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Abstract. We study two–generated subgroups x f , gy   Homeo�pIq such that
x f 2, g2y is isomorphic to Thompson’s group F, and such that the supports of f
and g form a chain of two intervals. We show that this class contains uncount-
ably many isomorphism types. These include examples with nonabelian free sub-
groups, examples which do not admit faithful actions by C2 diffeomorphisms on
1–manifolds, examples which do not admit faithful actions by PL homeomor-
phisms on an interval, and examples which are not finitely presented. We thus
answer questions due to M. Brin. We also show that many relatively uncompli-
cated groups of homeomorphisms can have very complicated square roots, thus
establishing the behavior of square roots of F as part of a general phenomenon
among subgroups of Homeo�pIq.

1. Introduction

Thompson’s group F is a remarkable group of PL homeomorphisms of the in-
terval that occurs naturally and abundantly as a group of homeomorphisms of the
real line, and that has been extensively studied since the 1970s. The group F has
been shown to satisfy various exotic properties, and has been proposed as a coun-
terexample to well–known conjectures in group theory [7, 10]. Among the most
well–known facts about Thompson’s group F are the following:

Theorem 1.1 (Brin–Squier, [5]). The group F satisfies no law and contains no
nonabelian free subgroups.

Theorem 1.2 (Ghys–Sergiescu, [17]). The group F admits a faithful action by C8

diffeomorphisms of the circle.

Theorem 1.3 (Thompson, see [11]). The group F is finitely presented.

In this article, we study a certain class of groups which we call square roots of
Thompson’s group F. These are two–generated subgroups x f , gy   Homeo�pIq of
the group of orientation-preserving homeomorphisms of the interval, which satisfy

x f 2, g2y � xA, B | rA, pABq�kBpABqks for k P t1, 2uy � F,
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and for which the supports supp f and supp g of f and g respectively form a two–
chain of intervals. That is, supp f and supp g are both open intervals, and the inter-
section supp f X supp g is a proper subinterval of both supp f and supp g.

Among other things, we demonstrate that (the second part of) Theorem 1.1, The-
orem 1.2, and Theorem 1.3 all fail for square roots of F. In particular, we show that
there are square roots of F which contain nonabelian free subgroups, that there are
square roots of F which do not admit faithful actions by C2 diffeomorphisms on the
interval, circle, or real line, and that there are uncountably many isomorphism types
of square roots of F.

1.1. Main results. We denote the set of isomorphism classes of square roots of F
by S . The goal of this paper is to produce interesting elements of S . Note that S
contains F for example, since squaring the generators in the standard presentation
for F as given in the previous subsection results in a group isomorphic to F.

In this article we use two different finite presentations of the group F. The first
presentation, which was mentioned in the previous section is:

xA, B | rA, pABq�1BpABqs, rA, pABq�2BpABq2sy � F.

The second presentation is obtained by performing a Tietze transformation to pro-
duce generators a � AB, b � B, and is given by:

xa, b | rab�1, a�1bas, rab�1, a�2ba2sy � F.
Next, we describe a certain subgroup P of F, which will be needed to state and

prove our results. We fix two copies of F:

F1 � xp1, p2 | rp1 p�1
2 , p�1

1 p2 p1s, rp1 p�1
2 , p�2

1 p2 p2
1sy,

F2 � xq1, q2 | rq1q�1
2 , q�1

1 q2q1s, rq1q�1
2 , q�2

1 q2q2
1sy.

We will write P for the subgroup of F1�F2 generated by pp1, q2q and pp2, q1q. Note
that the group P is a subgroup of F which itself contains F as a subgroup. The fact
that P   F is an elementary exercise that we leave to the reader, and that F   P is
a direct consequence of Brin’s Ubiquity Theorem (see [4]).

We denote the free group on two generators by F2, and we call a group H �
xh1, h2y a marked extension of P if there exists a sequence of surjective homomor-
phisms

F2 Ñ H Ñ P,
where h1 ÞÑ pp1, q2q and h2 ÞÑ pp2, q1q under the second map. Even though the
map H Ñ P may be suppressed from the notation, we always think of a marked
extension of P as equipped with such a homomorphism. A (countable) group is left
orderable if it admits a left invariant total ordering, or equivalently if it admits a
faithful action by orientation preserving homeomorphisms of the real line [14, 20].
Our main result is the following:
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Theorem 1.4. Let H be a marked, left orderable extension of P. Then there exists
a square root of Thompson’s group G P S such that H   G.

Since the free group F2 is left orderable and is naturally a marked extension of
P, we immediately obtain the following:

Corollary 1.5. There exists a square root G P S such that F2   G.

We will show that square roots of F can contain torsion–free nilpotent groups
of arbitrary nilpotence degree. As a consequence of Theorem 1.4 and the Plante–
Thurston Theorem [21], we have the following:

Corollary 1.6. There exists a square root G P S such that G does not admit a
faithful action by C2 diffeomorphisms on a compact one–manifold or on the real
line.

Corollary 1.6 gives an example of a subgroup x f , gy   Homeo�pIq which admits
no faithful C2 action on the interval, the circle, or the real line, but where x f 2, g2y
admits a faithful C8 action on every one–manifold (cf. [17, 18]).

Nonabelian nilpotent groups cannot act by piecewise–linear homeomorphisms
on I or on S 1:

Corollary 1.7. There exists a square root G P S such that G does not admit a
faithful action by PL homeomorphisms of a compact one–manifold.

Corollary 1.7 stands in contrast to the standard definition of F, which is as a
group of PL homeomorphisms of the interval. Corollary 1.7 answers a question
due to M. Brin.

In order to show that square roots of F may not be finitely presented, we prove
the following result which is similar in spirit to some of the methods in [18]:

Theorem 1.8. The class S contains uncountably many distinct isomorphism types.

Since there are only countably many isomorphism types of finitely presented
groups, we immediately obtain the following:

Corollary 1.9. There exists an element G P S which admits no finite presentation.

1.2. Square roots of other groups. Essential in the discussion of square roots
of F in this paper is the dynamical realization of F on a two–chain of intervals,
which is a dynamical setup in which F occurs naturally (see Subsection 2.2). If
one abandons the dynamical framework of chains of intervals, the group theoretic
diversity phenomena witnessed by Theorems 1.4 and 1.8 become so common as to
be a general feature of homeomorphism groups.

To be precise, let H � xh1, . . . , hny   Homeo�pIq be a finitely generated sub-
group. An n–generated subgroup G � xg1, . . . , gny   Homeo�pIq is called a square
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root of H if
H � xg2

1, . . . , g
2
ny.

If H � xh1, . . . , hny is a generating set for a group H, we will define the skew
subdirect product of H to be the subgroup of H � H generated by tphi, h�1

i qun
i�1,

and we will denote this group by pH.

Theorem 1.10. Let Z � xt1, . . . , tn�1 | t1 � � � � � tn�1y, and let H   Homeo�pIq
be an n–generated group. Then there exists a square root G of Z such that pH   G.

Corollary 1.11. There exist uncountably many isomorphism types of three–generated
subgroup of Homeo�pIq such that the squares of the generators generate a cyclic
group. Moreover, there exists a three–generated subgroup of Homeo�pIq such that
the squares of the generators generate a cyclic group and which contain nonabelian
free groups.

Theorem 1.12. Let L � Z ≀ Z be the lamplighter group. Then L has uncountably
many isomorphism types of square roots.

In Subsection 4.4, we will define the notion of a formal square root of a finitely
generated group. We will show that formal square roots of left orderable groups are
again left orderable, and generally contain nonabelian free groups.

1.3. Notes and references.

1.3.1. Remarks on context. The bulk of the present work could just as well be a
discussion of the very general setup of two–generated subgroups of Homeo�pIq
whose generators are supported on intervals J1 and J2, which in turn form a chain.
It is well–known that under suitable dynamical hypotheses (cf. Subsection 1.3.2
below), the resulting subgroup is isomorphic to F. The class S of square roots of
F is merely the first instance of interesting algebraic behavior for such homeomor-
phism groups which does not follow from the properties of Thompson’s group F.
In particular, the results of this article apply to higher roots of F beyond the square
root.

1.3.2. Relation to other authors’ work. To the authors’ knowledge, it was M. Brin
who first asked what sorts of groups can occur as square roots of F, and in partic-
ular if square roots of F can contain nonabelian free groups, whether they can fail
to be finitely presented, and whether they can fail to act by PL homeomorphisms
on the interval. The main results of this paper form a natural complement to the
joint work of the authors with S. Kim in [18]. In that paper, Kim and the authors
introduced the notions of a prechain group and of a chain group. In the termi-
nology of [18], square roots of F form a restricted subclass of 2–prechain groups,
namely those which square to become 2–chain groups. The class of 2–chain groups
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in turn consists of just one isomorphism type (i.e. Thompson’s group F). Chain
groups with “fast” dynamics also fall into very few isomorphism types (namely the
Higman–Thompson groups tFnun¥2, and their subgroup structure has been stud-
ied independently by Bleak–Brin–Kassabov–Moore–Zarmesky [2] (cf. [6]). For
generalities on Thompson’s group F, the reader is directed to the classical Cannon–
Floyd–Parry notes [11], as well as Burillo’s book [8].

2. Square roots of F

In this section we establish the main result, after gathering some relevant prelim-
inary facts. All actions will be right actions, and the words will be read from left to
right. In particular, for homeomorphisms f , g P Homeo�pRq and x P R, we fix the
convention:

f gpxq � g�1 � f�1pxq � g�1p f�1pxqq

2.1. Roots of homeomorphisms. We record the following well–known fact, whose
proof we recall for the convenience of the reader:

Lemma 2.1. Let f P Homeo�pIq. Then for all n P N, there exists an element
g � gn P Homeo�pIq such that gn � f . Moreover, there are uncountably many
possible choices of such a map g.

Proof. By considering the components of the support of f separately, we may con-
sider the case where f has no fixed points in the interval p0, 1q. In this case, f is
topologically conjugate to the homeomorphism of RY t�8u given by x ÞÑ x � 1.

We now define gpzq � z � 1{n for z P Zx1{ny. We extend g to all of R in the
following manner. First, we choose an arbitrary orientation-preserving homeomor-
phism

h0 : r0, 1{ns Ñ r1{n, 2{ns

Next, we inductively define homeomorphisms

hm : r
m
n
,

m � 1
n

s Ñ r
m � 1

n
,

m � 2
n

s

for all m P Z, such that

hk�pn�1q � � � � � hk � x � 1

for each k P Z. It is clear then that the homeomorphisms hm piece together to give a
homeomorphism g of RYt�8u, whose nth power is translation by one. Moreover,
the arbitrariness of the choices made guarantees that there are uncountably many
choices for g. �
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..J1
.J2

Figure 1. A chain of two intervals.

2.2. 2–prechain groups and variations thereupon. Let J � tJ1, J2u be two
nonempty open subintervals of R. We call J a chain of intervals if J1 X J2 is a
proper nonempty subinterval of J1 and of J2. See Figure 1.

If f P Homeo�pRq, we write supp f � tx P R | f pxq � xu. Let f and g satisfy
supp f � J1 and supp g � J2. In the terminology of [18], the group x f , gy is a
2–prechain group. Note that, up to replacing f and g by their inverses, we may
assume f pxq, gpxq ¥ x for x P R.

Writing J1 � pa, cq and J2 � pb, dq with a   b   c   d, we have the following
basic dynamical stability result, which can also be found in [18]:

Lemma 2.2. Suppose g � f pbq ¥ c. Then x f , gy � F.

Under the dynamical hypotheses of Lemma 2.2, the group x f , gy is a chain group.
There is another configuration of intervals and homeomorphisms closely related to
chain groups, which naturally gives rise to F, which we will need in the sequel, and
which we will describe in the next subsection.

2.3. Nested generators for F. A natural generating set for F emerges as homeo-
morphisms supported on a nested pair of intervals, satisfying elementary dynamical
conditions. This shall be useful in our construction to follow.

Lemma 2.3. Let ra, b1s and ra, b2s be compact intervals in R such that b1   b2. Let
f , g be homeomorphisms satisfying:

(1) The supports of gand f are contained in ra, b1s and ra, b2s respectively.
(2) f is a decreasing map on pa, b2q.
(3) f , g agree on the interval ra, f pb1qs.

Then x f , gy � F.

Lemma 2.4. Let ra1, bs and ra2, bs be compact intervals in R such that a1   a2. Let
f , g be homeomorphisms satisfying:

(1) The supports of f and g are contained in ra1, bs and ra2, bs respectively.
(2) f is an increasing map on pa1, bq.
(3) f , g agree on the interval r f pa2q, bs.

Then x f , gy � F.

Proofs of Lemmas 2.3 and 2.4. The proofs of both lemmas above follow from check-
ing that the homeomorphisms f and g in each lemma satisfy the relations

r f g�1, f�1g f s � 1 r f g�1, f�2g f 2s � 1
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Since f and g do not commute, and since every proper quotient of F is abelian
(see [11]), they generate a group isomorphic to F. �

2.4. Orderable extensions of P. We will use the following standard facts from the
theory of orderable groups:

Lemma 2.5 (See [20, 14]). Let 1 Ñ K Ñ G Ñ Q Ñ 1 be an exact sequence of
groups, and suppose that Q and K are left orderable. Then G admits a left ordering
which agrees with any prescribed ordering on K. Moreover, any countable, left
orderable group can be embedded in Homeo�pIq.

The following lemma is obvious, after the observation that F�F is left orderable,
applying the Brin–Squier Theorem [5], and Brin’s Ubiquity Theorem [4]:

Lemma 2.6. The group P is a two–generated sub-direct product of F � F. It is a
left orderable group which contains no free subgroups.

Let R   F2 � xA, By be such that F2{R � P. Note that since P   F � F, we
have R � 1. Let Rk denote the kth term of the derived series of R and let Rk denote
the kth term of the lower central series of R, with the convention R1 � R1 � R.

Lemma 2.7. For each k ¥ 1, the groups

S k � xA, B | Rky and Nk � xA, B | Rky

are marked, left orderable extensions of P.

Proof. It is clear that for each k, the groups S k and Nk are quotients of the free group
F2 via the canonical map. Since Rk,Rk � R, we have that S k and Nk both surject
to P simply by imposing the relations in R. It therefore suffices to show that S k and
Nk are both left orderable, which since P is left orderable, reduces to showing that
R{Rk and R{Rk are left orderable by Lemma 2.5.

Since R is an infinitely generated free group, these quotients are merely the
universal k–step solvable and nilpotent quotients of the infinitely generated free
group. We proceed by induction on k. The case k � 1 is trivial, and in the case k �
2, we obtain the group Z8 which is easily seen to be left orderable. By induction,
R{Rk (resp. R{Rk) is left orderable, and Rk{Rk�1 (resp. Rk{Rk�1) is again
isomorphic to Z8, so the conclusion follows by applying Lemma 2.5 again. �

2.5. Building square roots of F. In this section we provide a recipe that produces
a square root of F that contains a given group H as a subgroup, provided H is an
orderable marked extension of P.

Step 1: Partition r1, 2q into left closed, right open intervals tJ1, . . . , J16u so that
Ji occurs to the left of J j in R whenever i   j. Moreover, we require that these
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intervals are of the same length. For ease of notation, we denote by JX for some
X � t1, . . . , 16u the union

�
iPX Ji. For example,

Jt1,...,4u � J1 Y J2 Y J3 Y J4.

Step 2: Construct homeomorphisms f and g of the real line that satisfy the fol-
lowing:

(1) f and g are increasing maps on p0, 2q and on p1, 3q, respectively, and equal
the identity outside these respective intervals.

(2) f maps Ji isometrically onto Ji�4 for 1 ¤ i ¤ 11.
(3) g maps Ji isometrically onto Ji�4 for 2 ¤ i ¤ 12.
(4) The map g f�1 has two components of support, which are

r0, 1s Y J1, Jt12,...,16u Y r2, 3s.

It is elementary to construct homeomorphisms f and g that satisfy (1)–(3) above.
If f and g satisfy (1)–(3), then it holds that g f�1 is the identity on Jt2,...,11u. Hence
the support of g f�1 is contained in

r0, 1s Y J1

¤
Jt12,...,16u Y r2, 3s.

To ensure that the components of support of g f�1 are precisely as stated in p4q, we
choose g such that it is sufficiently slow on J1, and f so that it is sufficiently slow on
Jt12,...,16u. Note that g f�1 is decreasing on the interior of r0, 1s Y J1 and increasing
on the interior of Jt12,...,16u Y r2, 3s.

Step 3: Let H � xh1, h2y be a marked, left orderable extension of P. We identify
the elements h1 and h2 with their dynamical realizations, both supported on the
interval J6. Define a map h3 as:

h3 � g�1h2g � f�1h2 f .

By definition, h3 is supported on the interval J10. Finally, we define homeomor-
phisms

λ1 � h�1
1 h�1

3 f , λ2 � g.
Our goal for the rest of this section will be to demonstrate the following:

Proposition 2.8. The group xλ1, λ2y is a marked square root of F which contains
H as a subgroup.

The group xλ1, λ2y is manifestly orderable, since it is presented as a group of ori-
entation preserving homeomorphisms of the interval. It is clear by our construction
that λ2

1 and λ2
2 satisfy the dynamical condition of Lemma 2.2, and hence generate a

copy of F. So it suffices to show that H   xλ1, λ2y.

Proposition 2.9. The elements λ2λ
�1
1 and λ�1

1 λ2 generate an isomorphic copy of H.
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Proof. The element λ2λ
�1
1 has four components of support:

r0, 1s Y J1, J6, J10, Jt12,...,16u Y r2, 3s.

Note that:
λ2λ

�1
1 æJ6 � h1, λ2λ

�1
1 æJ10 � h3 � f�1h2 f .

We denote by p2 the following restriction:

λ2λ
�1
1 ær0, 1s Y J1 � g f�1ær0, 1s Y J1.

We denote by q1 the following restriction:

λ2λ
�1
1 æJt12,...,16u Y r2, 3s � g f�1æJt12,...,16u Y r2, 3s.

The element λ�1
1 λ2 has four components of support:

r0, 1s Y Jt1,...,5u, J10, J14, J16 Y r2, 3s.

Note that
λ�1

1 λ2æJ10 � f�1h1 f .
Denote by p1 the following restriction:

λ�1
1 λ2ær0, 1s Y Jt1,...,5u � f�1gær0, 1s Y Jt1,...,5u.

Denote by q2 the following restriction:

λ�1
1 λ2æJt14,...,16u Y r2, 3s.

First observe that the restrictions on J10 are:

λ�1
1 λ2æJ10 � f�1h1 fæJ10, λ2λ

�1
1 æJ10 � h3æJ10 � f�1h2 fæJ10.

It follows that this restriction to J10 corresponds to the isomorphism

H Ñ xλ�1
1 λ2æJ10, λ2λ

�1
1 æJ10y,

given by
h2 ÞÑ λ2λ

�1
1 æJ10, h1 ÞÑ λ�1

1 λ2æJ10,

since these restrictions generate a dynamical realization of H on J10.
Next observe that

λ2λ
�1
1 æJ6 � h1æJ6, λ�1

1 λ2æJ6 � idæJ6.

Since H is a marked extension of P, every relation in H is necessarily a product of
commutators. It follows that the abelianization of H is Z2. We have then that this
restriction to J6 corresponds to the quotient

H Ñ xλ�1
1 λ2æJ6, λ2λ

�1
1 æJ6y,

given by
h2 ÞÑ λ2λ

�1
1 æJ6, h1 ÞÑ λ�1

1 λ2æJ6.

which is a homomorphism whose kernel is the normal closure of h1 in H.
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Next, we observe that by construction, the maps p1, p2 and q1, q2 satisfy the dy-
namical conditions described in Lemmas 2.3 and 2.4 respectively. Define

j1 � suppJ1q, j2 � infpJ14q.

By construction, we have

p1p j1q � λ�1
1 λ2p j1q � f�1gp j1q � gp f�1p j1qq   1,

and

p1ær0, 1s � λ�1
1 λ2ær0, 1s � f�1ær0, 1s � λ2λ

�1
1 ær0, 1s � p2ær0, 1s.

It follows that:

xp1, p2y � xp1, p2 | rp1 p�1
2 , p�1

1 p2 p1s, rp1 p�1
2 , p�2

1 p2 p2
1sy � F.

Next, observe that by construction we have

q1p j2q � λ2λ
�1
1 p j2q � g f�1p j2q � f�1pgp j2qq ¡ 2,

and
q2ær2, 3s � λ�1

1 λ2ær2, 3s � gær2, 3s � λ2λ
�1
1 ær2, 3s � q1ær2, 3s.

It follows that:

xq1, q2y � xq1, q2 | rq1q�1
2 , q�1

1 q2q1s, rq1q�1
2 , q�2

1 q2q2
1sy � F.

In particular, the subgroup of xp1, p2y � xq1, q2y generated by the elements pp1, q2q
and pp2, q1q is isomorphic to P.

Now we claim that the map

h2 ÞÑ λ2λ
�1
1 , h1 ÞÑ λ�1

1 λ2,

extends to an embedding
xh1, h2y Ñ xλ1, λ2y.

This is true for the component J10, where this is a dynamical realization of H. So
it suffices to show that each relation in h1 and h2 is satisfied by the restrictions of
λ�1

1 λ2 and λ2λ
�1
1 on other components. As we saw before, for J6, this via the Z–

quotient given by killing the normal closure of the generator h1 P H, which factors
through the abelianization map. For the components

r0, 1s
¤

Jt1,...,5u, Jt12,...,16u

¤
r2, 3s,

the action of H is precisely as P, and since H is a marked extension of P, whence
the desired conclusion. �
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2.6. Smoothability. To construct square roots of F which are not conjugate into
Diff2pIq or Diff2pRq, the group of C2 orientation-preserving diffeomorphisms of the
interval and the real line respectively, we use the following result due to Plante–
Thurston and its generalizations due to Farb–Franks:

Theorem 2.10 (See [21, 15]). Let N   Diff2pMq be a finitely generated nilpotent
subgroup, where here M is a compact one–manifold. Then N is abelian. Moreover,
any nilpotent subgroup of Diff2pRq is metabelian.

Proof of Corollary 1.6. Let Nk � F2{Rk be as in Lemma 2.7. Then R{Rk   Nk.
Taking a finite subset of a free generating set S for R, we have that the image of S in
Nk generates a nilpotent subgroup ΓS   Nk. It is straightforward to check that ΓS is
a retract of R{Rk, and is therefore a nonabelian nilpotent subgroup of Nk whenever
k ¥ 3. Applying Theorem 1.4 and Theorem 2.10 gives the desired conclusion in
the case where M is compact. Choosing a k " 0 such that Nk contains a nilpotent
subgroup which is not metabelian, we get the desired conclusion for R as well. �

Corollary 1.7 similarly follows from Theorem 1.4 and Theorem 4.1 of [15].

3. Uncountability ofS and infinitely presented examples

In this section, we prove Theorem 1.8. For this, we retain the notation from the
previous discussion.

3.1. Sources of uncountability. A construction of B. Neumann on the existence
of uncountably many distinct isomorphism classes of two–generated groups as out-
lined by de la Harpe in [12] has the advantage that the resulting groups are all left
orderable, as observed in [18]. We summarize the relevant conclusions here:

Proposition 3.1. There exists an uncountable class N of pairwise non–isomorphic
groups such that if N P N then N is two–generated, left orderable, and Nab � Z2.
In particular, N can be realized as a subgroup of Homeo�pRq.

3.2. Equations over Homeo�pRq. In order to prove Theorem 1.8, we will con-
struct an explicit orderable marked extension of P which contains a given element
of N as a subgroup. To do this, we will need to solve equations over Homeo�pRq.

Let t f1, . . . , fk, gu � Homeo�pRq be given, and let w P Fn be a reduced word
in the free group on n fixed generators, where here k   n. An equation over
Homeo�pRq is an expression of the form

wp f1, . . . , fk, x1, . . . , xn�kq � g.

A tuple ty1, . . . , yn�ku � Homeo�pRq is a solution to the equation if this expres-
sion becomes an equality after substituting yi for xi for each i, and interpreting the
expression in Homeo�pRq.
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We will restrict out attention to the case where n � 2. Even here, equations may
not admit solutions. A trivial example can be given by taking f � g and setting w
to be the first free generator. A slightly less trivial example can be given by taking
f to be fixed point free, taking g to have at least one fixed point, and setting w to be
a conjugate of the first free generator.

We will concern ourselves with a particular commutator word w with free gener-
ators s and t, so that under the map F2 Ñ P given by s ÞÑ pp1, q2q and t ÞÑ pp2, q1q,
the element w lies in the kernel.

The following lemma is key in proving Theorem 1.8:

Lemma 3.2. Fix a group N P N and let τ be the map τptq � t � 1. There is a
homeomorphism κ P Homeo�pIq and a nontrivial commutator word w P kertF2 Ñ
Pu such that:

(1) The group xκ, τy contains N as a subgroup.
(2) The equation wpτ, xq � κ admits a solution y P Homeo�pRq.

We first show how Lemma 3.2 implies Theorem 1.8:

Proof of Theorem 1.8. We recall some of the notation and the construction in Sub-
section 2.5. We will use informal language below, since we already have a precise
description in that subsection.

Given any h1, h2 P Homeo�pIq, we can build a square root G P S generated by
λ1, λ2 such that the group H � xλ�1

1 λ2, λ2λ
�1
1 y satisfies the following.

(1) H acts as a dynamical realization of P on

pr0, 1s Y Jt1,...,5uq
¤
pJt12,...,16u Y r2, 3sq

(2) xλ2λ
�1
1 y acts faithfully by Z on the interval J6 and xλ�1

1 λ2y acts trivially on
the interval J6.

(3) xλ�1
1 λ2y acts as h1 on J10 and xλ2λ

�1
1 y acts as h2 on J10.

(4) The action of H outside the above intervals is trivial.
Let τ, κ and y be the homeomorphisms of the real line from Lemma 3.2. For

the rest of the proof, we fix dynamical realizations of τ, κ on J10 obtained from
conjugating by a homeomorphism of R to the interior of J10. We shall now denote
by τ, κ, y as these homeomorphisms supported on J10.

We use the input h1 � τ and let h2 � y to produce a square root G of F. Consider
the subgroup K of H generated by

k1 � λ�1
1 λ2, k2 � wpλ�1

1 λ2, λ2λ
�1
1 q.

We check the following:
(1) k1æJ10 � τ and k2æJ10 � κ.
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(2) k2 acts trivially outside J10 since wps, tq represents the identity in P under
the map s ÞÑ pp1, q2q and t ÞÑ pp2, q1q.

(3) Any commutator vanishes on J6.
(4) k1 acts trivially on J6 and by Z on

pr0, 1s Y Jt1,...,5uq
¤
pJt12,...,16u Y r2, 3sq

By our assumption, N   xk1, k2yæJ10. We claim that in fact, N   xk1, k2y. This
follows from the fact that the relations in N are elements of the commutator sub-
group of the free group, and since xk1, k2y acts by Z outside J10. Therefore N   G
where G is the corresponding square root of F.

We thus obtain that if N P N is given, then there is a square root GN P S which
contains N as a subgroup. Since the class N contains uncountably many differ-
ent isomorphism types and since any element of S is two–generated and hence
countable, the class tGN | N P N u � S consists of uncountably many different
isomorphism types. �

Proof of Lemma 3.2. We shall use the commutator word

wps, tq � rw1ps, tq,w2ps, tqs,

where
w1 � rst�1, s�2ts2s, w2 � trst�1, t�1s�1tst�1.

It is straightforward to check that for the map F2 Ñ P given by s ÞÑ pp1, q2q and
t ÞÑ pp2, q1q, the element w lies in the kernel.

Let ϕ, ψ P Homeo�pIq be given generators of N. We first choose homeomor-
phisms µ, ν P Homeo�pIq such that ψ � rµ, ν�1s and homeomorphisms χ, ξ P
Homeo�pIq such that ϕ � rξ, χ�1s. Such choices are possible, since every element
of Homeo�pIq is a commutator (see Theorem 2.65 of [9], for instance).

Identify I with the unit interval r0, 1s � R. Recall that τ is translation by 1 on R.
We set κ P Homeo�pRq as

κ � pτ�2ψτ2qpτ�102ϕτ102q

Intuitively, κ acts by ψ on the interval r2, 3s, by ϕ on the interval r102, 103s, and by
the identity otherwise. We now verify that κ witnesses the conditions of the lemma.

We set
y � pτ�1µτ1q � pτ�2ντ2qpτ�101χτ101qpτ�102ξτ102q.

Intuitively, the homeomorphism y acts by µ on r1, 2s, by ν on r2, 3s, by χ on
r101, 102s, and by ξ on r102, 103s. We check that y is the solution to the equa-
tion. We proceed by analysing the two inner commutators separately, and then
considering the outer commutator.
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Consider the commutator rτy�1, τ�2yτ2s. First note that since y�1 has disjoint
support from τ�2yτ2, they commute, and hence

rτy�1, τ�2yτ2s � rτ, τ�2yτ2s

We can now easily check that the action of the resulting homeomorphism is as
follows:

(1) It acts by µ on r2, 3s, by νµ�1 on r3, 4s, and by ν�1 on r4, 5s.
(2) It acts by χ on r102, 103s, by ξχ�1 on r103, 104s, and by ξ�1 on r104, 105s.

We denote this homeomorphism by α.
Next, consider the commutator

rτy�1, y�1τ�1ys

First, note that
rτy�1, y�1τ�1ys � rτ, y�2srτ�1, y�1s

It is straightforward to check that the homeomorphism resulting from the product
of these commutators is as follows:

(1) It acts by µ�2 on r0, 1s, by ν�2µ3 on r1, 2s, by ν2µ�1ν on r2, 3s, and by ν�1

on r3, 4s.
(2) It acts by χ�2 on r100, 101s, by ξ�2χ3 on r101, 102s, by ξ2χ�1ξ on r102, 103s,

and by ξ�1 on r103, 104s.
We denote by β the homeomorphism trτy�1, y�1τ�1yst�1.

Finally, we consider the homeomorphism rα, βs. Observe that the supports of α
and β intersect in the intervals r2, 3s and r102, 103s. Since ψ � rµ, ν�1s, we see that
rα, βs acts by ψ on r2, 3s. Similarly, since ϕ � rχ, ξ�1s, we have that rα, βs acts by
ϕ on r102, 103s. It follows that rα, βs agrees with κ, whence y is a solution to the
equation as claimed.

Finally, we show that N   xκ, τy. Indeed the group generated by τ�100κτ100, κ
acts as N on r102, 103s and as Z outside this interval. Since the relations in N are
elements of the commutator subgroup of the free group, it follows that this group is
isomorphic to N. �

4. General square root phenomena

In this section, we pass to the completely general setup of finitely generated
subgroups of Homeo�pIq and address the results in Subsection 1.2.

4.1. Free groups. Classical result from combinatorial and geometric group theory
show that there exist two–generated groups xa, by which are not free, but such that
xa2, b2y is free. Moreover, one can arrange for these groups to be left orderable, and
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hence to be realized as subgroups of Homeo�pIq. For instance, we take the braid
group on three strands

B3 � xa, b | aba � baby.

All braid groups are left orderable [13], and it is a standard fact that the squares of
the standard braids generate a free group (cf. [16]).

4.2. The lamplighter group. Using square roots of F, we can produce many
square roots of the lamplighter group L � Z ≀ Z. Recall that

Z ≀ Z � Z

�à

iPZ

Zi
�
,

where the natural action of Z is by translating the index Zi ÞÑ Zi�1. The group L
is naturally realized as a subgroup of Homeo�pRq   Homeo�pIq as follows. We
choose an arbitrary homeomorphism ψ such that suppψ � p0, 1q � R, and then
we consider the group generated by ψ and τ, where as before τpxq � x � 1. It is
clear that xψ, τy � L. The following result clearly implies Theorem 1.12, in light of
Theorem 1.8

Theorem 4.1. Let G be a left orderable marked extension of P. Then there exists a
square root of L containing an isomorphic copy of G.

Sketch of proof. Let T P Homeo�pRq be given by T pxq � x � 1{2. Note that the
intervals p0, 1q and T pp0, 1qq together form a chain of intervals. Following the setup
in Subsection 2.5, it is clear that we can start with an arbitrary increasing home-
omorphism ψ of p0, 1q which is “slow enough” and suitably modify it on p0, 1{2q
and p1{2, 1q so that xψ,TψT�1y is a square root of F which contains a prescribed
marked extension of P. �

4.3. Square roots of Z. In this section, we give a recipe for producing many n–
generated groups of homeomorphisms of the interval, so that the squares of the
generators generate a cyclic group.

Proof of Theorem 1.10. Let τ1, . . . , τn�1 be n � 1 copies of the translation τpxq �
x � 1 viewed as a homeomorphism of R, and let

xh1, . . . , hny � H   Homeo�pIq

be an arbitrary n–generated subgroup. We set Tn�1pxq � x � 1{2.
Lemma 2.1 constructs all possible roots τ, and we follow the construction given

there. We first scale down H to be a group of homeomorphisms of r0, 1{2s, and we
abuse notation and label the generators of H by th1, . . . , hnu. We now define Ti to
be the homeomorphism Tn�1 � hi on r0, 1{2s. The requirement T 2

i � τ determines
the values of Ti on the rest of R.
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Now let S i � T�1
n�1 � Ti for 1 ¤ i ¤ n. Observe that S i acts by hi on each interval

of the form rk, k � 1{2s and by h�1
i on each interval of the form rk � 1{2, ks, where

k P Z. It is clear then the pH � xS 1, . . . , S ny   xT1, . . . , Tn�1y. �

Proof of Corollary 1.11. First, note that if H is free then the skew subdirect productpH is also free, which establishes the second part of the corollary. For the first part,
we perform a mild modification of the Neumann groups as discussed in Propo-
sition 3.1 (see [18] for a detailed discussion of these groups). All the Neumann
groups quotients of a single two–generated group Γ � xt, s0y which is left order-
able. The element of N are given as quotients of Γ by certain central normal
subgroups NX   Γ.

It is straightforward to check that the map given by t ÞÑ t�1 and s0 ÞÑ s�1
0 extends

to a well–defined automorphism of Γ, whence pΓ � Γ. Moreover, the subgroups NX

are all stable under this automorphism of Γ. In particular, it follows that if N P N
is one of the Neumann groups, then N � pN. The first claim of the corollary follows
from Theorem 1.10. �

4.4. General groups. For a general finitely generated group H � xx1, . . . , xn | Ry,
one can formally take the square root of H by setting

G � xy1, . . . , yn, x1, . . . , xn | R, x1 � y2
1, . . . , xn � y2

ny.

Note that this definition depends on the presentation of H which is given. If H
is given as a free group with no relations then G will be free of the same rank.
However, if H is not freely presented then G can be very complicated. We will call
a presentation for a group H reduced if xi is nontrivial in H for each i.

Theorem 4.2. Let H be a left orderable finitely generated group with a reduced
presentation. Then the formal square root G of H is left orderable.

Proof. If H � xx1, . . . , xn | Ry, set

K � xy, x1, . . . , xn | R, x1 � y2y.

If we can prove that K is left orderable then the result will follow by induction on
n.

To this end, note that K admits a description as an amalgamated product via

K � Z �2Z�xx1y H.

Since we can order Z either positively or negatively, we may assume that the iso-
morphism 2Z � xx1y is order preserving. Then, a result of Bludov–Glass [3] (cf.
Bergman [1]) implies that the corresponding amalgamated product is again order-
able. �
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Note that the assumption that the presentation for H in Theorem 4.2 is reduced
was essential, since otherwise the formal square root would contain torsion. More-
over, we need not assume that H be finitely generated in Theorem 4.2, and this
hypothesis could be replaced by countable generation. We include this hypothesis
since nearly all groups under consideration in this paper are finitely generated.

Finally, we show that formal square roots generally contain nonabelian free groups,
so that free subgroups are in some precise sense a general phenomenon in square
roots of groups of homeomorphisms:

Theorem 4.3. Let H � xx1, . . . , xn | Ry be a reduced presentation for a non–cyclic
finitely generated left orderable group, and let K � xy, x1, . . . , xn | R, x1 � y2y.
Then K contains a nonabelian free group.

Thus, Theorem 4.3 implies that the formal square root of a non–cyclic group
always contains nonabelian free groups.

Proof of Theorem 4.3. The result follows from general Bass–Serre theory. One can
construct free subgroups explicitly using normal forms for amalgamated products
(see [22, 19]). To do this, let z P Hzxx1y, which exists since H is assumed not to be
cyclic. Note that z has infinite order since H is left orderable. Consider the group
xz, yzy�1y. An arbitrary word in these generators will be of the form

zn1yzm1y�1 � � � znkyzmky�1,

where all these exponents are nonzero except possibly n1 and mk. This word cannot
collapse to the identity since it is in normal form. It follows that the group xz, yzy�1y
is free. �
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