Js and (17" ;) acts trivially on
the interval Jg.

(3) </11’1/12> acts as h; on Jy and </12/11’1> acts as h, on Jj.

(4) The action of H outside the above intervals is trivial.

Let 7,k and y be the homeomorphisms of the real line from Lemma For
the rest of the proof, we fix dynamical realizations of 7,k on J;y obtained from
conjugating by a homeomorphism of R to the interior of J;o. We shall now denote
by 7, k, y as these homeomorphisms supported on Jio.

We use the input 4; = 7 and let 7, = y to produce a square root G of F. Consider
the subgroup K of H generated by

ki =70, k= w(AT A, AT,
We check the following:
(1) kl f.]l() = 1t and kz f.]lo = K.
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(2) ky acts trivially outside Jyo since w(s, t) represents the identity in P under
the map s — (p1,42) and 1 — (p2, q1).

(3) Any commutator vanishes on Jg.

(4) k; acts trivially on Jg and by Z on

By our assumption, N < (ky,kyyJ10. We claim that in fact, N < {kj, k). This
follows from the fact that the relations in N are elements of the commutator sub-
group of the free group, and since (ki, k,) acts by Z outside Jyo. Therefore N < G
where G is the corresponding square root of F.

We thus obtain that if N € .4 is given, then there is a square root Gy € .¥ which
contains N as a subgroup. Since the class .4 contains uncountably many differ-
ent isomorphism types and since any element of . is two—generated and hence
countable, the class {Gy | N € .4} < . consists of uncountably many different
isomorphism types. O

Proof of Lemmal3.2l We shall use the commutator word

w(s, 1) = [wi(s, 1), wa(s,1)],

where

1 1 .,—1

5T, wy = t[se s )

wy = [st”
It is straightforward to check that for the map F, — P given by s — (p1,¢>) and
t — (p2,q1), the element w lies in the kernel.

Let ¢,y € Homeo™ (1) be given generators of N. We first choose homeomor-
phisms u,v € Homeo™ () such that = [u,v '] and homeomorphisms y,& €
Homeo™ (I) such that ¢ = [£, x !]. Such choices are possible, since every element
of Homeo™ (/) is a commutator (see Theorem 2.65 of [9], for instance).

Identify I with the unit interval [0, 1]  R. Recall that 7 is translation by 1 on R.
We set k € Homeo " (R) as

K = (TfZI//TZ) (T7102¢T102)

Intuitively, « acts by ¢ on the interval 2, 3], by ¢ on the interval [102, 103], and by
the identity otherwise. We now verify that x witnesses the conditions of the lemma.
We set

y = (T_l,uTl) o (T_ZVTZ) (T_IOI)(TIM)(T_IOZfTIOZ).

Intuitively, the homeomorphism y acts by x on [1,2], by v on [2,3], by x on
[101,102], and by & on [102,103]. We check that y is the solution to the equa-
tion. We proceed by analysing the two inner commutators separately, and then
considering the outer commutator.
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Consider the commutator [ry~!,7=2yr?]. First note that since y~! has disjoint

support from 772y7?, they commute, and hence

[ty Lty = [r,7 2y

We can now easily check that the action of the resulting homeomorphism is as
follows:

(1) Itacts by w on [2,3], by vu ! on [3,4], and by v ! on [4,5].
(2) Tt acts by y on [102, 103], by &y ! on [103,104], and by ¢! on [104, 105].

We denote this homeomorphism by a.
Next, consider the commutator

1

[ty Ly 'ty

First, note that
[y Ly ey = [my ey

It is straightforward to check that the homeomorphism resulting from the product
of these commutators is as follows:

(1) Tt acts by u=% on [0, 1], by v~ on [1,2], by v’u~'v on [2,3], and by v~!
on [3,4].

(2) Ttacts by y=2on [100, 101], by é2x* on [101, 102], by &2y ~'¢ on [102, 103],
and by ¢ ! on [103, 104].

We denote by 3 the homeomorphism ¢[ry ',y 'z 1y]s 1.

Finally, we consider the homeomorphism [a,8]. Observe that the supports of «
and B intersect in the intervals [2, 3] and [102, 103]. Since ¢ = [, v~'], we see that
|, B] acts by ¢ on [2,3]. Similarly, since ¢ = [y, & '], we have that |a, 3] acts by
¢ on [102,103]. It follows that [a, 3] agrees with «, whence y is a solution to the
equation as claimed.

Finally, we show that N < {(x,7). Indeed the group generated by 7 K
acts as N on [102, 103] and as Z outside this interval. Since the relations in N are
elements of the commutator subgroup of the free group, it follows that this group is
isomorphic to N. o

—lOOKTlOO

4. GENERAL SQUARE ROOT PHENOMENA

In this section, we pass to the completely general setup of finitely generated
subgroups of Homeo™ (1) and address the results in Subsection

4.1. Free groups. Classical result from combinatorial and geometric group theory
show that there exist two—generated groups {a, b) which are not free, but such that
{a®, b*) is free. Moreover, one can arrange for these groups to be left orderable, and
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hence to be realized as subgroups of Homeo™ (7). For instance, we take the braid
group on three strands

B; = {a,b | aba = bab).

All braid groups are left orderable [13]], and it is a standard fact that the squares of
the standard braids generate a free group (cf. [[16]).

4.2. The lamplighter group. Using square roots of F, we can produce many
square roots of the lamplighter group L = Z ¢ Z. Recall that

222 =7Zx (PZ),
i€Z

where the natural action of Z is by translating the index Z; — Z;,;. The group L
is naturally realized as a subgroup of Homeo* (R) < Homeo™ (1) as follows. We
choose an arbitrary homeomorphism i such that suppy = (0,1) < R, and then
we consider the group generated by ¢ and 7, where as before 7(x) = x + 1. Itis
clear that (i, 7) = L. The following result clearly implies Theorem [[.12] in light of
Theorem [L.§]

Theorem 4.1. Let G be a left orderable marked extension of P. Then there exists a
square root of L containing an isomorphic copy of G.

Sketch of proof. Let T € Homeo™" (R) be given by T(x) = x + 1/2. Note that the
intervals (0, 1) and 7'((0, 1)) together form a chain of intervals. Following the setup
in Subsection 2.3] it is clear that we can start with an arbitrary increasing home-
omorphism ¢ of (0, 1) which is “slow enough” and suitably modify it on (0, 1/2)
and (1/2,1) so that (, TyT ') is a square root of F which contains a prescribed
marked extension of P. m]

4.3. Square roots of Z. In this section, we give a recipe for producing many n—
generated groups of homeomorphisms of the interval, so that the squares of the
generators generate a cyclic group.

Proof of Theorem[[ 10l Let 7y,...,7,,1 be n + 1 copies of the translation 7(x) =
x + 1 viewed as a homeomorphism of R, and let

(hy,y...,h,y = H < Homeo™ (1)

be an arbitrary n—generated subgroup. We set 7, ,1(x) = x + 1/2.

Lemma 2.1l constructs all possible roots 7, and we follow the construction given
there. We first scale down H to be a group of homeomorphisms of [0, 1/2], and we
abuse notation and label the generators of H by {Ay,...,h,}. We now define T; to
be the homeomorphism 7, o h; on [0, 1/2]. The requirement 77 = 7 determines
the values of T; on the rest of R.
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Now let S; = Tn_+11 oT;for 1 < i< n. Observe that §; acts by /; on each interval
of the form [k, k + 1/2] and by &' on each interval of the form [k — 1/2, k], where
k e Z. Itis clear then the H = (S,...,8,> < (T1,...,Tyi1). O

Proof of Corollary[L 11l First, note that if H is free then the skew subdirect product
H is also free, which establishes the second part of the corollary. For the first part,
we perform a mild modification of the Neumann groups as discussed in Propo-
sition (see [18] for a detailed discussion of these groups). All the Neumann
groups quotients of a single two—generated group I' = (%, 5oy which is left order-
able. The element of .4" are given as quotients of I' by certain central normal
subgroups Ny < I.

It is straightforward to check that the map given by 7 — ¢~! and sy — s, ! extends
to a well-defined automorphism of I', whence I =~ I'. Moreover, the subgroups Ny
are all stable under this automorphism of I'. In particular, it follows that if N € 4"

is one of the Neumann groups, then N = N. The first claim of the corollary follows
from Theorem mi

4.4. General groups. For a general finitely generated group H = {xi,...,x, | R),
one can formally take the square root of H by setting

G=01 sV X1y ooy X | Ry Xy :yf,...,x,, :yi>.

Note that this definition depends on the presentation of H which is given. If H
is given as a free group with no relations then G will be free of the same rank.
However, if H is not freely presented then G can be very complicated. We will call
a presentation for a group H reduced if x; is nontrivial in H for each i.

Theorem 4.2. Let H be a left orderable finitely generated group with a reduced
presentation. Then the formal square root G of H is left orderable.

Proof. If H = {xy,...,x, | R), set
K ={,x1,....% | R, x :y2>.

If we can prove that K is left orderable then the result will follow by induction on
n.
To this end, note that K admits a description as an amalgamated product via

K=7 *ZZ:<X1> H.

Since we can order Z either positively or negatively, we may assume that the iso-
morphism 2Z = (x;) is order preserving. Then, a result of Bludov—Glass [3] (cf.
Bergman [[1]) implies that the corresponding amalgamated product is again order-
able. O
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Note that the assumption that the presentation for H in Theorem 4.2l is reduced
was essential, since otherwise the formal square root would contain torsion. More-
over, we need not assume that H be finitely generated in Theorem 4.2] and this
hypothesis could be replaced by countable generation. We include this hypothesis
since nearly all groups under consideration in this paper are finitely generated.

Finally, we show that formal square roots generally contain nonabelian free groups,
so that free subgroups are in some precise sense a general phenomenon in square
roots of groups of homeomorphisms:

Theorem 4.3. Let H = (xy,...,x, | R) be a reduced presentation for a non—cyclic
finitely generated left orderable group, and let K = {y,x|,...,x, | R,x; = y*.
Then K contains a nonabelian free group.

Thus, Theorem implies that the formal square root of a non—cyclic group
always contains nonabelian free groups.

Proof of Theorem The result follows from general Bass—Serre theory. One can
construct free subgroups explicitly using normal forms for amalgamated products
(see [22[19]). To do this, let z € H\{x; ), which exists since H is assumed not to be
cyclic. Note that z has infinite order since H is left orderable. Consider the group
{z,yzy~'). An arbitrary word in these generators will be of the form

1 —1
co MMy

ZyZMy”
where all these exponents are nonzero except possibly n; and my. This word cannot
collapse to the identity since it is in normal form. It follows that the group (z, yzy ')

is free. o
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