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Abstract
1. Camera traps deployed in grids or stratified random designs are a well-established
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. We used an empirical subsampling approach involving 2,225 camera deployments

run at 41 study areas around the world to evaluate three aspects of camera trap
study design (number of sites, duration and season of sampling) and their influ-
ence on the estimation of three ecological metrics (species richness, occupancy

and detection rate) for mammals.

. We found that 25-35 camera sites were needed for precise estimates of species

richness, depending on scale of the study. The precision of species-level estimates
of occupancy (y) was highly sensitive to occupancy level, with <20 camera sites
needed for precise estimates of common (y > 0.75) species, but more than 150
camera sites likely needed for rare (y < 0.25) species. Species detection rates were

more difficult to estimate precisely at the grid level due to spatial heterogeneity,
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presumably driven by unaccounted habitat variability factors within the study area.
Running a camera at a site for 2 weeks was most efficient for detecting new spe-
cies, but 3-4 weeks were needed for precise estimates of local detection rate,
with no gains in precision observed after 1 month. Metrics for all mammal commu-
nities were sensitive to seasonality, with 37%-50% of the species at the sites we
examined fluctuating significantly in their occupancy or detection rates over the
year. This effect was more pronounced in temperate sites, where seasonally sensi-
tive species varied in relative abundance by an average factor of 4-5, and some

species were completely absent in one season due to hibernation or migration.

. We recommend the following guidelines to efficiently obtain precise estimates of

species richness, occupancy and detection rates with camera trap arrays: run each
camera for 3-5 weeks across 40-60 sites per array. We recommend comparisons
of detection rates be model based and include local covariates to help account for
small-scale variation. Furthermore, comparisons across study areas or times must
account for seasonality, which could have strong impacts on mammal communities

in both tropical and temperate sites.

KEYWORDS

1 | INTRODUCTION

Monitoring wildlife populations is more important than ever, given
the imperiled status of many species around the world, and the rapid
changes to the earth's climate and landcover (Dirzo et al., 2014).
Camera traps are now a standard method for monitoring a variety
of species over relatively large areas (Steenweg et al., 2017; Wearn
& Glover-Kapfer, 2017), being used to quantify species diversity, and
estimate occupancy and relative abundance. These estimates can be
compared across space and time to monitor changes in populations and
test hypotheses about the effects of landscape and human factors on
species relative abundance, distribution and interspecific interactions.

The growth of camera trap surveys for monitoring biodiversity
has led to substantial variation in study designs across projects, with
sample size ranging from 1 to >1,000 camera sites (Burton et al.,
2015). The foundational questions a researcher must address when
designing a camera trap study include the following: how many cam-
era traps to run, for how long and at what time of year? Although
there have been strong theoretical assessments of camera trap
survey design (Galvez, Guillera-arroita, Morgan, & Davies, 2016;
Guillera-Arroita, Ridout, & Morgan, 2010), unfortunately, empiri-
cal evaluations using real-world data have been fewer. For exam-
ple, Si, Kays, and Ding (2014) found that adding camera trap sites
was a higher priority than increasing survey length, and Shannon,
Lewis, and Gerber (2014) found that precise estimates could be
made with surveys of 30-50 sites for common animals, but those
species with low probabilities of detection required extended sur-

vey lengths, and that adding camera sites was more effective than

camera traps, community ecology, detectability, mammals, relative abundance, species

richness, study design, wildlife surveys

lengthening survey duration to improve estimate precision. The
influence of seasonality on camera trapping data has been largely
neglected to date, probably because most tropical data come from
cameras run during the dry season to reduce damage to cameras
(TEAM Network, 2008), while most temperate zone data come from
the growing season. A few studies have noted seasonal differences
including migratory ungulates in the Serengeti (Palmer, Swanson,
Kosmala, Arnold, & Packer, 2018) and a peak of coyote detections
in California when individuals were dispersing (Larrucea, Brussard,
Jaeger, & Barrett, 2007).

The surge in popularity of sampling with camera traps, combined
with improvements in technology and data management, has facili-
tated the accumulation of large centralized datasets from around the
world. These datasets can be examined to evaluate the consequences
of survey study design across species and locations allowing for gen-
eral recommendations to researchers and practitioners. We analysed
41 camera trap datasets including 1,771 sites to evaluate three as-
pects of camera trap study design: (a) how many camera traps should
researchers run? (b) how long should they run each individual camera
trap? and (c) does seasonality affect results? For each question, we
subsampled large datasets to investigate how sample effort and de-
sign affect estimates of species richness, individual species detections
and occupancy probabilities. To facilitate comparisons of sites from
around the world, we used no habitat covariates in our occupancy or
relative abundance models. These covariates would improve the preci-
sion of estimated parameters (occupancy and detection rate) by help-
ing to explain variation caused by different environments. Therefore,

our results on recommended sampling effort to reach a given level of
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precision are conservative in comparison to the precision local studies
might achieve when including habitat covariates. Our results allow us
to offer general recommendations for camera trap survey design to
achieve the most precise estimates of species richness, occupancy and

relative abundance across a wide range of species around the world.

2 | MATERIALS AND METHODS

We analysed camera trap data from 41 studies from the eMammal
(http://www.eMammal.org) and TEAM (http://www.teamnetwork.
org) databases and co-authors (Figure 1; Table S1). Subsets of 28, 16
and 5 datasets were used to examine spatial, temporal and seasonal
questions, respectively. We used 1 year of data from each TEAM site.
All studies used similar camera trap protocols in that sites were un-
baited and were set in grids or stratified-random design (i.e. not on well-
established trails), making data directly comparable (Jansen, Ahumada,
Fegraus, & O'Brien, 2014). Cameras were set at ~0.5 m above the
ground on a tree, or high in the tree canopy (Peru), and set to trig-
ger with passive infrared motion sensor at high sensitivity with no rest
period between triggers. The camera brands used (Reconyx, Bushnell,
ScoutGuard) had fast trigger times (<0.5 s) to minimize missing fast-
moving species and used infrared flashes at night to avoid disturbing
animals. Cameras were set to take multiple pictures at each trigger and
continued to retrigger as long as animals were in sensor range. Triggers
within 60 s of each other were considered one detection.

Our evaluation of study design focuses on the precision of three

metrics frequently used by ecologists: species richness, occupancy

and detection rate. We compare species richness of subsampled data
to the total number of species detected at a study area by the cam-
eras, not the total number of species theoretically possible based on
geographical range maps. Likewise, we compare estimates of occu-
pancy and detection rate from subsamples of data to values calcu-
lated with the full dataset, although we have no way of knowing the
‘true’ value for a given species at a site. We make direct comparisons
of occupancy estimates from camera arrays set at different spatial
scales, but assume that the occupied site is the small detection zone
directly in front of the camera and not some larger area defined by
camera spacing (Efford & Dawson, 2012). To simplify our analyses, we
consider number of samples and sampling effort separately, although
there can be an interaction between these factors (Shannon et al.,
2014). Although detection rate can be a misleading measure of rel-
ative abundance if field protocols are not standardized (Sollmann,
Mohamed, Samejima, & Wilting, 2013), it has been tied mechanisti-
cally to abundance (Rowcliffe, Field, Turvey, & Carbone, 2008), and
has been shown to reflect animal density in a number of studies using
grids or stratified random sampling (e.g. Palmer et al., 2018; Parsons
et al., 2017), and we therefore refer to it here as an index of relative
abundance.

2.1 | Number of camera points

We subsampled from existing datasets (Table S1) using program R
(version 3.3; R Core Development Team, 2018) to evaluate the num-

ber of sample points needed for precise estimates of species richness
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FIGURE 1 Map showing locations of the 41 datasets used for analyses of the importance of survey duration, survey size and seasonality

on estimates of biodiversity variables using camera traps
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(using data from 28 study areas), occupancy and detection rate (using
data from 20 study areas) within a given protected area. We estimated
richness as the number of individual species detected in each study
area across all cameras. We estimated detection rate as the total
count of detections of each species divided by the number of cam-
era nights (i.e. detections/day) at each study area. We ran occupancy
models using the single species occupancy framework (MacKenzie
et al., 2002) and estimated detection probability (p), defined as the
probability of detecting an occurring species during a 7-day period at
a camera site, and occupancy (), defined as the expected probability
that a given camera site is occupied, for each species. Although daily
periods are sometimes used for occupancy analyses of camera trap
data for common species, these weekly intervals allowed us to use the
same protocol for all species. We recognize that occupancy estimates
for wide-ranging animals detected with camera traps is more analo-
gous to ‘use’ than true occupancy, though no less informative in terms
of habitat use (Burton et al., 2015; Efford & Dawson, 2012). Although
some of the cameras from our fine-scale grids might not be spatially
independent for wide-ranging species, we note that the independence
assumption is not necessary (though it is helpful) since the MLE of
is consistent even if occupancy statuses are not independent (Royle
& Link, 2006). We constructed models using the package UNMARKED
(Fiske & Chandler, 2011) in R. We estimated detection rate and oc-
cupancy for two species at each of 20 study areas, the most com-
mon species and the least common with at least 100 detections (and
therefore enough to have a reasonable chance of models converging).
The one exception was for the UCSC Grid study area, where only one
species had >100 detections.

We subsampled sites by randomly selecting from one to the maxi-
mum number of cameras in the study, using the data collected at sub-
sampled cameras to generate estimates. A minimum of five camera
sites was used for occupancy analysis due to model convergence is-
sues. For each of 50 subsamples (without replacement) at each camera
sample size, we recorded the mean, standard deviation, standard error
and 95% confidence interval for richness, detection rate and occu-
pancy probability. We used the total sample for each camera, which
was variable, but should not affect our results. For detection rate, we
assume animal movement is constant over the study period so camera
deployment length should not affect these estimates or recommen-
dations (i.e. a camera running 5 days captures 10 deer and if it ran
10 days instead it would capture 20). For occupancy, we also did not
standardize the number of trap days per camera; however, we tested
whether there was a relationship between survey effort and the es-
timated occupancy probability but found no significant relationship
(T37 =0.867,p = .39).

To determine how many cameras were adequate to obtain pre-
cise estimates of occupancy and detection rate, we set two thresh-
olds: (a) when the width of the 95% confidence interval changed
<1% and remained <1% regardless of added cameras, represent-
ing the point of diminishing return on investment and (b) when
the standard error was <10% of the mean and remained <10% re-
gardless of added cameras, representing a precise measurement.

For richness, we assessed how many cameras were necessary to

detect 95% of the total number of species detected with all cam-
eras. We stratified the studies based on latitude (tropical and tem-
perate) and scale of the study (small was <0.2 km camera spacing,
large was 21.0 km spacing) when considering how many camera
sites were needed to meet each threshold. We summarized the
effect of camera number on richness in each stratification level by
fitting an asymptotic curve to the resampled data points using a
nonlinear least squares method.

2.2 | Sample duration

We subsampled long camera deployments (~60 sampling days) to
evaluate the effect of sample duration on detection rate and species
accumulation across each deployment day for selected species to
determine how survey duration affected precision. We selected 24
representative species of large (>100 kg, n = 6), medium (5-100 kg,
n =9) and small (<5 kg, n = 9) mammals including three trophic levels
(carnivores, omnivores and herbivores) from surveys with a minimum
of 10 camera sites, excluding deployments with less than 20 sam-
pling days (range = 10-77 deployments per study) across five conti-
nents (Table S2). These groupings represented potential differences
in movements/home-ranges across the taxa but also accounted for
some inevitable variation in detection probability associated with
the sizes and trophic guilds of target species (Cove, Spinola, Jackson,
Saenz, & Chassot, 2013). We calculated the daily detection rate of
each species across all sites with detections within a selected study
area and examined how the cumulative daily detection rate changed
with increasing camera deployment. We considered the detection
rate at the end of the sampling period as the true result for a site
and set a threshold of precision as the number of sampling days that
were required to obtain an estimate within 10% of this value.

We used negative binomial generalized linear models to deter-
mine how this threshold duration varied with three species traits—
species-specific trophic guild (e.g. carnivores, omnivores or herbivores),
size (small, medium and large), climatic zone (tropical or temperate)—
maximum number of days per deployment and final detection rate. To
determine which species traits or survey effects most influenced the
detection rate bias, we compared eight a priori hypotheses, including
a null model, in an information-theoretic framework, based on their
Akaike weights (Burnham & Anderson, 2002). These analyses allowed
us to consider whether relationships were general to all mammals or
specific to guilds or study regions. Furthermore, we plotted the mean
per cent detection rate error across all species to visualize an inflection
point in the per cent error patterns, such that increasing effort beyond
a threshold point resulted in diminishing returns in terms of accuracy
(sensu Lashley et al., 2018).

To assess species accumulations, we selected five tropical and
five temperate study areas and randomly selected 30 camera sites
to represent each study area. We determined the accumulations for
each individual camera site in addition to the total accumulation for
each study area. For both tropical and temperate regions, the totals

of each study area were averaged together to represent how long it
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can take to reach a high percentage of total species per region, as
determined by the actual camera data.

2.3 | Seasonality

To evaluate the importance of seasonality in camera trap surveys, we
calculated monthly and seasonal estimates of mammal detection rates,
occupancy and species richness for five locations that experience sea-
sonal differences in either temperature or precipitation and that had at
least 1 year of continuous camera data (Table S1). For two temperate
climates with seasons determined by changes in temperature (Montana
and North Carolina), we defined seasons as summer (April-September)
and winter (October-March). For three tropical or subtropical climates
with seasons determined by changes in precipitation, we identified sea-
sons as wet and dry, where the wet seasons used were May-October
(China), November-April (Peru) and July-December (Panama).

To consider the effect of seasonality on estimated species richness
at each site, we calculated the total number of species observed each
month. We present observed species richness for sites with equal ef-
fort between months (Montana, North Carolina, China and Panama)
and where sampling effort was unequal (Peru), we present estimated
richness from the INEXT package (Hsieh, Ma, & Chao, 2016). To facili-
tate visual assessment of seasonal trends in species richness and detec-
tion rates, we fit a nonparametric LOESS smoother line to the points.

We calculated the detection rate of each species for each study
area. To identify whether season was a significant predictor of de-
tection rate at a study site, we included season as a predictor and
species-specific detection rate as the response in a quasi-Poisson
generalized linear model, adjusted for overdispersion (Wedderburn,
1974). We considered season to have a significant effect on detec-
tion rate if the 95% confidence interval around the season coeffi-
cient did not overlap with zero.

We also quantified the effect of season on species occupancy
and detection. We created species-specific detection histories by
splitting continuous camera deployments into intervals representing
seven camera trap nights. For the Panama dataset (BCl plots), cam-
eras were not deployed continuously, rather they were moved every
7-12 days within each 1 of 10 1-ha survey blocks. In this case, each
7- to 12-day interval represents a separate deployment within the
same survey block. For each species, we used season of deployment
as a predictor, calculated the season coefficient in occupancy and
detection models using package uNMARKED in R, and if the 95% con-
fidence interval around the season coefficient did not overlap with

zero we considered it a significant effect.

3 | RESULTS

We examined camera trap sampling design patterns for 106 mammal
species and used common names when describing results in the text,
but present taxonomy in Table S2. Animal detections not identified

to the species level were not included.

3.1 | Number of cameras

On average, large-scale (21.0 km spacing), tropical study areas re-
quired more cameras (M = 35 + 1 SE) for species richness to reach
an asymptote than did smaller-scale (<0.2 km camera spacing) sites
(Figure 2; Table S3). With much lower total species counts, small-
scale sites detected 95% of total species with less effort, requiring
22 + 3 sites in the more diverse tropics and 17 + 4 in the temperate
studies. The number of cameras necessary for richness to level off
varied with camera spacing (= 70 £ 23, t = 3, p = .0005), with large-
scale camera grids requiring more sites. Only two large-scale tem-
perate study areas were available and levelled off at 17 or 18 species
(Table S3) but were not included in the graph due to low sample size.

We plotted the improvement in precision of detection rate
and occupancy estimates with increasing number of cameras for
39 species from 20 study areas (Figure 3; Table S1). The example
plots in Figure 3 illustrate how we determined when an estimate
was precise (10% or 20% SE from final value) and when adding
additional cameras did not lead to significant improvements in
the estimate (confidence intervals improve by <1%). We found
a strong negative relationship between the occupancy level of a
species and the number of cameras needed to get a precise esti-
mate (Figure 4c) and the point of diminishing returns (Figure 4d).
Furthermore, occupancy could only be estimated with certainty
for species with occupancy values >0.7 (Figure 4c; Table S4). The
number of cameras needed to get precise occupancy estimates
was marginally correlated with detection rate (linear regression:
p=-13.3+71,t=-1.89,p=.08).

There was also no relationship between the detection rate of a

species and the number of cameras needed for precise estimates

DTemperate small scale I:]Tropical large scale | | Tropical small scale

20

\\

3

o

Species richness

0 25 50 75
Number of cameras

FIGURE 2 Species accumulation curves with increasing camera
sites showing average (lines) and SE (shading) across 19 tropical and
9 temperate study areas. Vertical lines show where a class of sites
reached 95% of all the total number of species recorded, which was
least for small-scale (<0.2 km camera spacing) tropical study areas
(17 £ 4 SE sites), followed by small-scale temperate (22 + 3 sites)
and large-scale (21.0 km spacing) tropical studies (35 + 1 sites).
Results per site are in Table S3
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of detection rate, although only two species reached our 10% SE
cut-off (Table S5), so we had to evaluate this relationship at 20% SE
(Figure 4a). When considering the point of diminishing returns, there
was a positive relationship, indicating that species with higher de-
tection rates required more camera locations before the confidence
intervals reached an asymptote.

3.2 | Sample duration

At a single camera site, species richness increased such that after
the first 30 days, each camera detected 96.67% + 0.01 SE or
85.62% +0.02 SE of the species it would detect over 60 days in temper-
ate or tropical sites, respectively (Figure 5). However, when all cameras

at a study area were considered together, species richness plateaued

Cameras

rapidly, with 89.7% + 5.60 SE of the species at temperate sites detected
in 2 weeks and 100% in 30 days. For tropical sites, 84.9% + 5.05 SE of
species was detected in 2 weeks, 97.1% + 1.82 SE in 30 days.

Since detections typically accumulate slower than days, the
ratio of detections/day is erratic and highly erroneous at smaller
(<2 weeks) sampling intervals, but then rapidly improve. Across
species, the mean time needed to obtain an estimate within 10% of
the final estimate was 34.4 + 2.5 SE days (Figure 6). The variation in
time needed to get a precise measure of detection rate was best ex-
plained by final detection rate (Akaike weight = 0.41, Table S7), with
some additional model support suggesting a difference between
temperate and tropical study areas (Akaike weight = 0.15, Table S7).
We used those two covariates to make predictions of survey length
requirements across detection rates that we observed in temperate

and tropical study areas (Figure 7).
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TABLE 1 Summary of significant seasonal variation in occupancy and detection rate models for 70 species across five sites. ‘0’ indicates
no variation, ‘+' and ‘-’ indicate higher or lower values in the winter (Montana and North Carolina) or wet season (China, Panama and Peru).
Models that did not converge have blank cells. Species indicated with * had so few detections in a season that statistical models did not
converge, but clearly showed strong seasonal patterns such as complete absence due to hibernation. Model parameter values are available
as supplemental material (Figure S2; Table S9)

Model occupancy Model detection Detection rate Notes

Montana
Columbian Ground Squirrel = Hibernates
Brown Bear - Hibernates
Moose
Striped Skunk
White-tailed Deer 0 -
White-tailed Jackrabbit
Gray Wolf
Elk - 0

o

Elevational migrant

American Badger
North American Porcupine

Bobcat

o
o

Coyote
Snowshoe Hare

Puma

o O o +
o O O

Mountain Cottontail

American Red Squirrel

O O O O O O o o o o o o

Mule Deer + +
Prairie Ridge, NC
Woodchuck

Elevational migrant

*

Hibernates
Coyote 0 -
Virginia Opossum + -
Northern Raccoon
White-tailed Deer
Eastern Cottontail

Bobcat

o O O o

Eastern Gray Squirrel Seasonal seed hoarder

+
o

Gray Fox

Red Fox
China

Wild Boar

o O O
o + O O O O o o o

o

Reeves's Muntjac 0 - -
Edwards's Long-tailed Giant Rat

Hairy-fronted Muntjac 0 0 Elevational migrant
Pallas's Squirrel

Hog Badger 0 0
Chinese White-bellied Rat + +

Masked Palm Civet 0 +

o O O o

+

Strong seasonal breeder

o

Panama
Collared Peccary 0 - -
Northern Tamandua -
Red Brocket Deer 0 = =

(Continues)
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TABLE 1 (Continued)

Model occupancy
White-nosed Coati 0
Common Opossum
Agouti
Tayra
Paca 0
Baird's Tapir
Red-tailed Squirrel

Ocelot 0
White-faced Capuchin
Nine-banded Armadillo 0

Peru Canopy
Tayra
Brazilian Porcupine 0
Western Woolly Opossum -
Olingo 0
Hairy Saki Monkey -
Tamandua 0

Microsciurus sp.

+

Dwarf Porcupine
Black-mantled Tamarin

White-fronted Capuchin

o O

Spix's Night Monkey -
Common Woolly Monkey 0
Kinkajou

Scurius sp.

Common Squirrel Monkey

Two-toed Sloth

Yellow-handed Titi Monkey

Red Howler Monkey 0

3.3 | Seasonality

We examined the effects of seasonality on animal communities at
five study areas with varying latitudes and species compositions
(Table S8). All five sites showed seasonal effects for some but not all
species (Table 1 ; Table S9; Figure S2). Although there was no clear
seasonal trend in species richness for the site in China (Figure 8a),
overall detection rates increased in the wet season (Figure 8b), and
there was species-specific variation in the detection rates by season
(Figure 8c,d). For example, we found much higher detection rates in
masked palm civet, hog badger and Chinese white-bellied rat dur-
ing the wet season, weaker pulses of Reeve's muntjac and wild boar
during the dry season, and little seasonal variation in the detection
rates for other species.

The proportion of species with significant seasonal changes in
occupancy or detection probability was surprisingly consistent across
four sites, being 37.5%, 37.5%, 37.5% and 38.4% in Montana, China,

Model detection

0

o O O o

+ O O

o

Detection rate Notes

O O O O O O o o o |

+
*

O O O O O O O O o o o o o o o o

Peru and Panama, respectively; while for North Carolina it was 50.0%
(Table 1; Figure S2). However, when considering the magnitude of
the effect in terms of the average size of the change in detection
rate (higher season/lower season) for species where detection or oc-
cupancy models indicated a significant seasonal effect, the two tem-
perate sites had relatively larger changes (Montana: 480% change,
North Carolina: 390% change) than the two tropical sites (Peru: 230%,
Panama: 180%), while the subtropical Chinese site average change
was 470%.

4 | DISCUSSION

In the most comprehensive empirical study on camera trap sur-
vey design to date, we evaluated how the number of cameras
deployed, the length of time they are run, and the seasonality of

the site affect estimates of mammal species richness, occupancy
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FIGURE 8 Seasonal variation shown as monthly averages for (a) estimated species richness, (b) total mammal detection rate, (c) species-
specific detection rate (for species with >20 records) and (d) seasonal averages for mammals surveyed by camera traps (for species with

>20 records, blue shows wet season) from 2009 to 2011 in Gutianshan Plot, China. Points are average monthly observed richness (a) and
detection rates (b); lines are smoothed observed richness (a) and smoothed average detection rates (b, c); shaded areas are approximate
95% confidence intervals around smoothed averages. The species in plot (c) follow the colour coding in (d), and both only show species with
>20 records. The raw data for all sites are presented in Table S9, seasonal graphs for sites in Montana, North Carolina, Panama and Peru are

presented as Figure S2

and detection rates. Our samples include 41 study areas across
20 countries on five continents, making our results broadly rel-
evant to others designing camera trap studies. All cameras were
run in systematic or stratified random designs, off major trails and
without bait, providing relatively unbiased measures of the ani-
mal community and offering comparable data across a variety of
habitats.

4.1 | Number of cameras

We found that more camera sites (~35) were needed to detect a
high percentage of species richness for larger-scale studies. A likely
explanation is that larger-scale studies sample a greater diversity of
habitats and have a larger component of g-diversity, which serves

as a good reminder that species lists from small-scale surveys will
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be incomplete representations of the larger area. Given higher spe-
cies richness in tropical areas, it was surprising that both tropical
and temperate small-scale sites required similar number of cameras
(17-22) to detect 95% of the total species eventually detected with
the full dataset. Given the variation across studies, we recommend
that studies aiming to quantify the diversity of species in an area
use at least 35 camera sites for large-scale surveys (21.0 km spac-
ing), and 25 for small-scale (<0.2 km camera spacing) tropical sites.

Occupancy and detection rate are two metrics often used as
indices of abundance to compare across years or sites for moni-
toring population trends or testing ecological hypotheses, and are
the most common metrics used to study species that cannot be
uniquely identified (Kays et al., 2017). We found that more cam-
eras were needed to get precise estimates of species with lower
occupancy values (i.e. less common species) which is in agreement
with recent studies (Beaudrot, Ahumada, O'Brien, & Jansen, 2019;
Shannon et al., 2014). Among the 39 species considered, occupancy
could only be estimated precisely (SE < 10% of occupancy estimate)
for species with high (>0.7) occupancy probabilities (Figure 4a;
Table S4). Extrapolating this linear relationship suggests that 3-4
times more cameras (~150 camera sites) would be needed to pro-
duce precise estimates for species with an occupancy probability
of 0.25. This is worrisome given that rare species are the most im-
portant to monitor, and that low occupancy probabilities are com-
mon in camera trapping studies. For example, almost half (48%) of
the 158 carnivore populations evaluated in a recent global analysis
had occupancy levels <0.25 (Rich et al., 2017). Adding ecological
covariates to occupancy models would help increase precision of
occupancy estimates, and are therefore especially important for
working with species with low occupancy probabilities. These mod-
els might allow more precise estimates with fewer camera sites than
our results suggest, as we did not include any covariates to enable
large-scale comparisons.

Community-level occupancy models (Dorazio, Kéry, Royle, &
Plattner, 2010) might also help improve the precision of occupancy
estimates for rare species by sharing information across species, but
there are extensive assumptions about guild-specific detection proba-
bility relationships that need to be considered (Pacifici, Zipkin, Collazo,
Irizarry, & DeWan, 2014). Detecting ecological relationships will
always be difficult for species with few detections and we suggest that
these situations might warrant the use of lures or baits, or adaptive
sampling (Pacifici, Reich, Dorazio, & Conroy, 2016; Specht et al., 2017).

We expected that it would require fewer cameras to precisely es-
timate occupancy for species with higher detection rates, since data
would presumably accumulate faster, but we found no relationship
(Table S5). We suspect that this reflects patchy space use by animals,
with higher detection rates being driven by repeated use of the same
sites, rather than many sites across the camera array. Alternatively,
this might be simply a principal of the data structure. One possibility
is related to pseudo-Poisson patterns of count data, where variation
and mean tend to be proportional and the lower bound becomes
less constraining at higher densities (Guisan, Edwards, & Hastie,

2002). Another possibility could be that since the count cannot go

below zero, when you have rare species there are so many estimates
right around that lower bound that precision is actually quite high,
whereas with more abundant species we would have a lot more vari-
ation in the count and lower precision.

We were surprised to not find a relationship between detec-
tion rate and the number of cameras within a study area. Only two
species reached our 10% SE precision cut-off for detection rate,
and even when considering a lower point of precision (20% SE),
there was no strong tendency for species with higher detection
rates to be easier to survey with fewer sites (Figure 4a). In fact,
we found that species with higher detection rates required more
cameras to reach the point of diminishing returns. We suspect this
difference between occupancy and detection rate stems from a
higher spatial variation in detection rates within a study site. As a
binary variable (each site is either O or 1), occupancy probabilities
are capped at 1 and inherently less variable than detection rates,
and thus appear to be easier to estimate precisely from camera
traps. It is important to note that we used raw detection rate val-
ues and made no attempt to account for variation within sites with
ecological models. Adding habitat covariates and using model es-
timates for detection rates would likely improve the precision of
detection rate estimates, adding important ecological inference,

and making comparisons between sites more valid.

4.2 | Sample duration

By subsampling long camera deployments, we were able to evaluate
the relationship between sample duration and accuracy and offer
recommendations for optimized study design. In general, the num-
ber of species detected by a camera rapidly accumulated during the
first 2 weeks of deployment, after which few new species were de-
tected. Only the more diverse tropical sites continued to accumulate
species up to about 1 month (Figure 5).

We found that detection rates—the widely used measure of rela-
tive abundance—were highly variable for the first 2 weeks of camera
deployments: the addition of a single detection could dramatically
change the estimate. However, after 2-3 weeks, there was a sharp
improvement in precision for all species, and from about 1 month
onwards, estimates were within 10% of the estimate from the full
60-day samples (Figure 6). The exact sampling duration needed to
reach this 10% precision level varied depending on the final detec-
tion rate of the target species, with precise estimates being reached
sooner for species with higher detection rates, with slightly different
relationships for tropical versus temperate areas. The higher error
rates for apparently rare species (based on final detection rates)
showcases that researchers should likely implement species-specific
efforts when targeting rare species but might achieve accurate rel-
ative abundance information for common species within short sam-
pling windows. Similar to our examinations of detection rate and the
number of cameras, spatial heterogeneity among sites most likely
influences these site-specific detection rates and capture rates

might therefore be subject to more local variation in detectability
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due to microhabitat variation, which should be accounted for in
model-based approaches (Kolowski & Forrester, 2017).

In practice, species richness and relative abundance measures
for a study area are not taken from single camera points but de-
rived from an array. Thus, our analysis of the performance of single
cameras is most relevant when considering the return on invest-
ment of time, rather than absolute error rates of each individual
camera. In this case, the stabilization of detection rate between 2
and 3 weeks suggests that 3 weeks should be the minimum deploy-
ment length, while estimates will continue to improve up to about
1 month. These recommendations agree with earlier studies that
point out that increasing the number of locations is generally better
than sampling longer at the same site for detection rate (Si et al,,
2014), but our results draw from a broader dataset of species and
localities.

4.3 | Seasonality

All five sites we examined for seasonal dynamics had a mixture of
species with and without seasonal variation in occupancy and/or rela-
tive abundance. Thus, sampling an area in only one season would not
necessarily yield estimates of animal abundance and species richness
that are representative. The number of species at each site showing
some seasonal trends was high, ranging from 37% to 50% of the mam-
mal community, without obvious latitudinal trends (Table 1). However,
the magnitude of the effect was roughly two times stronger in the
two temperate study areas we analysed, where species are known
to migrate, hibernate or seasonally cache food. Hibernation and sea-
sonal migration are not known for the mammal species that showed
seasonal variation in Peru and Panama, and we suspect that these
patterns could be caused by seasonal breeding or shifts in foraging
strategies in response to changes in fruit availability. Species detect-
ability is also known to change from wet to dry season in Panama
(Rowcliffe, Carbone, Jansen, Kays, & Kranstauber, 2011), highlighting
the importance of using an analytical framework that accounts for de-
tectability. The subtropical montane Chinese study area had similar
effect sizes to the temperate study areas. Some of the specific pat-
terns for the Chinese species can be explained by known behaviours
of reducing activity during the cold (Masked palm civet; Zhou et al.,
2014), elevational migration (Hairy-fronted muntjac; Zheng, Bao, Ge,
& Zheng, 2005) or seasonal breeding (Chinese white-bellied rat; Bao,
1993).

While it might not be surprising that all animal communities
would have strong seasonal effects, our results illustrate the im-
portance of taking season into account when planning field surveys
or making comparisons between existing data. Although some of
these changes were predictable based on animal biology, most were
not, especially in tropical sites (Table 1). Furthermore, the simple
two-season comparison we used for our analyses belies a more com-
plicated temporal pattern seen for many species when looking at
variation in abundance over a finer (i.e. monthly) scale. For example,

at our Montana study area, Columbian ground squirrel detections

peaked in early summer, white-tailed deer peaked in late summer,
and mule deer peaked at the transition between winter and summer
(Figure S2c).

4.4 | Study design recommendations

Based on these analyses, we recommend that studies aimed at es-
timating species richness and relative abundance/occupancy of
mammal species use arrays of at least 40-60 camera traps run for
3-5 weeks. Studies targeting rare species will need more camera lo-
cations but could also benefit from the use of target-specific attract-
ants or more adaptive study designs (Pacifici et al., 2016). Studies
aimed at estimating species diversity over small areas (i.e. <1 km?)
may use fewer cameras (~20), but should note this will be an incom-
plete record of diversity over larger scales. Study area averages of
detection rate required more effort to estimate precisely than oc-
cupancy, due to high variation within camera arrays, so we recom-
mend comparisons of detection rates be model based and include
local covariates to help explain small-scale variation, which should
also provide additional ecological inference about the target species.
Finally, comparisons across study areas or over time must account
for seasonality, which had strong impacts on mammal communities

in both tropical and temperate sites.
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SUPPLEMENTAL MATERIAL

Table S1. Camera trapping data sets used for study design analysis.

Analysis
Camera Spatial Temporal Seasonal
Name Region Location Latitude Longitude Source  Deployments Spacing Arrangement (n=28) (n=16) (n=5)
Kenya Wildlife Stratified
Service Project Africa  Kenya -3.372440| 39.873430 eMammal 30 Large Random X X
Korup Africa  Cameroon = 5.046442  8.839358  Team 60 Large Grid X
Nouabala Ndoki ~ Africa  Congo 2.519552 16.513092  Team 64 Large Grid X
Ranomafana Africa  Madagascar -21.22491 47.473436  Team 60 Large Grid X
Udzungwa Africa  Tanzania -1.7183217 36.868785  Team 61 Large Grid X
Virunga Massif Africa  Rwanda -1.454465  29.540277  Team 60 Large Grid X
Bukit Barisan Asia Indonesia ~ -3.658888 104.465402  Team 60 Large Grid X
Carnivore
Intraguild
Interactions in 14.156110 102.475360
Select Thailand Stratified
Reserves Asia Thailand eMammal 30 Large Random X
Nam Kading Asia Laos 18.398413 104.176223  Team 60 Large Grid X
Pasoh Asia Malaysia 3.045081 102.317913  Team 60 Large Grid X
Stratified

Gutianshan Plot Asia China 29.254127| 118.119625 Other 19 Small Random X X X

Central Stratified
BCI Plots America Panama 9-155988 -79.843884 Other 77 Small Random X

Central Stratified

Gonzolillo America Panama 9.175022/ -79.148352 eMammal 25 Small Random X
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Table S2. Family and scientific name for 106 species of mammals presented in this paper.

Family Genus and species Common Name

Aotidae Aotus vociferans Spix's night monkey
Atelidae Alouatta seniculus Red howler monkey
Atelidae Alouatta palliata Mantled howler monkey
Atelidae Lagothrix lagothricha Common woolly monkey
Bovidae Capricornis sumatraensis = Sumatran serow

Bovidae Cephalophus leucogaster | White-bellied Duiker
Bovidae Cephalophus harveyi Harvey's duiker

Bovidae Philantomba monticola Blue duiker

Bovidae Tragelaphus scriptus Bushbuck

Callitrichidae Cebuella pygmaea Pygmy marmosetd
Callitrichidae Saguinus nigricollis Black-mantled tamarin
Caluromys Caluromys lanatus Western woolly opossum
Canidae Canis lupus Gray wolf

Canidae Canis latrans Coyote

Canidae Urocyon cinereoargenteus = Gray fox

Canidae Vulpes vulpes Red fox

Cebidae Cebus capucinus White-faced capuchin
Cebidae Cebus albifrons White-fronted capuchin
Cebidae Saimiri sciureus Common squirrel monkey
Cercopithecidae Macaca nemestrina Southern pig-tailed macaque
Cervidae Alces alces Moose

Cervidae Capreolus capreolus Roe deer

Cervidae Cervus canadensis Elk

Cervidae Cervus elaphus Red deer

Cervidae Mazama americana Red brocket deer
Cervidae Muntiacus reevesi Reeves's muntjac
Cervidae Muntiacus crinifrons Hairy-fronted muntjac
Cervidae Odocoileus virginianus White-tailed eer
Cervidae Odocoileus hemionus Mule deer

Cuniculidae Cuniculus paca Lowland paca
Dasypodidae Dasypus kappleri Greater Long-nosed armadillo
Dasypodidae Dasypus novemcinctus Nine-banded armadillo
Dasyproctidae Dasyprocta punctata Central American agouti
Dasyproctidae Dasyprocta leporina Red-rumped agouti
Dasyproctidae Myoprocta acouchy Red acouchi

Didelphidae Didelphis virginiana Virginia opossum
Didelphidae Didelphis marsupialis Common opossum



Didelphidae
Didelphidae
Didelphidae
Elephantidae
Erethinzontidae
Erethizontidae
Erethizontidae
Eupleridae
Felidae
Felidae
Felidae
Felidae
Felidae
Felidae
Felidae
Felidae
Herpestidae
Hystricidae
Leporidae
Leporidae
Leporidae
Leporidae
Macroscelididae
Megalonychidae
Mephititdae
Muridae
Muridae
Mustelidae
Mustelidae
Mustelidae
Mustelidae
Mustelidae
Mustelidae
Mustelidae
Mustelidae
Mustelidae
Mustelidae

Myrmecophagidae
Myrmecophagidae

Nesomyidae

Marmosa robinsoni
Monodelphis sp.
Philander opossum
Loxodonta africana
Coendou ichillus
Coendou prehensilis
Erethizon dorsatum
Fossa fossana
Leopardus pardalis
Leopardus tigrinus
Leopardus wiedii
Leptailurus serval
Lynx rufus

Panthera onca
Prionailurus bengalensis
Puma concolor
Herpestes naso
Atherurus macrourus
Lepus townsendii
Lepus americanus
Sylvilagus nuttallii
Sylvilagus floridanus
Petrodromus tetradactylus
Choloepus didactylus
Mephitis mephitis
Leopoldamys edwardsi
Niviventer confucianus
Arctonyx collaris

Eira barbara

Lontra canadensis
Martes flavigula
Martes martes

Meles meles

Mellivora capensis
Melogale moschata
Mustela frenata
Taxidea taxus
Tamandua mexicana
Tamandua tetradactyla
Cricetomys gambianus

Robinson's mouse opossum
Short-tailed opossum
Gray four-eyed opossum
African elephant

Streaked dwarf porcupine
Brazilian porcupine

North American porcupine
Malagasy civet

Ocelot

Oncilla

Margay

Serval

Bobcat

Jaguar

Leopard cat

Puma

Long-nosed mongoose

Asiatic brush-tailed porcupine

White-tailed jackrabbit
Snowshoe hare
Mountain cottontail
Eastern cottontail
Four-toed elephant shrew
Linnacus's two-toed sloth
Striped skunk

Edwards's long-tailed giant rat

Chinese white-bellied rat
Hog badger

Tayra

River otter
Yellow-throated marten
Pine marten

European badger

Honey badger

Chinese ferret-badger
Long-tailed weasel
American badger
Northern tamandua
Southern tamandua
Northern giant pouched rat
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Sciuridae
Sciuridae
Suidae
Suidae
Tapiridae
Tapiridae
Tayassuidae
Tragulidae
Ursidae
Ursidae
Viverridae
Viverridae

Nesomys rufus
Cheracebus lucifer
Pithecia hirsuta
Bassaricyon alleni
Nasua narica

Potos flavus

Procyon lotor

Procyon cancrivorus
Callosciurus erythraeus
Glaucomys volans
Marmota monax
Microsciurus sp.
Sciurus carolinensis
Sciurus granatensis
Sciurus sp.

Tamias amoenus
Tamias striatus
Tamiasciurus hudsonicus
Urocitellus columbianus
Phacochoerus africanus
Sus scrofa

Tapirus bairdii

Tapirus terrestris
Pecari tajacu

Tragulus kanchil

Ursus americanus
Ursus arctos

Genetta maculata
Paguma larvata

Island mouse

Yellow-handed titi monkey

Hairy saki

Eastern lowland olingo
White-nosed coati
Kinkajou

Northern raccoon
Crab-eating raccoon
Pallas's squirrel
Southern flying squirrel
Woodchuck

Squirrel

Eastern gray squirrel
Red-tailed squirrel
Tree squirrel
Yellow-pine chipmunk
Eastern chipmunk
American red squirrel

Columbian ground squirrel

Common Warthog
Wild Boar

Baird's tapir
Lowland tapir
Collared peccary
Lesser mouse-deer
American black bear
Brown bear
Large-spotted genet
Masked palm civet




Table S3. Estimates of how many cameras are needed to estimate richness within 5% of the
maximum number of species detected in different protected areas around the world representing
both temperate and tropical climates and having both small (<0.2km) and large (>0.2km) camera
spacing.

# Cameras to detect 95% of

Protected Area species Spacing Type
Arabuko 17 Large Tropical
Bandy Ranch 17 Large Temperate
BCI 42 Large Tropical
Bukit Barisan 35 Large Tropical
Caxiuana 30 Large Tropical
Gonzolillo 12 Small Tropical
Korup 42 Large Tropical
Manaus 52 Large Tropical
Nam Kading 24 Large Tropical
Nouabala Ndoki 43 Large Tropical
Pasoh 37 Large Tropical
Ranomafana 29 Large Tropical
Roosevelt Ranch 18 Large Temperate
SCBI 38 Small Temperate
SCBI Grid 20 Small Temperate
SCBI2 12 Small Temperate
Schenck 28 Small Temperate
Si 14 Small Temperate
Speulderbos 26 Small Tropical
Suriname 29 Large Tropical
TRC 36 Small Temperate
UCSC Grid 23 Small Temperate
Udzungwa 42 Large Tropical
Virunga Massif 41 Large Tropical
Volcan Barva 32 Large Tropical
Yasuni 37 Large Tropical
Zofin 19 Small Tropical

Table S4. Estimates of how many cameras are needed to precisely estimate occupancy in
different protected areas around the world representing both temperate and tropical climates and
having both small (<500m) and large (>500m) camera spacing. We used two metrics to
determine at which number of cameras precision no longer improved: (1) the width of the 95%



confidence interval changed <1% and (2) the standard error was <10% of the mean, regardless of
whether more cameras were added. Protected areas for which the maximum number of cameras
did not appear to be enough for precision to asymptote are marked as “DNLO” (i.e., Did Not
Level Off). Otherwise, the minimum number of cameras necessary for a precise estimate is
listed. We also provide 95% Lower Confidence Limits (LCL) and Upper Confidence Limits
(UCL) for the occupancy estimate.

Point of

Occupancy Diminishing Point of
Site Species probability LCL  UCL returns Precision
Arabuko Large-spotted genet 0.965 0.588 0.999 22 5
Arabuko Four-toed elephant shrew 0.907 0.700  0.990 13 8
BCI Central American agouti 0.961 0.662 0.998 15 5
BCI Ocelot 0.482 0.265 0.958 24 DNLO
Bukit Barisan Southern pig-tailed macaque 0.859 0.652 1.001 17 DNLO
Bukit Barisan Wild boar 0.967 0.425 1.000 28 DNLO
Caxiuana Greater long-nosed armadillo 0.304 0.145 0.661 20 DNLO
Caxiuana Collared peccary 0.431 0.224 0.877 33 DNLO
Korup Long-nosed mongoose 1.000 0.211 1.000 19 10
Korup Blue duiker 0.850 0.647 0.975 14 29
Manaus Nine-banded armadillo 0.681 0.474 0.995 6 DNLO
Manaus Red acouchi 0.706 0.563 0.833 22 50
Nam Kading Asiatic brush-tailed porcupine 0.374 0211 0.617 46 DNLO
Nam Kading Wild boar 0.520 0.224 1.000 8 DNLO
Nouabala Ndoki ~ White-bellied duiker 0.153 0.062 0.301 24 DNLO
Nouabala Ndoki  African elephant 0.521 0.352  0.684 26 DNLO
Pasoh Southern pig-tailed macaque 0.946 0.622  0.998 6 5
Pasoh Lesser mouse-deer 0.271 0.149 0.448 15 DNLO
Ranomafana Malagasy civet 0.939 0.682 1.000 17 DNLO
Ranomafana Island mouse 0.513 0.294 0.953 13 DNLO
SCBI Grid White-tailed deer 1.000 0.811 1.000 13 5
SCBI Grid American black bear 0.985 0.612 1.000 16 8
Schenck White-tailed deer 1.000 0.892  1.000 6 5
Schenck Eastern gray squirrel 0.965 0.573 0.993 DNLO DNLO
Speulderbos Roe deer 0.852 0.659 0.982 16 32
Speulderbos Wild boar 0.973 0.740  0.999 11 5
Suriname Red-rumped agouti 0.931 0.546  0.997 15 5
Suriname Nine-banded armadillo 0.841 0.314 1.000 14 DNLO
TRC White-tailed deer 0.964 0.797 0.999 15 15
TRC Eastern gray squirrel 0.568 0.405 0.743 52 DNLO
UCSC Grid Mule deer 0.838 0.644 0.962 17 22



Udzungwa Harvey's duiker 0.888 0.620  0.989 17 11
Udzungwa Honey badger 0.802 0.310 1.000 29 DNLO
Virunga Massif  Serval 0.376 0.137 0.995 29 DNLO
Virunga Massif  Bushbuck 0.832 0.633  0.950 18 20
Volcan Barva Lowland paca 0.483 0.231  0.990 14 DNLO
Volcan Barva Collared peccary 0.849 0.663 0.981 16 15
Yasuni Tayra 0.421 0.221 0.913 13 DNLO
Yasuni Collared peccary 0.892 0.651 0.990 DNLO 44

Table S5. Estimates of how many cameras are needed to precisely estimate detection rate (DR)

in different protected areas around the world. We used two metrics to determine at which
number of cameras precision no longer improved: (1) the width of the 95% confidence interval
changed <1% and (2) the standard error was <10% of the mean, regardless of whether more
cameras were added. Protected areas for which the maximum number of cameras did not appear
to be enough for precision to asymptote are marked as DNLO (i.e. Did Not Level OfY).
Otherwise, the minimum number of cameras necessary for a precise estimate is listed. We also
provide 95% Lower Confidence Limits (LCL) and Upper Confidence Limits (UCL) for the
detection rate estimate.

#
Cameras
for CI # Cameras
width for
Mean change SE/mean
Site Species DR SE LCL UCL <1% <10%
Large-spotted
Arabuko genet 0.15 0.03 -0.1 0.41 DNLO DNLO
Four-toed
Arabuko elephant shrew 2.3 045 -19 649 DNLO DNLO
Central American
BCI agouti 1.75 0.56 -3.53 7.04 DNLO DNLO
BCI Ocelot 0.08 0.01 -0.05 0.2 7 DNLO
Southern pig-
Bukit Barisan tailed macaque 0.19 0.03 -0.05 0.43 18 DNLO
Bukit Barisan Wild boar 0.07 0.01 -0.04 0.19 DNLO DNLO
Greater long-
Caxiuana nosed armadillo  0.14 0.03 -0.11 0.39 DNLO DNLO
Caxiuana Collared peccary  0.93 041 -295 4.82 DNLO DNLO
Long-nosed
Korup mongoose 0.05 0.01 -0.01 o0.12 26 DNLO
Korup Blue duiker 0.36 0.08 -0.34 1.07 DNLO DNLO
Nine-banded
Manaus armadillo 0.08 0.01 -0.01 0.17 DNLO 33
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Table S6. Effect of deployment duration on site level detection rate for 24 species, including the
study areas, species traits, region, and the number of days to reach <10% error of final detection
rate.

. Days to
Final Trophic reach
Species Study Area Detection level Region Size <10%
Rate
error
Crab-cating Peperpot Nature 0.02 omnivore tropical  medium 51
raccoon Park
Lowland tapir Peruv1ap Amazon 0.03 herbivore tropical large 45
Terrestrial
Peruvian Amazon . .
Jaguar Terrestrial 0.04 carnivore tropical large 48
Ocelot Peruv1ap Amazon 0.04 carnivore tropical medium 55
Terrestrial
European . .
badger Speulderbos 0.05 carnivore temperate medium 35
Leopard cat Bayuelin Nature 0.05 carnivore temperate medium 29
Reserve
Yellow-
throated Niuweihe Nature 0.06 carnivore temperate small 37
marten Reserve
Gray four-eyed - Peperpot Nature 0.06 omnivore tropical small 58
Opossum Park
Masked Palm  Bayuelin Nature 0.07 omnivore temperate small 36
civet Reserve
Pine marten Speulderbos 0.1 carnivore temperate small 23
Hog badger Niuweihe Nature 0.1 omnivore temperate medium 21
Reserve
Red fox Speulderbos 0.11 omnivore temperate medium 33
Roe deer Speulderbos 0.11 herbivore temperate medium 23
Red deer Speulderbos 0.11 herbivore temperate large 23
Large-spotted Kenya Wlld.hfe 0.12 omnivore tropical small 36
Genet Service Project
Golden
elephant Kenya Wildlife 0.15 carnivore tropical small 24
Shrew Service Project
Wild pig HKXK ForestGEO 0.2 omnivore tropical medium 16
Eastern gray .
Squirrel SCBI Grid 0.22 herbivore temperate small 50
Warthog Mpala Primary 0.24 omnivore tropical medium 37
North Carolina .
Black bear Candid Critters 0.28 omnivore temperate large 40
African . .
elephant Mpala Primary 0.31 herbivore tropical large 30



White-tailed
deer

Pouched rat

Red-rumped
agouti

Okaloosa
S.C.LEN.C.E
Kenya Wildlife
Service Project
Peperpot Nature
Park

0.31

0.41

0.5

herbivore

herbivore

herbivore

temperate
tropical

tropical

large
small

small

22

37

17




Table S7 Model selection results from Poisson regression analyses examining the influence of
size (small, medium, or large), trophic guild (carnivore, omnivore, or herbivore), region
(temperate or tropical), detection rate, and the maximum number of sampling days on the
number of days of camera trap sampling before the percent error of the estimated detection rate
decreases below 10%. Data come from 24 representative species occurring on 5 continents from
the eMammal camera trap database (Table S5).

Model K AlCc Delta AICc  AICcWt LL
Final Detection Rate 2 215.13 0 0.97 -105.28
Region 2 222.67 7.54 0.02 -109.05
Herbivores 2 226.37 11.24 0 -110.9
Null 1 228.43 13.3 0 -113.12
Diet 3 228.96 13.83 0 -110.88
Small 2 230.47 15.34 0 -112.95
Max days 2 230.52 15.39 0 -112.97
Size 3 232.91 17.78 0 -112.86

Table S8. Sample size for seasonal analysis.

All mammals
detection rate

Study Area Season Months Trap Nights (n/day) No. Species
China Wet May-October 8,944 0.26 10
Dry November-April 6,786 0.16 9
Peru Wet November-April 3,982 0.15 19
Dry May-October 5,797 0.16 22
Panama Wet July-December 2,839 2.12 14
Dry January-June 3,225 2.54 15
Montana Winter October-March 4,410 0.86 19
Summer April-September 2,377 0.94 18
North Carolina Winter October-March 3,272 3.82 13

Summer April-September 2,886 2.70 10




Table S9. Comparisons of seasonal effects on detection and occupancy of 70 mammal species across five study areas. Detection rates
are per camera day, and model coefficients are bolded when the seasonal effect was significant. These values are also graphed in
Figure S2. Species with a “~” for model coefficients had models that did not converge, usually because of low or uneven sample size.

Detection Detection

Study Rate: Rate: Wet/Winter Wet/Winter Wet/Winter
Area & Wet/ Dry/ Coefficient: Coefficient:  Coefficient: Count
Season Species Winter  Summer Occupancy (SE) Detection (SE) Model (SE)

China Chinese white-bellied rat 0.12 0.031 1.47 (0.50) 0.68 (0.13) 0.93 (0.41)

Wet/
Dry Masked palm civet 0.013 0.0013 0.77 (0.87) 1.53 (0.69) 1.88 (0.97)
Hairy-fronted muntjac 0.075 0.030 0.06 (0.57) 0.29 (0.15) 0.47 (0.47)
Hog badger 0.013 0.0034 0.02 (0.59) 0.59 (0.41) 1.97 (1.14)
Reeves's muntjac 0.024 0.066 -0.84 (0.47) -0.57 (0.18) -0.98 (0.41)
Pallas's squirrel 0.0027 0.0007 - - 1.54 (1.40)
Wild boar 0.0038 0.025 - - -2.76 (1.52)
Edwards's long-tailed
giant rat 0.0040 0.0034 - - 0.29 (1.26)
Chinese ferret-badger 0.0008 0.0001 - - -
Leopard cat 0.0002 0.00 - - -
Panama Paca 0.1666 0.11 2.05 (1.62) 0.36 (0.18) -0.07 (0.16)
Wet/
Dry White-nosed coati 0.11 0.13 1.44 (1.21) -0.04 (0.21) -0.61 (0.27)
Red brocket deer 0.074 0.12 1.43 (2.66) -0.64 (0.18) -0.68 (0.18)
Collared Peccary 0.35 0.89 0.44 (1.24) -0.39 (0.17) -1.07 (0.24)
Ocelot 0.034 0.024 -1.66 (6.26) 0.43 (0.25) 0.19 (0.18)
Nine-banded armadillo 0.019 0.016 0.05 (0.95) -0.05 (0.40) -0.05 (0.33)
Agouti 1.29 1.17 - - -0.16 (0.11)
Northern tamandua 0.011 0.016 - - -0.99 (0.30)
Red-tailed squirrel 0.080 0.062 - - 0.14 (0.23)



Tayra

Common opossum
White faced capuchin
Baird's tapir

Puma

Margay

Robinson's Mouse
Opossum

Howler monkey

Peru Brazilian porcupine
Wet/
Dry Dwarf porcupine

Two-toed sloth
Common squirrel
monkey

Olingo

Common woolly monkey
Black-mantled tamarin
Hairy saki monkey
Western woolly opossum
Red howler monkey
White-fronted capuchin
Spix's night monkey
Tamandua

Tayra

Yellow-handed titi
monkey

Kinkajou
Microsciurus sp.

0.0035
0.0092
0.0039
0.0007
0.0018

0.0004
0
0
0.0025

0.0048
0.017

0.0264
0.0055
0.0018
0.012
0.0098
0.012
0.0028
0.0065
0.010
0.003
0.0003

0.0028
0.039
0.001

0.0074
0.0096
0.0019
0.0006
0.0003
0.0003

0.0003

0.0074

0.0066
0.0038

0.017
0.006
0.0014
0.012
0.016
0.028
0.0021
0.0078
0.0081
0.0036
0.0055

0.0007
0.0312
0.0045

2.75 (7.29)

1.58 (0.71)
0.44 (0.61)

0.15 (0.55)
-0.14 (0.75)
-0.21 (0.91)
-0.86 (0.57)
-1.13 (0.55)
1.14 (0.51)
-1.23 (1.19)
-1.53 (0.84)
-1.89 (0.73)
-2.18 (1.30)

-2.18 (1.01)

1.27 (0.41)
0.97 (0.42)

0.02 (0.25)
-0.40 (0.42)
0.24 (0.80)
0.47 (0.34)
-0.17 (0.28)
-0.09 (0.24)
0.81 (0.65)
0.69 (0.39)
0.83 (0.37)
0.21 (0.74)

-0.16 (0.50)
-0.35 (0.36)
0.33 (0.71)
0.11 (1.00)

-1.21 (1.19)

-0.31 (0.95)
1.17 (0.82)

0.69 (0.72)
-0.68 (0.55)
0.14 (1.01)
-0.10 (0.73)
-0.56 (0.50)
-0.82 (0.81)

-0.07 (0.55)
0.13 (0.71)
-0.45 (0.73)

1.97 (1.41)
0.28 (0.34)
-0.36 (1.17)



Scurius sp.

Oncilla

Short-tailed opossum
Coati

Common opossum
Margay

Pygmy marmoset

Montana Coyote
Winter/

Summer Mule Deer

Snowshoe Hare

Bobcat

Puma

Mountain Cottontail
White-tailed Deer

Elk

Brown Bear

American Badger
White-tailed Jackrabbit

Gray Wolf
North American
Porcupine

Moose
Striped Skunk

American Red Squirrel
Columbian Ground
Squirrel

American Black Bear
Yellow-pine Chipmunk

0
0.0003
0.0005

S O O O O

0.059

0.53
0.026
0.0036
0.0025
0.0066
0.21
0.026
0.0018
0.0023
0.0005
0.0016

0.0002
0.0007
0.0005
0.0007

0.0002

0.0005

0.0005
0.0014
0.0005
0.0002

0.070

0.048
0.017
0.0042
0.0013
0.0063
0.69
0.045
0.012
0.0025
0.0008
0.0025

0.0004
0.0034
0.0025
0.0004

0.042
0.0017

1.37 (0.45)

1.25 (0.41)
0.45 (0.52)
0.40 (0.96)
0.28 (1.12)
0.00 (0.72)

-0.54 (0.34)
1.71 (0.81)

-0.60 (0.21)

1.07 (0.29)
-0.32 (0.44)
-0.42 (0.91)
-0.17 (1.18)
-0.18 (0.73)
-0.95 (0.18)
0.22 (0.52)

0.60 (1.21)

0.23 (0.20)

0.15 (0.27)
0.41 (0.52)
-0.17 (0.51)
0.84 (0.95)
0.49 (1.16)
-0.69 (0.30)
-1.28 (0.45)
-1.68 (0.71)
-0.33 (0.53)
-0.17 (1.00)
-0.79 (0.70)

-1.78 (1.05)
-1.85 (1.20)
-1.27 (1.04)

0.93 (1.67)



Long-tailed Weasel

North
Carolina Gray Fox

Winter/
Summer Virginia Opossum

Coyote

Eastern Gray Squirrel
Eastern Cottontail
White-tailed Deer
Bobcat

Northern Raccoon
Red Fox

Woodchuck

Southern Flying Squirrel
River Otter

Eastern Chipmunk

0.0002

0.21

0.08
0.14
0.46
0.53
2.29
0.0031
0.11
0.004
0.0006
0.0028
0.0003
0.0006

0.022

0.075
0.19
0.13
0.34
1.77
0.0021
0.10
0.0003

0.072

1.33 (0.43)

0.80 (0.40)
0.25 (0.56)
0.25 (0.34)
0.23 (0.33)
-0.40 (1.24)
-0.84 (1.18)

1.04 (0.32)

-0.41 (0.21)
-0.35 (0.17)
-0.47 (0.23)
0.32 (0.20)
0.04 (0.19)
1.03 (1.13)

1.93 (0.65)

0.00 (0.32)
-0.33 (0.24)
0.98 (0.51)
0.47 (0.35)
0.15 (0.17)
0.44 (0.87)
0.00 (0.43)
2.22 (2.42)
-4.58 (4.06)




Figure S1. Species accumulation curves at a four temperate (A-D) and tropical (E-H) study areas
showing increasing diversity detected by individual cameras (grey lines) and for the study area as
a whole (black lines). The combination of these plots are shown in Figure 5. Study areas listed at

the top of each graph are described in Table S1.
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Figure S2. Seasonal variation shown as monthly averages for observed species richness, overall
mammal detection rate, species-specific capture rate (all species > 20 captures), and the % of
species captures stratified by season (all species with > 20 captures) for mammals surveyed for

sites in (I) Montana, (II) North Carolina, (III) Panama, and (IV) Peru. Lines represent smoothed

averages and gray polygons represent 95% confidence intervals. For the stacked bar charts; blue
= winter (A & B) or rainy season (C & D); orange = summer (A & B) or dry season (C& D). All
datasets represent captures from terrestrial cameras, except Peru, where the cameras were
arboreal.

I)Theodore Roosevelt Memorial Ranch, Montana
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Figure S3. The importance of seasonality in models of detection rate (black dots in the count

model), detectability (blue dots in the occupancy model), and occupancy (red dots in the
occupancy model) for sites in Montana (A), Panama (B), China (C), Peru (D), and North
Carolina (E). Coefficient values show whether a species detection rate, occupancy, or detection
probability was higher (positive) or lower (negative) in winter (for temperate sites) or the wet
season (for tropical sites). Error bars represent 95% confidence intervals.
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