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Abstract Let M be a circle or a compact interval, and lete = k+ t > 1 be
a real number such that k = |« ]. We write Diff (M) for the group of orien-
tation preserving C* diffeomorphisms of M whose kth derivatives are Holder
continuous with exponent t. We prove that there exists a continuum of isomor-
phism types of finitely generated subgroups G < Diff% (M) with the property

that G admits no injective homomorphisms into _J Boa Diffﬁ(M ). We also
show the dual result: there exists a continuum of isomorphism types of finitely
generated subgroups G of () B<a Diff'i (M) with the property that G admits
no injective homomorphisms into Diff (M). The groups G are constructed
so that their commutator groups are simple. We give some applications to
smoothability of codimension one foliations and to homomorphisms between
certain continuous groups of diffeomorphisms. For example, we show that
if « > 1 is a real number not equal to 2, then there is no nontrivial homo-

morphism Diff? (S - U B=a Diff’i(S 1. Finally, we obtain an independent
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result that the class of finitely generated subgroups of Dif‘fﬂr (M) is not closed
under taking finite free products.

Mathematics Subject Classification Primary: 57M60; Secondary: 20F36 -
37C05 - 37C85 - 57505

Contents

Introduction . . . . . . ..
Probabilistic dynamical behavior . . . . . . ... . o
Background from one-dimensional dynamics . . . . . ... ... L.
The Slow Progress Lemma . . . . . . . . .. ...

A dynamically fast subgroup of Diffﬁ_’“ (D) o
Proof of the Main Theorem . . . . . .. ... .. ... ... ...
7 Further qUestions . . . . . . . . . . Lo e e e e e e e e e e e e
Appendix A. Diffeomorphism groups of intermediate regularities . . . . . . . . . ... ...
References . . . . . . . . . e e e

(o R O S

1 Introduction

Let M be the circle S' = R/Z or a compact interval I. A function f: M — R
is Holder continuous with exponent t if there is a constant C such that

1lf(x) = fOI <Clx —y|*

for all x, y € M. In the case where M = S!, we implicitly define |x — y| to
be the usual angular distance between x and y.

For an integer k > 1 and for a smooth manifold M, we write Diff’j:” (M)
for the group of orientation preserving C* diffeomorphisms of M whose kth
derivatives are Holder continuous with exponent t € [0, 1). For compactness
of notation, we will write Diff% (M) for Diff’_‘:rr (M), where k = |« and
T = o — k. By convention, we will write Diffﬂ_ (M) = Homeo (M).

The purpose of this paper is to study the algebraic structure of finitely
generated groups in Diff (M), as « varies. We note that the isomorphism types
of finitely generated subgroups in Diff (/) coincide with those in Diff¢ (R),
the group of compactly supported C* diffeomorphisms on R; see Theorem A.3.

Let us denote by ¢“(M) the class of countable subgroups of Diff< (M),
considered up to isomorphism. It is clear from the definition that if « < 8
then 98 (M) C 9%(M). In general, it is difficult to determine whether a given
element G € ¥“(M) also belongs to GB(M). A motivating question is the
following:

Question 1.1 Let k > 0 be an integer.
(1) Does GX(M)\G*T1 (M) contain a finitely generated group?
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Diffeomorphism groups of critical regularity

(2) Does GK(M)\G*T1 (M) contain a countable simple group?

The answer to the above question was previously known only for k£ < 1
in part (1), and only for k = 0 in part (2). A first obstruction for the C!-
regularity comes from the Thurston Stability [66], which asserts that every
finitely generated subgroup of Diff ﬂr (1) is locally indicable. An affirmative
answer to part (1) of Question 1.1 follows for k = 0 and M = [; that is,
@%(I\%' (1) contains a finitely generated group. Using Thurston Stability,
Calegari proved that 9°(S1)\%!(S!) contains a finitely generated group; see
[15] for the proof and also for a general strategy of “forcing” dynamics from
group presentations. Navas [57] produced an example of a locally indicable
group in G0(M))\& (M); see also [16].

A different C'-obstruction can be found in the result of Ghys [29] and
of Burger—-Monod [12]. That is, if G is a lattice in a higher rank simple Lie
group then G ¢ ¢'(S'). This result was built on work of Witte [70]. More
generally, Navas [55] showed that every countably infinite group G with prop-
erty (T) satisfies G ¢ 4'(I) and G ¢ 4'>T€(S!) for all € > 0; it turns
out that G ¢ ¥ L5csh by a result of Bader—Furman—Gelander—Monod [1].
The exact optimal bound for the regularity of property (T) groups is currently
unknown.

Plante and Thurston [62] proved that if N is a nonabelian nilpotent group,
then N ¢ ¢*(M). By Farb—Franks [28] and Jorquera [36], every finitely gen-
erated residually torsion-free nilpotent group belongs to &' (M). For instance,
the integral Heisenberg group belongs to 4 (M NY 2(M). So, part (1) of Ques-
tion 1.1 also has an affirmative answer for the case k = 1.

Another C?-obstruction comes from the classification of right-angled Artin
groups in 42 (M) [2,40]. In particular, Baik and the authors proved that except
for finitely many sporadic surfaces, no finite index subgroups of mapping class
groups of surfaces belong to %2 (M) for all compact one-manifolds M [2]; see
also [27,61]. Mapping class groups of once-punctured hyperbolic surfaces
belong to 4°(S!); see [9,33,59].

Simplicity of subgroups often plays a crucial role in the study of group
actions [13,25,38,65]. Examples of countable simple groups in ¢ 01 NY (D)
turn out to be abundant in isomorphism types. For us, a continuum means
a set that has the cardinality of R. In joint work of the authors with Lodha
[41] and in joint work of the second author with Lodha [43], the existence of a
continuum of isomorphism types of finitely generated groups and of countable
simple groups in ¥°(1)\% (1) is established. These results relied on work of
Bonatti-Lodha—Triestino [7]. In particular, part (2) of Question 1.1 has an
affirmative answer fork = 0and M = I.
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1.1 Summary of results

Recall that M € {I, S'}. In this article, we give the first construction of finitely
generated groups and simple groups in 9% (M)\&P (M).

Main Theorem For all @ € [1, 00), each of the sets

g M\ | 9 ), () 9P (m)\g© (M)

B>a B<a

contains a continuum of finitely generated groups, and also contains a contin-
uum of countable simple groups.

The Main Theorem gives an affirmative answer to Question 1.1.

Remark 1.2 One has to be slightly careful interpreting the Main Theorem
when o = 1. This is because the set Diffi(M) is not a group for 8 < 1. Using
[24], we will prove a stronger fact that GLiP M)\ (M) contains the desired
continua. Here, ¢ Fip (M) denotes the set of isomorphism types of countable
subgroups of Diff]jrlp(M ), the group of bi-Lipschitz homeomorphisms.

Remark 1.3 Itisinteresting to note thatin the case of M = I, the simple groups
guaranteed by the Main Theorem for @ > 1 are locally indicable, as follows
easily from Thurston Stability. Thus, we obtain a continuum of countable,
simple, locally indicable groups. The commutator subgroup of Thompson’s
group F is one such example.

If G < Difff (M) and if B > «, an injective homomorphism G —
Diffﬁ (M) is called an algebraic smoothing of G. The Main Theorem implies
that for each o > 1, there exists a finitely generated subgroup G < Diff% (M)
that admits no algebraic smoothings beyond «. Moreover, the finitely gener-
ated groups in the continua of the Main Theorem can always be chosen to
be non-finitely-presented as there are only countably many finitely presented
groups up to isomorphism.

In Sect. 2.1 we give the definition of concave moduli (of continuity), a
strict partial order < between them, and the symbol >; 0. For instance,
w7 (x) = xT is a concave modulus satisfying w; > 0 for each t € (0, 1]
and k € N. For a concave modulus w, we let Diff’iw(M ) denote the group of
C*-diffeomorphisms on M whose kth derivatives are w-continuous. We also
write Diff%’(M) := DiffX (M). We denote by Diff":"" (I) the group of diffeo-
morphisms f € Diff’i(l ) such that f has bounded total variation. Note that

Diff ]_i’bv (I) contains Diff l_i’Lip (1), the group of C k—diffeomorphisms whose kth
derivatives are Lipschitz.
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Diffeomorphism groups of critical regularity

For a concave modulus @ or for @ € {0, bv}, the set of all countable
subgroups of Diff]jr’w(M ) is denoted as 45 (M). We will deduce the Main
Theorem from a stronger, unified result as can be found below.

Theorem 1.4 For each k € N, and for each concave modulus © > w1, there

exists a finitely generated group Q = Q(k, u) < Diff]j_’“ (I) such that the
following hold.

(1) [Q, Q] is simple and every proper quotient of Q is abelian;
(1) if w = by, or if w is a concave modulus satisfying p > w >y 0, then

[0, Q1 ¢ - (1) ughe(sh.

Theorem 1.4 will imply the Main Theorem after making suitable choices of
u above. See Sect. 6.4 for details.

We let F, denotes a rank-n free group. Let BS(1, 2) denote the solvable
Baumslag—Solitar group of type (1, 2); see Sect. 3. In the case when M = I,
our construction for Theorem 1.4 builds on a certain quotient of the group

G' = (Z x BS(1, 2)) * F.

Let us describe our construction more precisely.

Theorem 1.5 Let k € N, and let u be a concave modulus such that > ;.
Then there exists a representation

dr.u: GT — Diff (1)

such that the following hold.

(1) If w = bv, or if w is a concave modulus satisfying u > w >y 0, then for
all representations

¥ GT — Diff(I)
we have that
ker ¥\ ker ¢y, # 9.

(i1) Every diffeomorphism f € ¢k,M(GT) is C®onI\dlI.

We deduce that the group
G (G
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admits no injective homomorphisms into Diff]iw(l ). We will then bootstrap
this construction to produce simple groups in Sect. 6.
We define the critical regularity on M of an arbitrary group G as

CritReg,,(G) := sup{a | G € 9*(M)}.

Here, we adopt the convention sup @ = —oo. The critical regularity spectrum
of M that is defined as

¢y = {CritRegy;(G) | G is a finitely generated group }

Another consequence of the Main Theorem is the following.

Corollary 1.6 The critical regularity spectrum of M, which is defined as
Cm = {CritRegM (G) | G is a finitely generated group } ,

coincides with {—oo} U [1, o0].

Theorem 1.5 gives the first examples of groups whose critical regularities are
determined (and realizable) and belong to (1, oo). To the authors’ knowledge,
the critical regularities of the following three groups are previously known and
finite. First, Navas proved that Grigorchuk—Machi group H of intermediate
growth has critical regularity 1, and that the critical regularity of H can be
realized [56]. Second, Castro—Jorquera—Navas proved ([22], combined with
[62]) that the integral Heisenberg group has critical regularity 2 and this critical
regularity cannot be attained. Thirdly, Jorquera, Navas and Rivas [37] proved
that the nilpotent group N4 of 4 x 4 integral lower triangular matrices with
ones on the diagonal satisfies

CritReg; (N4) = 3/2.

It is not known whether or not the critical regularity 3/2 of Ny is realizable.

The case G € ¥Y (M )\%O(M ) requires a suitable interpretation the criti-
cal regularity. As we have mentioned in Remark 1.2, it is proved by Deroin,
Kleptsyn and Navas that every countable subgroup G of Homeo (M) is topo-
logically conjugate to a group of bi-Lipschitz homeomorphisms [24]. Thus,
it is reasonable to say that [0, 1) is missing from from the critical regularity
spectrum.

The authors proved in [40] that for each integer 2 < k < oo, the class
of finitely generated group in ¥*(M) is not closed under taking finite free
products. From [8] and from the consideration of BS(1, 2) actions in the current
paper, we deduce the following augmentation for k = 1. We are grateful to
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A. Navas for pointing us to the reference [8] and telling us the proof of the
following corollary for M = I. See Sect. 3.4 for details.

Corollary 1.7 The group (Z xBS(1, 2))*Z does not embed into Diff lr (M). In
particular, the class of finitely generated subgroups of Diff lr (M) is not closed
under taking finite free products.

Though we concentrate primarily on countable groups, our results have
applications to continuous groups. For a smooth manifold X and forano > 1,
we let Diff% (X)o denote the group of C* diffeomorphisms of X isotopic to
the identity through a compactly supported C¢ isotopy. If 1 < o < @, then

there is a natural embedding Difff (X)o — Diff%(X)o defined simply by
the inclusion. The main result (and its proof) of [47] by Mann implies that
if X € {§ L R}, and if 2 < o < B are real numbers, then there exists no

injective homomorphisms DiffZ (X)o — Diffﬁj (X)o. We generalize this to all
real numbers 1 < o < f.

Corollary 1.8 Letr X = {S!, R}). Then arbitrary homomorphisms of the fol-
lowing types have abelian images:

(1) Diff¢(X)o — Upsq Difff (X)o, where o > 1;

(2) Diff%(X)o — Diff*** (X)o, where o > 1;

(3) Mg Diff? (X)o — Diff%(X)o, where o > 1.

In addition, if @ # 2 in parts (1) and (2), and if o« > 3 in part (3), then all the

above homomorphisms have trivial images.

The Main Theorem has the following implication on the existence of
unsmoothable foliations on 3-manifolds. This extends a previous result of
Tsuboi [69] and of Cantwell-Conlon [21], that is originally proved for integer
regularities.

Corollary 1.9 Let o > 1 be a real number. Then for every closed orientable
3-manifold Y satisfying Hy(Y,Z) # 0, there exists a codimension-one C*
foliation (Y, F) which is not homeomorphic to a Uﬁ>a C# foliation.

Here, ahomeomorphism of foliations is a homeomorphism of the underlying
foliated manifolds which respects the foliated structures.

1.2 Notes and references
1.2.1 Automatic continuity

K. Mann proved that if X is a compact manifold then the group Homeog(X)
of homeomorphisms isotopic to the identity has automatic continuity, so that
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every homomorphism from Homeog(X) into a separable group is continuous
[48]. She uses this fact to prove that Homeog(X) has critical regularity 0
and hence has no algebraic smoothings. For discussions of a similar ilk, the
reader may consult [47] and [35]. The Main Theorem implies that the critical
regularity of Diff% (M) is «, for M € {I, S'} and fora > 1.

1.2.2 Superrigidity

Recall that Margulis Superrigidity says that under suitable hypotheses, a rep-
resentation of a lattice I" in a higher rank Lie group G is actually given by the
restriction of a representation of G to I' (see [50]). For the continuous groups
Diff% (M) which we consider here, there is no particularly clear analogue of
a lattice. Nevertheless, some of the results proved in this paper are reminis-
cent of similar themes. Particularly, Corollary 1.8 is established by showing
that all of the maps in question contain a countable simple group (perhaps a
suitable analogue of a lattice) in their kernel, thus precluding the existence of
a nontrivial homomorphism between the corresponding continuous groups.

1.2.3 Topological versus algebraic smoothability

The smoothability issues that we consider in this paper center around algebraic
smoothability of group actions. There is a stronger notion of smoothability
called topological smoothability. A topological smoothing of a representation

¢: G — Diff% (M)

is a topological conjugacy of ¢ into Diffﬁ (M) for some B8 > «; that is, the
conjugation ~¢h ! of ¢ by some homeomorphism 4 on M such that we have
h¢(GYh™! < Diffﬁ(M ). A topological smoothing of a subgroup is obviously
an algebraic smoothing, but not conversely; compare [22] and [37]. By a result
of Tsuboi [69], there exists a two-generator solvable group G and a faithful
action ¢y of G on the interval such that g (G) < Diffﬁ(l ) but such that ¢ (G)
is not topologically conjugate into Diff’fl(l ). Since ¢y is injective, these
actions are algebraically smoothable. See Sect. 6.5 regarding implications for
foliations.

1.2.4 Disconnected manifolds
It is natural to wonder whether or not the results of this paper generalize to

compact one-manifolds which are not necessarily connected; these manifolds
are disjoint unions of finitely many intervals and circles (cf. [2,40]). It is not
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difficult to see that the results generalize. Indeed, if G is a group of home-
omorphisms of a compact disconnected one-manifold M, then a finite index
subgroup of G stabilizes all the components of M. We build a finitely gen-
erated group G whose commutator subgroup [G, G] is simple, and such that
[G, G] has the critical regularity exactly o with respect to faithful actions on
the interval or the circle. Some finite index subgroup of G stabilizes each com-
ponent of M, and since [G, G] is infinite and simple, [G, G] stabilizes each
component of M. It follows that G has critical regularity o with respect to
faithful actions on M.

1.2.5 Kernel structures

In Theorem 1.5, let us fix € € (0, 1) such that w < . It will be impossible
to find a finite set § € G\ ker ¢ such that for all € Hom(G", Diff%*¢ (1))
we have S Nkery # @. Indeed, Lemma 3.5 implies that for all finite set
S € GT\{1} there exists a C* action of GT on R with a compact support such
that S does not intersect the kernel of this action. So, one must consider an
infinite set of candidates that could be a kernel element of such a .

1.3 Outline of the proof of Theorem 1.5

Given a concave modulus p, we build a certain representation ¢ of the group
G into Diff]i“(l). For € € (0, 1] satisfying @ := w < u, we also show that
the group ¢(G") admits no algebraic smoothing into Diff]iw(l ). We remark
that Dift**! (1) < Dift** ().

To study maps into Diff’f;w(l ), we use a measure of complexity of a dif-
feomorphism f, which is roughly the number of components of supports of
generators of G' needed to cover the support of f. We prove a key techni-
cal result governing this complexity; this result is called the Slow Progress
Lemma and applies to an action of an arbitrary finitely generated group on /.
To have a starting diffeomorphism with finite complexity, we build an element
1 # u € G' such thatif y: GT — DifflL (1) is an arbitrary representation
then the support of ¥ (u) is compactly contained in the support of ¥ (G¥).

Next, we build an action ¢ of G' so that certain judiciously chosen conju-

gates wjuw; U of u, which depend strongly on the regularity (k, ), resultin a
sequence of diffeomorphisms ¢ (w J-uwi_l) whose complexity grows linearly

in j. We show that under an arbitrary representation ¥ : G' — Diffi"”(l ),

the complexity of ¥ (w juwj_l) grows more slowly than that of ¢ (w juwj_l), a
statement which follows from the Slow Progress Lemma. Thus for each ¢, we
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find an element g € G which survives under ¢ but dies under . In particular,
¢(GT) cannot be realized as a subgroup of Diff’fg“’(l).

1.4 Outline of the paper

We strive to make this article as self-contained as possible. In Sect. 2, we build
up the analytic tools we need. Section 3 summarizes the dynamical background
used in the sequel, and proves Corollary 1.7. Section 4 establishes the Slow
Progress Lemma for a general finitely generated group action on intervals.
In Sect. 5, we fix a concave modulus u, and construct a representation ¢ of
the group G into Diff]i“ (1) with desirable dynamical properties and prove
Theorem 1.5. In Sect. 6, we complete the proof of the Main Theorem and
gather the various consequences of the main results.

2 Probabilistic dynamical behavior

Throughout this section and for the rest of the paper, we will let / denote a
nonempty compact subinterval of R. All homeomorphisms considered in this
paper are assumed to be orientation preserving. We continue to let M = [ or
M =S

We wish to develop the concepts of fast and expansive homeomorphisms
(Definition 2.8). These concepts establish a useful relationship between the
dynamical behavior of a diffeomorphism supported on / and its analytic behav-
ior, which is to say its regularity.

2.1 Moduli of continuity

We will use the following notion in order to guarantee the convergence of
certain sequences of diffeomorphisms.

Definition 2.1 (1) A concave modulus of continuity (or concave modulus, for
short) means a homeomorphism w: [0, c0) — [0, o) which is concave.

(2) Let w be a concave modulus. For U € Ror U C S, we define the w-norm
ofamap f: U — Ras

lfx) = fOI,

[f]w=Sup{ .x,yeUandx;éy}.
o(lx =y

We say f is w-continuous if f has a bounded w-norm.

The notion of w-continuity depends only on the germs of w for bounded
functions, as can be seen from the following easy observation.
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Lemma 2.2 Let w be a concave modulus, and let f: U — R be a bounded
function for some U C R. If there exist constants K, § > 0 such that

lf(x) = fDI = K-o(x =yl
forall 0 < |x — y| <6, then we have [ ], < o0.

Remark 2.3 Tt is often assumed in the literature that a concave modulus w (x)
is defined only locally at x = 0, namely on [0, §] for some § > 0 [51,52]. This
restriction does not alter the definition of w-continuity for compactly supported
functions. The reason goes as follows. Suppose w: [0, 5] — [0, w(5)] is a
strictly increasing concave homeomorphism. By an argument in the proof of
Lemma A.9, we can find a concave modulus w: [0, o0) — [0, oo) such that

w(s) < us) < (2+8/w(d)) w(s)

for all s € [0, §]. By Lemma 2.2, we conclude that the w-continuity coincides
with the p-continuity for a compactly supported function.

The complex plane C has a natural lexicographic order <c; that is, we write
z <c win CifRez < Rew, orif Rez = Rew and Imz < Im w. For two
complex numbers a, b € C, we let

(a,blc :={z€C|a <cz=cb}
In particular, we have that
O e = {sv=11s >0} Uf{r +sv~T|7 €0 1,5 e RIU{l +sv~1|s <0}
We similarly define (a, b)c, together with the other types of intervals.
Example 2.4 Letz =t + sa/—1eC satisfy z € (0, 1]c. We set
w;(x) ;== x" -exp (—slog(l/x)/loglog(1/x)).

Then w, is a small perturbation of w;(x) = x* = exp(—rtlog(l/x)). By
simple computations of the derivatives, one sees that w, is a concave modulus
defined for all small x > 0. See Fig. 1 for the graphs of w;.

We will use the notation in Example 2.4 for the rest of the paper. The Holder
continuity of exponent t € (0, 1) is equivalent to the w,-continuity.

Notation 2.5 (1) Let £k € N, and let w be a concave modulus. We write

w>; 0
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(@) y = Wy 05102 ﬁ(x) (b) ¥y = wg 50,05 ﬁ(x)

Fig. 1 The graphs of w; along with their extrapolations (not drawn in scale). Note we only
consider concave and strictly increasing portions [0, 8] of the above graphs

if the following holds for some § > 0:

lim sup tk_lw(tx)/a)(x) =0.
1=>4+00<x<§

(2) For two positive real sequences {a;} and {b;}, we will write {a;} 3 {b;}
if {a;/b;} is bounded.

In particular, the expression w > 0 is vacuously true for k > 1. Compare
this condition to Mather’s Theorem (Definition 3.12 and Theorem 3.13).
Lemma 2.6 The following hold for k € N and for a concave modulus w.

(1) The function x /w(x) is monotone increasing on [0, 00).
(2) Forall C > 0and x > 0, we have w(Cx) < (C 4+ Dw(x).
(3) Assume that we have positive sequences {a;} and {b;} such that

(@) (@) 3 5 wb)).

If o > O, then we have {aj} 3 {b;}.

Proof Proofs of (1) and (2) are obvious from monotonicity and concavity.
Assume (3) does not hold. Passing to a subsequence, we may assume {f; :=
bj/aj} converges to 0. Then we have a contradiction because

P lwb)) e
i_l ! —tf_l-—w(jaj)—>0asj—>oo.
a; w(aj) w(aj)
|
Suppose w and p are concave moduli. We define a strict partial order w < i
if
w(x)logh(1/x)
¥=+0 1(x) B
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for all K > 0. Here, we use the notation

logK t = (log nk.

Lemma 2.7 If z, w € (0, 1]c satisfy z <c w, then w; > wy,.

Proof Letz =0 4+ s+/—1 and w = t 4 t+/—1. Then we have

lim Tog (@) og" (1/x) /. (x))
= linio(a —1)log(1/x) — (t — s)log(1/x)/

loglog(1/x) + K loglog(1/x)
= lim (6 — 1)y —(t —s)y/logy + K log y.
y—00

From z <¢ w, we see that the above limit equals —oo. This is as desired. O

Let k € N and let @ be a concave modulus. A C*“-diffeomorphism on M
is defined as a diffeomorphism f of M such that f %) is w-continuous. We say
the pair (k, w) is a regularity of f.If w = w, for some t € (0, 1) then a C*-
diffeomorphism means a C¥+7-diffeomorphism. We have C*«1 = CkLip,

Let f: I =[p, q] — R be a map. Recall that the (fotal) variation of f is
given by

Var(f. )= sup Y [f@)— fGxiol,

p=XI < <Xn=q
where the supremum is taken over all possible finite partitions of /. A function
has bounded variation on [ if Var(f, I) is finite on [. If M = S, we use
the same definition for Var(f, I) with p = g. We say that a diffeomorphism
fi M — M is CEPif £ is C* and if in addition we have f®) has bounded
variation.

Let w be a concave modulus, or let @ = bv. We write for The set of all C*®
diffeomorphisms of M is denoted as

Diff: (M),

which turns out to be a group for k € N (Proposition A.2). We define 4% (M)
to be the set of the isomorphism classes of countable subgroups of Diff ]_i’w (M).
Note that

Diff**+7 (M) = Diffk " (M).
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We have that
Diffk*+! (M) < Diff* (M) = Dttt (M) < Dift:™ (M) < Diffk (m).
If we have two concave of moduli w < u, then we have

Diff’:* (M) < Diff'* (M).

In particular, if z, w € (0, 1]¢ satisfy z <¢ w, then we see from Lemma 2.7
that

Diff"” (M) > Diff"*" (M).

2.2 Fast and expansive homeomorphisms

From now on until Sect. 6, we will be mostly concerned with the case M = I.
For a measurable set / € R, we denote by |J| its Lebesgue measure. We write
J' for the derived set of J, which is to say the set of the accumulation points
of J.If X is a set, we let #X denote its cardinality.

Let f: X — X be amap on a space X. We use the standard notations

Fix f={xe X | f(x) =x},
supp f = {x € X | f(x) # x} = X\ Fix f.

The set supp f is also called the (open) support of f. We note the identity map
Id: R — R satisfies IdY) (x) = 8y for j > 1.

Definition 2.8 Let f: I — [ be a homeomorphism, and let / C [ be a
compact interval such that f(J) = J. Weletk € N.

(1) We say f is k-fixed on J if one of the following holds:
e J N (Fix f) # @, or
e #(J NFix f) > k.

(2) We say f is é-fast on J for some § > 0 if

If(y)—yl>
ves Il -

J.

(3) Wessay f is A-expansive on J for some A > 0 if

lf(y) =yl
sup >
yes d({y, f(0}, 9J)
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We note that f has one of the above three properties if and only if so does
f~!. Note also that f is A-expansive on J = [p, ¢] if and only if there exists
some y € J satisfying one of the following (possibly overlapping) alternatives:

ElD p<y<f@)<gand f(y)—y =y — p);
B2y p<y<f(y) <gand f(y)—y=2rlg—f(¥);
E3) p<fy)<y<gandy— f(y) =A(f(y)—p)
Ed p<fy)<y<gandy— f(y) =Ar(g—y).

For aset A C N, we define its natural density as

dy(A) = lim #(AN[L ND/N,

if the limit exists. A crucial analytic tool of this paper is the following proba-
bilisitic description of fast and expansive homeomorphisms.

Theorem 2.9 Let k € N, and let w >y 0 be a concave modulus. Suppose we
have

(i) a diffeomorphism f € Diff":“(I) U Diff":™ (1),
(i1) a sequence {N;} < N such that sup; Ni(1/D)F 1w (1/i) < oo;
(iii) a sequence of compact intervals {J;} in I such that f is k-fixed on each
Ji and such that sup; . #{j € N | J; N J; # T} < o0

Then for each § > 0 and A > 0, the following set has the natural density zero:
A5y = {i e N | fo is -fast or A-expansive on Ji} .

The proof of the theorem is given in Sect. 2.3.

2.3 Proof of Theorem 2.9

Let k and w be as in Theorem 2.9. We first note a classical result in number
theory.

Lemma 2.10 For sets A, B C N, the following hold.

(1) Ifdn(A) = 1 for some A C Nandifi € N, thendy (A —i) NN) = 1.
(2) If dy(A) = dn(B) = 1 for some A, B C N, then dy(AN B) = 1.
3) ([53,64]) IfZl-eA 1/i is convergent, then dn(A) = 0.

Fastness and expansiveness constants of “roots” of a diffeomorphism behave
like arithmetic and geometric means, respectively:

Lemma 2.11 Let f € Homeoy (J) for some compact interval J, and let
NeN
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(1) If N is 8-fast for some 8 > 0, then f is (§/N)-fast.
() If N is h-expansive for some A > 0, then f is ((h+1)V/N —1)-expansive.

Proof Let us write J = [p, q].
(1) For some y € J we have

N—-1

ST <IN =yl = Y1 o) = £yl

i=0

Hence there exists some y' = f'(y) such that | f(y) — y'| > %|J|.
(2) Assume the alternative (E1) holds as described after Definition 2.8. That

is,
p<y<fy<gq
for some y € J such that fV(y) —y > A(y — p). Note that

Moy-p S O -p

A+1< = : :
y=p o ST —=p

So, for some y’ = f(y), we have

N o N o~
(A+I)I/N§f()/)) P:f()j) y—i—l.
y=r y—=r
This is the desired inequality. The other alternatives are similar. O

Lemma 2.12 Fora C*-map f: I — R, the following hold.
(1) If x € (Fix f) and j =0, 1, ..., k, then we have:

f(j)(x) — Id(j)(x).

(2) If f is k-fixed on a compact interval J C I, then (f —Id)Y) has a root in
J foreach j =0,1, ..., k.

Proof Foreach j € {0, 1, ..., k}, we define
Sj: =8;(H=txel| fP) =1dYx0)}.
(1) We have S ; C §;. It now suffices for us to show the following:

So = (Fix f) € §; C--- € 5.
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Let us assume x € S’ for some 0 < j < k. Then there exists a sequence
{xi} € §;\{x} converging to x. There exists y; between x; and x such that

FO0) = fP)  1dYV(x;) — 1dY) (x)

= 80j = 1dU TV (y).
Xi—X Xi —X

S i =

Since y; € ;1 converges to x, we see that x € S’ . This proves S € 8’ ;.

(2) By part (1), it suffices to consider the case that #(J N Fix f) > k + 1.
We inductively observe that (f — Id)"/) has at least (k + 1 — j) roots for each
j=0,1,..., k by the Mean Value Theorem. O

Lemma 2.13 Let J C I be a compact interval, and let §, . > 0. Suppose
f € DiffX (1) is k-fixed on J.

(1) If f is §-fast on J, then

sup | f® —1d® | g1 > 8.
J

If, furthermore, f is C*® then we have
O] - requn = 6.
w

(2) If f is A-expansive on J, then
mM<WMﬂ“—M®LwMU_W“—m®0-UW*ZL
J J

If. furthermore, f is C*® then we have

max ([ /] [rHO] )10 = 2.

Proof Foreach j < k, Lemma 2.12 implies that there exists s; € J satisfying
f(j)(sj) = [dV) (s)).
Let yg € J be arbitrary. We see (cf. Lemma A.4) that

| f (Yo) — Yol
Yo 1 tk—1
f / / (f(k)(tk) - f(k)(Sk)) dty dtx—y---dn
t h=s] th=Sk—1

1=50

<sup|f® —1d® | |yp —sol - [JIFL.
J
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(1) Pick yg € J such that | f (yg) — yo| > 8|J|. We see

811 < 1 (o) = yol < sup|f® —1d® |- 7%,
J
If £ is C5®, then we further deduce that

8171 = sup | F 00 = F Pl - 11 < [£P] -1k,

teJ

(2) Write J = [p, q]. Assume the alternative (E1) holds for yg € J; that s,

A(yo — p) = f(yo) — yo.

By applying the same estimate for so = p, we see that

» < F o) —yo

<sup|f® —1d® . |7t
Yo—p J

If £ is C5“, we further have

r=supl FO@) = F Ol -1 < [FO] L eqa.

teJ

The other alternatives can be handled in the same manner; in particular, we
use the diffeomorphism g = f ~1 for (E2) and (E3). O

Proof of Theorem 2.9: C*® case. We assume f: 1 — I is a Ch-
diffeomorphism. Let §, A > 0, and define

L = max ([f(k)]w , [(f_l)(k)]w) ,
As = {i e N| fNis 5-fast on J;},

B, ={i e N| fl.Ni is A-expansive on J;}.

We let K > 0 be the larger value of the suprema in the conditions (ii) and (iii).
The following claim is obvious from (iii) and from a maximality argument.

Claim 1 The sequence of intervals {J;} can be partitioned into at most K
collections such that each collection consists of disjoint intervals. In particular,
we have

Y Il < KL
i
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It now suffices for us to establish the two claims below.
Claim 2 dy(As) = 0.
By Lemmas 2.11 and 2.13, we have that
(/D o(1/i) i€ Asy Z{1/Nivi € Asy S5 o (i i € As).

By Lemma 2.6 (3), there exists L’ > O such that 1/i < L'|J;| fori € As. So,

D i<y LKl < UK < oo.

i€As i€As
Lemma 2.10 now implies the claim.
Claim 3 dn(B)) = 0.

There is a constant Ky > 0O such that
log (1 + Ko(l/i)k_lw(l/i)) < Ko(1/)*'o(1/i) < log(x + 1)/N;.

Hence, Lemmas 2.11 and 2.13 imply that
(/D w1/ i € Bl {0+ DN —1:i e By 2 (101 w1 0i) 1 i € By).

As in Claim 2, we have ZBA 1/i < oo and dn(By) = 0. O

Proof of Theorem2.9: C* case. We now assume f is a CX-PV-diffeomorphism.
Let us closely follow the proof of C*® case, using the same notation. In par-
ticular, we define the same sets As and B;,.

For each i € N, we pick x;, y;, z; € J; such that

1O ) — Sl = sup | F® —uel, 1(FHR i) — Skl = sup [(F7HE — 81l
J,' Ji

and f <k)(z,-) = 1d® (zi) = S1k. Again, it suffices to prove the following two
claims.

Claim 4 dy(As) = 0.
By Lemmas 2.11 and 2.13, we have that

(/D) w(1/i): i € Asy 3{1/Nizi € As) 2 {sup | f© = 8ixl - 141571 i e As).

i
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By Claim 1, we see

SO = sl = 19w — fP @l < K Var(f 9, 1) < oo,

So, for some constant K, K; > 0 we deduce from Holder’s inequality that

Z =D <K0w(1/l)) < Ky Y1 EE p O ) — s

l€A5 i€As ieN

(k=1)/k 1/k
Ki (Z |Ji|) (Z FAREAE 51k|> < 0.

ieN ieN
We conclude from Lemma 2.10 that dy(As) = 0.
Claim 5 dy(B,) = 0.

We apply Lemma 2.13 and also the proof of Claim 3. For eachi € N we
put

M; = 1O @) = sl + 1(FTNH® i) — el
We have
(/D) o/ i e By 2 {0+ DYN —1:ie B} 2 {M; - |J;F i e By

By Proposition A.2, we have

Y IFH® G = il < K Var(fH®, 1) < 0.

We again apply Holder’s inequality. For some constant K, K1 > 0, we see

Z Z (Koa)(l/l)) < K Z|Ji|(k_l)/kMil/k

lEB;L i€B;), ieN
(k=1)/k 1/k
< K (Z |J,~|> (Z M,) < 0.
ieN ieN
We obtain dy(B;) = 0. O
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2.4 Diffeomorphisms of optimal regularity

Let us now describe a method of constructing a fast diffeomorphism of a
specified regularity on a given support.

Theorem 2.14 We let k € N, let § € (0, 1) and let i be a concave modulus
satisfying n > wi1. Suppose that {J;}ieN is a disjoint collection of compact
intervals such that J; C I\0lI, and that {N;}ien C N is a sequence such that

inf N; - [ (i) = 1
ieN

Then there exists f € Diffl_i’““ (R) satisfying the following:

(i) supp f = {x € R| f(x) > x} = Ui(J}\DJp);

(i) fNiis8-fast on J; for all i;

(iii) if an open neighborhood U of x € R intersects only finitely many J;’s,
then f is C* at x.

Since I is compact, it is necessary that ) _; |J;| < co. From the above theo-
rem we will deduce that some C** diffeomorphism is “faster” than all C%¢
diffeomorphisms for w < u, in a precise sense as described in Corollary 2.20.

Throughout Sect. 2.4, we will fix the following constants.

Setting 2.15 Let k, §, 1 be as in Theorem 2.14. Pick a constant ¢y € (0, 1)
and put

C=1/(01+8¢), D=1-0C)/2, 5= (1—¢€p)C.
A priori, we will choose €y so small that we have estimates
D <1/10, §p > max(§, 9/10).

We also pick £; € (0, eg] such that pu(£5) < €.

We will prove Theorem 2.14 through a series of lemmas. Let us first note
the following standard construction of a bump function ¥; see Fig. 2a.

Lemma 2.16 There exists an even, C> map V: R — R such that the follow-
ing hold:

e U()=0ift <—lort>1;
e W(0)=1;

o V() >0ift € (—1,0),

° fR\Ile.
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| | AN

(a)y = ¥(x) (b) y = g(x)
Fig. 2 Scaled bump functions

For U € M and for m € N U {0}, the C"-norm of f: U — R is defined
as

1 fllmoo = sup [ f e = sup{lf“(x)|: x € Uand0 < j <k}

0<j<m

Let us introduce a constant

5\ K+
Kop=C|— g .
0 <D) W1k, 00

The following technical lemma establishes the existence of a bump function
with a long flat interval and with a controlled C¥-norm. See Fig. 2b.

Lemma 2.17 For each £ € (0, £], there exists a C* map g: R — R such

that
=0 if t<0ort>{,
i is strictly increasing  if 0 <t < D¢,
1) g X )
= Ce () if Dt <t=(1-D),

is strictly decreasing if (1 — D)l <t < £.
(ii) |g'(t)| < 1/2forallt € R.
(1i1) N1gllk,00 < Kop(£).
(i) 180 00) — g™ I =< Koullx — yD) forall x, y € R,

Proof There exists a unique C* map g satisfying the following conditions:

0 ift <OQort >4,
0 — Ceiu(e) [Py ifr < ¢/2,
S =Y cekpio Dl <t <(1— D,

Clhue) (2P ify > g2,
Hence, we have (i).
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Ifr € (0, £/2), then

2 2t 2C 2C 1,
g @) =Ctiu) <D7) v <D7 - 1) < 3z’< L) < 36{5 = Ee(’; <1)2.

It follows that g’(r) € [0, 1/2]. Since we have the symmetry g(¢) = g(£ — 1),

we obtain (ii). We see [|glloc = Cp(€) < Cu(f) < Kou(£).Ift < £/2 and
i > 1, then

i k
g lloo < CL () 2 ) i, < (e 2 W < Kopu(0).
- DY - DYt T T

The condition (iii) follows.
To verify (iv), let us estimate |g(k) (x) — g(k) ()]. We have that g(k) =0on

(—00,0) U (DL, (1 = D)) U (¢, 00).
Using the symmetry |g® (x)| = |g® (¢ — x)|, we may only consider x €

[0, D£]. Note that W*—D(—1) = w&=D(1) = 0. Since W*~1 is Lipschitz,
we have that

whn (22
Dl

So, we have an inequality

k
1g® ()| = Cu(o) (%) ‘W” <2—x — 1)‘ < I(()%mmin(x, D¢ — x).

<V |oomin | —, —— | .
D¢ D¢

D¢

We now have the following three possibilities for y.

Case l.y € (—00,0]U[D¥L, (1 — D)£] U [£, 00).
Since we have min(x, D¢ — x) < £, we see

1™ (x) — g ()| < Ko(u(€)/€) min(x, DE — x)
< Kopu(min(x, D€ — x))
< Kou(lx = yl).

Case 2. y € [0, DZ].
We see that

9@ — PO <Cu® (2 (2 ) 1%hos - br—yl < Koulx 3D
= D DY 0 = :

Case 3.y € (1 — D)¢, 0).
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Since D < 1/10,wehave x +£ —y <2Dl <€ —2D{¢ <y —x < £. We
see that

18P0 —gP M1 < 18P W)+ 1g% ¢ — )| < Ko(u(0)/O)(x + € — y)
< Kou(lx — y).

O

Lemma 2.18 For each compact interval J C R with 0 < £ := |J| < £},
there exists a diffeomorphism f € Diff °(R) satisfying the following:

(A) supp f = J\dJ;

(B) infr f'(x) > 1/2;

O IIf —ld k00 = Kou(£);

(D) for each N > 1/(Kk_lu(£)), we have

sup | fN —1d| > 8o¢.
J

EB) [fPw@)— O < Kop(lx — y|) forall x, y € R.

Proof We may assume J = [0, £]. Let g be as in Lemma 2.17, and put f =
Id +-g. By symmetry and the condition (ii) on g, we have

ff=14+¢@1)=>1/2

for all ¢. We have (B), and in particular, f is a C* diffeomorphism.
The claims (A), (C) and (E) are immediate from Lemma 2.17. Observe that

-DO)—-Dt  1-2D 1
Ctkp(e) — COlp@ — e lu)’

Foreach N > 1/(£k_l,u(€)), we have that

N—1 i ; 1
N DO — Dep =Y 1D — fF1(DO] = Ceo (o) L—ek_lu(g)J

i=0
= Ce(1 — ) = Ce — €p) = ol

This establishes the claim (D), and hence the conclusion of the lemma. |

Proof of Theorem 2.14 Put £; = |J;|. As ) _; £; < oo, there exists iy such

that ¢; < ¢* for all i > iy. For each i > i, we apply Lemma 2.18 to obtain
fi € Diff(R) with:

(A) supp fi = Ji\0J;;
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(B) infg [ f{ (x)| = 1/2;
©) IIfi —1dlk,00 = Kou(&i);
(D) fiN is §o-fast on J; for all N > 1/(£f_l,u(£,-));

®) 110 = L)) < Kou(lx — y|) forall x, y € R.

For each n > iy, consider the composition

Fo=T] £

i=ig

For m > n > iy, we have that

1 Fm — Fullk.oo < supfl £ () = 1AV (0)[: i > n,x € J;,0 < j <k}
< Kosup u(¢;).

i>n

Hence {F,} uniformly converges to a C¥ map F: R — R in the C¥-norm
[26].

Since F is the composition of infinitely many homeomorphisms with dis-
joint supports, we see F' is also a homeomorphism. In particular, we see
supp F' = U;=,(Ji\dJ;). Moreover, F'(x) = lim,_, o F,(x) > 1/2 for all
x € R. It follows that F is a C¥ diffeomorphism.

Claim Forall x,y € R we have
[FO @) = FO ()] < 2Kou(lx = yD).

In order to prove the claim, we may assume x € J; for some i > ip. If
y € J;, then the condition (E) implies the claim. If y ¢ supp F, then we can
find xg € dJ; such that [x — y| > |x — xp]. So,

IFO @) — FO ) =110 )= £% (o) < Ko (x —xol) < Kop(|x —y)).

Finally,if y € J; forsomei # j > io, then we canfind xo € dJ; and yp € 9J;
such that |[x — y| > |x — xo| + |y — yo|. As u is increasing, we see that

1FO@) = FOG <1700 = (P 0ol +1£70) = 1260l
< Kon(lx = xo) + Kop(ly = yol) < 2Kop(lx — yI).

Hence, the claim is proved. We have that F' € Diff]_i’“ (R).
Finally, we can pick F* € Diff°(R) such that:

esupp F*={xeR| F*(x) >x}=U{/i\oJi | 1 <i <io};
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e [*isdp-faston J; for 1 <i < iy.

Then the diffeomorphism f = F o F* € Diffﬁ_’“ (1) satisfies the conclusions
(1) and (ii). To see the conclusion (iii), observe from the hypothesis that either

e x € J;\dJ; for some i, or

e f =Idlocally at x, or

e x € dJ; for some i, and some open neighborhood U of x satisfies UNJ; =
@ forall j #1.

In all cases, f coincides with some f; locally at x, and hence, is
locally C*°. O

Remark 2.19 In the above proof, the modulus of continuity was used to guar-
antee a uniform convergence of partially defined diffeomorphisms. This idea
can be found in the construction of a Denjoy counterexample, which is a C'*¢
diffeomorphism f: S! — S! such that f is not conjugate to a rotation and
such that f has an irrational rotation number. Denjoy’s Theorem implies that
there are no such C!+o examples [23,58].

We note the following consequence of Theorem 2.14.

Corollary 2.20 Let K* > 0, and let {J;}ien be a collection of disjoint compact
intervals contained in the interior of 1 satisfying

. . -1
il = (G + K*)1og?(i + K*)) .
Then for k € N and for a concave modulus . > w1, there exists

fenifft @\ [ | J it ®) uDiff™ (R)
O<po<Ki

such that supp f = U; (J;\oJ;).
Proof Let us write £; = |J;| and

Ni= [ 1/@ e | =[G+ k9 10g 26 + K7 e |

We have f € Diff]i’” (1) as given by Theorem 2.14 with respect to {J;} and
some 6 € (0, 1). Let us pick w such that 0 <; v < u. O

Claim lim N;(1/)* 'w(1/i) =0.
1—> 00
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For all sufficiently large i, we have

() = u(1/(4ilog? i) = n(1/i)/(4log?i).
So we see that

N oy < 2EE KD T og 26 4 KMe (/i)

=)
_ 86+ K5 1o0g?* =2 + K*) log?*i-w(1/i) 0
- ik=11og?—2 p(l/i) '

Note that 8J; are accumulated fixed points of f. Since fVi is 8-fast on J;
for all i, Theorem 2.9 implies that f is not CX®. For C*%, we simply set
o = w1 and apply Theorem 2.9 again.

2.5 More on natural density
For N € N, let us use the notation
[N]*:={0,1,...,N —1}.

We will need the following properties of density-one sets.
Lemma 2.21 (1) If A C N satisfies dn(A) = 1, then for each s € N we have

dyfi e N:i +[s]" C A} =1.

(2) Let Bp € N, and let X, Y C N. Assume that dy (X U (Y —B)NN)) =1
for each integer B > Bo. Then we have dy(X UY) = 1.

Proof of Lemma 2.21 (1) We can rewrite the given set as
ieN:i+[s]"CA}=ANA-DN---N(A—(s—1)).

The conclusion follows from the first two parts of Lemma 2.10.
(2) Pick an arbitrary integer N > fy. For each 8 € N, define

SVP ={meN|m+[NI"CXU{Y -B)}.

Part (1) implies that dN(S{V’ﬁ ) = 1foreach 8 > fBy. So, we have a density-one
set
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Suppose m € SY.Ifm <i < j<m+N—1landi,j ¢ XUY, then
m ¢ S"/~". In particular, j —i < By — 1. We obtain that

#liem+[NT*|i¢ XUY) < Bo.

Hence, for each s € Nand r € [N]* we compute
(N = o) # (S N (+NIsT) ) < # {mer+[Ns—N+1]" | meXUY].
By summing up the above for r € [N]*, we have
(N = poy# (SY N [NsI*) < N# [m € [Ns]" | m e XU Y.

After dividing both sides by N2s and sending s — oo, we see that

#(XUY)N *
2P0 i g PX I OINST)
§—>00 NS
Since N is arbitrary, we have dy(X U Y) = 1. O

3 Background from one-dimensional dynamics

In this section, we gather the relevant facts regarding one-dimensional dynam-
ics that we require in the sequel.

3.1 Covering distance and covering length

Throughout Sect. 3.1, we let G be a group with a finite generating set V', and let
¥ : G — Homeo4 (/) be an action. We develop some notions of complexity
of an element in 1/ (G) which will be useful for our purposes.

We use the notation

supp v = supp ¥(G) = |_J suppvr(g) = |_J supp ¥ (v).

geG veV

Note that supp ¢ may have multiple components. Define

Vo= U 70 supp ¥ (v).

veV

Then 7 is an open cover of supp ¥ consisting of intervals.
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For a nonempty subset A C I, we define its ¥ -covering length as
CovLeny (A) =inf{ e N|AC Ay U---UAy, eachA;isin ¥}.

Here, we use the convention inf @ = oo. We also let CovLeny (@) = 0. We
define the ¥ -covering distance of x, y € I as

Len, i if :
CovDisty (x. y) = CovLeny ([min{x, y}, max{x, y}]), 1 X #Y;
0. ifx = y.

That is to say, once a generating set for G has been fixed, CovDisty (x, y)
is the least number of components of supports of generators of G needed to
traverse the interval from x to y. Also, if x and y lie in different components
of supp ¥ (G), then the covering distance between them is necessarily infinite.
We let CovDisty (x, x) = 0.

Both covering distance and covering length depend not just on G and v but
also on a generating set V. When the meaning is clear, we will often omit 7/,
and write CovLen(A) and CovDist(x, y). We will also write gx := ¥ (g).x
forg e Gandx € I.

Covering distance behaves well in the sense that it satisfies the triangle
inequality:

Lemma 3.1 Forx,y,z € I and for A, B C I, the following hold.

(1) CovDist(x, y) < oo if and only if x and y are contained in the same
component of supp V.

(2) CovLen(A U B) < CovLen(A) + CovLen(B).

(3) CovDist(x, y) < CovDist(x, z) + CovDist(z, y).

Proof Part (1) is clear. For part (2), assume

(U,.... U0, {V1,.... V€V

are open covers of A and B which witness the fact that CovLen(A) = n and
CovDist(B) = m respectively. Then

{Uly-"le’lvvlv"'vvm}

cover the interval A U B. Part (3) follows from part (2). O

If 1 £ w € G, we define the syllable length of w, written ||w]|, to be
lwll = min{¢ | w = vi'v5? - v,
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Fig. 3 A chain of four U, Uy
intervals

Ui Us

where v; € V andn; € Z foreach 1 <i < £. The following lemma relates the
algebraic structure of the given group G = (V') with the dynamical behavior
of actions of G:

Lemma 3.2 Foreach x € I and w € G, we have CovDist(x, wx) < [|w]|.

Here we are implicitly measuring the covering distance with respect to the
generating set V of G.

Proof of Lemma 3.2 Clearly we may assume that x € supp ¥, since otherwise
there is nothing to prove. We proceed by induction on ||w||. If |Jw|| = 1
then w = v" for some v € V and n € Z. Then either x = v"x or x €
J € mosupp ¥ (v). It follows that CovDist(x, v"x) is 0 or 1. Now assume
[lw|| = € > 2. We can write w = v" - w’, where ||w’|| = £ — 1. By induction,
CovDist(x, w'x) < £—1. AsCovDist(w’x, v"-w’x) < 1, the estimate follows
from Lemma 3.1. O

Let (Ui, ..., U,) beasequence of openintervalsin R such that U;NU; = &
whenever |i — j| > 2, and such that U; N U;4 is a nonempty proper subset
of both U; and U; 41 for 1 <i <n — 1. Then we say (Uy, ..., Uy) is a chain
of intervals in R. Figure 3 gives an example of a chain of four intervals.

A finite set .# of intervals is also called a chain of intervals if .% becomes
so after a suitable reordering. Chains of intervals arise naturally when we
consider an open cover of a compact interval. The proof of the following
lemma is straightforward.

Lemma 3.3 [f % is a collection of open intervals such that I €\ J %, then a
minimal subcover V' C 7 of 1 is a chain of finitely many open intervals.

When we discuss a chain of intervals, we assume those intervals are open.
It will be useful for us to be able to move points inside a connected component
of supp ¥ (G) efficiently in the following sense, which provides a converse to
Lemma 3.2:

Lemma 3.4 Suppose x < y € U € mgsupp ¥ (G) satisfy CovDist(x, y) =
N € N. Then there exists an element g € G such that gx > y and such that
llgll = N.

We remark that ideas in a very similar spirit to Lemma 3.4 were used exten-
sively in [41].
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Proof of Lemma 3.4 Let {Uy, ..., Uy} be intervals such that U; € mq supp
Y (v;) for some v; € V for each i, and such that these intervals witness the
fact that CovDist(x, y) = N. Lemma 3.3 implies {U;} is a chain. Renum-
bering these intervals if necessary, we may assume that x € U;\Ua, that
y € Uy\Upn_1, and that

infU; <infU;41 < supU; < supUj41
for each i (cf. Fig. 3). Note that we allow sup U;_| = inf U;41.

For a suitable choice of n1, we have vq”x = xp € Uj. By induction, we have

: . . nyN—
that v;"x; = xj41 € Ui for a suitable choice of n;. Once vy | - v]'x =

xy € Un, we apply a suitable power of vy to xy to get v”NNxN > y. Then
g =y o

clearly has syllable length at most N and satisfies gx > y. Lemma 3.2 implies
that ||g|| = N. O

3.2 A residual property of free products

For a compact interval J C R, we let Diff3°(J) denote the group of C*°-
diffeomorphisms of R supported in J. One can identify Diffg°(J/) with the
group of C*°-diffeomorphisms on J which are C°°-tangent to the identity at
dJ. For a group G and a subset S € G, we let {(S)) denote the normal closure
of S.

Lemma 3.5 Suppose G < Diff°(1) has a connected support, and suppose
1#£ge(Gx{(s)*(t) = (G x27Z)x*Z.
Then there exists a representation
$q: (G x (s5)) * () — Diffg>(I)

with a connected support such that ¢¢(g) # 1 and such that supp ¢4 (G) N
supp @g (s) = @. Furthermore, we can require that ¢4(G) = G.

Proof of Lemma 3.5 We have embeddings
p+: G — Diffg°[0, 11,  p/,: (s) — Diffg°[0, 1],
with full supports. Let p— and p’ denote the “opposite” representations of

p+ and pg_, respectively. That is, we let p_(g)(x) = 1 — p4(g)(1 — x) and
similarly for p’ .
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After a suitable conjugation, we may assume
g =1 (ges?) - - tP (g157)

forsome ¢ € N, g; € G and p;, g; € Z. For each i, we can further require that
pi # 0, and that either g; # 1 or ¢; # 0. There exists a representation

pi: G x (s) — Diff§°[2i — 1, 2i]
and a point xp;_1 such that
20 — 1 < x2i—1 < x2; = pi(gisT)(x2_1) < 2i.
Here, p; is C*°-conjugate to p+ if g; # 1, and to p/, otherwise. In particular,

we require supp p; (G x (s)) = (2i — 1, 2i).
We pick x2¢41 and z; so that

l<xi<zi<xp<2<3<xy<zpp<xy<4<S5<---

<20 —1 <xp—1 <zp <Xop <26 <20+ 1 < Xpp41 < Zp41 <204 2.
We can find a C*°-action
po: (t) — Diffg°[1, 2¢ + 2]

such that supp po(¢) = Ule (zi, zi+1) and such that po(7")(x2;) = x2i4+1. We
put

J4
g =[] oi % po: G *Z — Diff§°[1, 2¢ +2].

i=1

The nontriviality of ¢¢ (g) comes from a Ping—Pong argument for free products
(cf. [3,42]); that is, ¢g(g)(x1) = x2¢41 > x1. The first conclusion follows
from

supp ¢pg = supp po U (U; supp p;) = (1, zg41).

We may assume g; 7# 1 for at least one i. This is because, the above
construction also works for a finite set A € G\ {1} after setting g as a suitable
concatenation of the elements in A. In particular, p; [ and ¢, [¢ are faithful.
Here, the symbol [ denotes the restriction of a representation. O
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3.3 Centralizers of diffeomorphisms

We recall the following standard result. It was proved for C? maps by Kopell
[44] and generalized later to C'*® maps by Navas [57] in his thesis.

Theorem 3.6 (Kopell’s Lemma; see [44]) Let f, g € Diff 1++bV[0, 1) be non-
trivial commuting diffeomorphisms. IfFix fN(0, 1) = &, then Fix gN(0, 1) =
a.

We continue to let M e {I, S'}. We say f € Homeo, (M) is grounded
if Fix f # @. In particular, every homeomorphism of / is grounded. An
important and relatively straightforward corollary of Kopell’s Lemma is the
following fact:

Lemma 3.7 (Disjointness Condition; see [2]) Let f,g € Diff™™ (M) be
commuting grounded diffeomorphisms, where M € {I, S}, and let U and V

be components of supp f and supp g respectively. Then either U NV = & or
u=yV.

If w is a concave modulus or if w € {0, bv, Lip}, then we define the C ko
centralizer group of G < Homeo4 (M) as

7Z52(G) := (h € Diff"“(M): [g, h] = 1 forall g € G}.

Let Zk@(g) = ZK®((g)) for g € Homeo,(M). We write FixG =
Ngec Fix g.

Let BS(1, m) denote the Baumslag—Solitar group of type (1, m), given as
below.

Lemma 3.8 Suppose we have an integer m > 1 and a representation
p: BS(1,m) = (x,y | xyx~! = y™) — DiffL(I).

(D) If p(y) # 1, then p is faithful.
(2) ([8]) We have that supp Z (p(x, y)) Nsupp p(y) = 2.

Proof (1) Suppose g € ker p\{1}. We may write g = yPx? forsome p,q € Z
so that

xgx ' = (xyx~HPx? = y2Px1 € ker p.

It follows that p(y”) = 1. Since p(y) # 1, we see that p = 0 and p(x) = 1.
But then, we have p(y) = p(y™) = 1. This is a contradiction.

(2) We may assume p is faithful by part (1). The case m = 2 precisely
coincides with [8, Proposition 1.8]. The proof for the case m > 2 is essentially
identical. O
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If ¢ € Diff fbv(S 1) is an infinite order element having a finite orbit,
then every element in Z'™®(g) has a finite orbit and every element in
[Z!*PV(g), Z!*PV(g)] is grounded; see [27] and [2]. This is a dynamical con-
sequence of classical theorems of Holder [34] and of Denjoy [23], combined
with Kopell’s Lemma. In this paper, we will need a C'-analogue of this con-
sequence, as described below. The role of (g) is now played by the group
BS(1, 2).

Lemma 3.9 Suppose we have an isomorphic copy of BS(1, 2) given as
B = (x,y|xyx~' = y?) < Diffl (s".

Then the following hold.

(1) The C'-centralizer group Z'(B) of B has a finite orbit.

(2) For some finite index subgroup Zo of Z'(B), we have supp Zo Nsupp y =
<.

(3) We have supp[Z'(B), Z'(B)] Nsupp y = @.

For g € Homeo, (S!), we consider an arbitrary lift g: R — R and define
the rotation number of g as

§"(0)

rot(g) := lim e R/Z.

n—o0
Proof of Lemma 3.9 For some m € N, the group By = (x™, y) = BS(1,2™)
has a global fixed point; this is due to [32, Theorem 1]. We have a nonempty
collection of open intervals:

o/ = {J € mosupp By: the restriction of By on J is nonabelian}.

We may regard By < Diff L_ [0, 1]. It follows from [8, Theorem 1.7] that <7 is
a finite set. Since Z!(B) < Z!(By), the group ZY(B) permutes .o/ and has a
finite orbit inside X = (J,.,90J S S !, This proves part (1).

Let Zg be the kernel of the above homomorphism

Z! (B) — Homeo ™ (X).

Since every element of Zg fixes dJ for J € &/, we can regard (Zy, By) <
Diff [0, 1]. Lemma 3.8 implies part (2).

Part (3) is not essential for the content of this paper, but we include it here
for completeness and for its independent interest. To see the proof, note first
that the finite cyclic group action pg: Z'(B)/Zo — Homeo™ (X) is free. By
a variation of Holder’s Theorem given in [40, Corollary 2.3], there exists a
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[ ] : [ ]
a €
Fig. 4 The relators of G. The horizontal double edge denotes the relator aeca™
other two edges denote commutators

1 — ¢2 and the

free action p: Z'(B) /Zy — Homeo™ (S 1 extending pg such that rotop is a
monomorphism; see also [27]. We have a commutative diagram as below:

Homeo™ (X)

/ 0 T free

| ——=Zy——=2ZY(B) —2~ zY(B)/ Zg — 1

rotl P l free

St <™ Homeot(S!)

Letg € [Z '(B), Z'(B)]. The commutativity of the lower square implies
that rot restricts to a homomorphism on Z'(B). In particular, we have that
rot(g) = 0 and that g is grounded. Since g centralizes B, and since Fix By #
&, we see that Fix(By, g) # <. So, we may regard (By, g) < Diff1+(1).
Lemma 3.8 implies that supp g N supp y = &, as desired. O

3.4 A universal compactly-supported diffeomorphism

Throughout this paper, we will fix a finite presentation:
G = (Z xBS(1,2)) % F) = ((c) x (a,e | aeca”! = ez)) % (b, d).

See Fig. 4. We let Vi = {a,b,c,d, e} C GT.
Whenever we have an action ¢ of G" on I, we will define the covering
length and the covering distance by the following open cover of supp ¥ (G¥):

YV = U 70 supp ¥ (v).

veVi

If ¢ G' — Homeo, (/) is a representation and f € w(GT), there is
little reason to believe that CovLen(supp f) < oo, even if we restrict to a
component of supp ¥ (G"). In order to use the covering length of a support as
a meaningful notion of complexity of a diffeomorphism, we need to find an
element 1 # ug € G for which CovLen(supp ¥ (up)) < oo.
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We will build such an element ug € G. We say a set A C R is compactly
contained in aset B C R if there exists a compact set C suchthat A € C C B.

Lemma 3.10 (abt-lemma; [40, Theorem 3.1]) Let M € {I, Sl}. Suppose
a, B, t € Diffl (M) satisfy that

suppo Nsupp B = <.

(1) Then {(a, B, ) is not isomorphic to 7> x 7.
(2) If M = 1, then the support of

u=[lo", p-p"- gl
is compactly contained in supp{c, B, t).

Proof Part (1) is stated as Theorem 3.1 of [40]. We summarize the proof of
part (2), which is transparent from [40]. We first consider y = &/, § = B’
and ¢ = [y, BB~ ']. We have that suppy N suppd = @. By Lemma 3.10 of
[40], we have supp ¢\ supp B is compactly contained in supp y Usupp é. Since
u = [¢, ], we see that

suppu < supp ¢ U supp o U supp ¢ N supp o

C supp ¢ U supp o U supp ¢\ supp B
C suppa U supp B U supp y Usuppd < supp{w, B, f).

O

We can now deduce Corollary 1.7 in Sect. 1. The authors were told by A.
Navas of the following proof for M = I.

Proof Suppose we have a faithful representation
¥ ({c) x (a,e)) x(d) = (Z xBS(1,2)) *xZ — Diffj_(M).

Consider first the case when M = I. By Lemma 3.8, we see that supp ¥ (c) N
supp ¥ (e) = . It follows from Lemma 3.10 that

Vic,e,d) 27>« Z = (c,e,d).

This is a contradiction, for v is faithful.
Assume M = S'. By Lemma 3.9 (2), we have some p € N such that

supp ¥ (c”) N supp ¥ (e) = 2.
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We again deduce a contradiction from Lemma 3.10, for we have

(P, e d) £ 2>« 7= (cP, e, d).

We will apply abt-lemma to the triple (c, e, d). For this, we let

a=c, B=e, y:adzd_lcd, 8=,Bd=d_led,
u =1y, BB 'L al = [[c% e-e?-e7']. c] e GT\{1}.

Lemma 3.11 Letu' € (c,d,e) < G' be as above. Then for each representa-
tion

¥:{a,cd,e)— Diffﬂr(l),

the set supp Y (u") is compactly contained in supp ¥ (c, d, ). In particular, for
each U € mosupp W(zﬂ) we have CovDist(inf U, sup U) < oo.

Proof Since Y (c) € Z '((a, e)), we see from Lemma 3.8 (2) that supp ¥ (c) N
supp ¥ (e) = &. Lemma 3.10 implies the desired conclusion. O

3.5 Simplicity and diffeomorphism groups

We will require some classical results about the simplicity of certain groups of
diffeomorphisms of manifolds. For a manifold X, we let Diff’é’w(X )o denote
the set of C* diffeomorphisms isotopic to the identity through compactly
supported isotopies; this set is indeed a group [51]. Note that

Diff (s = Diff(sh), Diff“(R)y = Diffk*(R).

Definition 3.12 Let w be a concave modulus.

(1) We say w is sup-tame if lim;_, ;o supy_, s tw(x)/w(tx) = 0 for some
6> 0;

(2) We say w is sub-tame if lim;_, {ogsupy_, s w(tx)/w(x) = O for some
6> 0.

Mather [51,52] proved the simplicity of Diff ﬁ (X), where X is an n-manifold
and k # n + 1. The following is a straightforward generalization from his
argument.

Theorem 3.13 (Mather’s Theorem [51,52]) Suppose X is a smooth n-
manifold without boundary. Let k € N, and let w be a concave modulus
satisfying the following:
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e if k = n, then we further assume w is sup-tame;
e ifk = n+ 1, then we further assume w is sub-tame.

Then the group Difflé’w(X )o is simple.
In Example 2.4, we have defined a concave modulus w, foreach z € (0, 1]c.

Lemma 3.14 We have the following.

(1) The concave modulus wg ;— is sup-tame for s > 0;

(2) The concave modulus w, /=T is sub-tame for s < 0;

(3) The concave modulus V=1 is sup-and sub-tame for v € (0, 1) and
s € R

Proof Lett, x > 0. We substitute 7 = log(1/¢) and X = log(1/x).
(1) Putw = g /T for some s > 0. There exists some ¢ € (X, X +T) such
that

tw(x) ( log(1/x) log(1/tx) )
=trexp|—s +s
w(tx) loglog(1/x) loglog(1/tx)
_ T n T+X
_exp< SlogX slog(T—i—X))

loge —1
=exp| T +sT——>—|.
log= ¢

Pick a sufficiently small § > 0 such that K := log(1/8) satisfies K > 1/¢?
and s(log K — 1)/log? K < 1/2. Since ¢ > X > K, we have that

to(x)/w(tx) < exp(—=T +sT(log K — 1)/1log® K) < exp(—T/2).

It follows that supy_, s tw(x)/w(tx) — 0ast — 0.
(2) Putw = w, /=7 for some s < 0. We again compute

w(tx) T+ X X
=exp|—T —s + s .
w(x) log(T + X) log X

We then proceed exactly as in (1).
3)Putw = Wr g /T We define

nx) =x"Pow =0, 1 V@) =500 = 00400000

for all small x > 0. We see from Lemma 2.6 (1) that

w(tx)/w(x) =t pu(tx)/u(x) <% - 0.
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to(x)/wtx) =TIy /viex) < 17972 0.
|

Corollary 3.15 Let X be a smooth n-manifold without boundary, and let k €
N. If some z € (0, 1]c satisfies Re(k+2z) # n+1, then the group Diff’;’wZ (X)o
is simple.

Proof We use Lemma 3.14 and Mather’s Theorem. If Rez € (0, 1), then w,
is sup-and sub-tame, and so, Difff’wZ (X)o for all k € N. If z = s4/—1 for
some s < 0, then w, is sup-tame; in this case, Difflé’wz (X)o is simple for all
integer k # n + 1.If z = 1 + s4/—1 for some s > 0, then w, is sub-tame and
Difff’wz (X)g for all integer k 7~ n. The conclusion follows. O

We will later use the following form of simplicity results. The proof is given
in Appendix (Theorem A.10).

Theorem 3.16 For each X € {S 1 R}, the following hold.

(1) If > 1 is a real number, then every proper quotient of Diff% (X)¢ is
abelian. If, furthermore, a # 2, then Dift% (X)g is simple.

2) If o > 1 is a real number, then every proper quotient of ﬂ5<a Difff (X)o

is abelian. If, furthermore, @ > 3, then ﬂﬂ<a Difff (X)o is simple.

3.6 Locally dense copies of Thompson’s group F

Recall that Thompson’s group F is defined to be the group of piecewise linear
homeomorphisms of the unit interval [0, 1] such that the discontinuities of the
first derivatives lie at dyadic rational points, and so that all first derivatives are
powers of two. It is well-known that Thompson’s group F' is generated by two
elements (see [14,19]).

We will denote the standard piecewise linear representation of F as

pr: F — Homeo4[O, 1].

A typical choice of a generating set for F is {xo, x1}, which are determined by
the breakpoints data:

pr(x0).(0,1/4,1/2,1) = (0,1/2,3/4, 1),
pr(x1).(0,1/2,5/8,3/4,1) = (0,1/2,3/4,7/8, 1).

Recall that a group action on a topological space is minimal if every orbit is
dense. The action pr is minimal on (0, 1), but it has an even stronger property:
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the diagonal action of pr on
X={(x,y»e0Dx@O1D]x <y}

is minimal. This follows from the transitivity of F on a pair of dyadic rationals
in X; see [19] and [14].

Alternatively, the action pg on (0, 1) is locally dense [10]. The general
definition of local density is not important for our purposes. For a chain group
G < Homeo™[0, 1] (see Remark 3.19 below for a definition), the local density
of the action of G on (0, 1) is equivalent to the minimality of the action of
G on X, which in turn is equivalent to the minimality of the action of G on
(0, 1); this is proved in [41, Lemma 6.3]. Thompson’s group F is an example
of a chain group (Corollary 3.18).

We will require the following result:

Theorem 3.17 (Ghys—Sergiescu, [30]) The standard piecewise-linear real-
ization pg of Thompson’s group F is topologically conjugate to a C* action
on [0, 1] such that each element is C*° tangent to the identity at {0, 1}.

The original construction of Ghys—Sergiescu is a C* action of Thompson’s
group T for a circle; the above theorem is an easy consequence by restricting
their action on an interval. Let us denote this action as

ps: F — Diff$[0, 11.

Note pgs(F) acts minimally on (0, 1). There exists a homeomorphism
hgs: [0, 1] — [0, 1] such that for all g € F' we have

pGs(g) = hgs o pr(g) o haé-
It will be convenient for us to denote @; = pgs(x;) fori =0, 1.

Corollary 3.18 There exists a chain of two intervals (U1, Up) and C* dif-
feomorphisms fi and f> supported on Uy and U, respectively such that

(f1, f2) = pcs(F).

Proof 1t is routine to check that f; = al_lao and f» = a; satisfy the conclu-
sion. See [41] for details. O

Remark 3.19 More generally, if (Uy, ..., U,) is a chain of intervals and if
f1, ..., fn € Homeo, (R) satisfy that supp f; = U; for each i, then the group
(f1, ..., fn) is called a pre-chain group (cf. [41]). The group (f1, ..., fu) is
called a chain group if moreover we have (f;, fi+1) = F foreach 1 <i < n.
If (f1, ..., fu) is a pre-chain group then for all sufficiently large N, we have
(le, A an) is a chain group [41].
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4 The Slow Progress Lemma

Throughout this section, we assume the following. Let kK € N, and let G be a
group with a finite generating set V. We will consider an arbitrary representa-
tion ¥ of G given in one of the following two types:
o V: G — Diff’f;w(l ), where w > 0 is some concave modulus;
o V: G — Difflibv(l), in which case we will put w = w;.
We denote by ||| the syllable length of 7 € G with respect to V as in
Sect. 3.1. We also use the notation ¥ = Uycy g supp ¥ (v).

Suppose we have sequences {N;};eny € N and {v;}ien € V such that the
following two conditions hold. First, for some K > 0 we assume

sup Ni (1/)* w(1/i) < K. (A1)
ieN

Second, for each v € V we assume the following set has a well-defined natural
density:
N, ={i e N|v; =v}. (A2)

Let us define a sequence of words {w;};>0 € G by wyp = 1 and

The main content of this section is the following:

Lemma 4.1 (Slow Progress Lemma) For each x € I, we have the following:

lim (i — CovDisty (x, ¥ (w;)x)) = oo.

i—00

The proof of the lemma occupies most of this section. As a consequence of
this lemma, we will then describe a group theoretic obstruction for algebraic
smoothing.

Remark 4.2 The statement of the Slow Progress Lemma is topological. In
other words, even after v is replaced by an arbitrary topologically conjugate
representation, the same conclusion holds.

4.1 Reduction to limit superior

For brevity, we simply write CovLen and CovDist for CovLeny and CovDisty .
We write gx = ¥ (g)x forg € Gand x € I.

Lemma 4.3 Let x € I. Then the following are equivalent:
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(1) limsup,_, o (i — CovDist(x, w;x)) = oo,
(i1) lim;_, 5o (i — CovDist(x, w;x)) = 0.

Proof Assume (ii) does not hold. There exists My > 0 and an infinite set
A C N such that for all « € A we have

a — CovDist(x, wex) < M.
If (i) is true, then we have an increasing sequence {j (s)}sen such that

lim (j(s) — CovDist(x, w;(5)x)) = 0.
§—>00

For each s € N, let us choose a(s) € A such that j(s) < a(s). We see that

CovDist(x, wg(s)x) — CovDist(x, wjs)x)
< CovDist(w5)X, Wa(s)X) < a(s) — j(s),
J(s) — CovDist(x, wj)x) < a(s) — CovDist(x, wes)x) < M.

This is a contradiction, and (i) = (ii) is proved. The converse is immediate.
O

4.2 Markers of covering lengths

In order to prove Lemma 4.1 by contradiction, let us make the following
standing assumption of this section: there exists apointx € U € mg supp ¥ (G)
and a real number M( > 0 such that the sequence {x; := w;x};>¢ satisfies

foralli > 0, we havei — My < CovLen[x, x;) <. (A3)

By Lemma 4.3, it suffices for us to deduce a contradiction from (A3).

The sequence {x;} accumulates at U . Since the sequence cannot accumu-
late simultaneously at the both endpoints of U by assumption (A3), we may
make an additional assumption:

lim x; =supU. (A4)
1—> 00
For each i € N, we define

z; = sup{z € [x,supU) | CovLen[x, z) <i}}.

The point z} is the “length-i marker” of covering lengths in the following
sense.
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Lemma 4.4 (1) Define h: (x,supU) — N by h(z) := Covlen|x, z). Then
h is a surjective, monotone increasing, left-continuous function.
(2) Forall1 <i <i+ j, we have

CovLenl[z], 21 ;) = J,

CovLen[z], z{\ ;1= j + L.

(3) There exists M, M> > 0 such that for all i > M| we have that

* . *
Li—My <= Xi < Zi_Myy1-

Proof (1) Monotonicity of £ is clear. For the left-continuity and surjectivity,
it suffices to show CovLen[x, z;‘) =1{. Let us define

, _Jsup{supJ | x € J € ¥} ifi =1,
| sup{sup J | 7_,eJeVy ifi =2

2N

Since each point in / belongs to at most | V| intervals in ¥, each z is realized
as sup J for some J € 7.

We claim that z* = z; and that CovLen[x, zJ) = i for each i € N. The
case i = 1 is trivial. Let us assume the claim for i — 1. Then we have
CovLen[x,z;) = i and z; < z*. If i < z! then there exists € (z},z})
such that CovLen[x, t) = i. But whenever r € J € ¥ we have z§_1 ¢ J,
by the choice of zg. This shows CovLen[x, ) > i, a contradiction. Hence the
claim is proved.

(2) Note that

CovLen[z}, z?]rj) > CovLen[x, z;‘ﬂ-) — CovLenlx, z]) = .

The opposite inequality is immediate from the definition of z!. For the second
equation, it suffices to further note that CovLen[x, zf] =i + 1.
(3) By (A3), the following holds for all but finitely many i:

CovLen[x, x;4+1) = CovLen[x, x;) + 1.

For such an i, we have that x; € (zjf_l, z;f] and x;4+1 € (zjf, zij
CovLen[x, x;). If x; = z’;, then x; 1 < z}k._H and moreover, x;1; < Z7+L’ for
all £ € N, O

] for j =
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Let us write z; = 7 M- After increasing My if necessary, we have the
following for all i > Mg and j > O:

CovLen[z;, zi+j) = j = CovLen([z;, zi4;] —1 and x| <z <x;.
(A5)

We may also assume:
CovLen[x, xp,) > 8k. (A6)

Consider the set of “significant generators” and their minimum density:

Vi={veV|dnD,) > 0},
81 = min{dy(Ny) | v € V}/2.

By further increasing M, we may require:
#Ny N[1, N]) = 1N (A7)

for all v € V] and N > My. We note the following.
Lemma4.5 Let v € Vi, and let Ny = {j1 < j» < jza < ---}. Then there
exists a constant K1 > K such that whenever m € N satisfies j, > Mo, we
have
N;, < Kim*Y o (1/m).

Proof Note that

m = #(N, N[I, ]m]) = 8ljm'
Hence, we have j,, < m/§;. Lemma 2.6 implies that

w(1/jm) = @(1/m) = S1w(1/m).

The desired inequality is now immediate. O

4.3 Estimating gaps
Leti > M. Since
N;
Xi—1 < Zi <Xi=V; Xi—1,
we can find J; € o supp ¥ (v;) such that {x;_1, x;} € J;. We define

pi = inf{z € (inf U, inf J;] | # ([z, inf J;] 0 Fix ¥ (v;)) < k),
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Ni—1 Ni Nit1

< 0; - O - F - O—e U
Zi—1 Xi—1  Zi Xi Zi+1
Ji
L;
R;
J*

Fig. 5 Intervals from supports

gi = sup{z € [sup J;, supU) | # ([sup J;, z] NFix ¢ (v;)) < k}.
As illustrated in Fig. 5, we will write
L; =[pi.sup J;], R; =[inf J;, q;], J7 =[pi.qil.

Roughly speaking, L; is obtained from J; by successively attaching adjacent
components of supp ¥ (v;) on the left until we have included at least K+ 1 fixed
points of ¥ (v;) or an accumulated fixed point of ¥ (v;). By (A4) and (A6), the
intervals L; and R; are compactly contained in U.

Lemma 4.6 For eachi € NN [My, 00), the following hold.

(1) The map ¥ (v;) is k-fixed on L; and also on R;.
(2) We have that {x;—1,z;,x;} S J; CL; N R;, zit1 & Ji and z; & Jiy1.
(3) We have that

DL+ IRl < 2KV -1,
J=My

@ #{j =My |v;=v; andJ]’.“ﬂJi* # &} < 4k.

Proof Parts (1) and (2) are obvious from the definition and from the fact that
CovLenl[z;, zi+1] = 2.

For part (3), suppose x € A € mg supp ¥ (v) for some v € V. There exist
at most 2k indices i > My such that v; = v and such that A € L; U R;.
Hence, the total number of L;’s and R;’s containing a given arbitrary point x
is at most 2k|V|. Part (4) follows similarly. O

Let us pick an integer C > 8k. We call each x; as a ball, and the interval
[zi, zi+c) as a bag (of size C). For each m > My, we define

gap(m) = [Xp, Xm+c—1].

See Fig. 6.
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| gap(m) |
m * (,/:\Q_
Xm—1 Zm  Xm Zm+1 Xm+1 Zm+C—1 Xm+C—1 Zm+C  Xm+C
| |
' bag(m) '

Fig. 6 The gap in a bag
Foreach§ > Oand v € V, we let

Balls={i € NN [My, 00) | sup | (v)")—Id | <8|L;| and sup [y (v])—1d | <8|R;| | ,
L; R;

Bag; = {i € NN [Mp, 00) | [i,i + C1NZ C Balls}.

Intuitively speaking, Balls is the collection of balls which are §-fast neither on
L; nor on R;. Also, Bagy is the set of bags which “involve” only balls from
Balls. We now use the analytic estimate from Sect. 2:

Lemma 4.7 For each § > 0, the sets Balls and Bagg have the natural density
one.

Proof Let v € Vi. By Lemmas 4.5 and 4.6, we can apply Theorem 2.9 to
f = ¥ (v). We see that

#(Ball; NN, N[0, N])
N BN,N[0.ND)

It follows that dy(Balls) = 1. By Lemma 2.21 (1), we have dn(Bags) = 1.
O

Lemma 4.8 For each § € (0, %] and m € Bags, we have | gap(m)| <
28| bag(m)].

Proof Leti € [m+2,m 4+ C — 2] N Z. From Lemma 4.6 and from the fact
that

max(CovLen(L;), CovLen(R;)) <2k + 1,

we see that either L; C gap(m) or R; C gap(m). As m € Bagg, we have
i € Balls and hence,

N; .
lxi —xi—1] = v, ' xi—1 — xj—1| < dmin(|L;|, |R;|) < &| gap(m)].
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By a similar argument,

|Xm1 — Xm| + [Xmrc—1 — Xmec—2| <8 (|Rms1|l + |Linyc—11)
=8 (|Ruy1 U Lpyirc-1]) < 8| bag(m)|.

By summing up |x; — x;—(|fori =m +1,...,m 4+ C — 1, we obtain that
| gap(m)| < (C — 3)3| gap(m)| + 8| bag(m)],

1)
| 2ap(m)| = 15 bag(m)| < 28] bag(m).

Recall J! = L,, U R,,. For each A > 0, we define

D¢ :={m e NN [My, oo): either |x,, — Xp—1| > Alx,, — sup J,fll

or [Xmyc — Xmec—1| > Axmyc—1 —inf Jy_ |}
Lemma 4.9 If§ € (0, 5] and 26(1 + 1) < 1, then Bags C D).

Proof Assume that m € Bagg\ D¢ ;. By Lemma 4.8, we have

|bag(m)| < |[xm — Xm—1] + [Xm+c — Xm+c—1] + | gap(m)|
< AMxm — sup S| + Alxmyc—1 —inf Jy | 4+ | gap(m)|
< (I +A)|gap(m)| < 28(1 + A)| bag(m)|.

This is a contradiction. O

Lemma 4.10 For all ). > 1, the following set has the natural density one.
E; = {m e NN [My, o0) | w(vnl\{'") is A-expansive on J;} )
Proof We may assume A > 8k. For § > 0, we define

X; ={m e NN [My, 00): |xp — Xpm—1| > Alxy — sup J;l}a
Y, ={m € NN [Moy, 00): |xp, — Xpm—1| > Alxp—1 — inf J |}

Then we see
D¢ = X3 U (Y — C) N [My, 00)) .

Lemmas 4.7 and 4.9 imply that dn(Dc,3) = 1, Hence by Lemma 2.21, we
obtain that dy(X; U Y,) = 1. This implies dn(Ey) = 1. O
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Completing the proof of the Slow Progress Lemma We see from Lemma 4.5
and Theorem 2.9 that

. #(E, NN, N[0, N]
lim =

N #N, N[O, N]) 0

for each v € V;. This implies dn(E)) = 0, contradicting Lemma 4.10. Hence
the assumption (A3) is false and the proof is complete. O

4.4 Consequences of the Slow Progress Lemma

The following is the main obstruction of algebraic smoothing in the Main
Theorem.

Lemma 4.11 Let u € G and let U € mosupp ¥ (G). If supp ¥ (u) N U is
compactly contained in U, then for each real number Ty > 0 and for all
sufficiently large i € N, there exists h; € G such that the following hold:

@ lhill < 2i —To;
(ii) U N supp ylwiuw; ", hjwuw; 'hi '] = 2.
(iii) For each v € V and for at least one h' € {v - h;, vl b}, we have

U N supp w[wiuwi_l, h/w,-uwi_l(h/)_l] = O,
Proof Let u, U and Ty be given as in the hypothesis. We write
x = inf(supp ¥ () N U), y = sup(supp ¥ (u) N V).

Put T = CovDist(x, y). By the Slow Progress Lemma, whenever i > 0 we
have

CovDist(x, wix) <i — (To+T), CovDist(y, w;y) <i —(Top+T).
CovDist(w;x, w;y) <2i —=2(To+T)+ T < 2i — Ty.
Put u; = wiuwi_l. Since supp ¥ (u;) N U < (w;x,w;y), we see from
Lemma 3.4 that there exists h; € G with ||h;|| < 2i — Ty satisfying

hjw;x > w;y. Furthermore, for each v € V there is a s(v) € {1, —1} such
that v*@h;wix > hjwix > w;y. We see that

(supp ¥ (ur) N U) N h(supp ¥ (up) N U) = @

ifh = hj orif h = v*Wh; for some v € V. This gives the desired relations.
O
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5 A dynamically fast subgroup of Diff ’_‘;_”‘ 03

Recall we have defined G in Sect. 3.4. We will now build a representation
¢: GT - Difflé’“(l) such that supp ¢ (G ") is connected and ¢ (G ™) admits no
injective homomorphisms into Diff’f;w(l ) forall 0 < o < w.

The criticality of the regularity will be encoded in a dynamically fast con-
dition described as follows. As in Lemma 3.11, we let 1 # ug € G be
given such that supp ¢ (o) is compactly contained in supp ¢ (G'). We build
a sequence a elements {w;};>0 € G which depend on k, u such that, after
replacing ug by a suitable conjugate u in G if necessary, we have

CovDist(inf supp¢>(wiuwi_l), sup suppqﬁ(w,-uwl._l)) > 2i.

We build the representation ¢ in several steps.

5.1 Setting up notation

Let us prepare some notation which we will use throughout this section. We
fix k € Nand p > w;. We put § = 9/10 and recall the notation

{€0, 80, €3, £i, Ni}

from Setting 2.15 and from Corollary 2.20. Namely, we pick a universal con-
stant €y € (0, 1), and define 69 > 9/10 from €y. For instance, we can set
€o = 1/1000. We have defined a constant £ depending on i, so that

25, n(£y) € (0, eol.
We will choose K* € N, and let
6 =1/ (G +K*)log*(i + K*)) .
We have defined another sequence
N= 11/ (67 ).
Possibly after increasing K* > 0, we may assume that £; < £ and that
Kk :=40/(20+€1) > 1/4.
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L; Ly D~ B~ BT pt | Lt Lf
3 2

Fig. 7 The family of bounded open intervals .% . Intervals of the same color are supporting the
same generator in Fig. 4

In Corollary 2.20, we verified that for all concave modulus 0 <; w <K @ we
have

lim N;(1/i) w(1/i) = 0.

Recall we have a generating set Vi = {a,b,c,d,e} C G' as in Sect. 3.4.

Fori € N, we let v;_; = b and vy; = a. Define a sequence {w;};cn € G' by

N.
wo =1 and w; = v wi—g.

5.2 A configuration of intervals in /

Let us now build an infinite chain
F=(..Ly,Ly,D",C",B ", I, B, C*, D" LT, L],..)

of bounded open intervals in R as shown in Fig. 7. The union of .# will be
also bounded. We will simultaneously define representations

.ok,
po, p1, p2: GT — Diff " (R).
As in Lemma 3.11, we put
ul = [[ d,e-ed-e_l],c] € GT\{I}.
The standard affine action of BS(1, 2) is conjugate to a C*°-action on R sup-
portedin [0, 1]; see [68] or [58, Section 4.3], for instance. Applying Lemma 3.5
to
1#u® € ({e) x (a,e)) % (d) < G,

we have an action

po: GT — Diff P (R)
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such that pg(b) = 1, po(uT) # 1 and moreover, Iy := (—1, 1) = supp po. By
the same lemma, we can also require that

pola, e) = (a,e) = BS(1, 2).
We will include six more open intervals
B*,C* D*

to the chain .% as shown in the configuration (Fig 7). We will require that
B~ = —B™ and so forth, where we use the notation

—(r,s) = (—s, —1)

for0 <r < s < 0o. Also, we set supC* =2 and sup D" = 3.

By Corollary 3.18, there exists a C*° diffeomorphisms cl+, df supported
on CT, D respectively such that (], d]") = F and (c], d;") acts locally
densely on C* U DT. We may require ¢} (x) > x forx € CT andd; (x) > x
for x € DT. We define ¢, d; symmetrically so that ¢; (—x) = —CT (x) and
d; (—x) = —d; (x). In particular,

suppdljE = D*, suppcfE = C*,

We choose b; € Diffﬁf’ (R) supported on BT U B~ such that b;(x) > x for
x € BT and b (x) < x for x € B~. We define

p1: G' — Diff°(R)

by p1(a) = pi(e) = L and pi(b) = b1, pi(c) = ¢f ey, pi(d) =ddy .
Note that £1 /¢, < 2 and that the sequence {¢; /¢; 1} decreases to 1. Hence,

1 liv1 123 1
- > > = > -,
3 22U+ 4 2004+4¢1 4

Let us inductively define
LY =@ —xt1,3 =kl + £1),
L;:_l = (sup Ll.Jr — k¥, sup L;r —kl;i +4Cit1).
Note that |Li+ N L;:—l' = i ¢;; see Fig. 8. Since

kli_1+xl; <t —kl; <¥;,
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Lt

1

+ +
L, Ly

Kf,;l = Kfl‘ K[,‘
STt + I +
inf L; supL,” infL/,  supL;

Fig. 8 The bounded open intervals L;’s

we see that L;r_l N Litr] = . In other words, the collection {Ll.+} has no triple
intersections. Then we define symmetrically L, = —Li+ and add Ll.ﬂE to 7.
This completes the definition of the infinite chain .%. As Zi £; < o0, there

exists some compact interval / such that

JZz=1cRr

By applying Theorem 2.14 to the parameter

(kv IU/a 805 {NZZ—]}ZENv {L;_l_] }IGN> ’

we obtain a diffeomorphism b;“ € Diff]i“ (R) supported on U; L;iq such that

b; is 8p-fast on each L;’i_l, and such that b; (x) > x foreach x € U,-Lzri_l.
Note that we are invoking the hypothesis that

Noi—1 -Kg,-__ll “p(li—y) = L.

We define b, (x) = —b; (—x). We also define aéﬁ completely analogously
with respect to the parameter

e
(k, W, 80, {N2i}ieN, {LZi}ieN> .
Then we define
p2: GT — Diff " (R)

by p2(a) = ay a; , p2(b) = by b, and p2(c) = p2(d) = pa(e) = 1.
For each v € VT, we define

¢ (v) = po(v)p1(v)p2(v).
We see from the construction that

e supp¢(a,e) Nsuppp(c) = J;
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e p(@)pe)p(a)~! = po@)po(e)po(@)~! = pole)? = ¢ (e)°.

Hence, the map ¢ extends to a group action
ok,
¢: G — Diffy " (I).

Let us summarize the properties of ¢ below. The proofs are obvious from
construction and from Theorem 2.14. We continue to use the notation from
Sect. 5.1.

Lemma 5.1 The following hold for ¢ = ¢y ;. : G — Diffl(;’“(l).
(1) suppep = I1\01.
(2) Foreach g € G¥, the restriction ¢(g) | o1 is a C* diffeomorphism.

(3) Foreachi > 1, the map d)(vl.lvi) is do-fast on Ll.i.
(4) Every orbit of ¢(a, c, d, e) in Iy is accumulated at 0 I.

5.3 The behavior of {w;};>( under ¢

Whereas we have good control over the compactly supported diffeomorphism
¢ (1), we will need to have good control over commutators of conjugates of

¢ u).

Lemma 5.2 For each nonempty open interval Uy C supp ¢ (G 1), there exists
a suitably chosen f € d)(GT) such that f(Up) N LT # & and such that

FWY)NLT # &.

Intuitively, Lemma 5.2 says that no matter how small an interval we choose
inside suppq&(GT), we may find an element of f € d)(GT) so that f(Up)
stretches across

Iy UBT UC*tuU D™

Of course, f(Up) might be much larger than this union, though this is unim-
portant.

Proof of Lemma 5.2 Let Uy = (z1, z2) be given as in the hypotheses of the
lemma. By Lemmas 5.1 (4) and 3.4, there exists an f € qb(GT) such that
f(z2) € DTN L. So, we may assume z, € D™ N L. We may then assume
that z; > sup L ; for, otherwise there is nothing to show. There are four
(overlapping) cases to consider.

Casel:z; e B-UC UD™.
For sufficiently large ny, np, n3 € N and for f; = ¢(d"3c"2b"!), we have
fi(zp) € LT\D+ and f1(z1) € D™ N L. This is the desired configuration.
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+
1y — q > L

B* > > ——L
D
Q Q

Fig. 9 The point f(z7) staysin Ct U DT

Case 2: z; € Iy.
By Lemma 5.1 (4), there is f1 € ¢{(a, ¢, d, e) such that fi(z;) € B~ N I.
Note that

Q:=BYULMH\UuCctuDtULY)

is anonempty set which is disjoint from supp ¢(a, c, d, e). Hence, f1(z2) ¢ O;
see Fig. 9. We have fi(z2) € C* U D™. Asin Case 1, we can find sufficiently
large ny, na, n3 € Nsuch thatfor f, = ¢(d"3c"2b"!) we have f> fi(z1) € L.
and f>fi(z2) € L. This is the desired.

Case3:z, € B™.
There exist sufficiently large n; € N such that for f| = ¢(b™"!), we have
fi(zz) € DTN L]L and f1(z1) € Ip N B™. So, we again have Case 2.

Cased: 7, e CTUDT.

We use the fact that the restriction of ¢(c,d) to C* U DT generates a
locally dense copy of Thompson’s group F. As we have seen in Sect. 3.6,
for some suitable f; € ¢(c,d) we may arrange fi(z;) € BT N CT and
fi(z2) € DT N LT, thus reducing to the previous case. O

We retain the elements {w; };cn as defined in Sect. 5.1. The following lemma
measures the complexity of certain diffeomorphisms in ¢ (G ") and shows that
the complexities grow linearly.

Lemma 5.3 Letu € G'\ ker ¢ be an element such that supp ¢ (u) is compactly
contained in supp ¢. Then for some conjugate u' € G' of u, and for some
component Uy of supp ¢ (u), we have that whenever i € N the bounded open
interval ¢ (w;)Uy intersects both Llf:_l and L, . In particular, we have that

CovLen(¢ (w;)Uy) > 2i,

and that 3(¢(w;)U1) < supp ¢ (a) U supp ¢ (b).

Proof Choose an open interval Uy € o supp ¢ (#) compactly contained in
I. By Lemma 5.2, there is a conjugate u’ € G' of u such that the image U,
of Up under this conjugation intersects LT. Conjugating by a further power
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- S +
L < > L

> (1 — 50)[1 > (1 — 50)51

s sup L, inf Lfr s

Fig. 10 Replacing u by a suitable conjugate u’

of b if necessary, we may assume (s~, st) C U for some s satisfying the
following.

inf LT + (1 —80)¢; <st <supL],
inf L7 <s= <supL; — (1 —3d0p)¢1.

Note 1 — 389 < 1/10. See Fig. 10. We now apply ¢ to the conjugates w,-u’wl._l.

|
Assume by induction that

inf L + (1 — 80)¢; < ¢p(wi—1)sT <supL;,
inf L; < ¢(wi—1)s™ <supL; — (1 —230)¢;.

As ¢(vl.]vi) is 8o-fast on Li+, there is x; € Ll.+ such that ¢(vl.]vi)x,- > x; + 8ol;.
Then
¢(wi_p)st > inf LT + (1 — 8o)t;=sup L — 80&; > (v )x; —80; > x;.
d(wi)st = ¢ )xi >x; + 8ot >inf LT + 8ot =sup LT — (1 — 8p)¢;
=inf L], 4+ (c — 1 +80)¢; > inf L, | + (1 — 80)i41.

Here, we used k > 1/4 > 2(1 — 8¢). By induction, we see that ¢ (w;)s™ €

Ly ' |
In order to cover ¢ (w;)U; by intervals in .%, we need at least

{Io, BY, C*, D* LT, ... L)

1

The conclusion is now obvious.

5.4 Certificates of non-commutativity

The following fact will be used in order to show that ¢ (GT) cannot be smoothed
algebraically.
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Lemma 5.4 Suppose we have u € G' such that supp ¢ (u) is compactly
contained in suppp = I\dI, and U € mosuppdp(u). If h € G sat-
isfies that ¢(h)U # U and that ||h|| < CovDist(inf U, supU), then
[¢ (), ¢ (huh~")] # 1.

Proof Write U = (z1, z2) and CovDist(z1, z2) = N < oo. Weclaim ¢p (h)U N
U # @. For, otherwise we have either ¢ (h)z1 > z2 or ¢ (h)zp < z1. But this
would imply that one of the following holds:

e CovDist(¢(h)z1,z1) = N;
e CovDist(¢p(h)zp,z2) > N.

This then violates Lemma 3.2.
Let f = ¢(u) and g = ¢ (huh™"). Since supp f is compactly contained in
1, there exists a compact interval J such that

supp f Usuppg € J < I\d1.

Since ¢ (G 1) is C*® ateachpointx € I\d1, we mayregard f, g € Diff°(J). A
corollary to Kopell’s Lemma (Corollary 3.7) implies that if f and g commute,
then U and ¢ (h)U must either be equal or disjoint. They are not disjoint by
the previous paragraph and they are not equal by the hypothesis. O

We remark that the above fact can be generalized to arbitrary compactly
supported representations which are C? in the interior. The following lemma
extracts the main content of this section which will be necessary in the sequel.

Lemma 5.5 Suppose u € G' satisfies that supp ¢ (u) is a nonempty set com-
pactly contained in supp ¢ (G). Then there exists a conjugate u’ of u in G'
such that for all i € N, for all s,t € {—1, 1} and for all h € G satisfying
k|| < 2i, we have

d)[wiu/wi_l, h/wiu/wi_l(h/)_l] #1
for at least one h' € {h,a* - h,b" - h}.

Proof Using Lemma 5.3, we obtain a conjugate u’ of u such that for each
i € N, the set supp ¢ (w;u’ wl._l) has a component U; whose covering length
is larger than 2i.

Note that for at least one i’ € {h, a® - h, b’ - h}, we have that

{inf U;, sup U;} € Fix ¢ ('),

and that ||A’|| < 2i. The nontriviality of ¢[w,~u’wl._1, h’wiu’wi_](h/)_l] fol-
lows immediately from Lemma 5.4. O
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5.5 Finishing the proof of Theorem 1.5
So far, we have constructed
¢ =i Gt — Diffg"(I).

Theorem 5.6 Suppose w is a concave modulus satisfying 0 < w < u, or
suppose w = bv. If we have a representation

¥ GT — Diff (D),

then we have that

[GT, G'1Nker y\ ker ¢ # @.
Proof Let uy := u" € [GT, G] be the element considered in Lemma 3.11
and Sect. 5.2. By the same lemma, supp i (u#1) is compactly contained in
supp w(GT). We see from the construction that ¢(u;) # 1. So, we may
assume ¥ (u;) # 1. Let us choose a minimal collection {Uy, ..., U,} C
T supp 1//(GT) such that

supp ¥ (u1) S Uy U---UU,.

There exists a conjugate u} of u; satisfying the conclusion of Lemma 5.5.
Recall from Sect. 5.1 that we have

lim N;(1/))'w(1/i) = 0.

Hence, we can apply Lemma 4.11 to ) and U;. We obtain some i € N, some
hy € G with ||hy]| < 2i, and some s, ¢ € {1, —1} such that

U N supp [w,-u/lwi_l, /lw,-u/lwi_l(h’l)_l] =g

for all choice of i} € {h1,a® - hy, b’ - hi}. As u/ has been chosen to satisfy
Lemma 5.5, there exists a choice of h/1 such that

Uy = [wiu/lwfl, h/lwiu/lwfl(hll)_l] S [GT, GT]\kerqﬁ.

Note that supp ¢ (1) is still compactly contained in supp ¢ (G'). We now
have

supp ¥ (u2) S Up U--- U Up,.
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Inductively, we use u> to obtain u) satisfying Lemma 5.5. The same argument
as above yields u3 € [GT, GT]\ ker ¢ such that

supp ¥ (u3) C Uz U---UU,.

Continuing this way, we obtain an element u,, € [GT, GT] Nker ¥\ ker ¢ for
somem <n+ 1. O

Remark 5.7 The idea of finding a nontrivial kernel element of an interval
action by successively taking commutators appeared in [11], where Brin and
Squier proved that PL[O, 1] does not contain a nonabelian free group. One
can trace this idea back to the proof of the Zassenhaus Lemma on Zassenhaus
neighborhoods of semisimple Lie groups [63]. This idea was also used in
[2,40].

Proof of Theorem 1.5 Let ¢y, = ¢ be the representation constructed in this
section. Theorem 5.6 implies the conclusion (i). We have already verified (ii).
O

Remark 5.8 The group ¢, (G") we constructed is never a subgroup of a right-
angled Artin group, or even a subgroup of a braid group; see [40, Theorem 3.12]
and [39, Corollary 1.2].

6 Proof of the Main Theorem

Let us now complete the proofs of all the results in the introduction.

6.1 The Rank Trick

If ¢: G — Homeo4[0, 1] be a representation, then a priori, it is possible that
the rank of the abelianization H(¢(G), Z) is less than that of H|(G, Z). Let
us now describe a systematic way of producing another representation ¢ such
that the rank of Hj(¢o(G), Z) is maximal.

Lemma 6.1 (Rank Trick) Let G be a group such that H\(G, Z) is finitely
generated free abelian. If we have a representation

p: G — Homeo™t (R)
such that supp p is bounded, then there exists another representation
po: G — (p(G), Diff °(R)) < Homeo™ (R)

satisfying the following:
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(1) supp pg is bounded;

(i1) po(g) = p(g) foreach g € [G, G];
(iii) H1(po(G),Z) = H\(G, 7).

Proof Let H{ (G, Z) = Z"™ for some m > 0. We can pick compactly supported
C°-diffeomorphisms 41, ..., h, such that

supp h; N supp p(G) = @ = supph; N U supph;.
J#

for each i. The abelianization of G can be realized as some surjection
a:G— {(hy,..., hy) =7Z".
We define a representation pg: G — Homeo™ (R) by the recipe
po(g) = p(g)a(g)

foreach g € G.Itisclear that pg satisfies parts (i) and (ii). Since o decomposes
as

G~ p(G) X (1o ) 2 (B,
we see that po(G) surjects onto Z™. This proves part (iii). O

Remark 6.2 Algebraically, the group po(G) is a subdirect product of p(G)
and Z™.

6.2 The Chain Group Trick

Letus describe a general technique of embedding a finitely generated orderable
group into a countable simple group. In Remark 3.19, we defined the notion of
a chain group, which is a certain finitely generated subgroup of Homeo™ (R).
We will need the following result of the authors with Lodha:

Theorem 6.3 ([41, Theorem 1.3]) If H < Homeo™ (1) is a chain group acting
minimally on I\01, then [H, H] is simple and every proper quotient of H is
abelian.

In [41], it is shown that every finitely generated orderable group embeds
into some minimally acting chain group. We will need a variation of this result
for diffeomorphisms. Let us use notations pgs, hgs and {ag, a1} as defined in
Sect. 3.6. By an n-generator group, we mean a group generated by at most n
elements.
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Lemma 6.4 (Chain Group Trick) Let G be an n-generator subgroup of
Homeo (R) such that supp G is compactly contained in (0, 1). We put

~

G = (G, pgs(F)).

(D Tﬁen~5 is an (n+2)-chain group acting minimally on (0, 1). In particular,
(G, G] is simple and every proper quotient of G is abelian. o
(2) If H1(G, Z) is free abelian, then there is an embedding from G into |G, G].

Proof We will follow the proof of [41, Theorem 1.3], taking extra care with
elements of pgs(F). Let us fix a generating set {g1, ..., gn} of G.

(1) Denote by Qgs the set of hgs-images of all dyadic rationals in [0, 1].
We set

0 <s1:=hgs(1/2) < s := af2a0.s1 < 83 := aflao.sl < 84 :=ap.s] < 1.

Since s; € Qgs, we can find f1 € pgs(F) such that supp f1 = (s2, s3) and
such that fi(r) > ¢ forall r € [0, 1]. We fix 1y € (s2, s3) N Qgs, so that

52 = f1(s2) < 1o < f1(to) < 53 = f1(s3).

After conjugating G by a suitable element of pgs(F') if necessary, we may
assume that the closure of supp G is contained in (¢9, f1(%p)). O

Claim If g = g; for some 1 <i < n, then we have that

=1 ift <si,
ajog(t) Y€ (t,ap(t)) ift € (s1,54),
= ap(?) ift > s4.

Ift ¢ (s2,53),thenajog(t) = aj(t) and the claimis obvious. If € (52, 53),
then

a;'(t) <a;l(s3) =52 < g(t) <s3=a; ' (s4) < aj;’ oap().

This proves the claim.
Wedefineug = ay,andu; = agifori =1, ..., n.Wealsoletug = ualao,
* _ . n —n
Uy | = aglndy and

1 —i [ —1 1—i .
ay')-(ay ‘uj—1ay ), i=1,...,n.

* i —
u; = (agu;
Then we have

G = (G, ap, ai) = (U, - Uy ).
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The group G acts minimally on (0, 1) since so does pgs(F).

It now suffices to show that the collection {ug, u7, ..., u, ,}isagenerating
set for an (n 4 2)-chain group; this is a routine computation of the supports
using the above claim, and worked out in [41, Lemma 4.2].

(2) Recall we have defined f| € pgs(F) in part (1). We put

Gi1=(G, fi)=(g1,.... 8 1) <G.

For all distinct i, j € Z we have

fi(supp G) N flj (suppG) = @.

Let H1(G, Z) = Z™ for some m < n. Possibly after increasing the value of n
if necessary, we may require that {g1, ..., g, } generates H{ (G, Z), and that

{gm—H» L] gn} g [G’ G]

we have an embedding G < [G, G 1] defined by

g g flg T it <my
gi — g, ifm<i <n.

The proof is complete since [G1, G{] < [5, 5].

Remark 6.5 In the above lemma, put

Vi={g1,.... gn}\PGs(F).
Then the group G = (G, pgs(F)) = (V, pgs(F))is a (|V| + 2)-chain group.
Let us make a general observation.

Lemma 6.6 Let G be an infinite group such that every proper quotient of G
is abelian. Then every finite index subgroup of G contains [G, G].

Proof Let Gy < G be a finite index subgroup. Then G acts on the coset space
G /G by multiplication and hence there is a representation from G to the
symmetric group of G/ Gy. Since every proper quotient is abelian, we see that
[G, G] acts trivially on G/ Gyg. This implies [G, G] < Gy. 0O
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6.3 Proof of Theorem 1.4

We will prove the theorem by establishing several claims. Let k and u be as
given in the hypothesis of the theorem. We denote by

¢ =r,: GT — Diffi"(I)

the representation ¢ constructed in the previous section. We put 7} := ¢(G™).
From now on, we will assume supp 77 is sufficiently smaller than / whenever
necessary.

By the Rank Trick (Lemma 6.1), we can find

¢o: GT — Diffl " (1)
such that the conclusions of Lemma 6.1 hold. We put 75 := ¢o(G ) so that
H(Ty, Z) = H\(G",Z) = 7*,
We may assume supp 7> € I € (0, 1).

Claim 1 We have that Ty, T, < Diffly" (I) and that

nnh¢ |J gemugto.
O<po<u

This claim for 77 follows from Theorem 5.6. In order to prove the claim
for 7>, we let 0 < @ <« p or let w = bv. Suppose {: 7o — Difff;‘”(]) isa
representation. By applying Theorem 5.6 again to the composition

Gt 21, o piftte )

we see that there exists g € [GT, GT]\ ker ¢ such that ¥ o ¢o(g) = 1. Since

¢o(g) = ¢(g) # 1 by Lemma 6.1 (ii), we have ¢o(g) € ker v\{1}. This
proves the claim.
We can apply the Chain Group Trick (Lemma 6.4) to 7>, and obtain

ok
Ts := (T», pas(F)) < Diffy"[0, 1]

acting minimally on (0, 1) as a seven-generator chain group. From Claim 1
and from the fact T, < [T3, T3], we obtain the following and complete the
proof of Theorem 1.4 for M = 1.
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Claim 2 The countable simple group [Tz, T3] < Diffé’“ [0, 1] satisfies that

73, 151¢ | J “muga.
O<roKu

Let us now consider the case M = S!. After a conjugation, we may assume
supp 73 € 1 < (0, 1). As BS(1, 2) embeds into Diff° (), we may regard

T3 x BS(1,2) < Diff " (s").
Claim 3 We have the following:
(T3, T3] x BS(1,2) e 9**(sH\ | [J #*osHughsh
O<roKu
Let 0 <x w < u, or let @ = bv. Suppose that
¥ [Ts, Ts] x BS(1,2) — Diff%(sh)
is an injective homomorphism. By Lemma 3.9 (2), a proper compact subset of
S! contains supp ¥[T3, T3]. Here, we used Lemma 6.6 for the simple group
[T3, T3]. By Claim 2, the group ¥[73, T3] admits no nontrivial homomor-
phisms to Diff]iw(l ). It follows that [T3, T3] < ker ¥, a contradiction. This
proves the claim.
Recall F denotes the Thompson’s group acting on [0, 1]. We have a natural
map
p:THh*xF — T3 < Diffg’“(l).
We can apply the Rank Trick to p, since
H\(T, x F,7) = H\(T»,7) ® H,(F,7) = 7°.
Then we obtain a representation

po: o % F — (T3, Diff*(R)) < Diff" (R).

Let T4 be the image of pyp. We may require that supp 74 € I < (0, 1) and that
H\ (T4, 7Z) is free abelian. Moreover, we have [T3, T3] = [Ty, T4].
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Regard Ts := Ty x BS(1,2) < Diffg*(I) so that supp Ts < I < (0, 1).
We have

[T3, T3] x BS(1, 2) = [T4, T4] x BS(1,2) < Ts.

Claim 3 now implies the following.

Claim 4 The group Ts is a nine-generator group such that

Tseg s\ | g“©hHugttsh
O<rw<Ku

Since H((T5,7) = H{(14, Z) & Z is free abelian, we can finally apply
the Chain Group Trick to obtain a minimally acting eleven-chain group Q =

Q(k, n) with
Ts — [Q, Q] < Q < Diff}"(I) = Diff* " (sh).

Summarizing, we have the following.

Proposition 6.7 Let k € N, and let i > w be a concave modulus. Then
there exists an eleven-generator group Q = Q(k, u) such that the following
hold.

(1) [Q, Q] is simple and every proper quotient of Q is abelian.
(2) Q < Diffg"(I).

3) [0, 01 ¢ Up< ey (52 U ghe(ShH) UgEPY (1) UGRPY(ST).
(4) LetO < w <K W, orletw = bv. Then for an arbitrary finite index subgroup
A of Q, and for all homomorphism

¥ A — Diff (M),

the image is abelian, whenever M € {I, s,

Proof Part (1) follows from that Q is a minimally acting chain group (Theo-
rem 6.3). Part (2) is established above. We deduce part (3) from

[73, T3] = T5 — [Q, Q1.

Part (4) is a consequence of parts (1) and (3) along with Lemma 6.6. O

We have now proved Theorem 1.4. For a later use, we record the inclusion
relations between the groups appearing above:

[T, T =1, Dl =T —> 13, 1 =1, Ty = Ts = T5 — [Q, 0] = 0.
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In the above diagram, the isomorphisms = come from the Rank Trick and the
embeddings < come from the Chain Group Trick.

6.4 Continua of groups of the same critical regularity

Recall a continuum means a set that has the cardinality of R. The Main Theorem
is an immediate consequence of the following stronger result, combined with
Theorem 6.3.

Theorem 6.8 For each real number a > 1, there exist continua Xy, Yy of
minimal chain groups acting on I such that the following conditions hold.

(i) Foreach A € X, we have that A < Diff( (1) and that

(A, Al ¢ |9’ ayuegPsh.

B>«

(i) For each B € Y,, we have that B < ﬂﬁ<a Diffg(l) and that
[B, B] ¢ 9%(1) U%“(S").

(iii)) No two groups in X U Y, have isomorphic commutator subgroups.

In order to prove Theorem 6.8, we set up some notations. For a complex
number z € C, we let (z) denote the largest integer m such that m <¢ z. For
instance, we have (k) = (k — /—1) =k — 1l and (k + 1/2) = (k + Vi) = k
for an integer k. Let z >¢ 1, written as z = k + 7 + sa/—1 for k = |Rez]
and 7, s € R. We put

k(z) = ((2), wz—(z))-

If @ > 1 is areal number and if kK = |« ], then we see that

(k’ a)(x—k)a lfO[ #ka

=V L. ifa =k,

Using the notation Q(k, ) from Proposition 6.7, we observe the following.

Lemma 6.9 The following hold for all complex numbers 1 <c z <c w.

(1) We have that Dift® (M) > Dift*™ (M).
(@) Ifz ¢ N, then w;—z) > o1.
(3) IfRez > 1, then w,_ ;) is sub-tame or Re z > 2.
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(4) If z ¢ Nand Rew > 1, then we have that

[Qo0k(2), Qok(z)] ¢ 9™ (Sh).

Note that ¥<®) (1) € @< (S!) by Theorem A.3.

Proof Parts (1) and (2) are obvious from Lemma 2.7. For part (3), let us write
7 = k+1 +s+/—1 as above. Suppose w;—(z) s not sub-tame. By Lemma 3.14,
we have that z — (z) = s+/—1 for some s > 0, and that z = k + s+/—1. It
follows that k > 2.

For part (4), we first assume Re z # 1. There exists a real number ¢t > s
such that st > 0 and such that z <¢ w’ := k 4+ 7 + t+/—1 <¢ w. Using part
(1), we may assume w = w'. Part (3) implies wy,— () >k 0. We have that

(k(2), k(W) = (((2), W~ (2)), ({2), @u—(2))) -

The conclusion of (4) follows from Lemma 2.7 and Proposition 6.7.

Let us assume Re z = 1, so that z = s+/—1 for some s > 0. We can pick
w' =1+ 1t <c w for some T € (0, 1). Again, we may set w’ = w so that
wy—(w) 1s sub-tame. The desired conclusion follows from the comparison

(e@). e = (1, o,y (Lon)).

O

Remark 6.10 In the case when z = 1 + s4/—1 and w = 1 + t+/—1 for some
0 < s < t, we cannot conclude that part (4) above holds. This is because
Wy —(w) = ®, /T May not be sub-tame.

Let us now prove Theorem 6.8 for the case @ > 1. We define

X :={Qo/c(o¢+s«/—_1):s > 0},
Yy :={Qok(ax+sv—1):s <0}.

Pick a real number s > 0 and put A = Q ok (« + s+/—1) € X,. Note that

(atsv/—1)

A < Diff, (I) < Diffg(I).

Let 8 > o be anon-integer real number. By Lemma 6.9, we have that [A, A] ¢
@< B) (1) = 9P (S1). The conclusion (i) of the Theorem is satisfied.

Let us now pick areal numbers < Oand put B = Qoxk (oz + s«/—l) €Y,.
Let B < « be non-integer real number larger than 1. We have that

B < Diffs V=D 1y < pifes? (1) = Difel (1),
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Since @ >c o + s+/—1 >¢ 1, we see from Lemma 6.9 that
[B, B] ¢ 9@ (s") 2 9°(sh).

This proves the conclusion (ii).

It is obvious from the conclusions (i) and (ii) that whenever A € X, and
B € Y,, we have [A, A] 2 [B, B]. Suppose we have real numbers 0 < 51 <
sy, andput A; = Qok(a+s; v=1). Using o > 1 we deduce from Lemma 6.9
that

[A1, A] ¢ 9<@t2v=D(gl),

In particular, [Aq, A;] 2 [A2, Az]. Similarly, no two groups in Y, have iso-
morphic commutator subgroups. This proves the conclusion (iii).

Let us now construct a continuum X. For each 8 > 1, we pick Gg € Xp.
We put G| := Q o k(1 ++/—1) so that [Gy, G1] ¢ 47 (S!) for each y > 1.
By the Rank Trick for the natural surjection from a free group onto Gg for
B > 1, we obtain another group G g = Diffg (1) whose abelianization is free
abelian such that [Gg, Gg] = [Gg, Ggl. It follows that G4 ¢ %7 (S') for all
y>pB=1

For each 8 > 1, we can apply the Chain Group Trick to G| x G g to obtain
a minimally acting chain group I'(8) such that

G1 x Gg = [T(B), T ()] < T(B) < Diffy(1).

It follows that [['(B), ['(B8)] ¢ 47 (S!) for all y > 1. From the consideration
of critical regularities, we note that G g% C_}y whenever 1 < < y.Note also
that G g = [I'(B), I'(B)] and that a countable group contains at most countably
many finitely generated subgroups. So, there exists a continuum X* C (1, 00)
such that for all distinct 8, y in X™*, we have

('), TBITZE (), Tyl
Then X; = {I"(B) | B € X*} is the desired continuum of the theorem.

Finally, let us construct a continuum Y. To be consistent with the notations
in Sect. 6.3, let us set

Ty = (A, B,C | A> = B3 = C = ABC) < PSL(2, R) < Homeo, (R).
As we noted in Remark 1.2, we have that ¥0(M) = 4P (M). So, it suffices

to compare the regularities C° and C'. Kropholler and Thurston (see [6])
observed that the group 7> is a finitely generated perfect group, and by Thurston
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Stability, that every homomorphism from 75 to Diff! 1 (I) has a trivial image.
In particular, Hy(7T», Z) is trivial and T, € %0(1)\%1(1). We continue as in
Sect. 6.3, after substituting (k, u) = (0, 0) and (k, w) = (1, 0) (and forgetting
k, bv). We obtain groups 73, T4, T5 and a minimally acting chain group Q <
Homeo (1) such that

T, = [0, 01 ¢ %' (SH.

Let us put H; := Q. The construction of Y; is very similar to that of Xj.
For each > 1, we can find a finitely generated group Hﬁ < ﬂy ~p Diff J/(I )
such that H1(H,g, Z) is free abelian, and such that {-1,3 ¢ 9 B(SY). For each
B > 1, we apply the Chain Group Trick to H; x Hg and obtain a minimal
chain group A(B) such that

Hy x Hg = [A(B), A(B)] < A(B) < Homeo (I).

As before, there exists a continuum Y* C (1, 00) such that Y7 = {A(B) | B €
Y*} is the desired collection. Note that no two groups in the collection X U Y
have isomorphic commutator subgroups.

Remark 6.11 Calegari [15] exhibited a finitely generated group in ¢°(S')\&!
(S1). Lodha and the authors [41] gave (continuum many distinct) finitely gen-
erated groups inside ¢ 0D \¥Y LD having simple commutator groups, building
on [46]. The last part of the above proof strengthens both of these results.

6.5 Algebraic and topological smoothability

Theorem 1.5 also implies that if @ > 1 is a real number, then there are very
few homomorphism Diff% (§ - Diff’i(S 1) and Diff% (R) — Difff (R) for
all B > «.

Proof of Corollary 1.8 By the Main Theorem, none of the maps in (1) through
(3) are injective. The desired conclusion now follows from Theorem 3.16. O

Group actions of various regularities on manifolds are closely related to
foliation theory (see [18], for instance). One of the canonical constructions
in foliation theory is the suspension of a group action, a version of which
we recall here for the convenience of the reader. Recall our hypothesis that
M e {I,S'}. Let B be a closed manifold with a universal cover B — B.
Suppose we have a representation

W : 71 (B) — Diff% (M),
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The manifold B x M has a natural product foliation so that each copy of B is
a leaf. The group 771 (B) has a diagonal action on B x M, given by the deck
transformation 771 (B) — Homeo(B) and by the map . The quotient space

Ep) = (B x M) /m(®B)

is a C*-foliated bundle. This construction is called the suspension of yr; see
[18] for instance. Two representations ¥, ' € Hom(m; (B), Diff% (M)) yield
homeomorphic suspensions E (), E (") as foliated bundles if and only if v
and ' are topologically conjugate [17, Theorem2].

Let us now consider the case M = I and B = S,, a closed surface
of genus ¢ > 2. Let k > 0 be an integer. Cantwell-Conlon [21] and
Tsuboi [69] independently proved the existence of a representation Y €
Hom (71 (Sy), Diff’i(l )) such that ¥ is not topologically conjugate to a rep-
resentation in Hom (71 (Sg), Diff]_iJrl (M)). So, they concluded:

Theorem 6.12 (See [21] and [69]) For each integer k > O, there exists a
C*-foliated bundle structure on S» x I which is not homeomorphic to a C¥+1-
foliated bundle.

We will now prove Corollary 1.9, which is the only remaining result in the
introduction that needs to be shown. Assume o > 1 is a real number and
g > 5. Theorem 1.5 implies that there exists a representation

Yo € Hom(r| (S,), Diffé (1))

such that v, is not topologically conjugate to a representation in

Hom | 1(S), | Diff% (1)

B>«

Hence, we may replace the hypotheses C¥ and C¥*! in Theorem 6.12 by C*
and g, C#, respectively.

We can further extend this result to more general 3-manifolds, using the
techniques in [20] described as follows. Every closed 3-manifold Y with
H>(Y,Z) # 0 contains an embedded 2-sided closed surface S, for all suffi-
ciently large g > 0. Goodman used this observation to prove that ¥\ Int(S, x )
admits a smooth foliation structure, based on Thurston’s result; see [31, Corol-
lary 3.1] and [67]. By adding in the aforementioned foliated bundle structure
of §; x I inside Y, we complete the proof of Corollary 1.9.
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7 Further questions

Let M e {I, S'}. One can ask for a finer distinction at integer regularities. A
difficulty with part (1) below is that there does not exist a concave modulus
below w1, by definition.

Question 7.1 (1) Let k > 1. Does there exist a finitely generated subgroup
G < Diff’iLlp(M ) that does not admit an injective homomorphism into
DiffA ! (M) 2

(2) Does there exist a finitely generated group in the set

() 9P NG (M)
BeN

Many questions also persist about algebraic smoothability of groups. For
instance, finite presentability as well as all other higher finiteness properties
of the groups we produce are completely opaque at this time. We ask the
following, in light of Theorem 6.8:

Question 7.2 For which choices of a and B do there exist finitely presented
groups G € G*(M)\4P(M)? What ifa, B € N?

Moreover, the constructions we carry out in this paper are rather involved.
It is still quite difficult to prove that a give group does not lie in 42 (M).

Question 7.3 Let G be a finitely generated group. Does there exist an easily
verifiable algebraic criterion which precludes G € 4P (M)?
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Diffeomorphism groups of critical regularity

Appendix A. Diffeomorphism groups of intermediate regularities

Let M € {I, S'}. We will record some basic properties of Diff]j_’“)(M ). Most
of these properties are well-known for the case w = 0, but not explicitly stated
in the literature for a general concave modulus w. We will also include brief
proofs.

A.1. Group structure

Let k € N, and let w be a concave modulus. In [51], it is proved that for a
smooth manifold X, the set Diff lé’w(X )o is actually a group. We sketch a proof
of this fact for one-manifolds, and also include the case w = bv.

The following lemma is useful for inductive arguments on the regularities.

Lemma A.1 Suppose w is a concave modulus, or w € {0, bv}. Letk € N, and
let

F.G: M — R

be maps such that F is C*=1¢ and such that G is C*. Then the following hold.

(1) The multiplication F - G is Ck—1-@.
(2) The composition F o G is Ck—1..

Proof This lemma is proved in [51] when w = 0 or when w is a concave
modulus. So we assume w = bv. We let {x;} be a partition of M.
(1) First consider the case k = 1. We note

|F-Gxi) — F-Gxi—)| = [F(xi) — Fxi—)] - |Glloo
HFlloo - 1G1I1,001xi — Xi-1].

Hence, if F - G is C?. If k > 1, then we use an induction to see that
(F-G)=F -G+ F-G
is CK=2:%V_ This proves part (1).

(2) The map F o G is well-defined for all x € M. Let us first assume k = 1,
so that F e C® . Since G is bijective, we see that

Z |F o G(x;) — F o G(xj_1)| < Var(F, M) < oo.

1

The induction step follows from

(FoG) =(F' 0G)-G.
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O

Proposition A.2 Let w be a concave modulus, or let ® = {0, bv}. Then for
each k € N, the following is a group where the binary operation is the group
composition:

Diff* (M).

Proof Let f, g € Diff/jr"”(M ). It is well-known that Diffﬁ(M ) is a group. So,
wehave f7!, foge Diff’jL (M). It suffices to show that both are C5©.
Note that (fog) = (f'og)-g’. Since f’is C¥~1® and g is C¥, Lemma A.1
implies that f’og is CK~1¢ By the same lemma, we see that ( fog)’is C¥— 1@,
This proves f o g is CF®.
We can write

(f) =roflof

where r: (0, 00) — (0, 00) is the C*° diffeomorphism r(x) = 1/x. Note that
f' stays away from 0. As f’is C*~1¢ and f~!is C*, we again see that f~!
is Che, O

A.2. Groups of compactly supported diffeomorphisms

We now establish a topological conjugacy between certain diffeomorphism
groups.

Theorem A.3 Let w be a concave modulus. Then for each k € N, the group
Diff]j_’w(l) is topologically conjugate to a subgroup ofDiff]CC’w(R).

Muller [54] and Tsuboi [68] established the above result for the case w = 0.
Our proof follows the same line, but an extra care is needed for a general
concave modulus w as described in the lemmas below.

When we say a function f is defined for x > 0, we implicitly assume to
have a small number A > 0 so that f is defined as

f:10,A] — R.

We let k and w be as in Theorem A.3.

Lemma A.4 Suppose f is a C® map defined for x > 0 such that

fO) =f0=---= L0 =o.

Then the following hold.
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(1) We have that

X 141 Tk—1
F) = f f T @y g an
11=0 J1n=0 =0

(2) The map f/x* extends to a C® map on x > 0.
(3) The map f/x extends to a C*~1% map on x > 0.

We thank Nam-Gyu Kang for suggesting a key idea for the proof below.

Proof of Lemma A.4 Part (1) is simply an application of the Fundamental The-
orem of Calculus. Let us consider part (2). We note for all small # > 0 that

h 11 Th—
A R N RO VL M)
11=0 J1,=0 =0

So, f/x*is C® at x = 0. For all small 0 < x < x + h, we see that

Q)
hk

fx+h  f)

(x + h)k xk

x+h te—1 ®
: ()
(x + h)k +h) f=x /m /tk

T—
+(1- ®
( (x + h)") /tl_O /12_0 =0 f (1)

hx + )1 o +h) X ©
—< (x+ hyF +(1 m) wm) e

Using the inequalities 1 — 1/(1 + 1% < kt and w(s)/s < w(t)/t for all
0 <t < s, we conclude that

fx+h f(X)

(x + h)k < (k+ DI Py - o).

This proves part (2).
For (3), we have some a; € 7Z such that

k
(/%D =3 a f 40

i=l

Since f* = is C*®, we see from part (2) that (f/x)*~V is C®. O
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The rest of the proof for Theorem A.3 closely follows the argument in [68],
as we summarize below. Let us fix a map that is defined near x = 0:

d(x) = e /X,
Lemma A.5 For a C*® map g defined for x > 0 satisfying g(0) = 0 and

g'(0) > 0, the following hold.

(1) The map h = g/x is a CK=1% map defined for x > 0.
(2) The map y o g o ¢ is a C*® map defined for x > 0. Moreover, we have

Yogop(0)=0, (Yogod)(0)=1.
(3) The map P(g) = V2o go ¢% is a C*® map defined for x > 0, and
moreover, ®(g)V(0) = 1d(0) forall 0 < i < k.

Proof (1) If Tpg(x) denotes the k-th degree Taylor polynomial for g, then
f = g — Tyg satisfies the condition of Lemma A.4. The conclusion follows
since g/x — f/x = Tyg/x is a polynomial.

(2) Put G = v o g 0 ¢, so that

—1 —1 X
~ log(go¢) —1/x+log((gop)/¢p) 1—xloghog’

G(x)

By part (1), the map & is CK=1¢ for x > 0. As x approaches to 0, the denom-
inator of the above expression for G stays away from 0 because

lim1—xlogho¢p =1—-0-logg'(0) =1.
x—0
It follows that G is CK—1-¢ for x > 0. Moreover, G is C*® for x > 0.
We compute the following:
G'(0) = lim 1/(1 —xlogh o ¢(x)) =1,
x—0

oo I+ e-(Wop)/(hoo)
OO = Trloghog?

Fromxh' = g'—h, wesee that ¢- (h’o¢) is C¥~1® and that lim,_,o G'(x) = 1.
We conclude that G’ exists for x > 0 (even when k = 1), and is C¥~ 1. It
follows that G is CK®.

(3) We only need to compute CID(g)(i)(O). By setting y = ¢2(x), we have
that

Q) —x _ YPe() — Y1)
¢ ()
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1
= (=1 - '
(—logy) (log(_ logg) log(—log y))

It is a simple exercise on L'Hospital’s Rule to see that

. P(x) —x —logy logy _
lim —————— = lim 5 —1)=0.
Y0 ) y—0 (log(—log y))* \log g

For all 0 <i < k, we have that

! DP(g)x) —x . P(E)X)—x o(x)
im . lim . — —

x—0 x! x—0 ¢ (x) x!

0.

By L’Hospital’s Rule again, we have (®(g) —Id)) = 0forall0 <i <k. O

Proof of Theorem A.3 Consider a C°°-homeomorphism ¢: I — I such that
¢(x) = e V¥ near x = 0, and such that ¢ (x) = 1 — e~ /U= pear x = 1.
We put v = ¢~ For each g€ Diff’i’a’(l), we define ®(g) = wz ogo ¢2.
Then Lemma A.5 (3) (after using the symmetry at x = 0 and x = 1) implies
that ®(g) € Diff*“(R). O

A.3. Simplicity

Let us use the following terminology from [41]. Let X be a topological space,
and let H < Homeo(X). We say H acts CO-transitively (or, compact-open-
transitively) if for each proper compact subset A € X and for each nonempty
open subset B € X, there is # € H such that u(A) € B. Lemma A.6 is a
variation of a result commonly known as Higman’s Theorem.

Lemma A.6 ([41,Lemma?2.5]) Let X be a non-compact Hausdorff space, and
let Homeo (X) denote the group of compactly supported homeomorphisms
of X. If H < Homeo (X) is CO-transitive, then [H, H] is simple.

Let X be a topological space. We say H < Homeo(X) has the fragmentation
property for an open cover % of X, if each element 7 € H can be written as

h=h-h

such that the support of /; is contained in some element of 2. The following
lemma is very useful when proving simplicity of homeomorphism groups.
This lemma is originally due to Epstein [25]; let us state a generalization by
Ling [45].

Lemma A.7 ([25,45]) Let X be a paracompact Hausdorff space with a basis
PB, and let H < Homeo(X). Assume the following.
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(i) H has the fragmentation property for each subcover % of B,
(ii) for each U,V € 2B there exists some h € H such that h(U) C V.

Then [H, H] is simple.
The following lemma is known for @ = 0 [60], detailed proofs of which

can be found in [4,49]. The proof for a concave modulus w is the same almost
in verbatim.

Lemma A.8 Let k € N, and let w be a concave modulus. Then for a smooth
manifold X without boundary, the group Diff’é’w(X )o has the fragmentation
property for an arbitrary open cover of X.

From now on, we let X € {Sl, R}. We let C¥(X, R) denote the set of
real-valued compactly supported w-continuous maps X — R. For each f €
C.(X,R) = C?(X , R), we define the optimal modulus function of f as

w! (1) = sup{| fx — fyl: x,y € X and |x — y| <1}.
It is trivial that for all x, y € X we have | fx — fy| < uf (Jx — y]).
Lemma A.9 For X € {S', R} and for f € C.(X,R), the following hold.

(1) The optimal modulus function ,uf : [0, 00) — [0, 00) is continuous, mono-
tone increasing and subadditive.

(2) Foralls,t > 0, we have that u/ (t) < (1 +t/s)u ().

(3) There exists a concave modulus p such that f € CH (X, R) and such that

CH(X,R) = m{Cé”(X, R) | w is a concave modulus and f € C? (X, R)}.

Proof Part (1) is a consequence of the convexity of X and the uniform con-
tinuity of f. Part (2) is obvious when ¢ < s. If r > s, then part (2) follows
from

wl () < (e —sle/sh+ Le/siud () < (L +1/s)n? (s).

For part (3), we will use the idea described in [5, p.194]. Let .% be the family
of continuous, monotone increasing, concave functions % : [0, co) — [0, 00)
such that ,uf (t) < h(r) for all + > 0. For instance, part (2) implies that the
line

hy(t) = (1 +t/s)pn (5)

belongs to .# for each s > 0. Define

pi(t) == inf h(r) < h,(t) =27 (1).
heF
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Then w is continuous, monotone increasing and concave. Put u := p1 + 1d,
so that

' <p<p<2pf +1d.

We see that 1 is a concave modulus such that f € C¥ (X, R).

Put T := diamsupp f > 0. Suppose f € CZ(X, R) for some concave
modulus w. It only remains to show that CX (X, R) C C?(X, R). For each
t > 0, we have

W' @)= sup [fx— fyl <[flw- o).

l[x—y|<t

Forall 0 <t < T, we see that
w(@) <2ul () +1t < Qlfly+ T/o(T)) - w(t).

There exists a constant K such that for each g € CX (X, R), we have

X — X — 2
gl < lgx — gyl wp /8% — 8Vl < Klglp + lglloe _
|x—y|<T o(lx —y|) lx—y|>T o(lx —yl) o(T)
It follows that g € C2(X, R) and the lemma is proved. O

We are now ready to prove the simplicity of certain diffeomorphism groups.

Theorem A.10 (Theorem 3.16) For each X € {S', R}, the following hold.

(1) If o > 1 is a real number, then every proper quotient of Diff% (X)¢ is
abelian. If, furthermore, a # 2, then Dift% (X)g is simple.

2) If o > 1 is a real number, then every proper quotient of ﬂ5<a Difff (X)o
is abelian. If, furthermore, « > 3, then () p<a Diffcﬁ (X)o is simple.

Proof We prove the theorem through a series of claims. O

Claim 1 The following groups have simple commutator groups:
e Diff%(R) fora > 1;
o Ny Difff (R) fora > 1.

Both of the above groups contain Diff2°(R). Since Diff2°(R) acts CO-
transitively on R, the claim follows from Lemma A.7.

Claim 2 For each a > 1, the commutator group of Diff% (S 1y is simple.
By Lemma A.8, the group Diff? (S 1) satisfies the condition (i) of
Lemma A.7. The condition (ii) follows from Diff$°(S!) < Diff* (S1).
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Claim 3 If o > 1, then every proper quotient of Diff% (X)¢ is abelian.

By an easy application of Kopell’s Lemma and Denjoy’s Theorem [23],
we see that Diff% (X )¢ has trivial center. Combined with Claims 1 and 2, this
implies the assertion.

Recall from Sect. 6.4 that we defined the notation (z) for z € C.

Claim 4 Ifo > 1, then there exists a collection of concave moduli F (a) such
that

ﬂDifff(X)oz U Diff *) (X )o.
B<a HET (o)

Put k = |o]. Assume first @ # k, so that k = («). Suppose we have

f € () Diftf (X)o < Diffg (X)o.

B<a

Let u be a concave modulus as in Lemma A.9 for the map f® e C.(X, R).
Whenever k < 8 < «, we have f© ¢ CA=k(X, R). The same lemma implies
that

CH(X,R) C CFR(X,R).

So, we have f € Difflcc’”(X)o - ﬂﬁ<a Diffc’3 (X)o and completes the proof
when « # k. The proof of the case that « = k = (&) + 1 is almost identical.

Claim 5 Foreacha > 1, everyproper quotient of ) <o Diff ’3 (X)g isabelian.

The case X = R follows from Claim 1, so we may only consider the group

G = () Dift’ (s").

B<a

By Lemma A.8 and Claim 4, the group G has the fragmentation property
for an arbitrary cover. Since Diffﬂ’rO (S1) < G, we can deduce Claim 5 from
Lemma A.7.

Coming back to the proof of the theorem, we only need to prove the latter
parts of (1) and (2). The latter part of (1) is a special case of Corollary 3.15.
For the latter part of (2), assume o > 3. We see from Mather’s Theorem and
from Claim 4 that the group () B<a Difff (X)o is a union of perfect groups.
The conclusion follows. O
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