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Abstract Let M be a circle or a compact interval, and let α = k + τ ≥ 1 be
a real number such that k = �α�. We write Diffα+(M) for the group of orien-
tation preserving Ck diffeomorphisms of M whose kth derivatives are Hölder
continuous with exponent τ . We prove that there exists a continuum of isomor-
phism types of finitely generated subgroups G ≤ Diffα+(M) with the property

that G admits no injective homomorphisms into
⋃

β>α Diff
β
+(M). We also

show the dual result: there exists a continuum of isomorphism types of finitely
generated subgroups G of

⋂
β<α Diff

β
+(M) with the property that G admits

no injective homomorphisms into Diffα+(M). The groups G are constructed
so that their commutator groups are simple. We give some applications to
smoothability of codimension one foliations and to homomorphisms between
certain continuous groups of diffeomorphisms. For example, we show that
if α ≥ 1 is a real number not equal to 2, then there is no nontrivial homo-
morphism Diffα+(S1) → ⋃

β>α Diff
β
+(S1). Finally, we obtain an independent
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result that the class of finitely generated subgroups of Diff1+(M) is not closed
under taking finite free products.
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1 Introduction

Let M be the circle S1 = R/Z or a compact interval I . A function f : M → R

is Hölder continuous with exponent τ if there is a constant C such that

| f (x) − f (y)| ≤ C |x − y|τ

for all x, y ∈ M . In the case where M = S1, we implicitly define |x − y| to
be the usual angular distance between x and y.

For an integer k ≥ 1 and for a smooth manifold M , we write Diffk+τ+ (M)

for the group of orientation preserving Ck diffeomorphisms of M whose kth
derivatives are Hölder continuous with exponent τ ∈ [0, 1). For compactness
of notation, we will write Diffα+(M) for Diffk+τ+ (M), where k = �α� and
τ = α − k. By convention, we will write Diff0+(M) = Homeo+(M).

The purpose of this paper is to study the algebraic structure of finitely
generated groups inDiffα+(M), asα varies.We note that the isomorphism types
of finitely generated subgroups in Diffα+(I ) coincide with those in Diffαc (R),
the groupof compactly supportedCα diffeomorphismsonR; seeTheoremA.3.

Let us denote by G α(M) the class of countable subgroups of Diffα+(M),
considered up to isomorphism. It is clear from the definition that if α ≤ β

then G β(M) ⊆ G α(M). In general, it is difficult to determine whether a given
element G ∈ G α(M) also belongs to G β(M). A motivating question is the
following:

Question 1.1 Let k ≥ 0 be an integer.

(1) Does G k(M)\G k+1(M) contain a finitely generated group?
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Diffeomorphism groups of critical regularity

(2) Does G k(M)\G k+1(M) contain a countable simple group?

The answer to the above question was previously known only for k ≤ 1
in part (1), and only for k = 0 in part (2). A first obstruction for the C1-
regularity comes from the Thurston Stability [66], which asserts that every
finitely generated subgroup of Diff1+(I ) is locally indicable. An affirmative
answer to part (1) of Question 1.1 follows for k = 0 and M = I ; that is,
G 0(I )\G 1(I ) contains a finitely generated group. Using Thurston Stability,
Calegari proved that G 0(S1)\G 1(S1) contains a finitely generated group; see
[15] for the proof and also for a general strategy of “forcing” dynamics from
group presentations. Navas [57] produced an example of a locally indicable
group in G 0(M)\G 1(M); see also [16].

A different C1-obstruction can be found in the result of Ghys [29] and
of Burger–Monod [12]. That is, if G is a lattice in a higher rank simple Lie
group then G /∈ G 1(S1). This result was built on work of Witte [70]. More
generally, Navas [55] showed that every countably infinite group G with prop-
erty (T) satisfies G /∈ G 1(I ) and G /∈ G 1.5+ε(S1) for all ε > 0; it turns
out that G /∈ G 1.5(S1) by a result of Bader–Furman–Gelander–Monod [1].
The exact optimal bound for the regularity of property (T) groups is currently
unknown.

Plante and Thurston [62] proved that if N is a nonabelian nilpotent group,
then N /∈ G 2(M). By Farb–Franks [28] and Jorquera [36], every finitely gen-
erated residually torsion-free nilpotent group belongs to G 1(M). For instance,
the integral Heisenberg group belongs toG 1(M)\G 2(M). So, part (1) of Ques-
tion 1.1 also has an affirmative answer for the case k = 1.

Another C2-obstruction comes from the classification of right-angled Artin
groups in G 2(M) [2,40]. In particular, Baik and the authors proved that except
for finitely many sporadic surfaces, no finite index subgroups of mapping class
groups of surfaces belong to G 2(M) for all compact one-manifolds M [2]; see
also [27,61]. Mapping class groups of once-punctured hyperbolic surfaces
belong to G 0(S1); see [9,33,59].

Simplicity of subgroups often plays a crucial role in the study of group
actions [13,25,38,65]. Examples of countable simple groups in G 0(I )\G 1(I )
turn out to be abundant in isomorphism types. For us, a continuum means
a set that has the cardinality of R. In joint work of the authors with Lodha
[41] and in joint work of the second author with Lodha [43], the existence of a
continuum of isomorphism types of finitely generated groups and of countable
simple groups in G 0(I )\G 1(I ) is established. These results relied on work of
Bonatti–Lodha–Triestino [7]. In particular, part (2) of Question 1.1 has an
affirmative answer for k = 0 and M = I .
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1.1 Summary of results

Recall that M ∈ {I, S1}. In this article, we give the first construction of finitely
generated groups and simple groups in G α(M)\G β(M).

Main Theorem For all α ∈ [1, ∞), each of the sets

G α(M)\
⋃

β>α

G β(M),
⋂

β<α

G β(M)\G α(M)

contains a continuum of finitely generated groups, and also contains a contin-
uum of countable simple groups.

The Main Theorem gives an affirmative answer to Question 1.1.

Remark 1.2 One has to be slightly careful interpreting the Main Theorem
when α = 1. This is because the set Diffβ+(M) is not a group for β < 1. Using
[24], we will prove a stronger fact that G Lip(M)\G 1(M) contains the desired
continua. Here, G Lip(M) denotes the set of isomorphism types of countable
subgroups of DiffLip+ (M), the group of bi-Lipschitz homeomorphisms.

Remark 1.3 It is interesting to note that in the case of M = I , the simple groups
guaranteed by the Main Theorem for α > 1 are locally indicable, as follows
easily from Thurston Stability. Thus, we obtain a continuum of countable,
simple, locally indicable groups. The commutator subgroup of Thompson’s
group F is one such example.

If G ≤ Diffα+(M) and if β > α, an injective homomorphism G →
Diffβ+(M) is called an algebraic smoothing of G. The Main Theorem implies
that for each α ≥ 1, there exists a finitely generated subgroup G ≤ Diffα+(M)

that admits no algebraic smoothings beyond α. Moreover, the finitely gener-
ated groups in the continua of the Main Theorem can always be chosen to
be non-finitely-presented as there are only countably many finitely presented
groups up to isomorphism.

In Sect. 2.1 we give the definition of concave moduli (of continuity), a
strict partial order 
 between them, and the symbol �k 0. For instance,
ωτ (x) = xτ is a concave modulus satisfying ωτ �k 0 for each τ ∈ (0, 1]
and k ∈ N. For a concave modulus ω, we let Diffk,ω

+ (M) denote the group of
Ck-diffeomorphisms on M whose kth derivatives are ω-continuous. We also
write Diffk,0

+ (M) := Diffk+(M). We denote by Diffk,bv
+ (I ) the group of diffeo-

morphisms f ∈ Diffk+(I ) such that f has bounded total variation. Note that

Diffk,bv
+ (I ) contains Diffk,Lip

+ (I ), the group ofCk-diffeomorphisms whose kth
derivatives are Lipschitz.
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Diffeomorphism groups of critical regularity

For a concave modulus ω or for ω ∈ {0, bv}, the set of all countable
subgroups of Diffk,ω

+ (M) is denoted as G k,ω(M). We will deduce the Main
Theorem from a stronger, unified result as can be found below.

Theorem 1.4 For each k ∈ N, and for each concave modulus μ � ω1, there
exists a finitely generated group Q = Q(k, μ) ≤ Diffk,μ

+ (I ) such that the
following hold.

(i) [Q, Q] is simple and every proper quotient of Q is abelian;
(ii) if ω = bv, or if ω is a concave modulus satisfying μ � ω �k 0, then

[Q, Q] /∈ G k,ω(I ) ∪ G k,ω(S1).

Theorem 1.4 will imply the Main Theorem after making suitable choices of
μ above. See Sect. 6.4 for details.

We let Fn denotes a rank-n free group. Let BS(1, 2) denote the solvable
Baumslag–Solitar group of type (1, 2); see Sect. 3. In the case when M = I ,
our construction for Theorem 1.4 builds on a certain quotient of the group

G† = (Z × BS(1, 2)) ∗ F2.

Let us describe our construction more precisely.

Theorem 1.5 Let k ∈ N, and let μ be a concave modulus such that μ � ω1.
Then there exists a representation

φk,μ : G† → Diffk,μ
+ (I )

such that the following hold.

(i) If ω = bv, or if ω is a concave modulus satisfying μ � ω �k 0, then for
all representations

ψ : G† → Diffk,ω
+ (I )

we have that

kerψ\ ker φk,μ �= ∅.

(ii) Every diffeomorphism f ∈ φk,μ(G†) is C∞ on I\∂ I .

We deduce that the group

φk,μ(G†)
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admits no injective homomorphisms into Diffk,ω
+ (I ). We will then bootstrap

this construction to produce simple groups in Sect. 6.
We define the critical regularity on M of an arbitrary group G as

CritRegM(G) := sup{α | G ∈ G α(M)}.

Here, we adopt the convention sup∅ = −∞. The critical regularity spectrum
of M that is defined as

CM := {
CritRegM(G) | G is a finitely generated group

}

Another consequence of the Main Theorem is the following.

Corollary 1.6 The critical regularity spectrum of M, which is defined as

CM := {
CritRegM(G) | G is a finitely generated group

}
,

coincides with {−∞} ∪ [1, ∞].
Theorem1.5 gives the first examples of groupswhose critical regularities are

determined (and realizable) and belong to (1, ∞). To the authors’ knowledge,
the critical regularities of the following three groups are previously known and
finite. First, Navas proved that Grigorchuk–Machi group H̄ of intermediate
growth has critical regularity 1, and that the critical regularity of H̄ can be
realized [56]. Second, Castro–Jorquera–Navas proved ([22], combined with
[62]) that the integral Heisenberg group has critical regularity 2 and this critical
regularity cannot be attained. Thirdly, Jorquera, Navas and Rivas [37] proved
that the nilpotent group N4 of 4 × 4 integral lower triangular matrices with
ones on the diagonal satisfies

CritRegI (N4) = 3/2.

It is not known whether or not the critical regularity 3/2 of N4 is realizable.
The case G ∈ G 1(M)\G 0(M) requires a suitable interpretation the criti-

cal regularity. As we have mentioned in Remark 1.2, it is proved by Deroin,
Kleptsyn and Navas that every countable subgroup G of Homeo+(M) is topo-
logically conjugate to a group of bi-Lipschitz homeomorphisms [24]. Thus,
it is reasonable to say that [0, 1) is missing from from the critical regularity
spectrum.

The authors proved in [40] that for each integer 2 ≤ k ≤ ∞, the class
of finitely generated group in G k(M) is not closed under taking finite free
products. From [8] and from the consideration ofBS(1, 2) actions in the current
paper, we deduce the following augmentation for k = 1. We are grateful to
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A. Navas for pointing us to the reference [8] and telling us the proof of the
following corollary for M = I . See Sect. 3.4 for details.

Corollary 1.7 The group (Z×BS(1, 2))∗Z does not embed intoDiff1+(M). In
particular, the class of finitely generated subgroups of Diff1+(M) is not closed
under taking finite free products.

Though we concentrate primarily on countable groups, our results have
applications to continuous groups. For a smooth manifold X and for an α ≥ 1,
we let Diffαc (X)0 denote the group of Cα diffeomorphisms of X isotopic to
the identity through a compactly supported Cα isotopy. If 1 ≤ α < β, then
there is a natural embedding Diffβc (X)0 → Diffαc (X)0 defined simply by
the inclusion. The main result (and its proof) of [47] by Mann implies that
if X ∈ {S1, R}, and if 2 < α < β are real numbers, then there exists no
injective homomorphisms Diffαc (X)0 → Diffβc (X)0. We generalize this to all
real numbers 1 ≤ α < β.

Corollary 1.8 Let X = {S1, R}. Then arbitrary homomorphisms of the fol-
lowing types have abelian images:

(1) Diffαc (X)0 → ⋃
β>α Diff

β
c (X)0, where α ≥ 1;

(2) Diffαc (X)0 → Diff�α�,bv
c (X)0, where α ≥ 1;

(3)
⋂

β<α Diff
β
c (X)0 → Diffαc (X)0, where α > 1.

In addition, if α �= 2 in parts (1) and (2), and if α > 3 in part (3), then all the
above homomorphisms have trivial images.

The Main Theorem has the following implication on the existence of
unsmoothable foliations on 3-manifolds. This extends a previous result of
Tsuboi [69] and of Cantwell–Conlon [21], that is originally proved for integer
regularities.

Corollary 1.9 Let α ≥ 1 be a real number. Then for every closed orientable
3-manifold Y satisfying H2(Y, Z) �= 0, there exists a codimension-one Cα

foliation (Y,F ) which is not homeomorphic to a
⋃

β>α Cβ foliation.

Here, a homeomorphismof foliations is a homeomorphismof the underlying
foliated manifolds which respects the foliated structures.

1.2 Notes and references

1.2.1 Automatic continuity

K. Mann proved that if X is a compact manifold then the group Homeo0(X)

of homeomorphisms isotopic to the identity has automatic continuity, so that
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every homomorphism from Homeo0(X) into a separable group is continuous
[48]. She uses this fact to prove that Homeo0(X) has critical regularity 0
and hence has no algebraic smoothings. For discussions of a similar ilk, the
reader may consult [47] and [35]. The Main Theorem implies that the critical
regularity of Diffα+(M) is α, for M ∈ {I, S1} and for α ≥ 1.

1.2.2 Superrigidity

Recall that Margulis Superrigidity says that under suitable hypotheses, a rep-
resentation of a lattice 
 in a higher rank Lie group G is actually given by the
restriction of a representation of G to 
 (see [50]). For the continuous groups
Diffα+(M) which we consider here, there is no particularly clear analogue of
a lattice. Nevertheless, some of the results proved in this paper are reminis-
cent of similar themes. Particularly, Corollary 1.8 is established by showing
that all of the maps in question contain a countable simple group (perhaps a
suitable analogue of a lattice) in their kernel, thus precluding the existence of
a nontrivial homomorphism between the corresponding continuous groups.

1.2.3 Topological versus algebraic smoothability

The smoothability issues that we consider in this paper center around algebraic
smoothability of group actions. There is a stronger notion of smoothability
called topological smoothability. A topological smoothing of a representation

φ : G → Diffα+(M)

is a topological conjugacy of φ into Diffβ+(M) for some β > α; that is, the
conjugation hφh−1 of φ by some homeomorphism h on M such that we have
hφ(G)h−1 ≤ Diffβ+(M). A topological smoothing of a subgroup is obviously
an algebraic smoothing, but not conversely; compare [22] and [37]. By a result
of Tsuboi [69], there exists a two-generator solvable group G and a faithful
action ϕk of G on the interval such that ϕk(G) ≤ Diffk+(I ) but such that ϕk(G)

is not topologically conjugate into Diffk+1+ (I ). Since ϕk is injective, these
actions are algebraically smoothable. See Sect. 6.5 regarding implications for
foliations.

1.2.4 Disconnected manifolds

It is natural to wonder whether or not the results of this paper generalize to
compact one-manifolds which are not necessarily connected; these manifolds
are disjoint unions of finitely many intervals and circles (cf. [2,40]). It is not
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difficult to see that the results generalize. Indeed, if G is a group of home-
omorphisms of a compact disconnected one-manifold M , then a finite index
subgroup of G stabilizes all the components of M . We build a finitely gen-
erated group G whose commutator subgroup [G, G] is simple, and such that
[G, G] has the critical regularity exactly α with respect to faithful actions on
the interval or the circle. Some finite index subgroup of G stabilizes each com-
ponent of M , and since [G, G] is infinite and simple, [G, G] stabilizes each
component of M . It follows that G has critical regularity α with respect to
faithful actions on M .

1.2.5 Kernel structures

In Theorem 1.5, let us fix ε ∈ (0, 1) such that ωε 
 μ. It will be impossible
to find a finite set S ⊆ G†\ ker φ such that for all ψ ∈ Hom(G†,Diffk+ε+ (I ))
we have S ∩ kerψ �= ∅. Indeed, Lemma 3.5 implies that for all finite set
S ⊆ G†\{1} there exists a C∞ action of G† on R with a compact support such
that S does not intersect the kernel of this action. So, one must consider an
infinite set of candidates that could be a kernel element of such a ψ .

1.3 Outline of the proof of Theorem 1.5

Given a concave modulus μ, we build a certain representation φ of the group
G† into Diffk,μ

+ (I ). For ε ∈ (0, 1] satisfying ω := ωε 
 μ, we also show that

the group φ(G†) admits no algebraic smoothing into Diffk,ω
+ (I ). We remark

that Diffk+1+ (I ) ≤ Diffk,ω
+ (I ).

To study maps into Diffk,ω
+ (I ), we use a measure of complexity of a dif-

feomorphism f , which is roughly the number of components of supports of
generators of G† needed to cover the support of f . We prove a key techni-
cal result governing this complexity; this result is called the Slow Progress
Lemma and applies to an action of an arbitrary finitely generated group on I .
To have a starting diffeomorphism with finite complexity, we build an element
1 �= u ∈ G† such that if ψ : G† → Diff1+(I ) is an arbitrary representation
then the support of ψ(u) is compactly contained in the support of ψ(G†).

Next, we build an action φ of G† so that certain judiciously chosen conju-
gates w j uw−1

j of u, which depend strongly on the regularity (k, μ), result in a

sequence of diffeomorphisms φ(w j uw−1
j ) whose complexity grows linearly

in j . We show that under an arbitrary representation ψ : G† → Diffk,ω
+ (I ),

the complexity of ψ(w j uw−1
j ) grows more slowly than that of φ(w j uw−1

j ), a
statement which follows from the Slow Progress Lemma. Thus for eachψ , we
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find an element g ∈ G† which survives under φ but dies underψ . In particular,
φ(G†) cannot be realized as a subgroup of Diffk,ω

+ (I ).

1.4 Outline of the paper

We strive to make this article as self-contained as possible. In Sect. 2, we build
up the analytic toolswe need. Section 3 summarizes the dynamical background
used in the sequel, and proves Corollary 1.7. Section 4 establishes the Slow
Progress Lemma for a general finitely generated group action on intervals.
In Sect. 5, we fix a concave modulus μ, and construct a representation φ of
the group G† into Diffk,μ

+ (I ) with desirable dynamical properties and prove
Theorem 1.5. In Sect. 6, we complete the proof of the Main Theorem and
gather the various consequences of the main results.

2 Probabilistic dynamical behavior

Throughout this section and for the rest of the paper, we will let I denote a
nonempty compact subinterval of R. All homeomorphisms considered in this
paper are assumed to be orientation preserving. We continue to let M = I or
M = S1.
We wish to develop the concepts of fast and expansive homeomorphisms

(Definition 2.8). These concepts establish a useful relationship between the
dynamical behavior of a diffeomorphism supported on I and its analytic behav-
ior, which is to say its regularity.

2.1 Moduli of continuity

We will use the following notion in order to guarantee the convergence of
certain sequences of diffeomorphisms.

Definition 2.1 (1) A concave modulus of continuity (or concave modulus, for
short) means a homeomorphism ω : [0, ∞) → [0, ∞) which is concave.

(2) Let ω be a concave modulus. ForU ⊆ R orU ⊆ S1, we define the ω-norm
of a map f : U → R as

[ f ]ω = sup

{ | f (x) − f (y)|
ω(|x − y|) : x, y ∈ U and x �= y

}

.

We say f is ω-continuous if f has a bounded ω-norm.

The notion of ω-continuity depends only on the germs of ω for bounded
functions, as can be seen from the following easy observation.
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Lemma 2.2 Let ω be a concave modulus, and let f : U → R be a bounded
function for some U ⊆ R. If there exist constants K , δ > 0 such that

| f (x) − f (y)| ≤ K · ω(|x − y|)
for all 0 < |x − y| ≤ δ, then we have [ f ]ω < ∞.

Remark 2.3 It is often assumed in the literature that a concave modulus ω(x)

is defined only locally at x = 0, namely on [0, δ] for some δ > 0 [51,52]. This
restriction does not alter the definition ofω-continuity for compactly supported
functions. The reason goes as follows. Suppose ω : [0, δ] → [0, ω(δ)] is a
strictly increasing concave homeomorphism. By an argument in the proof of
Lemma A.9, we can find a concave modulus μ : [0, ∞) → [0, ∞) such that

ω(s) ≤ μ(s) ≤ (2 + δ/ω(δ)) ω(s)

for all s ∈ [0, δ]. By Lemma 2.2, we conclude that the ω-continuity coincides
with the μ-continuity for a compactly supported function.

The complex planeC has a natural lexicographic order<C; that is, we write
z <C w in C if Re z < Rew, or if Re z = Rew and Im z < Imw. For two
complex numbers a, b ∈ C, we let

(a, b]C := {z ∈ C | a <C z ≤C b}.
In particular, we have that

(0, 1]C := {s√−1 | s > 0} ∪ {τ + s
√−1 | τ ∈ (0, 1), s ∈ R} ∪ {1 + s

√−1 | s ≤ 0}.

We similarly define (a, b)C, together with the other types of intervals.

Example 2.4 Let z = τ + s
√−1 ∈ C satisfy z ∈ (0, 1]C. We set

ωz(x) := xτ · exp (−s log(1/x)/ log log(1/x)) .

Then ωz is a small perturbation of ωτ (x) = xτ = exp(−τ log(1/x)). By
simple computations of the derivatives, one sees that ωz is a concave modulus
defined for all small x ≥ 0. See Fig. 1 for the graphs of ωz .

We will use the notation in Example 2.4 for the rest of the paper. The Hölder
continuity of exponent τ ∈ (0, 1) is equivalent to the ωτ -continuity.

Notation 2.5 (1) Let k ∈ N, and let ω be a concave modulus. We write

ω �k 0
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(a) (b)

Fig. 1 The graphs of ωz along with their extrapolations (not drawn in scale). Note we only
consider concave and strictly increasing portions [0, δ] of the above graphs

if the following holds for some δ > 0:

lim
t→+0

sup
0<x<δ

tk−1ω(t x)/ω(x) = 0.

(2) For two positive real sequences {a j } and {b j }, we will write {a j } � {b j }
if {a j/b j } is bounded.

In particular, the expression ω �k 0 is vacuously true for k > 1. Compare
this condition to Mather’s Theorem (Definition 3.12 and Theorem 3.13).

Lemma 2.6 The following hold for k ∈ N and for a concave modulus ω.

(1) The function x/ω(x) is monotone increasing on [0, ∞).
(2) For all C > 0 and x ≥ 0, we have ω(Cx) ≤ (C + 1)ω(x).
(3) Assume that we have positive sequences {a j } and {b j } such that

{ak−1
j ω(a j )} � {bk−1

j ω(b j )}.
If ω �k 0, then we have {a j } � {b j }.

Proof Proofs of (1) and (2) are obvious from monotonicity and concavity.
Assume (3) does not hold. Passing to a subsequence, we may assume {t j :=
b j/a j } converges to 0. Then we have a contradiction because

bk−1
j ω(b j )

ak−1
j ω(a j )

= tk−1
j · ω(t j a j )

ω(a j )
→ 0 as j → ∞.

Supposeω andμ are concavemoduli.We define a strict partial orderω 
 μ

if

lim
x→+0

ω(x) logK (1/x)

μ(x)
= 0
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for all K > 0. Here, we use the notation

logK t = (log t)K .

Lemma 2.7 If z, w ∈ (0, 1]C satisfy z <C w, then ωz � ωw.

Proof Let z = σ + s
√−1 and w = τ + t

√−1. Then we have

lim
x→+0

log
(
ωw(x) logK (1/x)/ωz(x)

)

= lim
x→+0

(σ − τ) log(1/x) − (t − s) log(1/x)/

log log(1/x) + K log log(1/x)

= lim
y→∞(σ − τ)y − (t − s)y/ log y + K log y.

From z <C w, we see that the above limit equals −∞. This is as desired.

Let k ∈ N and let ω be a concave modulus. A Ck,ω-diffeomorphism on M
is defined as a diffeomorphism f of M such that f (k) is ω-continuous. We say
the pair (k, ω) is a regularity of f . If ω = ωτ for some τ ∈ (0, 1) then a Ck,ω-
diffeomorphism means a Ck+τ -diffeomorphism. We have Ck,ω1 = Ck,Lip.

Let f : I = [p, q] → R be a map. Recall that the (total) variation of f is
given by

Var( f, I ) = sup
p=x1<···<xn=q

∑

i

| f (xi ) − f (xi−1)|,

where the supremum is taken over all possible finite partitions of I . A function
has bounded variation on I if Var( f, I ) is finite on I . If M = S1, we use
the same definition for Var( f, I ) with p = q. We say that a diffeomorphism
f : M → M is Ck,bv if f is Ck and if in addition we have f (k) has bounded
variation.

Let ω be a concave modulus, or let ω = bv. We write for The set of all Ck,ω

diffeomorphisms of M is denoted as

Diffk,ω
+ (M),

which turns out to be a group for k ∈ N (Proposition A.2). We define G k,ω(M)

to be the set of the isomorphism classes of countable subgroups of Diffk,ω
+ (M).

Note that

Diffk+τ+ (M) = Diffk,ωτ+ (M).
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We have that

Diffk+1+ (M) ≤ Diffk,ω1+ (M) = Diffk,Lip
+ (M) ≤ Diffk,bv

+ (M) ≤ Diffk+(M).

If we have two concave of moduli ω 
 μ, then we have

Diffk,ω
+ (M) ≤ Diffk,μ

+ (M).

In particular, if z, w ∈ (0, 1]C satisfy z <C w, then we see from Lemma 2.7
that

Diffk,ωz+ (M) ≥ Diffk,ωw+ (M).

2.2 Fast and expansive homeomorphisms

From now on until Sect. 6, we will be mostly concerned with the case M = I .
For a measurable set J ⊆ R, we denote by |J | its Lebesgue measure. We write
J ′ for the derived set of J , which is to say the set of the accumulation points
of J . If X is a set, we let #X denote its cardinality.

Let f : X → X be a map on a space X . We use the standard notations

Fix f = {x ∈ X | f (x) = x},
supp f = {x ∈ X | f (x) �= x} = X\ Fix f.

The set supp f is also called the (open) support of f . We note the identity map
Id : R → R satisfies Id( j)(x) = δ1 j for j ≥ 1.

Definition 2.8 Let f : I → I be a homeomorphism, and let J ⊆ I be a
compact interval such that f (J ) = J . We let k ∈ N.

(1) We say f is k-fixed on J if one of the following holds:
• J ∩ (Fix f )′ �= ∅, or
• #(J ∩ Fix f ) > k.

(2) We say f is δ-fast on J for some δ > 0 if

sup
y∈J

| f (y) − y|
|J | ≥ δ.

(3) We say f is λ-expansive on J for some λ > 0 if

sup
y∈J

| f (y) − y|
d({y, f (y)}, ∂ J )

≥ λ.
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We note that f has one of the above three properties if and only if so does
f −1. Note also that f is λ-expansive on J = [p, q] if and only if there exists
some y ∈ J satisfying one of the following (possibly overlapping) alternatives:

(E1) p < y < f (y) < q and f (y) − y ≥ λ(y − p);
(E2) p < y < f (y) < q and f (y) − y ≥ λ(q − f (y));
(E3) p < f (y) < y < q and y − f (y) ≥ λ( f (y) − p);
(E4) p < f (y) < y < q and y − f (y) ≥ λ(q − y).

For a set A ⊆ N, we define its natural density as

dN(A) = lim
N→∞ #(A ∩ [1, N ])/N ,

if the limit exists. A crucial analytic tool of this paper is the following proba-
bilisitic description of fast and expansive homeomorphisms.

Theorem 2.9 Let k ∈ N, and let ω �k 0 be a concave modulus. Suppose we
have

(i) a diffeomorphism f ∈ Diffk,ω
+ (I ) ∪ Diffk,bv

+ (I );
(ii) a sequence {Ni } ⊆ N such that supi∈N Ni (1/ i)k−1ω(1/ i) < ∞;
(iii) a sequence of compact intervals {Ji } in I such that f is k-fixed on each

Ji and such that supi∈N #{ j ∈ N | Ji ∩ J j �= ∅} < ∞.

Then for each δ > 0 and λ > 0, the following set has the natural density zero:

Aδ,λ =
{

i ∈ N | f Ni is δ-fast or λ-expansive on Ji

}
.

The proof of the theorem is given in Sect. 2.3.

2.3 Proof of Theorem 2.9

Let k and ω be as in Theorem 2.9. We first note a classical result in number
theory.

Lemma 2.10 For sets A, B ⊆ N, the following hold.

(1) If dN(A) = 1 for some A ⊆ N and if i ∈ N, then dN ((A − i) ∩ N) = 1.
(2) If dN(A) = dN(B) = 1 for some A, B ⊆ N, then dN(A ∩ B) = 1.
(3) ([53,64]) If

∑
i∈A 1/ i is convergent, then dN(A) = 0.

Fastness and expansiveness constants of “roots” of a diffeomorphismbehave
like arithmetic and geometric means, respectively:

Lemma 2.11 Let f ∈ Homeo+(J ) for some compact interval J , and let
N ∈ N.
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(1) If f N is δ-fast for some δ > 0, then f is (δ/N )-fast.
(2) If f N is λ-expansive for some λ > 0, then f is ((λ+1)1/N −1)-expansive.

Proof Let us write J = [p, q].
(1) For some y ∈ J we have

δ|J | ≤ | f N (y) − y| ≤
N−1∑

i=0

| f i+1(y) − f i y|.

Hence there exists some y′ = f i (y) such that | f (y′) − y′| ≥ δ
N |J |.

(2) Assume the alternative (E1) holds as described after Definition 2.8. That
is,

p < y < f (y) < q

for some y ∈ J such that f N (y) − y ≥ λ(y − p). Note that

λ + 1 ≤ f N (y) − p

y − p
=

N−1∏

i=0

f i+1(y) − p

f i (y) − p
.

So, for some y′ = f i (y), we have

(λ + 1)1/N ≤ f (y′) − p

y′ − p
= f (y′) − y′

y′ − p
+ 1.

This is the desired inequality. The other alternatives are similar.

Lemma 2.12 For a Ck-map f : I → R, the following hold.

(1) If x ∈ (Fix f )′ and j = 0, 1, . . . , k, then we have:

f ( j)(x) = Id( j)(x).

(2) If f is k-fixed on a compact interval J ⊆ I , then ( f − Id)( j) has a root in
J for each j = 0, 1, . . . , k.

Proof For each j ∈ {0, 1, . . . , k}, we define
S j : = S j ( f ) = {x ∈ I | f ( j)(x) = Id( j)(x)}.

(1) We have S′
j ⊆ S j . It now suffices for us to show the following:

S′
0 = (Fix f )′ ⊆ S′

1 ⊆ · · · ⊆ S′
k .
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Let us assume x ∈ S′
j for some 0 ≤ j < k. Then there exists a sequence

{xi } ⊆ S j\{x} converging to x . There exists yi between xi and x such that

f ( j+1)(yi ) = f ( j)(xi ) − f ( j)(x)

xi − x
= Id( j)(xi ) − Id( j)(x)

xi − x
= δ0 j = Id( j+1)(yi ).

Since yi ∈ S j+1 converges to x , we see that x ∈ S′
j+1. This proves S′

j ⊆ S′
j+1.

(2) By part (1), it suffices to consider the case that #(J ∩ Fix f ) ≥ k + 1.
We inductively observe that ( f − Id)( j) has at least (k + 1− j) roots for each
j = 0, 1, . . . , k by the Mean Value Theorem.

Lemma 2.13 Let J ⊆ I be a compact interval, and let δ, λ > 0. Suppose
f ∈ Diffk+(I ) is k-fixed on J .

(1) If f is δ-fast on J , then

sup
J

| f (k) − Id(k) | · |J |k−1 ≥ δ.

If, furthermore, f is Ck,ω then we have

[
f (k)

]

ω
· |J |k−1ω(|J |) ≥ δ.

(2) If f is λ-expansive on J , then

max

(

sup
J

| f (k) − Id(k) |, sup
J

|( f −1)(k) − Id(k) |
)

· |J |k−1 ≥ λ.

If, furthermore, f is Ck,ω then we have

max
([

f (k)
]

ω
,
[
( f −1)(k)

]

ω

)
· |J |k−1ω(|J |) ≥ λ.

Proof For each j ≤ k, Lemma 2.12 implies that there exists s j ∈ J satisfying

f ( j)(s j ) = Id( j)(s j ).

Let y0 ∈ J be arbitrary. We see (cf. Lemma A.4) that

| f (y0) − y0|
=

∣
∣
∣
∣

∫ y0

t1=s0

∫ t1

t2=s1
· · ·

∫ tk−1

tk=sk−1

(
f (k)(tk) − f (k)(sk)

)
dtk dtk−1 · · · dt1

∣
∣
∣
∣

≤ sup
J

| f (k) − Id(k) | · |y0 − s0| · |J |k−1.
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(1) Pick y0 ∈ J such that | f (y0) − y0| ≥ δ|J |. We see

δ|J | ≤ | f (y0) − y0| ≤ sup
J

| f (k) − Id(k) | · |J |k .

If f is Ck,ω, then we further deduce that

δ|J | ≤ sup
t∈J

| f (k)(t) − f (k)(sk)| · |J |k ≤
[

f (k)
]

ω
· |J |kω(|J |).

(2) Write J = [p, q]. Assume the alternative (E1) holds for y0 ∈ J ; that is,

λ(y0 − p) ≤ f (y0) − y0.

By applying the same estimate for s0 = p, we see that

λ ≤ f (y0) − y0
y0 − p

≤ sup
J

| f (k) − Id(k) | · |J |k−1.

If f is Ck,ω, we further have

λ ≤ sup
t∈J

| f (k)(t) − f (k)(sk)| · |J |k−1 ≤
[

f (k)
]

ω
· |J |k−1ω(|J |).

The other alternatives can be handled in the same manner; in particular, we
use the diffeomorphism g = f −1 for (E2) and (E3).

Proof of Theorem 2.9: Ck,ω case. We assume f : I → I is a Ck,ω-
diffeomorphism. Let δ, λ > 0, and define

L = max
([

f (k)
]

ω
,
[
( f −1)(k)

]

ω

)
,

Aδ = {i ∈ N | f Ni
i is δ-fast on Ji },

Bλ = {i ∈ N | f Ni
i is λ-expansive on Ji }.

We let K > 0 be the larger value of the suprema in the conditions (ii) and (iii).
The following claim is obvious from (iii) and from a maximality argument.

Claim 1 The sequence of intervals {Ji } can be partitioned into at most K
collections such that each collection consists of disjoint intervals. In particular,
we have

∑

i

|Ji | ≤ K |I |.
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It now suffices for us to establish the two claims below.

Claim 2 dN(Aδ) = 0.

By Lemmas 2.11 and 2.13, we have that

{(1/ i)k−1ω(1/ i) : i ∈ Aδ} � {1/Ni : i ∈ Aδ} � {|Ji |k−1ω(|Ji |) : i ∈ Aδ}.

By Lemma 2.6 (3), there exists L ′ > 0 such that 1/ i ≤ L ′|Ji | for i ∈ Aδ . So,

∑

i∈Aδ

1/ i ≤
∑

i∈Aδ

L ′|Ji | ≤ L ′K |I | < ∞.

Lemma 2.10 now implies the claim.

Claim 3 dN(Bλ) = 0.

There is a constant K0 > 0 such that

log
(
1 + K0(1/ i)k−1ω(1/ i)

)
≤ K0(1/ i)k−1ω(1/ i) ≤ log(λ + 1)/Ni .

Hence, Lemmas 2.11 and 2.13 imply that

{(1/ i)k−1ω(1/ i) : i ∈ Bλ} � {(λ + 1)1/Ni − 1 : i ∈ Bλ} � {|Ji |k−1ω(|Ji |) : i ∈ Bλ}.

As in Claim 2, we have
∑

Bλ
1/ i < ∞ and dN(Bλ) = 0.

Proof of Theorem2.9:Ck,bv case. Wenowassume f is aCk,bv-diffeomorphism.
Let us closely follow the proof of Ck,ω case, using the same notation. In par-
ticular, we define the same sets Aδ and Bλ.

For each i ∈ N, we pick xi , yi , zi ∈ Ji such that

| f (k)(xi ) − δ1k | = sup
Ji

| f (k) − δ1k |, |( f −1)(k)(yi ) − δ1k | = sup
Ji

|( f −1)(k) − δ1k |.

and f (k)(zi ) = Id(k)(zi ) = δ1k . Again, it suffices to prove the following two
claims.

Claim 4 dN(Aδ) = 0.

By Lemmas 2.11 and 2.13, we have that

{(1/ i)k−1ω(1/ i) : i ∈ Aδ} � {1/Ni : i ∈ Aδ} � {sup
Ji

| f (k) − δ1k | · |Ji |k−1 : i ∈ Aδ}.
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By Claim 1, we see

∑

i

| f (k)(xi ) − δ1k | =
∑

i

| f (k)(xi ) − f (k)(zi )| ≤ K Var( f (k), I ) < ∞.

So, for some constant K0, K1 > 0 we deduce from Hölder’s inequality that

∑

i∈Aδ

1

i
≤

∑

i∈Aδ

(
K0ω(1/ i)

i k−1

)1/k

≤ K1

∑

i∈N

|Ji |(k−1)/k · | f (k)(xi ) − δ1k |1/k

≤ K1

(
∑

i∈N

|Ji |
)(k−1)/k (

∑

i∈N

| f (k)(xi ) − δ1k |
)1/k

< ∞.

We conclude from Lemma 2.10 that dN(Aδ) = 0.

Claim 5 dN(Bλ) = 0.

We apply Lemma 2.13 and also the proof of Claim 3. For each i ∈ N we
put

Mi = | f (k)(xi ) − δ1k | + |( f (−1))(k)(yi ) − δ1k |.

We have

{(1/ i)k−1ω(1/ i) : i ∈ Bλ} � {(λ + 1)1/Ni − 1 : i ∈ Bλ} � {Mi · |Ji |k−1 : i ∈ Bλ}.

By Proposition A.2, we have

∑

i

|( f −1)(k)(yi ) − δ1k | ≤ K Var(( f −1)(k), I ) < ∞.

We again apply Hölder’s inequality. For some constant K0, K1 > 0, we see

∑

i∈Bλ

1

i
≤

∑

i∈Bλ

(
K0ω(1/ i)

i k−1

)1/k

≤ K1

∑

i∈N

|Ji |(k−1)/k M1/k
i

≤ K1

(
∑

i∈N

|Ji |
)(k−1)/k (

∑

i∈N

Mi

)1/k

< ∞.

We obtain dN(Bλ) = 0.
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2.4 Diffeomorphisms of optimal regularity

Let us now describe a method of constructing a fast diffeomorphism of a
specified regularity on a given support.

Theorem 2.14 We let k ∈ N, let δ ∈ (0, 1) and let μ be a concave modulus
satisfying μ � ω1. Suppose that {Ji }i∈N is a disjoint collection of compact
intervals such that Ji ⊆ I\∂ I , and that {Ni }i∈N ⊆ N is a sequence such that

inf
i∈N

Ni · |Ji |k−1μ (|Ji |) ≥ 1.

Then there exists f ∈ Diffk,μ
+ (R) satisfying the following:

(i) supp f = {x ∈ R | f (x) > x} = ∪i (Ji\∂ Ji );
(ii) f Ni is δ-fast on Ji for all i ;
(iii) if an open neighborhood U of x ∈ R intersects only finitely many Ji ’s,

then f is C∞ at x.

Since I is compact, it is necessary that
∑

i |Ji | < ∞. From the above theo-
rem we will deduce that some Ck,μ diffeomorphism is “faster” than all Ck,ω

diffeomorphisms for ω 
 μ, in a precise sense as described in Corollary 2.20.
Throughout Sect. 2.4, we will fix the following constants.

Setting 2.15 Let k, δ, μ be as in Theorem 2.14. Pick a constant ε0 ∈ (0, 1)
and put

C = 1/(1 + 8ε0), D = (1 − C)/2, δ0 = (1 − ε0)C.

A priori, we will choose ε0 so small that we have estimates

D ≤ 1/10, δ0 ≥ max(δ, 9/10).

We also pick �∗
0 ∈ (0, ε0] such that μ(�∗

0) ≤ ε0.

We will prove Theorem 2.14 through a series of lemmas. Let us first note
the following standard construction of a bump function �; see Fig. 2a.

Lemma 2.16 There exists an even, C∞ map � : R → R such that the follow-
ing hold:

• �(t) = 0 if t ≤ −1 or t ≥ 1;
• �(0) = 1;
• � ′(t) > 0 if t ∈ (−1, 0);
• ∫

R
� = 1.
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(a) (b)

Fig. 2 Scaled bump functions

For U ⊆ M and for m ∈ N ∪ {0}, the Cm-norm of f : U → R is defined
as

‖ f ‖m,∞ = sup
0≤ j≤m

‖ f ( j)‖∞ = sup{| f ( j)(x)| : x ∈ U and 0 ≤ j ≤ k}.

Let us introduce a constant

K0 = C

(
2

D

)k+1

‖�‖k,∞.

The following technical lemma establishes the existence of a bump function
with a long flat interval and with a controlled Ck-norm. See Fig. 2b.

Lemma 2.17 For each � ∈ (0, �∗
0], there exists a C∞ map g : R → R such

that

(i) g(t)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

= 0 if t ≤ 0 or t ≥ �,

is strictly increasing if 0 < t < D�,

= C�kμ(�) if D� ≤ t ≤ (1 − D)�,

is strictly decreasing if (1 − D)� < t < �.

(ii) |g′(t)| ≤ 1/2 for all t ∈ R.
(iii) ‖g‖k,∞ ≤ K0μ(�).
(iv) |g(k)(x) − g(k)(y)| ≤ K0μ(|x − y|) for all x, y ∈ R.

Proof There exists a unique C∞ map g satisfying the following conditions:

g(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if t ≤ 0 or t ≥ �,

C�kμ(�)
∫ 2t/(D�)−1
−∞ � if t ≤ �/2,

C�kμ(�) if D� ≤ t ≤ (1 − D)�,

C�kμ(�)
∫ 2(�−t)/(D�)−1
−∞ � if t ≥ �/2.

Hence, we have (i).
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If t ∈ (0, �/2), then

g′(t) = C�kμ(�)

(
2

D�

)

�

(
2t

D�
− 1

)

≤ 2C

D
�k−1μ(�) ≤ 2C

D
εk
0 = 1

2
εk−1
0 ≤ 1/2.

It follows that g′(t) ∈ [0, 1/2]. Since we have the symmetry g(t) = g(� − t),
we obtain (ii). We see ‖g‖∞ = C�kμ(�) ≤ Cμ(�) ≤ K0μ(�). If t ≤ �/2 and
i ≥ 1, then

‖g(i)‖∞ ≤ C�kμ(�)

(
2

D�

)i

‖�(i−1)‖∞ ≤ C�kμ(�)

(
2

D�

)k

‖�‖k,∞ ≤ K0μ(�).

The condition (iii) follows.
To verify (iv), let us estimate |g(k)(x) − g(k)(y)|. We have that g(k) = 0 on

(−∞, 0) ∪ (D�, (1 − D)�) ∪ (�, ∞).

Using the symmetry |g(k)(x)| = |g(k)(� − x)|, we may only consider x ∈
[0, D�]. Note that �(k−1)(−1) = �(k−1)(1) = 0. Since �(k−1) is Lipschitz,
we have that

∣
∣
∣
∣�

(k−1)
(
2x

D�
− 1

)∣
∣
∣
∣ ≤ ‖�(k)‖∞ min

(
2x

D�
,
2D� − 2x

D�

)

.

So, we have an inequality

|g(k)(x)| = Cμ(�)

(
2

D

)k ∣
∣
∣
∣�

(k−1)
(
2x

D�
− 1

)∣
∣
∣
∣ ≤ K0μ(�)

�
min(x, D� − x).

We now have the following three possibilities for y.

Case 1. y ∈ (−∞, 0] ∪ [D�, (1 − D)�] ∪ [�, ∞).
Since we have min(x, D� − x) < �, we see

|g(k)(x) − g(k)(y)| ≤ K0(μ(�)/�)min(x, D� − x)

≤ K0μ(min(x, D� − x))

≤ K0μ(|x − y|).
Case 2. y ∈ [0, D�].

We see that

|g(k)(x) − g(k)(y)|≤Cμ(�)

(
2

D

)k (
2

D�

)

‖�‖k,∞ · |x−y|≤ K0μ(|x−y|).

Case 3. y ∈ ((1 − D)�, �).
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Since D ≤ 1/10, we have x + � − y ≤ 2D� ≤ � − 2D� ≤ y − x < �. We
see that

|g(k)(x) − g(k)(y)| ≤ |g(k)(x)| + |g(k)(� − y)| ≤ K0(μ(�)/�)(x + � − y)

≤ K0μ(|x − y|).

Lemma 2.18 For each compact interval J ⊆ R with 0 < � := |J | ≤ �∗
0,

there exists a diffeomorphism f ∈ Diff∞+ (R) satisfying the following:

(A) supp f = J\∂ J ;
(B) infR f ′(x) ≥ 1/2;
(C) ‖ f − Id ‖k,∞ ≤ K0μ(�);
(D) for each N ≥ 1/(�k−1μ(�)), we have

sup
J

| f N − Id | ≥ δ0�.

(E) | f (k)(x) − f (k)(y)| ≤ K0μ(|x − y|) for all x, y ∈ R.

Proof We may assume J = [0, �]. Let g be as in Lemma 2.17, and put f =
Id+g. By symmetry and the condition (ii) on g, we have

f ′(t) = 1 + g′(t) ≥ 1/2

for all t . We have (B), and in particular, f is a C∞ diffeomorphism.
The claims (A), (C) and (E) are immediate from Lemma 2.17. Observe that

(� − D�) − D�

C�kμ(�)
= 1 − 2D

C�k−1μ(�)
= 1

�k−1μ(�)
.

For each N ≥ 1/(�k−1μ(�)), we have that

| f N (D�) − D�| =
N−1∑

i=0

| f i+1(D�) − f i (D�)| ≥ C�kμ(�)

⌊
1

�k−1μ(�)

⌋

= C�(1 − �k−1μ(�)) ≥ C�(1 − ε0) = δ0�.

This establishes the claim (D), and hence the conclusion of the lemma.

Proof of Theorem 2.14 Put �i = |Ji |. As ∑
i �i < ∞, there exists i0 such

that �i ≤ �∗ for all i ≥ i0. For each i ≥ i0, we apply Lemma 2.18 to obtain
fi ∈ Diff∞+ (R) with:

(A) supp fi = Ji\∂ Ji ;
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(B) infR | f ′
i (x)| ≥ 1/2;

(C) ‖ fi − Id ‖k,∞ ≤ K0μ(�i );
(D) f N

i is δ0-fast on Ji for all N ≥ 1/(�k−1
i μ(�i ));

(E) | f (k)
i (x) − f (k)

i (y)| ≤ K0μ(|x − y|) for all x, y ∈ R.

For each n ≥ i0, consider the composition

Fn =
n∏

i=i0

fi .

For m ≥ n ≥ i0, we have that

‖Fm − Fn‖k,∞ ≤ sup{| f ( j)
i (x) − Id( j)(x)| : i > n, x ∈ Ji , 0 ≤ j ≤ k}

≤ K0 sup
i>n

μ(�i ).

Hence {Fn} uniformly converges to a Ck map F : R → R in the Ck-norm
[26].

Since F is the composition of infinitely many homeomorphisms with dis-
joint supports, we see F is also a homeomorphism. In particular, we see
supp F = ∪i≥i0(Ji\∂ Ji ). Moreover, F ′(x) = limn→∞ F ′

n(x) ≥ 1/2 for all
x ∈ R. It follows that F is a Ck diffeomorphism.

Claim For all x, y ∈ R we have

|F (k)(x) − F (k)(y)| ≤ 2K0μ(|x − y|).
In order to prove the claim, we may assume x ∈ Ji for some i ≥ i0. If

y ∈ Ji , then the condition (E) implies the claim. If y /∈ supp F , then we can
find x0 ∈ ∂ Ji such that |x − y| ≥ |x − x0|. So,

|F (k)(x) − F (k)(y)|=| f (k)
i (x)− f (k)

i (x0)|≤ K0μ(|x−x0|)≤ K0μ(|x−y|).
Finally, if y ∈ J j for some i �= j ≥ i0, then we can find x0 ∈ ∂ Ji and y0 ∈ ∂ J j
such that |x − y| ≥ |x − x0| + |y − y0|. As μ is increasing, we see that

|F (k)(x) − F (k)(y)| ≤ | f (k)
i (x) − f (k)

i (x0)| + | f (k)
j (y) − f (k)

j (y0)|
≤ K0μ(|x − x0|) + K0μ(|y − y0|) ≤ 2K0μ(|x − y|).

Hence, the claim is proved. We have that F ∈ Diffk,μ
+ (R).

Finally, we can pick F∗ ∈ Diff∞+ (R) such that:

• supp F∗ = {x ∈ R | F∗(x) > x} = ⋃{Ji\∂ Ji | 1 ≤ i < i0};
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• F∗ is δ0-fast on Ji for 1 ≤ i < i0.

Then the diffeomorphism f = F ◦ F∗ ∈ Diffk,μ
+ (I ) satisfies the conclusions

(i) and (ii). To see the conclusion (iii), observe from the hypothesis that either

• x ∈ Ji\∂ Ji for some i , or
• f = Id locally at x , or
• x ∈ ∂ Ji for some i , and some open neighborhoodU of x satisfiesU ∩ J j =

∅ for all j �= i .

In all cases, f coincides with some fi locally at x , and hence, is
locally C∞.

Remark 2.19 In the above proof, the modulus of continuity was used to guar-
antee a uniform convergence of partially defined diffeomorphisms. This idea
can be found in the construction of a Denjoy counterexample, which is a C1+ε

diffeomorphism f : S1 → S1 such that f is not conjugate to a rotation and
such that f has an irrational rotation number. Denjoy’s Theorem implies that
there are no such C1+bv examples [23,58].

We note the following consequence of Theorem 2.14.

Corollary 2.20 Let K ∗ > 0, and let {Ji }i∈N be a collection of disjoint compact
intervals contained in the interior of I satisfying

|Ji | = (
(i + K ∗) log2(i + K ∗)

)−1
.

Then for k ∈ N and for a concave modulus μ � ω1, there exists

f ∈ Diffk,μ
+ (R)\

⎛

⎝
⋃

0≺kω
μ

Diffk,ω
+ (R) ∪ Diffk,bv

+ (R)

⎞

⎠

such that supp f = ∪i (Ji\∂ Ji ).

Proof Let us write �i = |Ji | and

Ni =
⌈
1/(�k−1

i μ(�i ))
⌉

=
⌈
(i + K ∗)k−1 log2k−2(i + K ∗)/μ(�i ))

⌉
.

We have f ∈ Diffk,μ
+ (I ) as given by Theorem 2.14 with respect to {Ji } and

some δ ∈ (0, 1). Let us pick ω such that 0 ≺k ω 
 μ.

Claim lim
i→∞ Ni (1/ i)k−1ω(1/ i) = 0.
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For all sufficiently large i , we have

μ(�i ) ≥ μ(1/(4i log2 i)) ≥ μ(1/ i)/(4 log2 i).

So we see that

Ni (1/ i)k−1ω(1/ i) ≤ 2(i + K ∗)k−1 log2k−2(i + K ∗)ω(1/ i)

i k−1μ(�i )

≤ 8(i + K ∗)k−1 log2k−2(i + K ∗)
i k−1 log2k−2 i

· log
2k i · ω(1/ i)

μ(1/ i)
→ 0.

Note that ∂ Ji are accumulated fixed points of f . Since f Ni is δ-fast on Ji
for all i , Theorem 2.9 implies that f is not Ck,ω. For Ck,bv, we simply set
ω = ω1 and apply Theorem 2.9 again.

2.5 More on natural density

For N ∈ N, let us use the notation

[N ]∗ := {0, 1, . . . , N − 1}.
We will need the following properties of density-one sets.

Lemma 2.21 (1) If A ⊆ N satisfies dN(A) = 1, then for each s ∈ N we have

dN{i ∈ N : i + [s]∗ ⊆ A} = 1.

(2) Let β0 ∈ N, and let X, Y ⊆ N. Assume that dN (X ∪ ((Y − β) ∩ N)) = 1
for each integer β ≥ β0. Then we have dN(X ∪ Y ) = 1.

Proof of Lemma 2.21 (1) We can rewrite the given set as

{i ∈ N : i + [s]∗ ⊆ A} = A ∩ (A − 1) ∩ · · · ∩ (A − (s − 1)).

The conclusion follows from the first two parts of Lemma 2.10.
(2) Pick an arbitrary integer N ≥ β0. For each β ∈ N, define

SN ,β
1 = {

m ∈ N | m + [N ]∗ ⊆ X ∪ (Y − β)
}
.

Part (1) implies that dN(SN ,β
1 ) = 1 for each β ≥ β0. So, we have a density-one

set

SN
2 =

N−1⋂

β=β0

SN ,β
1 .
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Suppose m ∈ SN
2 . If m ≤ i < j ≤ m + N − 1 and i, j /∈ X ∪ Y , then

m /∈ SN , j−i
1 . In particular, j − i ≤ β0 − 1. We obtain that

#{i ∈ m + [N ]∗ | i /∈ X ∪ Y } ≤ β0.

Hence, for each s ∈ N and t ∈ [N ]∗ we compute

(N − β0) · #
(

SN
2 ∩ (t+N [s]∗)

)
≤ #

{
m ∈ t+[Ns−N +1]∗ | m ∈ X ∪Y

}
.

By summing up the above for t ∈ [N ]∗, we have

(N − β0)#
(

SN
2 ∩ [Ns]∗

)
≤ N#

{
m ∈ [Ns]∗ | m ∈ X ∪ Y

}
.

After dividing both sides by N 2s and sending s → ∞, we see that

1 − β0

N
≤ lim inf

s→∞
# ((X ∪ Y ) ∩ [Ns]∗)

Ns
.

Since N is arbitrary, we have dN(X ∪ Y ) = 1.

3 Background from one-dimensional dynamics

In this section, we gather the relevant facts regarding one-dimensional dynam-
ics that we require in the sequel.

3.1 Covering distance and covering length

Throughout Sect. 3.1, we let G be a groupwith a finite generating set V , and let
ψ : G → Homeo+(I ) be an action. We develop some notions of complexity
of an element in ψ(G) which will be useful for our purposes.

We use the notation

suppψ := suppψ(G) =
⋃

g∈G

suppψ(g) =
⋃

v∈V

suppψ(v).

Note that suppψ may have multiple components. Define

V :=
⋃

v∈V

π0 suppψ(v).

Then V is an open cover of suppψ consisting of intervals.
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For a nonempty subset A ⊆ I , we define its V -covering length as

CovLenV (A) = inf{� ∈ N | A ⊆ A1 ∪ · · · ∪ A�, each Ai is in V }.

Here, we use the convention inf ∅ = ∞. We also let CovLenV (∅) = 0. We
define the V -covering distance of x, y ∈ I as

CovDistV (x, y) =
{
CovLenV ([min{x, y},max{x, y}]) , if x �= y;
0. if x = y.

That is to say, once a generating set for G has been fixed, CovDistV (x, y)

is the least number of components of supports of generators of G needed to
traverse the interval from x to y. Also, if x and y lie in different components
of suppψ(G), then the covering distance between them is necessarily infinite.
We let CovDistV (x, x) = 0.

Both covering distance and covering length depend not just on G and ψ but
also on a generating set V . When the meaning is clear, we will often omit V ,
and write CovLen(A) and CovDist(x, y). We will also write gx := ψ(g).x
for g ∈ G and x ∈ I .

Covering distance behaves well in the sense that it satisfies the triangle
inequality:

Lemma 3.1 For x, y, z ∈ I and for A, B ⊆ I , the following hold.

(1) CovDist(x, y) < ∞ if and only if x and y are contained in the same
component of suppψ .

(2) CovLen(A ∪ B) ≤ CovLen(A) + CovLen(B).
(3) CovDist(x, y) ≤ CovDist(x, z) + CovDist(z, y).

Proof Part (1) is clear. For part (2), assume

{U1, . . . , Un}, {V1, . . . , Vm} ⊆ V

are open covers of A and B which witness the fact that CovLen(A) = n and
CovDist(B) = m respectively. Then

{U1, . . . , Un, V1, . . . , Vm}

cover the interval A ∪ B. Part (3) follows from part (2).

If 1 �= w ∈ G, we define the syllable length of w, written ||w||, to be

||w|| = min{� | w = v
n1
1 v

n2
2 · · · vn�

� },
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Fig. 3 A chain of four
intervals

where vi ∈ V and ni ∈ Z for each 1 ≤ i ≤ �. The following lemma relates the
algebraic structure of the given group G = 〈V 〉 with the dynamical behavior
of actions of G:

Lemma 3.2 For each x ∈ I and w ∈ G, we have CovDist(x, wx) ≤ ||w||.
Here we are implicitly measuring the covering distance with respect to the

generating set V of G.

Proof of Lemma 3.2 Clearly wemay assume that x ∈ suppψ , since otherwise
there is nothing to prove. We proceed by induction on ||w||. If ||w|| = 1
then w = vn for some v ∈ V and n ∈ Z. Then either x = vnx or x ∈
J ∈ π0 suppψ(v). It follows that CovDist(x, vnx) is 0 or 1. Now assume
||w|| = � ≥ 2. We can write w = vn · w′, where ||w′|| = � − 1. By induction,
CovDist(x, w′x) ≤ �−1. AsCovDist(w′x, vn ·w′x) ≤ 1, the estimate follows
from Lemma 3.1.

Let (U1, . . . , Un) be a sequence of open intervals inR such thatUi ∩U j = ∅

whenever |i − j | ≥ 2, and such that Ui ∩ Ui+1 is a nonempty proper subset
of both Ui and Ui+1 for 1 ≤ i ≤ n − 1. Then we say (U1, . . . , Un) is a chain
of intervals in R. Figure 3 gives an example of a chain of four intervals.

A finite set F of intervals is also called a chain of intervals if F becomes
so after a suitable reordering. Chains of intervals arise naturally when we
consider an open cover of a compact interval. The proof of the following
lemma is straightforward.

Lemma 3.3 If U is a collection of open intervals such that I ⊆ ⋃
U , then a

minimal subcover V ⊆ U of I is a chain of finitely many open intervals.

When we discuss a chain of intervals, we assume those intervals are open.
It will be useful for us to be able to move points inside a connected component
of suppψ(G) efficiently in the following sense, which provides a converse to
Lemma 3.2:

Lemma 3.4 Suppose x < y ∈ U ∈ π0 suppψ(G) satisfy CovDist(x, y) =
N ∈ N. Then there exists an element g ∈ G such that gx > y and such that
||g|| = N.

We remark that ideas in a very similar spirit to Lemma 3.4 were used exten-
sively in [41].
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Proof of Lemma 3.4 Let {U1, . . . , UN } be intervals such that Ui ∈ π0 supp
ψ(vi ) for some vi ∈ V for each i , and such that these intervals witness the
fact that CovDist(x, y) = N . Lemma 3.3 implies {Ui } is a chain. Renum-
bering these intervals if necessary, we may assume that x ∈ U1\U2, that
y ∈ UN \UN−1, and that

inf Ui < inf Ui+1 < supUi < supUi+1

for each i (cf. Fig. 3). Note that we allow supUi−1 = inf Ui+1.
For a suitable choice of n1, we have v

n1
1 x = x2 ∈ U2. By induction, we have

that v
ni
i xi = xi+1 ∈ Ui+1 for a suitable choice of ni . Once v

nN−1
N−1 · · · vn1

1 x =
xN ∈ UN , we apply a suitable power of vN to xN to get vnN

N xN > y. Then

g = v
nN
N v

nN−1
N−1 · · · vn1

1

clearly has syllable length at most N and satisfies gx > y. Lemma 3.2 implies
that ||g|| = N .

3.2 A residual property of free products

For a compact interval J ⊆ R, we let Diff∞0 (J ) denote the group of C∞-
diffeomorphisms of R supported in J . One can identify Diff∞0 (J ) with the
group of C∞-diffeomorphisms on J which are C∞-tangent to the identity at
∂ J . For a group G and a subset S ⊆ G, we let 〈〈S〉〉 denote the normal closure
of S.

Lemma 3.5 Suppose G ≤ Diff∞0 (I ) has a connected support, and suppose

1 �= g ∈ (G × 〈s〉) ∗ 〈t〉 ∼= (G × Z) ∗ Z.

Then there exists a representation

φg : (G × 〈s〉) ∗ 〈t〉 → Diff∞0 (I )

with a connected support such that φg(g) �= 1 and such that suppφg(G) ∩
suppφg(s) = ∅. Furthermore, we can require that φg(G) ∼= G.

Proof of Lemma 3.5 We have embeddings

ρ+ : G → Diff∞0 [0, 1], ρ′+ : 〈s〉 → Diff∞0 [0, 1],
with full supports. Let ρ− and ρ′− denote the “opposite” representations of
ρ+ and ρ′+, respectively. That is, we let ρ−(g)(x) = 1 − ρ+(g)(1 − x) and
similarly for ρ′−.
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After a suitable conjugation, we may assume

g = t p�(g�sq�) · · · t p1(g1sq1)

for some � ∈ N, gi ∈ G and pi , qi ∈ Z. For each i , we can further require that
pi �= 0, and that either gi �= 1 or qi �= 0. There exists a representation

ρi : G × 〈s〉 → Diff∞0 [2i − 1, 2i]

and a point x2i−1 such that

2i − 1 < x2i−1 < x2i := ρi (gi s
qi )(x2i−1) < 2i .

Here, ρi is C∞-conjugate to ρ± if gi �= 1, and to ρ′± otherwise. In particular,
we require supp ρi (G × 〈s〉) = (2i − 1, 2i).

We pick x2�+1 and zi so that

1 < x1 < z1 < x2 < 2 < 3 < x3 < z2 < x4 < 4 < 5 < · · ·
< 2� − 1 < x2�−1 < z� < x2� < 2� < 2� + 1 < x2�+1 < z�+1 < 2� + 2.

We can find a C∞-action

ρ0 : 〈t〉 → Diff∞0 [1, 2� + 2]

such that supp ρ0(t) = ∪�
i=1(zi , zi+1) and such that ρ0(t pi )(x2i ) = x2i+1. We

put

φg :=
�∏

i=1

ρi ∗ ρ0 : G ∗ Z → Diff∞0 [1, 2� + 2].

The nontriviality ofφg(g) comes from a Ping–Pong argument for free products
(cf. [3,42]); that is, φg(g)(x1) = x2�+1 > x1. The first conclusion follows
from

suppφg = supp ρ0 ∪ (∪i supp ρi ) = (1, z�+1).

We may assume gi �= 1 for at least one i . This is because, the above
construction also works for a finite set A ⊆ G\{1} after setting g as a suitable
concatenation of the elements in A. In particular, ρi �G and φg �G are faithful.
Here, the symbol � denotes the restriction of a representation.

123



Diffeomorphism groups of critical regularity

3.3 Centralizers of diffeomorphisms

We recall the following standard result. It was proved for C2 maps by Kopell
[44] and generalized later to C1+bv maps by Navas [57] in his thesis.

Theorem 3.6 (Kopell’s Lemma; see [44]) Let f, g ∈ Diff1+bv+ [0, 1) be non-
trivial commuting diffeomorphisms. IfFix f ∩(0, 1) = ∅, thenFix g∩(0, 1) =
∅.

We continue to let M ∈ {I, S1}. We say f ∈ Homeo+(M) is grounded
if Fix f �= ∅. In particular, every homeomorphism of I is grounded. An
important and relatively straightforward corollary of Kopell’s Lemma is the
following fact:

Lemma 3.7 (Disjointness Condition; see [2]) Let f, g ∈ Diff1+bv+ (M) be
commuting grounded diffeomorphisms, where M ∈ {I, S1}, and let U and V
be components of supp f and supp g respectively. Then either U ∩ V = ∅ or
U = V .

If ω is a concave modulus or if ω ∈ {0, bv,Lip}, then we define the Ck,ω-
centralizer group of G ≤ Homeo+(M) as

Zk,ω(G) := {h ∈ Diffk,ω
+ (M) : [g, h] = 1 for all g ∈ G}.

Let Zk,ω(g) := Zk,ω(〈g〉) for g ∈ Homeo+(M). We write Fix G =
∩g∈G Fix g.

Let BS(1, m) denote the Baumslag–Solitar group of type (1, m), given as
below.

Lemma 3.8 Suppose we have an integer m > 1 and a representation

ρ : BS(1, m) = 〈x, y | xyx−1 = ym〉 → Diff1+(I ).

(1) If ρ(y) �= 1, then ρ is faithful.
(2) ([8]) We have that supp Z1(ρ〈x, y〉) ∩ supp ρ(y) = ∅.

Proof (1) Suppose g ∈ ker ρ\{1}. We may write g = y pxq for some p, q ∈ Z

so that

xgx−1 = (xyx−1)pxq = y2pxq ∈ ker ρ.

It follows that ρ(y p) = 1. Since ρ(y) �= 1, we see that p = 0 and ρ(x) = 1.
But then, we have ρ(y) = ρ(ym) = 1. This is a contradiction.

(2) We may assume ρ is faithful by part (1). The case m = 2 precisely
coincides with [8, Proposition 1.8]. The proof for the case m > 2 is essentially
identical.
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If g ∈ Diff1+bv+ (S1) is an infinite order element having a finite orbit,
then every element in Z1+bv(g) has a finite orbit and every element in
[Z1+bv(g), Z1+bv(g)] is grounded; see [27] and [2]. This is a dynamical con-
sequence of classical theorems of Hölder [34] and of Denjoy [23], combined
with Kopell’s Lemma. In this paper, we will need a C1-analogue of this con-
sequence, as described below. The role of 〈g〉 is now played by the group
BS(1, 2).

Lemma 3.9 Suppose we have an isomorphic copy of BS(1, 2) given as

B = 〈x, y | xyx−1 = y2〉 ≤ Diff1+(S1).

Then the following hold.

(1) The C1-centralizer group Z1(B) of B has a finite orbit.
(2) For some finite index subgroup Z0 of Z1(B), we have supp Z0 ∩ supp y =

∅.
(3) We have supp[Z1(B), Z1(B)] ∩ supp y = ∅.

For g ∈ Homeo+(S1), we consider an arbitrary lift g̃ : R → R and define
the rotation number of g as

rot(g) := lim
n→∞

g̃n(0)

n
∈ R/Z.

Proof of Lemma 3.9 For some m ∈ N, the group B0 = 〈xm, y〉 ∼= BS(1, 2m)

has a global fixed point; this is due to [32, Theorem 1]. We have a nonempty
collection of open intervals:

A = {J ∈ π0 supp B0 : the restriction of B0 on J is nonabelian}.
We may regard B0 ≤ Diff1+[0, 1]. It follows from [8, Theorem 1.7] that A is
a finite set. Since Z1(B) ≤ Z1(B0), the group Z1(B) permutes A and has a
finite orbit inside X = ⋃

J∈A ∂ J ⊆ S1. This proves part (1).
Let Z0 be the kernel of the above homomorphism

Z1(B) → Homeo+(X).

Since every element of Z0 fixes ∂ J for J ∈ A , we can regard 〈Z0, B0〉 ≤
Diff1+[0, 1]. Lemma 3.8 implies part (2).

Part (3) is not essential for the content of this paper, but we include it here
for completeness and for its independent interest. To see the proof, note first
that the finite cyclic group action ρ0 : Z1(B)/Z0 → Homeo+(X) is free. By
a variation of Hölder’s Theorem given in [40, Corollary 2.3], there exists a
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Fig. 4 The relators of G†. The horizontal double edge denotes the relator aea−1 = e2 and the
other two edges denote commutators

free action ρ : Z1(B)/Z0 → Homeo+(S1) extending ρ0 such that rot ◦ρ is a
monomorphism; see also [27]. We have a commutative diagram as below:

Homeo+(X)

1 Z0 Z1(B)
p

rot

Z1(B)/Z0

ρ0 free

ρ free

1

S1 Homeo+(S1)
rot

Let g ∈ [Z1(B), Z1(B)]. The commutativity of the lower square implies
that rot restricts to a homomorphism on Z1(B). In particular, we have that
rot(g) = 0 and that g is grounded. Since g centralizes B, and since Fix B0 �=
∅, we see that Fix〈B0, g〉 �= ∅. So, we may regard 〈B0, g〉 ≤ Diff1+(I ).
Lemma 3.8 implies that supp g ∩ supp y = ∅, as desired.

3.4 A universal compactly-supported diffeomorphism

Throughout this paper, we will fix a finite presentation:

G† = (Z × BS(1, 2)) ∗ F2 = (〈c〉 × 〈a, e | aea−1 = e2〉) ∗ 〈b, d〉.

See Fig. 4. We let V † = {a, b, c, d, e} ⊆ G†.
Whenever we have an action ψ of G† on I , we will define the covering

length and the covering distance by the following open cover of suppψ(G†):

V =
⋃

v∈V †

π0 suppψ(v).

If ψ : G† → Homeo+(I ) is a representation and f ∈ ψ(G†), there is
little reason to believe that CovLen(supp f ) < ∞, even if we restrict to a
component of suppψ(G†). In order to use the covering length of a support as
a meaningful notion of complexity of a diffeomorphism, we need to find an
element 1 �= u0 ∈ G† for which CovLen(suppψ(u0)) < ∞.
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We will build such an element u0 ∈ G†. We say a set A ⊆ R is compactly
contained in a set B ⊆ R if there exists a compact setC such that A ⊆ C ⊆ B.

Lemma 3.10 (abt-lemma; [40, Theorem 3.1]) Let M ∈ {I, S1}. Suppose
α, β, t ∈ Diff1+(M) satisfy that

suppα ∩ suppβ = ∅.

(1) Then 〈α, β, t〉 is not isomorphic to Z
2 ∗ Z.

(2) If M = I , then the support of

u = [[αt , β · β t · β−1], α]

is compactly contained in supp〈α, β, t〉.
Proof Part (1) is stated as Theorem 3.1 of [40]. We summarize the proof of
part (2), which is transparent from [40]. We first consider γ = αt , δ = β t

and φ = [γ, βδβ−1]. We have that supp γ ∩ supp δ = ∅. By Lemma 3.10 of
[40], we have suppφ\ suppβ is compactly contained in supp γ ∪supp δ. Since
u = [φ, α], we see that

supp u ⊆ suppφ ∪ suppα ∪ suppφ ∩ suppα

⊆ suppφ ∪ suppα ∪ suppφ\ suppβ

⊆ suppα ∪ suppβ ∪ supp γ ∪ supp δ ⊆ supp〈α, β, t〉.

We can now deduce Corollary 1.7 in Sect. 1. The authors were told by A.
Navas of the following proof for M = I .

Proof Suppose we have a faithful representation

ψ : (〈c〉 × 〈a, e〉) ∗ 〈d〉 ∼= (Z × BS(1, 2)) ∗ Z → Diff1+(M).

Consider first the case when M = I . By Lemma 3.8, we see that suppψ(c) ∩
suppψ(e) = ∅. It follows from Lemma 3.10 that

ψ〈c, e, d〉 � Z
2 ∗ Z ∼= 〈c, e, d〉.

This is a contradiction, for ψ is faithful.
Assume M = S1. By Lemma 3.9 (2), we have some p ∈ N such that

suppψ(cp) ∩ suppψ(e) = ∅.
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We again deduce a contradiction from Lemma 3.10, for we have

ψ〈cp, e, d〉 � Z
2 ∗ Z ∼= 〈cp, e, d〉.

We will apply abt-lemma to the triple (c, e, d). For this, we let

α = c, β = e, γ = αd = d−1cd, δ = βd = d−1ed,

u† = [[γ, βδβ−1], α] = [[
cd, e · ed · e−1] , c

] ∈ G†\{1}.

Lemma 3.11 Let u† ∈ 〈c, d, e〉 ≤ G† be as above. Then for each representa-
tion

ψ : 〈a, c, d, e〉 → Diff1+(I ),

the set suppψ(u†) is compactly contained in suppψ〈c, d, e〉. In particular, for
each U ∈ π0 suppψ(u†) we have CovDist(inf U, supU ) < ∞.

Proof Since ψ(c) ∈ Z1(〈a, e〉), we see from Lemma 3.8 (2) that suppψ(c) ∩
suppψ(e) = ∅. Lemma 3.10 implies the desired conclusion.

3.5 Simplicity and diffeomorphism groups

Wewill require some classical results about the simplicity of certain groups of
diffeomorphisms of manifolds. For a manifold X , we let Diffk,ω

c (X)0 denote
the set of Ck,ω diffeomorphisms isotopic to the identity through compactly
supported isotopies; this set is indeed a group [51]. Note that

Diffk,ω
c (S1)0 = Diffk,ω

+ (S1), Diffk,ω
c (R)0 = Diffk,ω

c (R).

Definition 3.12 Let ω be a concave modulus.

(1) We say ω is sup-tame if limt→+0 sup0<x<δ tω(x)/ω(t x) = 0 for some
δ > 0;

(2) We say ω is sub-tame if limt→+0 sup0<x<δ ω(t x)/ω(x) = 0 for some
δ > 0.

Mather [51,52] proved the simplicity ofDiffk+(X),where X is ann-manifold
and k �= n + 1. The following is a straightforward generalization from his
argument.

Theorem 3.13 (Mather’s Theorem [51,52]) Suppose X is a smooth n-
manifold without boundary. Let k ∈ N, and let ω be a concave modulus
satisfying the following:
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• if k = n, then we further assume ω is sup-tame;
• if k = n + 1, then we further assume ω is sub-tame.

Then the group Diffk,ω
c (X)0 is simple.

In Example 2.4, we have defined a concavemodulusωz for each z ∈ (0, 1]C.
Lemma 3.14 We have the following.

(1) The concave modulus ωs
√−1 is sup-tame for s > 0;

(2) The concave modulus ω1+s
√−1 is sub-tame for s ≤ 0;

(3) The concave modulus ωτ+s
√−1 is sup-and sub-tame for τ ∈ (0, 1) and

s ∈ R.

Proof Let t, x > 0. We substitute T = log(1/t) and X = log(1/x).
(1) Put ω = ωs

√−1 for some s > 0. There exists some c ∈ (X, X + T ) such
that

tω(x)

ω(t x)
= t exp

(

−s
log(1/x)

log log(1/x)
+ s

log(1/t x)

log log(1/t x)

)

= exp

(

−T − s
X

log X
+ s

T + X

log(T + X)

)

= exp

(

−T + sT
log c − 1

log2 c

)

.

Pick a sufficiently small δ > 0 such that K := log(1/δ) satisfies K > 1/e2

and s(log K − 1)/ log2 K < 1/2. Since c > X ≥ K , we have that

tω(x)/ω(t x) ≤ exp(−T + sT (log K − 1)/ log2 K ) ≤ exp(−T/2).

It follows that sup0<x<δ tω(x)/ω(t x) → 0 as t → 0.
(2) Put ω = ω1+s

√−1 for some s ≤ 0. We again compute

ω(t x)

ω(x)
= exp

(

−T − s
T + X

log(T + X)
+ s

X

log X

)

.

We then proceed exactly as in (1).
(3) Put ω = ωτ+s

√−1. We define

μ(x) = x−τ/2ω(x) = ωτ/2+s
√−1, ν(x) = x (1−τ)/2ω(x) = ω(1+τ)/2+s

√−1

for all small x > 0. We see from Lemma 2.6 (1) that

ω(t x)/ω(x) = tτ/2 · μ(t x)/μ(x) ≤ tτ/2 → 0.
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tω(x)/ω(t x) = t1+(1−τ)/2 · ν(x)/ν(t x) ≤ t (1−τ)/2 → 0.

Corollary 3.15 Let X be a smooth n-manifold without boundary, and let k ∈
N. If some z ∈ (0, 1]C satisfiesRe(k +z) �= n+1, then the groupDiffk,ωz

c (X)0
is simple.

Proof We use Lemma 3.14 and Mather’s Theorem. If Re z ∈ (0, 1), then ωz

is sup-and sub-tame, and so, Diffk,ωz
c (X)0 for all k ∈ N. If z = s

√−1 for
some s < 0, then ωz is sup-tame; in this case, Diffk,ωz

c (X)0 is simple for all
integer k �= n + 1. If z = 1+ s

√−1 for some s ≥ 0, then ωz is sub-tame and
Diffk,ωz

c (X)0 for all integer k �= n. The conclusion follows.

Wewill later use the following form of simplicity results. The proof is given
in Appendix (Theorem A.10).

Theorem 3.16 For each X ∈ {S1, R}, the following hold.

(1) If α ≥ 1 is a real number, then every proper quotient of Diffαc (X)0 is
abelian. If, furthermore, α �= 2, then Diffαc (X)0 is simple.

(2) If α > 1 is a real number, then every proper quotient of
⋂

β<α Diff
β
c (X)0

is abelian. If, furthermore, α > 3, then
⋂

β<α Diff
β
c (X)0 is simple.

3.6 Locally dense copies of Thompson’s group F

Recall that Thompson’s group F is defined to be the group of piecewise linear
homeomorphisms of the unit interval [0, 1] such that the discontinuities of the
first derivatives lie at dyadic rational points, and so that all first derivatives are
powers of two. It is well-known that Thompson’s group F is generated by two
elements (see [14,19]).

We will denote the standard piecewise linear representation of F as

ρF : F → Homeo+[0, 1].
A typical choice of a generating set for F is {x0, x1}, which are determined by
the breakpoints data:

ρF (x0).(0, 1/4, 1/2, 1) = (0, 1/2, 3/4, 1),

ρF (x1).(0, 1/2, 5/8, 3/4, 1) = (0, 1/2, 3/4, 7/8, 1).

Recall that a group action on a topological space is minimal if every orbit is
dense. The action ρF is minimal on (0, 1), but it has an even stronger property:
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the diagonal action of ρF on

X = {(x, y) ∈ (0, 1) × (0, 1) | x < y}
is minimal. This follows from the transitivity of F on a pair of dyadic rationals
in X ; see [19] and [14].

Alternatively, the action ρF on (0, 1) is locally dense [10]. The general
definition of local density is not important for our purposes. For a chain group
G ≤ Homeo+[0, 1] (see Remark 3.19 below for a definition), the local density
of the action of G on (0, 1) is equivalent to the minimality of the action of
G on X , which in turn is equivalent to the minimality of the action of G on
(0, 1); this is proved in [41, Lemma 6.3]. Thompson’s group F is an example
of a chain group (Corollary 3.18).

We will require the following result:

Theorem 3.17 (Ghys–Sergiescu, [30]) The standard piecewise-linear real-
ization ρF of Thompson’s group F is topologically conjugate to a C∞ action
on [0, 1] such that each element is C∞ tangent to the identity at {0, 1}.

The original construction of Ghys–Sergiescu is a C∞ action of Thompson’s
group T for a circle; the above theorem is an easy consequence by restricting
their action on an interval. Let us denote this action as

ρGS : F → Diff∞0 [0, 1].
Note ρGS(F) acts minimally on (0, 1). There exists a homeomorphism
hGS : [0, 1] → [0, 1] such that for all g ∈ F we have

ρGS(g) = hGS ◦ ρF (g) ◦ h−1
GS.

It will be convenient for us to denote ai = ρGS(xi ) for i = 0, 1.

Corollary 3.18 There exists a chain of two intervals (U1, U2) and C∞ dif-
feomorphisms f1 and f2 supported on U1 and U2 respectively such that
〈 f1, f2〉 = ρGS(F).

Proof It is routine to check that f1 = a−1
1 a0 and f2 = a1 satisfy the conclu-

sion. See [41] for details.

Remark 3.19 More generally, if (U1, . . . , Un) is a chain of intervals and if
f1, . . . , fn ∈ Homeo+(R) satisfy that supp fi = Ui for each i , then the group
〈 f1, . . . , fn〉 is called a pre-chain group (cf. [41]). The group 〈 f1, . . . , fn〉 is
called a chain group if moreover we have 〈 fi , fi+1〉 ∼= F for each 1 ≤ i < n.
If 〈 f1, . . . , fn〉 is a pre-chain group then for all sufficiently large N , we have
〈 f N

1 , . . . , f N
n 〉 is a chain group [41].
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4 The Slow Progress Lemma

Throughout this section, we assume the following. Let k ∈ N, and let G be a
group with a finite generating set V . We will consider an arbitrary representa-
tion ψ of G given in one of the following two types:

• ψ : G → Diffk,ω
+ (I ), where ω �k 0 is some concave modulus;

• ψ : G → Diffk,bv
+ (I ), in which case we will put ω = ω1.

We denote by ‖h‖ the syllable length of h ∈ G with respect to V as in
Sect. 3.1. We also use the notation V = ∪v∈V π0 suppψ(v).

Suppose we have sequences {Ni }i∈N ⊆ N and {vi }i∈N ⊆ V such that the
following two conditions hold. First, for some K > 0 we assume

sup
i∈N

Ni (1/ i)k−1ω(1/ i) ≤ K . (A1)

Second, for each v ∈ V we assume the following set has a well-defined natural
density:

Nv := {i ∈ N | vi = v}. (A2)

Let us define a sequence of words {wi }i≥0 ⊆ G by w0 = 1 and

wi = v
Ni
i · wi−1.

The main content of this section is the following:

Lemma 4.1 (Slow Progress Lemma) For each x ∈ I , we have the following:

lim
i→∞ (i − CovDistV (x, ψ(wi )x)) = ∞.

The proof of the lemma occupies most of this section. As a consequence of
this lemma, we will then describe a group theoretic obstruction for algebraic
smoothing.

Remark 4.2 The statement of the Slow Progress Lemma is topological. In
other words, even after ψ is replaced by an arbitrary topologically conjugate
representation, the same conclusion holds.

4.1 Reduction to limit superior

For brevity,we simplywriteCovLen andCovDist forCovLenV andCovDistV .
We write gx = ψ(g)x for g ∈ G and x ∈ I .

Lemma 4.3 Let x ∈ I . Then the following are equivalent:
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(i) lim supi→∞(i − CovDist(x, wi x)) = ∞;
(ii) limi→∞ (i − CovDist(x, wi x)) = ∞.

Proof Assume (ii) does not hold. There exists M0 > 0 and an infinite set
A ⊆ N such that for all a ∈ A we have

a − CovDist(x, wax) < M0.

If (i) is true, then we have an increasing sequence { j (s)}s∈N such that

lim
s→∞( j (s) − CovDist(x, w j (s)x)) = ∞.

For each s ∈ N, let us choose a(s) ∈ A such that j (s) < a(s). We see that

CovDist(x, wa(s)x) − CovDist(x, w j (s)x)

≤ CovDist(w j (s)x, wa(s)x) ≤ a(s) − j (s),

j (s) − CovDist(x, w j (s)x) ≤ a(s) − CovDist(x, wa(s)x) < M0.

This is a contradiction, and (i) ⇒ (ii) is proved. The converse is immediate.

4.2 Markers of covering lengths

In order to prove Lemma 4.1 by contradiction, let us make the following
standing assumption of this section: there exists a point x ∈ U ∈ π0 suppψ(G)

and a real number M0 > 0 such that the sequence {xi := wi x}i≥0 satisfies

for all i ≥ 0, we have i − M0 ≤ CovLen[x, xi ) ≤ i. (A3)

By Lemma 4.3, it suffices for us to deduce a contradiction from (A3).
The sequence {xi } accumulates at ∂U . Since the sequence cannot accumu-

late simultaneously at the both endpoints of U by assumption (A3), we may
make an additional assumption:

lim
i→∞ xi = supU. (A4)

For each i ∈ N, we define

z∗
i = sup{z ∈ [x, supU ) | CovLen[x, z) ≤ i}}.

The point z∗
i is the “length-i marker” of covering lengths in the following

sense.
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Lemma 4.4 (1) Define h : (x, supU ) → N by h(z) := CovLen[x, z). Then
h is a surjective, monotone increasing, left-continuous function.

(2) For all 1 ≤ i < i + j , we have

CovLen[z∗
i , z∗

i+ j ) = j,

CovLen[z∗
i , z∗

i+ j ] = j + 1.

(3) There exists M1, M2 > 0 such that for all i ≥ M1 we have that

z∗
i−M2

< xi < z∗
i−M2+1.

Proof (1) Monotonicity of h is clear. For the left-continuity and surjectivity,
it suffices to show CovLen[x, z∗

i ) = i . Let us define

z′
i =

{
sup{sup J | x ∈ J ∈ V } if i = 1,

sup{sup J | z′
i−1 ∈ J ∈ V } if i ≥ 2.

Since each point in I belongs to at most |V | intervals in V , each z′
i is realized

as sup J for some J ∈ V .
We claim that z∗

i = z′
i and that CovLen[x, z∗

i ) = i for each i ∈ N. The
case i = 1 is trivial. Let us assume the claim for i − 1. Then we have
CovLen[x, z′

i ) = i and z′
i ≤ z∗

i . If z′
i < z∗

i then there exists t ∈ (z′
i , z∗

i )

such that CovLen[x, t) = i . But whenever t ∈ J ∈ V we have z′
i−1 /∈ J ,

by the choice of z′
i . This shows CovLen[x, t) > i , a contradiction. Hence the

claim is proved.
(2) Note that

CovLen[z∗
i , z∗

i+ j ) ≥ CovLen[x, z∗
i+ j ) − CovLen[x, z∗

i ) = j.

The opposite inequality is immediate from the definition of z′
i . For the second

equation, it suffices to further note that CovLen[x, z∗
i ] = i + 1.

(3) By (A3), the following holds for all but finitely many i :

CovLen[x, xi+1) = CovLen[x, xi ) + 1.

For such an i , we have that xi ∈ (z∗
j−1, z∗

j ] and xi+1 ∈ (z∗
j , z∗

j+1] for j =
CovLen[x, xi ). If xi = z∗

j , then xi+1 < z∗
j+1 and moreover, xi+� < z∗

j+� for
all � ∈ N.
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Let us write zi = z∗
i−M2

. After increasing M0 if necessary, we have the
following for all i ≥ M0 and j > 0:

CovLen[zi , zi+ j ) = j = CovLen[zi , zi+ j ] − 1 and xi−1 < zi < xi .

(A5)
We may also assume:

CovLen[x, xM0) > 8k. (A6)

Consider the set of “significant generators” and their minimum density:

V1 = {v ∈ V | dN(Nv) > 0},
δ1 = min{dN(Nv) | v ∈ V1}/2.

By further increasing M0, we may require:

#(Nv ∩ [1, N ]) ≥ δ1N (A7)

for all v ∈ V1 and N ≥ M0. We note the following.

Lemma 4.5 Let v ∈ V1, and let Nv = { j1 < j2 < j3 < · · · }. Then there
exists a constant K1 ≥ K such that whenever m ∈ N satisfies jm ≥ M0, we
have

N jm ≤ K1mk−1/ω(1/m).

Proof Note that

m = #(Nv ∩ [1, jm]) ≥ δ1 jm .

Hence, we have jm ≤ m/δ1. Lemma 2.6 implies that

ω(1/jm) ≥ ω(δ1/m) ≥ δ1ω(1/m).

The desired inequality is now immediate.

4.3 Estimating gaps

Let i ≥ M0. Since

xi−1 < zi < xi = v
Ni
i xi−1,

we can find Ji ∈ π0 suppψ(vi ) such that {xi−1, xi } ⊆ Ji . We define

pi = inf{z ∈ (inf U, inf Ji ] | # ([z, inf Ji ] ∩ Fixψ(vi )) ≤ k},
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Fig. 5 Intervals from supports

qi = sup{z ∈ [sup Ji , supU ) | # ([sup Ji , z] ∩ Fixψ(vi )) ≤ k}.
As illustrated in Fig. 5, we will write

Li = [pi , sup Ji ], Ri = [inf Ji , qi ], J ∗
i = [pi , qi ].

Roughly speaking, Li is obtained from Ji by successively attaching adjacent
components of suppψ(vi ) on the left until we have included at least k+1 fixed
points of ψ(vi ) or an accumulated fixed point of ψ(vi ). By (A4) and (A6), the
intervals Li and Ri are compactly contained in U .

Lemma 4.6 For each i ∈ N ∩ [M0, ∞), the following hold.

(1) The map ψ(vi ) is k-fixed on Li and also on Ri .
(2) We have that {xi−1, zi , xi } ⊆ Ji ⊆ Li ∩ Ri , zi+1 /∈ Ji and zi /∈ Ji+1.
(3) We have that

∑

j≥M0

(|L j | + |R j |
) ≤ 2k|V | · |I |.

(4) #{ j ≥ M0 | v j = vi and J ∗
j ∩ J ∗

i �= ∅} ≤ 4k.

Proof Parts (1) and (2) are obvious from the definition and from the fact that
CovLen[zi , zi+1] = 2.

For part (3), suppose x ∈ A ∈ π0 suppψ(v) for some v ∈ V . There exist
at most 2k indices i ≥ M0 such that v j = v and such that A ⊆ L j ∪ R j .
Hence, the total number of Li ’s and Ri ’s containing a given arbitrary point x
is at most 2k|V |. Part (4) follows similarly.

Let us pick an integer C ≥ 8k. We call each xi as a ball, and the interval
[zi , zi+C ) as a bag (of size C). For each m ≥ M0, we define

bag(m) = [zm, zm+C),

gap(m) = [xm, xm+C−1].
See Fig. 6.
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Fig. 6 The gap in a bag

For each δ > 0 and v ∈ V , we let

Ballδ =
{

i ∈ N ∩ [M0, ∞) | sup
Li

|ψ(v
Ni
i )−Id |<δ|Li | and sup

Ri

|ψ(v
Ni
i )−Id |<δ|Ri |

}

,

Bagδ = {i ∈ N ∩ [M0,∞) | [i, i + C] ∩ Z ⊆ Ballδ} .

Intuitively speaking, Ballδ is the collection of balls which are δ-fast neither on
Li nor on Ri . Also, Bagδ is the set of bags which “involve” only balls from
Ballδ . We now use the analytic estimate from Sect. 2:

Lemma 4.7 For each δ > 0, the sets Ballδ and Bagδ have the natural density
one.

Proof Let v ∈ V1. By Lemmas 4.5 and 4.6, we can apply Theorem 2.9 to
f = ψ(v). We see that

lim
N

#(Ballδ ∩Nv ∩ [0, N ])
#(Nv ∩ [0, N ]) = 1.

It follows that dN(Ballδ) = 1. By Lemma 2.21 (1), we have dN(Bagδ) = 1.

Lemma 4.8 For each δ ∈ (0, 1
2C ] and m ∈ Bagδ , we have | gap(m)| ≤

2δ| bag(m)|.
Proof Let i ∈ [m + 2, m + C − 2] ∩ Z. From Lemma 4.6 and from the fact
that

max(CovLen(Li ),CovLen(Ri )) ≤ 2k + 1,

we see that either Li ⊆ gap(m) or Ri ⊆ gap(m). As m ∈ Bagδ , we have
i ∈ Ballδ and hence,

|xi − xi−1| = |vNi
i xi−1 − xi−1| < δmin(|Li |, |Ri |) ≤ δ| gap(m)|.

123



Diffeomorphism groups of critical regularity

By a similar argument,

|xm+1 − xm | + |xm+C−1 − xm+C−2| < δ (|Rm+1| + |Lm+C−1|)
= δ (|Rm+1 ∪ Lm+C−1|) ≤ δ| bag(m)|.

By summing up |xi − xi−1| for i = m + 1, . . . , m + C − 1, we obtain that

| gap(m)| ≤ (C − 3)δ| gap(m)| + δ| bag(m)|,
| gap(m)| ≤ δ

1 − (C − 3)δ
| bag(m)| ≤ 2δ| bag(m)|.

Recall J ∗
m = Lm ∪ Rm . For each λ > 0, we define

DC,λ := {m ∈ N ∩ [M0, ∞) : either |xm − xm−1| > λ|xm − sup J ∗
m |

or |xm+C − xm+C−1| > λ|xm+C−1 − inf J ∗
m+C |}.

Lemma 4.9 If δ ∈ (0, 1
2C ] and 2δ(1 + λ) ≤ 1, then Bagδ ⊆ DC,λ.

Proof Assume that m ∈ Bagδ \DC,λ. By Lemma 4.8, we have

| bag(m)| < |xm − xm−1| + |xm+C − xm+C−1| + | gap(m)|
≤ λ|xm − sup J ∗

m | + λ|xm+C−1 − inf J ∗
m+C | + | gap(m)|

≤ (1 + λ)| gap(m)| ≤ 2δ(1 + λ)| bag(m)|.
This is a contradiction.

Lemma 4.10 For all λ ≥ 1, the following set has the natural density one.

Eλ =
{

m ∈ N ∩ [M0, ∞) | ψ(vNm
m ) is λ-expansive on J ∗

m

}
.

Proof We may assume λ > 8k. For δ > 0, we define

Xλ = {m ∈ N ∩ [M0, ∞) : |xm − xm−1| > λ|xm − sup J ∗
m |},

Yλ = {m ∈ N ∩ [M0, ∞) : |xm − xm−1| > λ|xm−1 − inf J ∗
m |}.

Then we see

DC,λ = Xλ ∪ ((Yλ − C) ∩ [M0, ∞)) .

Lemmas 4.7 and 4.9 imply that dN(DC,λ) = 1, Hence by Lemma 2.21, we
obtain that dN(Xλ ∪ Yλ) = 1. This implies dN(Eλ) = 1.
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Completing the proof of the Slow Progress Lemma We see from Lemma 4.5
and Theorem 2.9 that

lim
N

#(Eλ ∩ Nv ∩ [0, N ])
#(Nv ∩ [0, N ]) = 0

for each v ∈ V1. This implies dN(Eλ) = 0, contradicting Lemma 4.10. Hence
the assumption (A3) is false and the proof is complete.

4.4 Consequences of the Slow Progress Lemma

The following is the main obstruction of algebraic smoothing in the Main
Theorem.

Lemma 4.11 Let u ∈ G and let U ∈ π0 suppψ(G). If suppψ(u) ∩ U is
compactly contained in U, then for each real number T0 > 0 and for all
sufficiently large i ∈ N, there exists hi ∈ G such that the following hold:

(i) ‖hi‖ < 2i − T0;
(ii) U ∩ suppψ[wi uw−1

i , hiwi uw−1
i h−1

i ] = ∅.
(iii) For each v ∈ V and for at least one h′ ∈ {v · hi , v

−1 · hi }, we have

U ∩ suppψ[wi uw−1
i , h′wi uw−1

i (h′)−1] = ∅;

Proof Let u, U and T0 be given as in the hypothesis. We write

x = inf(suppψ(u) ∩ U ), y = sup(suppψ(u) ∩ U ).

Put T = CovDist(x, y). By the Slow Progress Lemma, whenever i � 0 we
have

CovDist(x, wi x) < i − (T0 + T ), CovDist(y, wi y) < i − (T0 + T ).

CovDist(wi x, wi y) ≤ 2i − 2(T0 + T ) + T < 2i − T0.

Put ui = wi uw−1
i . Since suppψ(ui ) ∩ U ⊆ (wi x, wi y), we see from

Lemma 3.4 that there exists hi ∈ G with ‖hi‖ < 2i − T0 satisfying
hiwi x > wi y. Furthermore, for each v ∈ V there is a s(v) ∈ {1, −1} such
that vs(v)hiwi x ≥ hiwi x > wi y. We see that

(suppψ(ui ) ∩ U ) ∩ h(suppψ(ui ) ∩ U ) = ∅

if h = hi or if h = vs(v)hi for some v ∈ V . This gives the desired relations.
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5 A dynamically fast subgroup of Diff k,μ+ (I)

Recall we have defined G† in Sect. 3.4. We will now build a representation
φ : G† → Diffk,μ

0 (I ) such that suppφ(G†) is connected and φ(G†) admits no
injective homomorphisms into Diffk,ω

+ (I ) for all 0 ≺k ω 
 μ.
The criticality of the regularity will be encoded in a dynamically fast con-

dition described as follows. As in Lemma 3.11, we let 1 �= u0 ∈ G† be
given such that suppφ(u0) is compactly contained in suppφ(G†). We build
a sequence a elements {wi }i≥0 ⊆ G† which depend on k, μ such that, after
replacing u0 by a suitable conjugate u in G† if necessary, we have

CovDist(inf suppφ(wi uw−1
i ), sup suppφ(wi uw−1

i )) ≥ 2i.

We build the representation φ in several steps.

5.1 Setting up notation

Let us prepare some notation which we will use throughout this section. We
fix k ∈ N and μ � ω1. We put δ = 9/10 and recall the notation

{ε0, δ0, �∗
0, �i , Ni }

from Setting 2.15 and from Corollary 2.20. Namely, we pick a universal con-
stant ε0 ∈ (0, 1), and define δ0 ≥ 9/10 from ε0. For instance, we can set
ε0 = 1/1000. We have defined a constant �∗

0 depending on μ, so that

�∗
0, μ(�∗

0) ∈ (0, ε0].

We will choose K ∗ ∈ N, and let

�i = 1/
(
(i + K ∗) log2(i + K ∗)

)
.

We have defined another sequence

Ni = �1/
(
�k−1

i μ(�i )
)
�.

Possibly after increasing K ∗ > 0, we may assume that �1 ≤ �∗
0 and that

κ := �2/(2�2 + �1) > 1/4.
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Fig. 7 The family of bounded open intervalsF . Intervals of the same color are supporting the
same generator in Fig. 4

In Corollary 2.20, we verified that for all concave modulus 0 ≺k ω 
 μ we
have

lim
i→∞ Ni (1/ i)k−1ω(1/ i) = 0.

Recall we have a generating set V † = {a, b, c, d, e} ⊆ G† as in Sect. 3.4.
For i ∈ N, we let v2i−1 = b and v2i = a. Define a sequence {wi }i∈N ⊆ G† by
w0 = 1 and wi = v

Ni
i · wi−1.

5.2 A configuration of intervals in I

Let us now build an infinite chain

F = (
. . . , L−

2 , L−
1 , D−, C−, B−, I0, B+, C+, D+, L+

1 , L+
2 , . . .

)

of bounded open intervals in R as shown in Fig. 7. The union of F will be
also bounded. We will simultaneously define representations

ρ0, ρ1, ρ2 : G† → Diffk,μ
+ (R).

As in Lemma 3.11, we put

u† = [[
cd, e · ed · e−1] , c

] ∈ G†\{1}.

The standard affine action of BS(1, 2) is conjugate to a C∞-action on R sup-
ported in [0, 1]; see [68] or [58, Section 4.3], for instance.ApplyingLemma3.5
to

1 �= u† ∈ (〈c〉 × 〈a, e〉) ∗ 〈d〉 ≤ G†,

we have an action

ρ0 : G† → Diff∞+ (R)
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such that ρ0(b) = 1, ρ0(u†) �= 1 and moreover, I0 := (−1, 1) = supp ρ0. By
the same lemma, we can also require that

ρ0〈a, e〉 ∼= 〈a, e〉 ∼= BS(1, 2).

We will include six more open intervals

B±, C±, D±

to the chain F as shown in the configuration (Fig 7). We will require that
B− = −B+ and so forth, where we use the notation

−(r, s) = (−s, −t)

for 0 ≤ r < s ≤ ∞. Also, we set supC+ = 2 and sup D+ = 3.
By Corollary 3.18, there exists a C∞ diffeomorphisms c+

1 , d+
1 supported

on C+, D+ respectively such that 〈c+
1 , d+

1 〉 ∼= F and 〈c+
1 , d+

1 〉 acts locally
densely on C+ ∪ D+. We may require c+

1 (x) > x for x ∈ C+ and d+
1 (x) > x

for x ∈ D+. We define c−
1 , d−

1 symmetrically so that c−
1 (−x) = −c+

1 (x) and
d−
1 (−x) = −d+

1 (x). In particular,

supp d±
1 = D±, supp c±

1 = C±.

We choose b1 ∈ Diff∞+ (R) supported on B+ ∪ B− such that b1(x) > x for
x ∈ B+ and b1(x) < x for x ∈ B−. We define

ρ1 : G† → Diff∞+ (R)

by ρ1(a) = ρ1(e) = 1 and ρ1(b) = b1, ρ1(c) = c+
1 c−

1 , ρ1(d) = d+
1 d−

1 .
Note that �1/�2 < 2 and that the sequence {�i/�i+1} decreases to 1. Hence,

1

3
>

�i+1

2�i+1 + �i
≥ κ = �2

2�2 + �1
>

1

4
.

Let us inductively define

L+
1 = (3 − κ�1, 3 − κ�1 + �1),

L+
i+1 = (sup L+

i − κ�i , sup L+
i − κ�i + �i+1).

Note that |L+
i ∩ L+

i+1| = κ�i ; see Fig. 8. Since

κ�i−1 + κ�i ≤ �i − κ�i < �i ,
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Fig. 8 The bounded open intervals Li ’s

we see that L+
i−1∩ L+

i+1 = ∅. In other words, the collection {L+
i } has no triple

intersections. Then we define symmetrically L−
i = −L+

i and add L±
i to F .

This completes the definition of the infinite chain F . As
∑

i �i < ∞, there
exists some compact interval I such that

⋃
F = I ⊆ R.

By applying Theorem 2.14 to the parameter

(
k, μ, δ0, {N2i−1}i∈N,

{
L+
2i−1

}

i∈N

)
,

we obtain a diffeomorphism b+
2 ∈ Diffk,μ

+ (R) supported on ∪i L+
2i−1 such that

b+
2 is δ0-fast on each L+

2i−1, and such that b+
2 (x) > x for each x ∈ ∪i L+

2i−1.
Note that we are invoking the hypothesis that

N2i−1 · �k−1
2i−1 · μ(�2i−1) ≥ 1.

We define b−
2 (x) = −b+

2 (−x). We also define a±
2 completely analogously

with respect to the parameter

(
k, μ, δ0, {N2i }i∈N,

{
L+
2i

}

i∈N

)
.

Then we define

ρ2 : G† → Diffk,μ
+ (R)

by ρ2(a) = a+
2 a−

2 , ρ2(b) = b+
2 b−

2 and ρ2(c) = ρ2(d) = ρ2(e) = 1.
For each v ∈ V †, we define

φ(v) = ρ0(v)ρ1(v)ρ2(v).

We see from the construction that

• suppφ〈a, e〉 ∩ suppφ(c) = ∅;
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• φ(a)φ(e)φ(a)−1 = ρ0(a)ρ0(e)ρ0(a)−1 = ρ0(e)2 = φ(e)2.

Hence, the map φ extends to a group action

φ : G† → Diffk,μ
0 (I ).

Let us summarize the properties of φ below. The proofs are obvious from
construction and from Theorem 2.14. We continue to use the notation from
Sect. 5.1.

Lemma 5.1 The following hold for φ = φk,μ : G† → Diffk,μ
0 (I ).

(1) suppφ = I\∂ I .
(2) For each g ∈ G†, the restriction φ(g) �I\∂ I is a C∞ diffeomorphism.

(3) For each i ≥ 1, the map φ(v
Ni
i ) is δ0-fast on L±

i .
(4) Every orbit of φ〈a, c, d, e〉 in I0 is accumulated at ∂ I0.

5.3 The behavior of {wi }i≥0 under φ

Whereas we have good control over the compactly supported diffeomorphism
φ(u), we will need to have good control over commutators of conjugates of
φ(u).

Lemma 5.2 For each nonempty open interval U0 ⊆ suppφ(G†), there exists
a suitably chosen f ∈ φ(G†) such that f (U0) ∩ L+

1 �= ∅ and such that
f (U0) ∩ L−

1 �= ∅.

Intuitively, Lemma 5.2 says that no matter how small an interval we choose
inside suppφ(G†), we may find an element of f ∈ φ(G†) so that f (U0)

stretches across

I0 ∪ B± ∪ C± ∪ D±.

Of course, f (U0) might be much larger than this union, though this is unim-
portant.

Proof of Lemma 5.2 Let U0 = (z1, z2) be given as in the hypotheses of the
lemma. By Lemmas 5.1 (4) and 3.4, there exists an f ∈ φ(G†) such that
f (z2) ∈ D+ ∩ L+

1 . So, we may assume z2 ∈ D+ ∩ L+
1 . We may then assume

that z1 ≥ sup L−
1 ; for, otherwise there is nothing to show. There are four

(overlapping) cases to consider.

Case 1: z1 ∈ B− ∪ C− ∪ D−.
For sufficiently large n1, n2, n3 ∈ N and for f1 = φ(dn3cn2bn1), we have

f1(z2) ∈ L+
1 \D+ and f1(z1) ∈ D− ∩ L−

1 . This is the desired configuration.
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Fig. 9 The point f1(z2) stays in C+ ∪ D+

Case 2: z1 ∈ I0.
By Lemma 5.1 (4), there is f1 ∈ φ〈a, c, d, e〉 such that f1(z1) ∈ B− ∩ I0.

Note that

Q := (B+ ∪ L+
1 )\(I0 ∪ C+ ∪ D+ ∪ L+

2 )

is a nonempty set which is disjoint from suppφ〈a, c, d, e〉. Hence, f1(z2) /∈ Q;
see Fig. 9. We have f1(z2) ∈ C+ ∪ D+. As in Case 1, we can find sufficiently
large n1, n2, n3 ∈ N such that for f2 = φ(dn3cn2bn1)we have f2 f1(z1) ∈ L−

1 .
and f2 f1(z2) ∈ L+

1 . This is the desired.

Case 3: z1 ∈ B+.
There exist sufficiently large n1 ∈ N such that for f1 = φ(b−n1), we have

f1(z2) ∈ D+ ∩ L+
1 and f1(z1) ∈ I0 ∩ B+. So, we again have Case 2.

Case 4: z1 ∈ C+ ∪ D+.
We use the fact that the restriction of φ〈c, d〉 to C+ ∪ D+ generates a

locally dense copy of Thompson’s group F . As we have seen in Sect. 3.6,
for some suitable f1 ∈ φ〈c, d〉 we may arrange f1(z1) ∈ B+ ∩ C+ and
f1(z2) ∈ D+ ∩ L+

1 , thus reducing to the previous case.

We retain the elements {wi }i∈N as defined in Sect. 5.1. The following lemma
measures the complexity of certain diffeomorphisms in φ(G†) and shows that
the complexities grow linearly.

Lemma 5.3 Let u ∈ G†\ ker φ be an element such that suppφ(u) is compactly
contained in suppφ. Then for some conjugate u′ ∈ G† of u, and for some
component U1 of suppφ(u′), we have that whenever i ∈ N the bounded open
interval φ(wi )U1 intersects both L+

i+1 and L−
i+1. In particular, we have that

CovLen(φ(wi )U1) > 2i,

and that ∂(φ(wi )U1) ⊆ suppφ(a) ∪ suppφ(b).

Proof Choose an open interval U0 ∈ π0 suppφ(u) compactly contained in
I . By Lemma 5.2, there is a conjugate u′ ∈ G† of u such that the image U1
of U0 under this conjugation intersects L±

1 . Conjugating by a further power
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Fig. 10 Replacing u by a suitable conjugate u′

of b if necessary, we may assume (s−, s+) ⊆ U1 for some s± satisfying the
following.

inf L+
1 + (1 − δ0)�1 < s+ < sup L+

1 ,

inf L−
1 < s− < sup L−

1 − (1 − δ0)�1.

Note 1− δ0 ≤ 1/10. See Fig. 10. We now apply φ to the conjugates wi u′w−1
i .

Assume by induction that

inf L+
i + (1 − δ0)�i < φ(wi−1)s

+ < sup L+
i ,

inf L−
i < φ(wi−1)s

− < sup L−
i − (1 − δ0)�i .

As φ(v
Ni
i ) is δ0-fast on L+

i , there is xi ∈ L+
i such that φ(v

Ni
i )xi ≥ xi + δ0�i .

Then

φ(wi−1)s
+ ≥ inf L+

i + (1 − δ0)�i =sup L+
i − δ0�i ≥φ(v

Ni
i )xi −δ0�i ≥ xi .

φ(wi )s
+ ≥ φ(v

Ni
i )xi ≥ xi + δ0�i ≥ inf L+

i + δ0�i =sup L+
i − (1 − δ0)�i

= inf L+
i+1 + (κ − 1 + δ0)�i > inf L+

i+1 + (1 − δ0)�i+1.

Here, we used κ > 1/4 > 2(1 − δ0). By induction, we see that φ(wi )s± ∈
L±

i+1.
In order to cover φ(wi )U1 by intervals in F , we need at least

{I0, B±, C±, D±, L±
1 , . . . , L±

i }.

The conclusion is now obvious.

5.4 Certificates of non-commutativity

The following factwill be used in order to show thatφ(G†) cannot be smoothed
algebraically.
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Lemma 5.4 Suppose we have u ∈ G† such that suppφ(u) is compactly
contained in suppφ = I\∂ I , and U ∈ π0 suppφ(u). If h ∈ G† sat-
isfies that φ(h)U �= U and that ||h|| < CovDist(inf U, supU ), then
[φ(u), φ(huh−1)] �= 1.

Proof WriteU = (z1, z2) and CovDist(z1, z2) = N < ∞.We claimφ(h)U ∩
U �= ∅. For, otherwise we have either φ(h)z1 ≥ z2 or φ(h)z2 ≤ z1. But this
would imply that one of the following holds:

• CovDist(φ(h)z1, z1) ≥ N ;
• CovDist(φ(h)z2, z2) ≥ N .

This then violates Lemma 3.2.
Let f = φ(u) and g = φ(huh−1). Since supp f is compactly contained in

I , there exists a compact interval J such that

supp f ∪ supp g ⊆ J ⊆ I\∂ I.

Sinceφ(G†) isC∞ at each point x ∈ I\∂ I , wemay regard f, g ∈ Diff∞+ (J ). A
corollary to Kopell’s Lemma (Corollary 3.7) implies that if f and g commute,
then U and φ(h)U must either be equal or disjoint. They are not disjoint by
the previous paragraph and they are not equal by the hypothesis.

We remark that the above fact can be generalized to arbitrary compactly
supported representations which are C2 in the interior. The following lemma
extracts the main content of this section which will be necessary in the sequel.

Lemma 5.5 Suppose u ∈ G† satisfies that suppφ(u) is a nonempty set com-
pactly contained in suppφ(G†). Then there exists a conjugate u′ of u in G†

such that for all i ∈ N, for all s, t ∈ {−1, 1} and for all h ∈ G† satisfying
‖h‖ < 2i , we have

φ[wi u
′w−1

i , h′wi u
′w−1

i (h′)−1] �= 1

for at least one h′ ∈ {h, as · h, bt · h}.
Proof Using Lemma 5.3, we obtain a conjugate u′ of u such that for each
i ∈ N, the set suppφ(wi u′w−1

i ) has a component Ui whose covering length
is larger than 2i .

Note that for at least one h′ ∈ {h, as · h, bt · h}, we have that
{inf Ui , supUi } �⊆ Fix φ(h′),

and that ||h′|| ≤ 2i . The nontriviality of φ[wi u′w−1
i , h′wi u′w−1

i (h′)−1] fol-
lows immediately from Lemma 5.4.
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5.5 Finishing the proof of Theorem 1.5

So far, we have constructed

φ = φk,μ : G† → Diffk,μ
0 (I ).

Theorem 5.6 Suppose ω is a concave modulus satisfying 0 ≺k ω 
 μ, or
suppose ω = bv. If we have a representation

ψ : G† → Diffk,ω
+ (I ),

then we have that

[G†, G†] ∩ kerψ\ ker φ �= ∅.

Proof Let u1 := u† ∈ [G†, G†] be the element considered in Lemma 3.11
and Sect. 5.2. By the same lemma, suppψ(u1) is compactly contained in
suppψ(G†). We see from the construction that φ(u1) �= 1. So, we may
assume ψ(u1) �= 1. Let us choose a minimal collection {U1, . . . , Un} ⊆
π0 suppψ(G†) such that

suppψ(u1) ⊆ U1 ∪ · · · ∪ Un.

There exists a conjugate u′
1 of u1 satisfying the conclusion of Lemma 5.5.

Recall from Sect. 5.1 that we have

lim
i→∞ Ni (1/ i)k−1ω(1/ i) = 0.

Hence, we can apply Lemma 4.11 to u′
1 and U1. We obtain some i ∈ N, some

h1 ∈ G† with ‖h1‖ < 2i , and some s, t ∈ {1, −1} such that

U1 ∩ suppψ
[
wi u

′
1w

−1
i , h′

1wi u
′
1w

−1
i (h′

1)
−1

]
= ∅

for all choice of h′
1 ∈ {h1, as · h1, bt · h1}. As u′

1 has been chosen to satisfy
Lemma 5.5, there exists a choice of h′

1 such that

u2 :=
[
wi u

′
1w

−1
i , h′

1wi u
′
1w

−1
i (h′

1)
−1

]
∈ [G†, G†]\ ker φ.

Note that suppφ(u2) is still compactly contained in suppφ(G†). We now
have

suppψ(u2) ⊆ U2 ∪ · · · ∪ Un.
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Inductively, we use u2 to obtain u′
2 satisfying Lemma 5.5. The same argument

as above yields u3 ∈ [G†, G†]\ ker φ such that

suppψ(u3) ⊆ U3 ∪ · · · ∪ Un.

Continuing this way, we obtain an element um ∈ [G†, G†] ∩ kerψ\ ker φ for
some m ≤ n + 1.

Remark 5.7 The idea of finding a nontrivial kernel element of an interval
action by successively taking commutators appeared in [11], where Brin and
Squier proved that PL[0, 1] does not contain a nonabelian free group. One
can trace this idea back to the proof of the Zassenhaus Lemma on Zassenhaus
neighborhoods of semisimple Lie groups [63]. This idea was also used in
[2,40].

Proof of Theorem 1.5 Let φk,μ = φ be the representation constructed in this
section. Theorem 5.6 implies the conclusion (i). We have already verified (ii).

Remark 5.8 The groupφk,μ(G†)we constructed is never a subgroup of a right-
angledArtin group, or even a subgroup of a braid group; see [40, Theorem3.12]
and [39, Corollary 1.2].

6 Proof of the Main Theorem

Let us now complete the proofs of all the results in the introduction.

6.1 The Rank Trick

If φ : G → Homeo+[0, 1] be a representation, then a priori, it is possible that
the rank of the abelianization H1(φ(G), Z) is less than that of H1(G, Z). Let
us now describe a systematic way of producing another representation φ0 such
that the rank of H1(φ0(G), Z) is maximal.

Lemma 6.1 (Rank Trick) Let G be a group such that H1(G, Z) is finitely
generated free abelian. If we have a representation

ρ : G → Homeo+(R)

such that supp ρ is bounded, then there exists another representation

ρ0 : G → 〈ρ(G),Diff∞+ (R)〉 ≤ Homeo+(R)

satisfying the following:
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(i) supp ρ0 is bounded;
(ii) ρ0(g) = ρ(g) for each g ∈ [G, G];
(iii) H1(ρ0(G), Z) ∼= H1(G, Z).

Proof Let H1(G, Z) ∼= Z
m for somem ≥ 0.We can pick compactly supported

C∞-diffeomorphisms h1, . . . , hm such that

supp hi ∩ supp ρ(G) = ∅ = supp hi ∩
⋃

j �=i

supp h j .

for each i . The abelianization of G can be realized as some surjection

α : G → 〈h1, . . . , hm〉 ∼= Z
m .

We define a representation ρ0 : G → Homeo+(R) by the recipe

ρ0(g) = ρ(g)α(g)

for each g ∈ G. It is clear that ρ0 satisfies parts (i) and (ii). Since α decomposes
as

G
ρ0

ρ(G) × 〈h1, . . . , hm〉 proj. 〈h1, . . . , hm〉,
we see that ρ0(G) surjects onto Z

m . This proves part (iii).

Remark 6.2 Algebraically, the group ρ0(G) is a subdirect product of ρ(G)

and Z
m .

6.2 The Chain Group Trick

Let us describe a general technique of embedding a finitely generated orderable
group into a countable simple group. In Remark 3.19, we defined the notion of
a chain group, which is a certain finitely generated subgroup of Homeo+(R).
We will need the following result of the authors with Lodha:

Theorem 6.3 ([41, Theorem 1.3]) If H ≤ Homeo+(I ) is a chain group acting
minimally on I\∂ I , then [H, H ] is simple and every proper quotient of H is
abelian.

In [41], it is shown that every finitely generated orderable group embeds
into some minimally acting chain group. We will need a variation of this result
for diffeomorphisms. Let us use notations ρGS, hGS and {a0, a1} as defined in
Sect. 3.6. By an n-generator group, we mean a group generated by at most n
elements.
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Lemma 6.4 (Chain Group Trick) Let G be an n-generator subgroup of
Homeo+(R) such that suppG is compactly contained in (0, 1). We put

G̃ = 〈G, ρGS(F)〉.
(1) Then G̃ is an (n+2)-chain group acting minimally on (0, 1). In particular,

[G̃, G̃] is simple and every proper quotient of G̃ is abelian.
(2) If H1(G, Z) is free abelian, then there is an embedding from G into [G̃, G̃].
Proof We will follow the proof of [41, Theorem 1.3], taking extra care with
elements of ρGS(F). Let us fix a generating set {g1, . . . , gn} of G.

(1) Denote by QGS the set of hGS-images of all dyadic rationals in [0, 1].
We set

0 < s1 := hGS(1/2) < s2 := a−2
1 a0.s1 < s3 := a−1

1 a0.s1 < s4 := a0.s1 < 1.

Since si ∈ QGS, we can find f1 ∈ ρGS(F) such that supp f1 = (s2, s3) and
such that f1(t) ≥ t for all t ∈ [0, 1]. We fix t0 ∈ (s2, s3) ∩ QGS, so that

s2 = f1(s2) < t0 < f1(t0) < s3 = f1(s3).

After conjugating G by a suitable element of ρGS(F) if necessary, we may
assume that the closure of suppG is contained in (t0, f1(t0)).

Claim If g = gi for some 1 ≤ i ≤ n, then we have that

a1 ◦ g(t)

⎧
⎪⎨

⎪⎩

= t if t ≤ s1,

∈ (t, a0(t)) if t ∈ (s1, s4),

= a0(t) if t > s4.

If t /∈ (s2, s3), then a1◦g(t) = a1(t) and the claim is obvious. If t ∈ (s2, s3),
then

a−1
1 (t) < a−1

1 (s3) = s2 < g(t) < s3 = a−1
1 (s4) < a−1

1 ◦ a0(t).

This proves the claim.
Wedefine u0 = a1, and ui = a1gi for i = 1, . . . , n.We also let u∗

0 = u−1
0 a0,

u∗
n+1 = an

0una−n
0 and

u∗
i = (ai

0u−1
i a−i

0 ) · (ai−1
0 ui−1a1−i

0 ), i = 1, . . . , n.

Then we have

G̃ = 〈G, a0, a1〉 = 〈u∗
0, . . . , u∗

n+1〉.
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The group G̃ acts minimally on (0, 1) since so does ρGS(F).
It now suffices to show that the collection {u∗

0, u∗
1, . . . , u∗

n+1} is a generating
set for an (n + 2)-chain group; this is a routine computation of the supports
using the above claim, and worked out in [41, Lemma 4.2].

(2) Recall we have defined f1 ∈ ρGS(F) in part (1). We put

G1 = 〈G, f1〉 = 〈g1, . . . , gn, f1〉 ≤ G̃.

For all distinct i, j ∈ Z we have

f i
1 (suppG) ∩ f j

1 (suppG) = ∅.

Let H1(G, Z) ∼= Z
m for some m ≤ n. Possibly after increasing the value of n

if necessary, we may require that {g1, . . . , gm} generates H1(G, Z), and that

{gm+1, . . . , gn} ⊆ [G, G].

we have an embedding G ↪→ [G1, G1] defined by
{

gi �→ gi · f i
1g−1

i f −i
1 , if i ≤ m;

gi �→ gi , if m < i ≤ n.

The proof is complete since [G1, G1] ≤ [G̃, G̃].

Remark 6.5 In the above lemma, put

V := {g1, . . . , gn}\ρGS(F).

Then the group G̃ = 〈G, ρGS(F)〉 = 〈V, ρGS(F)〉 is a (|V | + 2)-chain group.

Let us make a general observation.

Lemma 6.6 Let G be an infinite group such that every proper quotient of G
is abelian. Then every finite index subgroup of G contains [G, G].

Proof Let G0 ≤ G be a finite index subgroup. Then G acts on the coset space
G/G0 by multiplication and hence there is a representation from G to the
symmetric group of G/G0. Since every proper quotient is abelian, we see that
[G, G] acts trivially on G/G0. This implies [G, G] ≤ G0.
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6.3 Proof of Theorem 1.4

We will prove the theorem by establishing several claims. Let k and μ be as
given in the hypothesis of the theorem. We denote by

φ = φk,μ : G† → Diffk,μ
0 (I )

the representation φ constructed in the previous section. We put T1 := φ(G†).
From now on, we will assume supp T1 is sufficiently smaller than I whenever
necessary.

By the Rank Trick (Lemma 6.1), we can find

φ0 : G† → Diffk,μ
0 (I )

such that the conclusions of Lemma 6.1 hold. We put T2 := φ0(G†) so that

H1(T2, Z) ∼= H1(G
†, Z) ∼= Z

4.

We may assume supp T2 ⊆ I ⊆ (0, 1).

Claim 1 We have that T1, T2 ≤ Diffk,μ
0 (I ) and that

T1, T2 /∈
⋃

0≺kω
μ

G k,ω(I ) ∪ G k,bv(I ).

This claim for T1 follows from Theorem 5.6. In order to prove the claim
for T2, we let 0 ≺k ω 
 μ or let ω = bv. Suppose ψ : T2 → Diffk,ω

+ (I ) is a
representation. By applying Theorem 5.6 again to the composition

G† φ0
T2

ψ
Diffk,ω

+ (I )

we see that there exists g ∈ [G†, G†]\ ker φ such that ψ ◦ φ0(g) = 1. Since
φ0(g) = φ(g) �= 1 by Lemma 6.1 (ii), we have φ0(g) ∈ kerψ\{1}. This
proves the claim.

We can apply the Chain Group Trick (Lemma 6.4) to T2, and obtain

T3 := 〈T2, ρGS(F)〉 ≤ Diffk,μ
0 [0, 1]

acting minimally on (0, 1) as a seven-generator chain group. From Claim 1
and from the fact T2 ↪→ [T3, T3], we obtain the following and complete the
proof of Theorem 1.4 for M = I .
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Claim 2 The countable simple group [T3, T3] ≤ Diffk,μ
0 [0, 1] satisfies that

[T3, T3] /∈
⋃

0≺kω
μ

G k,ω(I ) ∪ G k,bv(I ).

Let us now consider the case M = S1. After a conjugation, we may assume
supp T3 ⊆ I ⊆ (0, 1). As BS(1, 2) embeds into Diff∞0 (I ), we may regard

T3 × BS(1, 2) ≤ Diffk,μ
+ (S1).

Claim 3 We have the following:

[T3, T3] × BS(1, 2) ∈ G k,μ(S1)\
⎛

⎝
⋃

0≺kω
μ

G k,ω(S1) ∪ G k,bv(S1)

⎞

⎠ .

Let 0 ≺k ω 
 μ, or let ω = bv. Suppose that

ψ : [T3, T3] × BS(1, 2) → Diffk,ω
+ (S1)

is an injective homomorphism. By Lemma 3.9 (2), a proper compact subset of
S1 contains suppψ[T3, T3]. Here, we used Lemma 6.6 for the simple group
[T3, T3]. By Claim 2, the group ψ[T3, T3] admits no nontrivial homomor-
phisms to Diffk,ω

+ (I ). It follows that [T3, T3] ≤ kerψ , a contradiction. This
proves the claim.

Recall F denotes the Thompson’s group acting on [0, 1]. We have a natural
map

ρ : T2 ∗ F → T3 ≤ Diffk,μ
0 (I ).

We can apply the Rank Trick to ρ, since

H1(T2 ∗ F, Z) ∼= H1(T2, Z) ⊕ H1(F, Z) ∼= Z
6.

Then we obtain a representation

ρ0 : T2 ∗ F → 〈T3,Diff∞+ (R)〉 ≤ Diffk,μ
+ (R).

Let T4 be the image of ρ0. We may require that supp T4 ⊆ I ⊆ (0, 1) and that
H1(T4, Z) is free abelian. Moreover, we have [T3, T3] ∼= [T4, T4].
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Regard T5 := T4 × BS(1, 2) ≤ Diffk,μ
0 (I ) so that supp T5 ⊆ I ⊆ (0, 1).

We have

[T3, T3] × BS(1, 2) ∼= [T4, T4] × BS(1, 2) ≤ T5.

Claim 3 now implies the following.

Claim 4 The group T5 is a nine-generator group such that

T5 ∈ G k,μ(S1)\
⎛

⎝
⋃

0≺kω
μ

G k,ω(S1) ∪ G k,bv(S1)

⎞

⎠ .

Since H1(T5, Z) ∼= H1(T4, Z) ⊕ Z is free abelian, we can finally apply
the Chain Group Trick to obtain a minimally acting eleven-chain group Q =
Q(k, μ) with

T5 ↪→ [Q, Q] ≤ Q ≤ Diffk,μ
0 (I ) ↪→ Diffk,μ

+ (S1).

Summarizing, we have the following.

Proposition 6.7 Let k ∈ N, and let μ � ω1 be a concave modulus. Then
there exists an eleven-generator group Q = Q(k, μ) such that the following
hold.

(1) [Q, Q] is simple and every proper quotient of Q is abelian.
(2) Q ≤ Diffk,μ

0 (I ).
(3) [Q, Q] /∈ ⋃

0≺kω
μ

(
G k,ω(I ) ∪ G k,ω(S1)

) ∪ G k,bv(I ) ∪ G k,bv(S1).
(4) Let 0 ≺k ω 
 μ, or let ω = bv. Then for an arbitrary finite index subgroup

A of Q, and for all homomorphism

ψ : A → Diffk,ω
+ (M),

the image is abelian, whenever M ∈ {I, S1}.
Proof Part (1) follows from that Q is a minimally acting chain group (Theo-
rem 6.3). Part (2) is established above. We deduce part (3) from

[T3, T3] ↪→ T5 ↪→ [Q, Q].
Part (4) is a consequence of parts (1) and (3) along with Lemma 6.6.

We have now proved Theorem 1.4. For a later use, we record the inclusion
relations between the groups appearing above:

[T1, T1] ∼= [T2, T2] ≤ T2 ↪→ [T3, T3] ∼= [T4, T4] ≤ T4 ≤ T5 ↪→ [Q, Q] ≤ Q.
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In the above diagram, the isomorphisms ∼= come from the Rank Trick and the
embeddings ↪→ come from the Chain Group Trick.

6.4 Continua of groups of the same critical regularity

Recall a continuummeans a set that has the cardinality ofR. TheMainTheorem
is an immediate consequence of the following stronger result, combined with
Theorem 6.3.

Theorem 6.8 For each real number α ≥ 1, there exist continua Xα, Yα of
minimal chain groups acting on I such that the following conditions hold.

(i) For each A ∈ Xα , we have that A ≤ Diffα0 (I ) and that

[A, A] /∈
⋃

β>α

G β(I ) ∪ G β(S1).

(ii) For each B ∈ Yα , we have that B ≤ ⋂
β<α Diff

β
0 (I ) and that

[B, B] /∈ G α(I ) ∪ G α(S1).

(iii) No two groups in Xα ∪ Yα have isomorphic commutator subgroups.

In order to prove Theorem 6.8, we set up some notations. For a complex
number z ∈ C, we let 〈z〉 denote the largest integer m such that m <C z. For
instance, we have 〈k〉 = 〈k − √−1〉 = k − 1 and 〈k + 1/2〉 = 〈k + √

i〉 = k
for an integer k. Let z >C 1, written as z = k + τ + s

√−1 for k = �Re z�
and τ, s ∈ R. We put

κ(z) := (〈z〉, ωz−〈z〉).

If α > 1 is a real number and if k = �α�, then we see that

κ(α) =
{

(k, ωα−k), if α �= k,

(k − 1, ω1), if α = k.

Using the notation Q(k, μ) from Proposition 6.7, we observe the following.

Lemma 6.9 The following hold for all complex numbers 1 <C z <C w.

(1) We have that Diffκ(z)
+ (M) ≥ Diffκ(w)

+ (M).
(2) If z /∈ N, then ωz−〈z〉 � ω1.
(3) If Re z > 1, then ωz−〈z〉 is sub-tame or Re z ≥ 2.
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(4) If z /∈ N and Rew > 1, then we have that

[Q ◦ κ(z), Q ◦ κ(z)] /∈ G κ(w)(S1).

Note that G κ(w)(I ) ⊆ G κ(w)(S1) by Theorem A.3.

Proof Parts (1) and (2) are obvious from Lemma 2.7. For part (3), let us write
z = k +τ +s

√−1 as above. Supposeωz−〈z〉 is not sub-tame. By Lemma 3.14,
we have that z − 〈z〉 = s

√−1 for some s > 0, and that z = k + s
√−1. It

follows that k ≥ 2.
For part (4), we first assume Re z �= 1. There exists a real number t > s

such that st ≥ 0 and such that z <C w′ := k + τ + t
√−1 <C w. Using part

(1), we may assume w = w′. Part (3) implies ωw−〈w〉 �k 0. We have that

(κ(z), κ(w)) = (
(〈z〉, ωz−〈z〉), (〈z〉, ωw−〈z〉)

)
.

The conclusion of (4) follows from Lemma 2.7 and Proposition 6.7.
Let us assume Re z = 1, so that z = s

√−1 for some s > 0. We can pick
w′ = 1 + τ <C w for some τ ∈ (0, 1). Again, we may set w′ = w so that
ωw−〈w〉 is sub-tame. The desired conclusion follows from the comparison

(κ(z), κ(w)) =
(
(1, ωs

√−1), (1, ωτ )
)

.

Remark 6.10 In the case when z = 1 + s
√−1 and w = 1 + t

√−1 for some
0 < s < t , we cannot conclude that part (4) above holds. This is because
ωw−〈w〉 = ωt

√−1 may not be sub-tame.

Let us now prove Theorem 6.8 for the case α > 1. We define

Xα := {Q ◦ κ(α + s
√−1) : s > 0},

Yα := {Q ◦ κ(α + s
√−1) : s < 0}.

Pick a real number s > 0 and put A = Q ◦ κ
(
α + s

√−1
) ∈ Xα . Note that

A ≤ Diff
κ
(
α+s

√−1
)

0 (I ) ≤ Diffα0 (I ).

Let β > α be a non-integer real number. By Lemma 6.9, we have that [A, A] /∈
G κ(β)(S1) = G β(S1). The conclusion (i) of the Theorem is satisfied.

Let us now pick a real number s < 0 and put B = Q ◦κ
(
α + s

√−1
) ∈ Yα .

Let β < α be non-integer real number larger than 1. We have that

B ≤ Diffκ(α+s
√−1)

0 (I ) ≤ Diffκ(β)
0 (I ) = Diffβ0 (I ).
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Since α >C α + s
√−1 >C 1, we see from Lemma 6.9 that

[B, B] /∈ G κ(α)(S1) ⊇ G α(S1).

This proves the conclusion (ii).
It is obvious from the conclusions (i) and (ii) that whenever A ∈ Xα and

B ∈ Yα , we have [A, A] � [B, B]. Suppose we have real numbers 0 < s1 <

s2, and put Ai = Q ◦κ(α+si
√−1). Using α > 1 we deduce from Lemma 6.9

that

[A1, A1] /∈ G κ(α+s2
√−1)(S1).

In particular, [A1, A1] � [A2, A2]. Similarly, no two groups in Yα have iso-
morphic commutator subgroups. This proves the conclusion (iii).

Let us now construct a continuum X1. For each β > 1, we pick Gβ ∈ Xβ .
We put G1 := Q ◦ κ(1 + √−1) so that [G1, G1] /∈ G γ (S1) for each γ > 1.
By the Rank Trick for the natural surjection from a free group onto Gβ for

β ≥ 1, we obtain another group Ḡβ ≤ Diffβ0 (I ) whose abelianization is free
abelian such that [Gβ, Gβ] ∼= [Ḡβ, Ḡβ]. It follows that Ḡβ /∈ G γ (S1) for all
γ > β ≥ 1.

For each β > 1, we can apply the Chain Group Trick to Ḡ1 × Ḡβ to obtain
a minimally acting chain group 
(β) such that

Ḡ1 × Ḡβ ↪→ [
(β), 
(β)] ≤ 
(β) ≤ Diff10(I ).

It follows that [
(β), 
(β)] /∈ G γ (S1) for all γ > 1. From the consideration
of critical regularities, we note that Ḡβ � Ḡγ whenever 1 ≤ β < γ . Note also
that Ḡβ ≤ [
(β), 
(β)] and that a countable group contains at most countably
many finitely generated subgroups. So, there exists a continuum X∗ ⊆ (1, ∞)

such that for all distinct β, γ in X∗, we have

[
(β), 
(β)] � [
(γ ), 
(γ )].

Then X1 = {
(β) | β ∈ X∗} is the desired continuum of the theorem.
Finally, let us construct a continuum Y1. To be consistent with the notations

in Sect. 6.3, let us set

T2 = 〈A, B, C | A2 = B3 = C7 = ABC〉 ≤ ˜PSL(2, R) ≤ Homeo+(R).

As we noted in Remark 1.2, we have that G 0(M) = G Lip(M). So, it suffices
to compare the regularities C0 and C1. Kropholler and Thurston (see [6])
observed that the group T2 is a finitely generated perfect group, and byThurston
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Stability, that every homomorphism from T2 to Diff1+(I ) has a trivial image.
In particular, H1(T2, Z) is trivial and T2 ∈ G 0(I )\G 1(I ). We continue as in
Sect. 6.3, after substituting (k, μ) = (0, 0) and (k, ω) = (1, 0) (and forgetting
k, bv). We obtain groups T3, T4, T5 and a minimally acting chain group Q ≤
Homeo+(I ) such that

T2 ↪→ [Q, Q] /∈ G 1(S1).

Let us put H1 := Q. The construction of Y1 is very similar to that of X1.
For each β > 1, we can find a finitely generated group H̄β ≤ ⋂

γ<β Diffγ0 (I )

such that H1(H̄β, Z) is free abelian, and such that H̄β /∈ G β(S1). For each
β > 1, we apply the Chain Group Trick to H̄1 × H̄β and obtain a minimal
chain group �(β) such that

H̄1 × H̄β ↪→ [�(β), �(β)] ≤ �(β) ≤ Homeo+(I ).

As before, there exists a continuum Y ∗ ⊆ (1, ∞) such that Y1 = {�(β) | β ∈
Y ∗} is the desired collection. Note that no two groups in the collection X1∪Y1
have isomorphic commutator subgroups.

Remark 6.11 Calegari [15] exhibited a finitely generated group in G 0(S1)\G 1

(S1). Lodha and the authors [41] gave (continuum many distinct) finitely gen-
erated groups insideG 0(I )\G 1(I ) having simple commutator groups, building
on [46]. The last part of the above proof strengthens both of these results.

6.5 Algebraic and topological smoothability

Theorem 1.5 also implies that if α ≥ 1 is a real number, then there are very
few homomorphism Diffα+(S1) → Diffβ+(S1) and Diffαc (R) → Diffβc (R) for
all β > α.

Proof of Corollary 1.8 By theMain Theorem, none of the maps in (1) through
(3) are injective. The desired conclusion now follows from Theorem 3.16.

Group actions of various regularities on manifolds are closely related to
foliation theory (see [18], for instance). One of the canonical constructions
in foliation theory is the suspension of a group action, a version of which
we recall here for the convenience of the reader. Recall our hypothesis that
M ∈ {I, S1}. Let B be a closed manifold with a universal cover B̃ → B.
Suppose we have a representation

ψ : π1(B) → Diffα+(M).
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The manifold B̃ × M has a natural product foliation so that each copy of B̃ is
a leaf. The group π1(B) has a diagonal action on B̃ × M , given by the deck
transformation π1(B) → Homeo(B̃) and by the map ψ . The quotient space

E(ψ) =
(

B̃ × M
)

/π1(B)

is a Cα-foliated bundle. This construction is called the suspension of ψ ; see
[18] for instance. Two representations ψ, ψ ′ ∈ Hom(π1(B),Diffα+(M)) yield
homeomorphic suspensions E(ψ), E(ψ ′) as foliated bundles if and only if ψ

and ψ ′ are topologically conjugate [17, Theorem2].
Let us now consider the case M = I and B = Sg, a closed surface

of genus g ≥ 2. Let k ≥ 0 be an integer. Cantwell–Conlon [21] and
Tsuboi [69] independently proved the existence of a representation ψk ∈
Hom(π1(Sg),Diffk+(I )) such that ψk is not topologically conjugate to a rep-
resentation in Hom(π1(Sg),Diff

k+1+ (M)). So, they concluded:

Theorem 6.12 (See [21] and [69]) For each integer k ≥ 0, there exists a
Ck-foliated bundle structure on S2 × I which is not homeomorphic to a Ck+1-
foliated bundle.

We will now prove Corollary 1.9, which is the only remaining result in the
introduction that needs to be shown. Assume α ≥ 1 is a real number and
g ≥ 5. Theorem 1.5 implies that there exists a representation

ψα ∈ Hom(π1(Sg),Diff
α
0 (I ))

such that ψα is not topologically conjugate to a representation in

Hom

⎛

⎝π1(Sg),
⋃

β>α

Diffα+(I )

⎞

⎠ .

Hence, we may replace the hypotheses Ck and Ck+1 in Theorem 6.12 by Cα

and
⋃

β>α Cβ , respectively.
We can further extend this result to more general 3-manifolds, using the

techniques in [20] described as follows. Every closed 3-manifold Y with
H2(Y, Z) �= 0 contains an embedded 2-sided closed surface Sg for all suffi-
ciently large g > 0.Goodmanused this observation to prove thatY\ Int(Sg×I )
admits a smooth foliation structure, based on Thurston’s result; see [31, Corol-
lary 3.1] and [67]. By adding in the aforementioned foliated bundle structure
of Sg × I inside Y , we complete the proof of Corollary 1.9.
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7 Further questions

Let M ∈ {I, S1}. One can ask for a finer distinction at integer regularities. A
difficulty with part (1) below is that there does not exist a concave modulus
below ω1, by definition.

Question 7.1 (1) Let k ≥ 1. Does there exist a finitely generated subgroup
G ≤ Diffk,Lip

+ (M) that does not admit an injective homomorphism into
Diffk+1+ (M)?

(2) Does there exist a finitely generated group in the set

⋂

β∈N

G β(M)\G∞(M)?

Many questions also persist about algebraic smoothability of groups. For
instance, finite presentability as well as all other higher finiteness properties
of the groups we produce are completely opaque at this time. We ask the
following, in light of Theorem 6.8:

Question 7.2 For which choices of α and β do there exist finitely presented
groups G ∈ G α(M)\G β(M)? What if α, β ∈ N?

Moreover, the constructions we carry out in this paper are rather involved.
It is still quite difficult to prove that a give group does not lie in G β(M).

Question 7.3 Let G be a finitely generated group. Does there exist an easily
verifiable algebraic criterion which precludes G ∈ G β(M)?
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Appendix A. Diffeomorphism groups of intermediate regularities

Let M ∈ {I, S1}. We will record some basic properties of Diffk,ω
+ (M). Most

of these properties are well-known for the case ω = 0, but not explicitly stated
in the literature for a general concave modulus ω. We will also include brief
proofs.

A.1. Group structure

Let k ∈ N, and let ω be a concave modulus. In [51], it is proved that for a
smooth manifold X , the set Diffk,ω

c (X)0 is actually a group. We sketch a proof
of this fact for one-manifolds, and also include the case ω = bv.

The following lemma is useful for inductive arguments on the regularities.

Lemma A.1 Suppose ω is a concave modulus, or ω ∈ {0, bv}. Let k ∈ N, and
let

F, G : M → R

be maps such that F is Ck−1,ω and such that G is Ck. Then the following hold.

(1) The multiplication F · G is Ck−1,ω.
(2) The composition F ◦ G is Ck−1,ω.

Proof This lemma is proved in [51] when ω = 0 or when ω is a concave
modulus. So we assume ω = bv. We let {xi } be a partition of M .

(1) First consider the case k = 1. We note

|F · G(xi ) − F · G(xi−1)| ≤ |F(xi ) − F(xi−1)| · ‖G‖∞
+‖F‖∞ · ‖G‖1,∞|xi − xi−1|.

Hence, if F · G is Cbv. If k > 1, then we use an induction to see that

(F · G)′ = F ′ · G + F · G ′

is Ck−2,bv. This proves part (1).
(2) The map F ◦ G is well-defined for all x ∈ M . Let us first assume k = 1,

so that F ∈ Cbv. Since G is bijective, we see that

∑

i

|F ◦ G(xi ) − F ◦ G(xi−1)| ≤ Var(F, M) < ∞.

The induction step follows from

(F ◦ G)′ = (F ′ ◦ G) · G ′.
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Proposition A.2 Let ω be a concave modulus, or let ω = {0, bv}. Then for
each k ∈ N, the following is a group where the binary operation is the group
composition:

Diffk,ω
+ (M).

Proof Let f, g ∈ Diffk,ω
+ (M). It is well-known that Diffk+(M) is a group. So,

we have f −1, f ◦ g ∈ Diffk+(M). It suffices to show that both are Ck,ω.
Note that ( f ◦g)′ = ( f ′ ◦g) ·g′. Since f ′ isCk−1,ω and g isCk , LemmaA.1

implies that f ′◦g isCk−1,ω. By the same lemma,we see that ( f ◦g)′ isCk−1,ω.
This proves f ◦ g is Ck,ω.

We can write

( f −1)′ = r ◦ f ′ ◦ f −1

where r : (0, ∞) → (0, ∞) is the C∞ diffeomorphism r(x) = 1/x . Note that
f ′ stays away from 0. As f ′ is Ck−1,ω and f −1 is Ck , we again see that f −1

is Ck,ω.

A.2. Groups of compactly supported diffeomorphisms

We now establish a topological conjugacy between certain diffeomorphism
groups.

Theorem A.3 Let ω be a concave modulus. Then for each k ∈ N, the group
Diffk,ω

+ (I ) is topologically conjugate to a subgroup of Diffk,ω
c (R).

Muller [54] and Tsuboi [68] established the above result for the caseω = 0.
Our proof follows the same line, but an extra care is needed for a general
concave modulus ω as described in the lemmas below.

When we say a function f is defined for x ≥ 0, we implicitly assume to
have a small number A > 0 so that f is defined as

f : [0, A] → R.

We let k and ω be as in Theorem A.3.

Lemma A.4 Suppose f is a Ck,ω map defined for x ≥ 0 such that

f (0) = f ′(0) = · · · = f (k)(0) = 0.

Then the following hold.
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(1) We have that

f (x) =
∫ x

t1=0

∫ t1

t2=0
· · ·

∫ tk−1

tk=0
f (k)(tk) dtk · · · dt1.

(2) The map f/xk extends to a Cω map on x ≥ 0.
(3) The map f/x extends to a Ck−1,ω map on x ≥ 0.

We thank Nam-Gyu Kang for suggesting a key idea for the proof below.

Proof of Lemma A.4 Part (1) is simply an application of the Fundamental The-
orem of Calculus. Let us consider part (2). We note for all small h > 0 that

∣
∣
∣
∣

f (h)

hk

∣
∣
∣
∣ ≤ 1

hk

∫ h

t1=0

∫ t1

t2=0
· · ·

∫ tk−1

tk=0
| f (k)(tk) − f (k)(0)| ≤ [ f (k)]ω · ω(h).

So, f/xk is Cω at x = 0. For all small 0 < x < x + h, we see that

∣
∣
∣
∣

f (x + h)

(x + h)k
− f (x)

xk

∣
∣
∣
∣

≤
∣
∣
∣
∣

1

(x + h)k

∫ x+h

t1=x

∫ t1

t2=0
· · ·

∫ tk−1

tk=0
f (k)(tk)

∣
∣
∣
∣

+
(

1 − xk

(x + h)k

)

· 1

xk

∣
∣
∣
∣

∫ x

t1=0

∫ t1

t2=0
· · ·

∫ tk−1

tk=0
f (k)(tk)

∣
∣
∣
∣

≤
(

h(x + h)k−1 · ω(x + h)

(x + h)k
+

(

1 − xk

(x + h)k

)

· ω(x)

)

[ f (k)]ω.

Using the inequalities 1 − 1/(1 + t)k ≤ kt and ω(s)/s ≤ ω(t)/t for all
0 < t < s, we conclude that

∣
∣
∣
∣

f (x + h)

(x + h)k
− f (x)

xk

∣
∣
∣
∣ ≤ (k + 1)[ f (k)]ω · ω(h).

This proves part (2).
For (3), we have some ai ∈ Z such that

( f/x)(k−1) =
k∑

i=1

ai f (k−i)/xi .

Since f (k−i) is Ci,ω, we see from part (2) that ( f/x)(k−1) is Cω.
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The rest of the proof for Theorem A.3 closely follows the argument in [68],
as we summarize below. Let us fix a map that is defined near x = 0:

φ(x) = e−1/x .

Lemma A.5 For a Ck,ω map g defined for x ≥ 0 satisfying g(0) = 0 and
g′(0) > 0, the following hold.

(1) The map h = g/x is a Ck−1,ω map defined for x ≥ 0.
(2) The map ψ ◦ g ◦ φ is a Ck,ω map defined for x ≥ 0. Moreover, we have

ψ ◦ g ◦ φ(0) = 0, (ψ ◦ g ◦ φ)′(0) = 1.

(3) The map �(g) := ψ2 ◦ g ◦ φ2 is a Ck,ω map defined for x ≥ 0, and
moreover, �(g)(i)(0) = Id(i)(0) for all 0 ≤ i ≤ k.

Proof (1) If Tk g(x) denotes the k-th degree Taylor polynomial for g, then
f = g − Tk g satisfies the condition of Lemma A.4. The conclusion follows
since g/x − f/x = Tk g/x is a polynomial.

(2) Put G = ψ ◦ g ◦ φ, so that

G(x) = −1

log(g ◦ φ)
= −1

−1/x + log((g ◦ φ)/φ)
= x

1 − x log h ◦ φ
.

By part (1), the map h is Ck−1,ω for x ≥ 0. As x approaches to 0, the denom-
inator of the above expression for G stays away from 0 because

lim
x→0

1 − x log h ◦ φ = 1 − 0 · log g′(0) = 1.

It follows that G is Ck−1,ω for x ≥ 0. Moreover, G is Ck,ω for x > 0.
We compute the following:

G ′(0) = lim
x→0

1/(1 − x log h ◦ φ(x)) = 1,

G ′(x) = 1 + φ · (h′ ◦ φ)/(h ◦ φ)

(1 − x log h ◦ φ)2
.

From xh′ = g′−h, we see thatφ ·(h′◦φ) isCk−1,ω and that limx→0 G ′(x) = 1.
We conclude that G ′ exists for x ≥ 0 (even when k = 1), and is Ck−1,ω. It
follows that G is Ck,ω.

(3) We only need to compute �(g)(i)(0). By setting y = φ2(x), we have
that

�(g)(x) − x

φ
= ψ2g(y) − ψ2(y)

ψ(y)
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= (− log y)

(
1

log(− log g)
− 1

log(− log y)

)

.

It is a simple exercise on L’Hospital’s Rule to see that

lim
x→0

�(g)(x) − x

φ
= lim

y→0

− log y

(log(− log y))2

(
log y

log g
− 1

)

= 0.

For all 0 ≤ i ≤ k, we have that

lim
x→0

�(g)(x) − x

xi
lim
x→0

�(g)(x) − x

φ(x)
· φ(x)

xi
= 0.

By L’Hospital’s Rule again, we have (�(g)− Id)(i) = 0 for all 0 ≤ i ≤ k.

Proof of Theorem A.3 Consider a C∞-homeomorphism φ : I → I such that
φ(x) = e−1/x near x = 0, and such that φ(x) = 1 − e−1/(1−x) near x = 1.
We put ψ = φ−1. For each g ∈ Diffk,ω

+ (I ), we define �(g) = ψ2 ◦ g ◦ φ2.
Then Lemma A.5 (3) (after using the symmetry at x = 0 and x = 1) implies
that �(g) ∈ Diffk,ω

c (R).

A.3. Simplicity

Let us use the following terminology from [41]. Let X be a topological space,
and let H ≤ Homeo(X). We say H acts CO-transitively (or, compact-open-
transitively) if for each proper compact subset A ⊆ X and for each nonempty
open subset B ⊆ X , there is u ∈ H such that u(A) ⊆ B. Lemma A.6 is a
variation of a result commonly known as Higman’s Theorem.

Lemma A.6 ([41, Lemma 2.5])Let X be a non-compact Hausdorff space, and
let Homeo+(X) denote the group of compactly supported homeomorphisms
of X. If H ≤ Homeo+(X) is CO-transitive, then [H, H ] is simple.

Let X be a topological space.We say H ≤ Homeo(X) has the fragmentation
property for an open cover U of X , if each element h ∈ H can be written as

h = h1 · · · h�

such that the support of hi is contained in some element of U . The following
lemma is very useful when proving simplicity of homeomorphism groups.
This lemma is originally due to Epstein [25]; let us state a generalization by
Ling [45].

Lemma A.7 ([25,45]) Let X be a paracompact Hausdorff space with a basis
B, and let H ≤ Homeo(X). Assume the following.
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(i) H has the fragmentation property for each subcover U of B;
(ii) for each U, V ∈ B there exists some h ∈ H such that h(U ) ⊆ V .

Then [H, H ] is simple.

The following lemma is known for ω = 0 [60], detailed proofs of which
can be found in [4,49]. The proof for a concave modulus ω is the same almost
in verbatim.

Lemma A.8 Let k ∈ N, and let ω be a concave modulus. Then for a smooth
manifold X without boundary, the group Diffk,ω

c (X)0 has the fragmentation
property for an arbitrary open cover of X.

From now on, we let X ∈ {S1, R}. We let Cω
c (X, R) denote the set of

real-valued compactly supported ω-continuous maps X → R. For each f ∈
Cc(X, R) = C0

c (X, R), we define the optimal modulus function of f as

μ f (t) := sup{| f x − f y| : x, y ∈ X and |x − y| ≤ t}.
It is trivial that for all x, y ∈ X we have | f x − f y| ≤ μ f (|x − y|).
Lemma A.9 For X ∈ {S1, R} and for f ∈ Cc(X, R), the following hold.

(1) The optimal modulus function μ f : [0, ∞) → [0, ∞) is continuous, mono-
tone increasing and subadditive.

(2) For all s, t > 0, we have that μ f (t) ≤ (1 + t/s)μ f (s).
(3) There exists a concave modulus μ such that f ∈ Cμ

c (X, R) and such that

Cμ
c (X, R) =

⋂
{Cω

c (X, R) | ω is a concave modulus and f ∈ Cω
c (X, R)}.

Proof Part (1) is a consequence of the convexity of X and the uniform con-
tinuity of f . Part (2) is obvious when t ≤ s. If t > s, then part (2) follows
from

μ f (t) ≤ μ f (t − s�t/s�) + �t/s�μ f (s) ≤ (1 + t/s)μ f (s).

For part (3), wewill use the idea described in [5, p.194]. LetF be the family
of continuous, monotone increasing, concave functions h : [0, ∞) → [0, ∞)

such that μ f (t) ≤ h(t) for all t ≥ 0. For instance, part (2) implies that the
line

hs(t) = (1 + t/s)μ f (s)

belongs to F for each s > 0. Define

μ1(t) := inf
h∈F h(t) ≤ ht (t) = 2μ f (t).
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Then μ1 is continuous, monotone increasing and concave. Put μ := μ1 + Id,
so that

μ f ≤ μ1 ≤ μ ≤ 2μ f + Id .

We see that μ is a concave modulus such that f ∈ Cμ
c (X, R).

Put T := diam supp f ≥ 0. Suppose f ∈ Cω
c (X, R) for some concave

modulus ω. It only remains to show that Cμ
c (X, R) ⊆ Cω

c (X, R). For each
t > 0, we have

μ f (t) = sup
|x−y|≤t

| f x − f y| ≤ [ f ]ω · ω(t).

For all 0 < t ≤ T , we see that

μ(t) ≤ 2μ f (t) + t ≤ (2[ f ]ω + T/ω(T )) · ω(t).

There exists a constant K such that for each g ∈ Cμ
c (X, R), we have

[g]ω ≤ sup
|x−y|≤T

|gx − gy|
ω(|x − y|) + sup

|x−y|≥T

|gx − gy|
ω(|x − y|) ≤ K [g]μ + 2‖g‖∞

ω(T )
< ∞.

It follows that g ∈ Cω
c (X, R) and the lemma is proved.

We are now ready to prove the simplicity of certain diffeomorphism groups.

Theorem A.10 (Theorem 3.16) For each X ∈ {S1, R}, the following hold.

(1) If α ≥ 1 is a real number, then every proper quotient of Diffαc (X)0 is
abelian. If, furthermore, α �= 2, then Diffαc (X)0 is simple.

(2) If α > 1 is a real number, then every proper quotient of
⋂

β<α Diff
β
c (X)0

is abelian. If, furthermore, α > 3, then
⋂

β<α Diff
β
c (X)0 is simple.

Proof We prove the theorem through a series of claims.

Claim 1 The following groups have simple commutator groups:

• Diffαc (R) for α ≥ 1;

• ⋂
β<α Diff

β
c (R) for α > 1.

Both of the above groups contain Diff∞c (R). Since Diff∞c (R) acts CO-
transitively on R, the claim follows from Lemma A.7.

Claim 2 For each α ≥ 1, the commutator group of Diffα+(S1) is simple.

By Lemma A.8, the group Diffα+(S1) satisfies the condition (i) of
Lemma A.7. The condition (ii) follows from Diff∞+ (S1) ≤ Diffα+(S1).
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Claim 3 If α ≥ 1, then every proper quotient of Diffαc (X)0 is abelian.

By an easy application of Kopell’s Lemma and Denjoy’s Theorem [23],
we see that Diffαc (X)0 has trivial center. Combined with Claims 1 and 2, this
implies the assertion.

Recall from Sect. 6.4 that we defined the notation 〈z〉 for z ∈ C.

Claim 4 If α > 1, then there exists a collection of concave moduli F (α) such
that

⋂

β<α

Diffβc (X)0 =
⋃

μ∈F (α)

Diff〈α〉,μ
c (X)0.

Put k = �α�. Assume first α �= k, so that k = 〈α〉. Suppose we have

f ∈
⋂

β<α

Diffβc (X)0 ≤ Diffk
c(X)0.

Let μ be a concave modulus as in Lemma A.9 for the map f (k) ∈ Cc(X, R).
Whenever k < β < α, we have f (k) ∈ Cβ−k(X, R). The same lemma implies
that

Cμ
c (X, R) ⊆ Cβ−k

c (X, R).

So, we have f ∈ Diffk,μ
c (X)0 ⊆ ⋂

β<α Diff
β
c (X)0 and completes the proof

when α �= k. The proof of the case that α = k = 〈α〉 + 1 is almost identical.

Claim 5 For eachα > 1, every proper quotient of
⋂

β<α Diff
β
c (X)0 is abelian.

The case X = R follows from Claim 1, so we may only consider the group

G =
⋂

β<α

Diffβ+(S1).

By Lemma A.8 and Claim 4, the group G has the fragmentation property
for an arbitrary cover. Since Diff∞+ (S1) ≤ G, we can deduce Claim 5 from
Lemma A.7.

Coming back to the proof of the theorem, we only need to prove the latter
parts of (1) and (2). The latter part of (1) is a special case of Corollary 3.15.
For the latter part of (2), assume α > 3. We see from Mather’s Theorem and
from Claim 4 that the group

⋂
β<α Diff

β
c (X)0 is a union of perfect groups.

The conclusion follows.
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