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The spectra of signed matrices have played a fundamental role in social sciences,
graph theory, and control theory. In this work, we investigate the computa-
tional problems of finding symmetric signings of matrices with natural spectral
properties. Our results are the following:
1. We characterize matrices that have an invertible signing: a symmetric matrix
has an invertible symmetric signing if and only if the support graph of the matrix
contains a perfect 2-matching. Further, we present an efficient algorithm to search
for an invertible symmetric signing.
2. We use the above-mentioned characterization to give an algorithm to find a
minimum increase in the support of a given symmetric matrix so that it has an
invertible symmetric signing.
3. We show NP-completeness of the following problems: verifying whether a given
matrix has a symmetric off-diagonal signing that is singular/has bounded eigen-
values. However, we also illustrate that the complexity could differ substantially
for input matrices that are adjacency matrices of graphs.

We use combinatorial techniques in addition to classic results from matching
theory.

©2020 Elsevier B.V. All rights reserved.

1. Introduction

The spectra of several graph-related matrices such as the adjacency and the Laplacian matrices have

become fundamental objects of study in computer science. In this work, we undertake a systematic and

% Related Version An extended abstract of this work appeared in the proceedings of the 44th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2019). The current version contains full proofs and additional counting

results.
* Corresponding author.

E-mail addresses: charles.carlson@colorado.edu (C. Carlson), karthe@illinois.edu (K. Chandrasekaran),
hsienchih.chang@duke.edu (H.-C. Chang), kakimura@math.keio.ac.jp (N. Kakimura), alexandra.kolla@colorado.edu (A. Kolla).
1 Supported by National Science Foundation, USA CCF 18-14613.
2 Partly supported by JSPS KAKENHI Grant Numbers JP17K00028 and JP18H05291.
3 Supported by National Science Foundation, USA CCF 18-55919.

https://doi.org/10.1016/j.disopt.2020.100582
1572-5286,/© 2020 Elsevier B.V. All rights reserved.


https://doi.org/10.1016/j.disopt.2020.100582
http://www.elsevier.com/locate/disopt
http://www.elsevier.com/locate/disopt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disopt.2020.100582&domain=pdf
mailto:charles.carlson@colorado.edu
mailto:karthe@illinois.edu
mailto:hsienchih.chang@duke.edu
mailto:kakimura@math.keio.ac.jp
mailto:alexandra.kolla@colorado.edu
https://doi.org/10.1016/j.disopt.2020.100582

2 C. Carlson, K. Chandrasekaran, H.-C. Chang et al. / Discrete Optimization 37 (2020) 100582

comprehensive investigation of the spectrum and the invertibility of symmetric signings of matrices. We
study natural spectral properties of symmetric signed matrices and address the computational problems of
finding and verifying the existence of symmetric signings to achieve these spectral properties.

For a real-valued symmetric n X n matrix M and a {#1}-valued n x n matrix s—which we refer to as
a signing—we define the signed matriz M(s) to be the matrix obtained by taking entry-wise products of
M and s. Signed adjacency matrices (respectively, Laplacians) correspond to signed matrices M (s) where
M is the adjacency matrix (respectively, Laplacian) of a graph. We say that s is a symmetric signing if s is
a symmetric matrix and an off-diagonal signing if all the diagonal entries of s are +1. In this work we are
interested in the following computational problems:

BOUNDEDEVALUESIGNING: Given a real symmetric matrix M and a real number A, verify if there
exists a symmetric signing s such that the largest eigenvalue Apax (M (s)) is at most A.
INCLUDESIGNING: Given a real symmetric matrix M and a real number A, verify if there exists a
symmetric signing s such that M (s) has X\ as an eigenvalue.

AVOIDSIGNING: Given a real symmetric matrix M and a real number A, verify if there exists a
symmetric signing s such that M (s) does not have A as an eigenvalue.

We focus our attention specifically on the variants of the above problem where \ is assumed to be 0:

NSDSIGNING: Given a real symmetric matrix M, verify if there exists a symmetric signing s such that
M (s) is negative semi-definite.

SINGULARSIGNING: Given a real symmetric matrix M, verify if there exists a symmetric signing s
such that M(s) is singular.

INVERTIBLESIGNING: Given a real symmetric matrix M, verify if there exists a symmetric signing s
such that M(s) is invertible (that is, non-singular).

It will also be useful to further consider the same specialization but where we further restrict the problem
to only allow off-diagonal symmetric signings.

NsDODSIGNING: Given a real symmetric matrix M, verify if there exists a symmetric off-diagonal
signing s such that M (s) is negative semi-definite.

SINGULARODSIGNING: Given a real symmetric matrix M, verify if there exists a symmetric
off-diagonal signing s such that M(s) is singular.

INVERTIBLEODSIGNING: Given a real symmetric matrix M, verify if there exists a symmetric
off-diagonal signing s such that M(s) is invertible (that is, non-singular).

We note that NsDODSIGNING would be interesting only if the input matrix has non-positive diagonal
entries. However, if the input matrix has non-positive diagonal entries, then the problem exactly corre-
sponds to NSDSIGNING. Furthermore, if the input to BOUNDEDEVALSIGNING is a graph-related matrix
(for example, the adjacency matrix), then we can reduce it to an instance of NSDSIGNING: indeed, solving
BoundedEvalSigning on inputs of the form (M, \) where M is graph-related, reduces to solving NSDSIGNING
on M — Al

1.1. Motivations

Spectra of signed matrices and expanders. Let G be a connected d-regular graph on n vertices and let
d= X > A > -+ > Ay_1 be the eigenvalues of its adjacency matrix. Then G is a Ramanujan expander
if maxy,|<q|Xi| < 2v/d — 1. Efficient construction of Ramanujan expanders of arbitrary degrees remains
an important open problem’. A combinatorial approach to this problem, initiated by Friedman [2], is to

4 While efficient construction of bipartite Ramanujan multi-graphs of all degrees is known [1], it still remains open to efficiently
construct bipartite Ramanujan simple graphs of all degrees.
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obtain larger Ramanujan graphs from smaller ones while preserving the degree. A 2-lift H of G is obtained
as follows: introduce two copies of each vertex u of G, say u; and us, as the vertices of H and for each edge
{u,v} in G, introduce either {uy, va}, {ua, v1} or {us,v1}, {ue,va} as edges of H. There is a bijection between
2-lifts and symmetric signed adjacency matrices of G. Furthermore, the eigenvalues of the adjacency matrix
of a 2-lift H are given by the union of the eigenvalues of the adjacency matrix of the base graph G (also
called the “old” eigenvalues) and the signed adjacency matrix of G that corresponds to the 2-lift (the “new”
eigenvalues).

Marcus, Spielman, and Srivastava [3] showed that every d-regular bipartite graph has a 2-lift whose new
eigenvalues are bounded in absolute value by 2v/d — 1. However, this result [3] is not constructive and their
work raises the question of whether there is an efficient algorithm to find a symmetric signing that minimizes
the largest eigenvalue. This motivates investigating BOUNDEDEVALUESIGNING which is the decision variant
of the computational problem. More precisely, it motivates investigating BOUNDEDEVALUESIGNING when
the input matrix is an adjacency matrix.

It is also natural to investigate the complexity of several related problems. As we will see in the next
section, BOUNDEDEVALUESIGNING is NP-hard for arbitrary symmetric matrices. Our reduction showing
that BOUNDEDEVALUESIGNING is NP-hard suggests a close relationship with SINGULARODSIGNING which
we also show to be NP-hard. Hoping to make progress on BOUNDEDEVALUESIGNING for adjacency matrices,
we investigate SINGULARODSIGNING for adjacency matrices—this is equivalent to SINGULARSIGNING when
the graph has no self-loops. INCLUDESIGNING is a natural generalization of SINGULARSIGNING. Moreover,
INVERTIBLEODSIGNING, INVERTIBLESIGNING and AVOIDSIGNING arise naturally as the complements of
SINGULARODSIGNING, SINGULARSIGNING and INCLUDESIGNING.

Solvability index of a signed matrix. The notion of balance of a symmetric signed matrix has been
studied extensively in social sciences [4-7]. A signed adjacency matrix is balanced if there is a partition
of the vertex set such that all edges within each part are positive, and all edges in between two parts are
negative (one of the parts could be empty). A number of works [7—12] have explored the problem of minimally
modifying signed graphs (or signed adjacency matrices) to convert it into a balanced graph.

In this work, we introduce a related problem regarding symmetric signed matrices: Given a symmetric
matrix M, what is the smallest number of off-diagonal zero entries of M whose replacement by non-zeros
gives a symmetric matrix M’ that has an invertible symmetric signing? We define this quantity to be the
solvability index®. Knowing this number might be helpful in studying systems of linear equations in signed
matrices that might be ill-defined, and thus do not have a (unique) solution and in minimally modifying
such matrices so that the resulting linear system becomes (uniquely) solvable. We use classic graph-theoretic
techniques to show that solvability index is indeed computable efficiently.

1.2. Our results

Intriguingly, the complexity of BOUNDEDEVALUESIGNING has not been studied in the literature even
though it is widely believed to be a difficult problem in the graph sparsification community. We shed light
on this problem by showing that it is NP-complete.

Theorem 1. NSDSIGNING and SINGULARODSIGNING are NP-complete.

Theorem 1 also implies that BOUNDEDEVALUESIGNING is NP-complete. The hard instances generated by
our proof of Theorem 1 are real symmetric matrices with non-zero diagonal entries and hence, it does not

5 Our definition of solvability index is similar to the notion of frustration index [13,14]. The frustration index of a matrix M
is the minimum number of non-zero off-diagonal entries of M whose deletion results in a balanced signed graph. Computing the
frustration index of a signed graph is NP-hard [15].
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resolve the computational complexity of the problem of finding a signing of a given graph-related matrix
that minimizes its largest eigenvalue.

In contrast to SINGULARODSIGNING, we show that INVERTIBLESIGNING admits an efficient algorithm.
In fact, we show that there exists an efficient algorithm to solve the search variant of this problem, which
we denote by SEARCHINVERTIBLESIGNING: here the goal is to find a symmetric signing (not necessarily
off-diagonal) of a given matrix M such that M(s) is invertible.

Theorem 2. There exists a polynomial-time algorithm to solve SEARCHINVERTIBLESIGNING.

Our proof of Theorem 2 leads to a structural characterization for the existence of invertible signings
through the existence of perfect 2-matchings in the support graph of the matrix. We believe that this
structural characterization could be of independent interest and hence, discuss it in detail in Section 1.2.1.

We next investigate the number of invertible (symmetric but not necessarily off-diagonal) signings of the
adjacency matrix of graphs. One of the motivations behind studying this quantitative version arises in the
design of randomized algorithms: if the number is sufficiently large, then it could reduce the amount of
randomness in a popular algebraic algorithm for verifying the existence of a perfect matching in a bipartite
graph due to Lovész [16].

It is well-known that flipping the signs on the edges of a cut preserves the spectrum of the signed adjacency
matrix. Thus, the existence of one invertible signed adjacency matrix for a (connected) graph G on n vertices
also implies the existence of 27! invertible signed adjacency matrices. In comparison, the lower bound
obtained in our next result is much larger (if the number of edges in the graph is much larger than the
number of vertices). We emphasize that our lower bound holds for arbitrary simple graphs (and not just
bipartite graphs).

Theorem 3. Let G be a simple graph with m edges that contains a perfect 2-matching, and let M be the
adjacency matriz of G. Let v(M) denote the number of symmetric signings of M that are invertible and let
1(Q@) denote the number of perfect 2-matchings in G. Then,

A(M) - (@) = 27,

As a consequence of Theorem 3, we obtain that the fraction of invertible signed adjacency matrices of
a graph G with n vertices containing a perfect 2-matching is at least 2~ 9(logn) (since u(G), the number
of perfect 2-matchings in a n-vertex graph, is at most n!). An upper bound of 2= on the fraction is
demonstrated by the graph that is a disjoint union of 4-cycles. While our bound from Theorem 3 does not
reduce the amount of randomness needed in the algebraic algorithm for verifying the existence of a perfect
matching in a bipartite graph, we believe that it could be of interest from the perspective of combinatorics.

Our next result provides some evidence that one might be able to design efficient algorithms to solve
the NP-complete problems appearing in Theorem 1 for graph-related matrices. In particular, we show that
SINGULARSIGNING and its search variant admit efficient algorithms when the input matrix corresponds
to the adjacency matrix of a bipartite graph. We note that since bipartite graphs do not have self-loops,
SINGULARSIGNING and SINGULARODSIGNING are equivalent on such input.

Theorem 4. There exists a polynomial-time algorithm to verify if the adjacency matrizx Ag of a given
bipartite graph G has a symmetric signing s such that Ag(s) is singular; and if so, find such a signing.

Finally, we recall the solvability index of a real symmetric matrix M that we defined earlier: it is the
smallest number of off-diagonal zero entries that need to be converted to non-zeros so that the resulting
symmetric matrix has an invertible symmetric signing. We emphasize that the support-increase operation
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that we consider preserves symmetry, that is, if we replace the zero entry A[i,j] by «, then the zero entry
Alj, 1] is also replaced by a. We give an efficient algorithm to find the solvability index of a given symmetric
matrix M.

Theorem 5. There exists a polynomial-time algorithm to find the solvability index of a given real symmetric
matriz.

1.2.1. Structural characterization for invertible signings

Theorem 2, in particular, implies that INVERTIBLESIGNING is solvable efficiently. In fact, our proof-
technique gives an efficient characterization for the existence of an invertible signing. This characterization
also leads to an alternative algorithm to solve INVERTIBLESIGNING. We believe that this characterization
might be of independent interest and hence describe it here.

The support graph of a real symmetric n x n matrix M is an undirected graph G where the vertex set of
G is [n] ;== {1,...,n}, and the edge set of G is {{u,v} | M[u,v] # 0}. We note that G could have self-loops
depending on the diagonal entries of M. A perfect 2-matching in a graph G with edge set F is an assignment
z: E — {0,1,2} of values to the edges such that }_ .5,
denotes the set of edges incident to v). Equivalently, a perfect 2-matching in a graph G is a vertex-disjoint

) Te = 2 holds for every vertex v in G (where §(v)

union of edges and cycles (self-loops are cycles) in G such that each vertex is incident to at least one edge.
We show the following characterization:

Theorem 6. Let M be a symmetric n X n matrix and let G be the support graph of M. The following are
equivalent:

(i) There exists a symmetric signing s such that the signed matriz M (s) is invertible.
(ii) The support graph G contains a perfect 2-matching.

Remark 1. The structural characterization of Theorem 6 leads to a polynomial-time algorithm to solve
INVERTIBLESIGNING—it suffices to verify if the support graph of the input matrix contains a perfect
2-matching which can be done in polynomial-time.

Remark 2. For Theorem 6, we present two proofs: the first is a constructive proof via a generalization
(see Theorem 11 in Section 3) and the second is a non-constructive proof via Combinatorial Nullstellensatz
which also leads to the proof of Theorem 3 (see Section 4).

1.83. Related work

Skew symmetric matrix of indeterminates. A square skew-symmetric matrix of indeterminates with
zeros on the diagonal is known as the Tutte matriz of its support graph. A well-known result by Tutte shows
that the determinant polynomial of the Tutte matrix is non-zero if and only if the corresponding support
graph has a perfect matching. Our result in Theorem 6 can be interpreted as a variant of Tutte’s result to
square symmetric matrices of indeterminates with zeros on the diagonal.

Cunningham and Geelen [17] extended Tutte’s work along a different direction by giving a characterization
of invertible submatrices of the Tutte matrix using path-matchings. Given a graph G with vertex set V' and
vertex subsets R, L C V' a (R, L)-path-matching in G is a collection of vertex-disjoint paths from R to L
and edges in G[V \ (RUL)]. A perfect (R, L)-path-matching is a (R, L)-path-matching in which every vertex
in G is incident to some edges of the vertex-disjoint paths. They showed that the determinant polynomial
of a square submatrix of the Tutte matrix of G with column set R and row set L is non-zero if and only if
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there exists a perfect (R, L)-path-matching in G. The notion of cycle-covers that we introduce in Section 3
and our result in Theorem 11 can be interpreted as variants of Cunningham and Geelen’s result to square
symmetric matrices of indeterminates with zeros on the diagonal.

Our results in Theorems 6 and 11 go further than Cunningham and Geelen’s result by not only giving
similar characterizations for the determinant to be a non-zero polynomial but also by giving polynomial-time
algorithms to find a point in {#1}¥ at which the polynomial is non-zero.

Minimum rank problems. A line of work seemingly related to ours is the minimum rank problem
(e.g., see [18,19]): given a graph G, the goal is to compute the minimum rank of the weighted adjacency
matrix of a graph obtained by giving non-zero real-valued weights to the edges of G. We emphasize that the
allowed weights in the minimum rank problem are arbitrary and are not simply signs of the given adjacency
matrix as in the case of our work. A signed variant of the minimum rank problem has also been addressed
in the literature: given a sign pattern matrix S, the goal is to compute the minimum rank of a matrix with
real-valued entries whose sign pattern is identical to S. Once again, we emphasize the distinction between
the signed variant of the minimum rank problem and the problems studied in our work: in the signed variant
of the minimum rank problem, the sign pattern is the input and the goal is to find a matrix with real-valued
entries matching the input sign pattern and achieving minimum rank. In contrast, the problems studied in
our work have real-valued entries as inputs and the goal is to find a symmetric sign pattern of the entries
to achieve the specified spectral properties.

A year after posting our work on arXiv [20], Akbari, Ghafari, Kazemian, and Nahvi [21] also posted an
article addressing INVERTIBLESIGNING®. They show the same characterization as Theorem 6 with a proof
identical to the non-constructive proof appearing Section 4. We emphasize that in addition to showing the
structural characterization in Theorem 6, this work resolves the search problem in Theorem 2, and moreover
shows a much more general structural characterization in Theorem 11 with a constructive proof.

1.4. Organization

In Section 1.5, we review definitions and notations. In Section 2, we show that NSDSIGNING and
SINGULARODSIGNING are NP-complete (Theorem 1). In Section 3, we describe an efficient algorithm to
find an invertible signing (Theorem 2). In Section 4, we consider the problem of counting the number of
invertible signings (Theorem 3). In Section 5, we give an efficient algorithm to find a singular signing of
adjacency matrices of bipartite graphs (Theorem 4). In Section 6, we give an efficient algorithm to find the
solvability index of symmetric matrices (Theorem 5). Finally, in Section 7, we conclude with some open
questions.

1.5. Preliminaries

Unless otherwise specified, all matrices are symmetric and take values over the reals. Since all of our
results are for symmetric signings, we will just use the term signing to refer to a symmetric signing in the
rest of this work. We denote the entry-wise product of two n x n matrices M and s as M(s) (even when s
is not necessarily a signing).

Let S, be the set of permutations of n elements, M be a real symmetric n xn matrix, and s be a symmetric
n x n signing. Then, the permutation expansion of the determinant of a signed matrix M (s) is given by

det M(s) = > sgn(o)- H M(s)[i,o(i)].

oc€Sy

6 Our arXiv post dated Nov, 2016: https://arxiv.org/abs/1611.03624; the post by Akbari, Ghafari, Kazemian, and Nahvi dated
Aug, 2017: https://arxiv.org/abs/1708.07118.
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A permutation ¢ in S, has a unique cycle decomposition and hence corresponds to a vertex-disjoint union of
directed cycles on n vertices. Removing the orientation gives an undirected graph which is a vertex disjoint
union of cycles, self-loops, and matching edges.

2. Hardness of eigenvalue problems

In this section, we focus on our hardness results and prove Theorem 1. We use the notion of Schur
complement. The following lemma summarizes the definition and the relevant properties of the Schur
complement.

Lemma 7 (Schur Complement [22]). Suppose A € RP*P | B € RP*1, C € R?*? are matrices such that A is
invertible and the matrix
D [ A B}

BT C
is a symmetric matriz. Then the Schur complement of A in matriz D is defined to be

Dy=C-BTA™'B.
We have the following properties:

(i) Suppose A is positive definite. Then, the matriz D is positive semi-definite if and only if the Schur
complement of A in D, namely D 4, is positive semi-definite.
(i) det(D) = det(A) - det(D4).

To show that NSDSIGNING is NP-complete, it is convenient to first show that the following problem is
NP-complete:

PSDSICGNING: Given a real symmetric matrix M, verify if there exists a symmetric signing s such that

M (s) is positive semi-definite.

We note that a positive semi-definite matrix cannot have negative entries on its diagonal. Hence, the
above problem is equivalent to the following off-diagonal variant:

PsDODSIGNING: Given a real symmetric matrix M, verify if there exists a symmetric off-diagonal

signing s such that M (s) is positive semi-definite.

In order to show the NP-completeness result, we reduce from the partition problem, which is a well-known
NP-complete problem [23]. We recall the problem below:

PARTITION: Given an n-dimensional vector b of non-negative integers, determine if there is a
+1-signing vector z such that the inner product (b, z) equals zero.

Lemma 8. PsSDODSIGNING and SINGULARODSIGNING are NP-complete.

Proof. Both problems are in NP since if there is a symmetric off-diagonal signing of the given matrix that
is positive semi-definite/singular, then this signing gives the witness. In particular, we can verify if a given
symmetric off-diagonal signed matrix is positive semi-definite/singular in polynomial time by computing its
spectrum [24].

We show NP-hardness of both problems by reducing from PARTITION. Let the n-dimensional vector b :=
(b1,...,b,)T be the input to the PARTITION problem, where each b; is a non-negative integer. We construct
a matrix M as an instance of either problem as follows: Consider the following (n + 2) x (n + 2)-matrix
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where I,, is the n x n identity matrix and 1,, is the n-dimensional column vector of all ones.
Now consider a symmetric off-diagonal signing s of M. The symmetric off-diagonal signed matrix is of
the following form:

~

1, b z
M':=M(s)= |bT (b,b) O],
2T 0 n
where the n-dimensional vector z takes values in {£1}" and b = (b1, ..., b,)T, where b; takes value in {£b;}
for every i. Let
A=1,,
B = [l; z] , and
_ [(6:b) 0
cm[B0 9]

Since A = I, is invertible, the Schur complement of A in M’ is well-defined and is given by

O L A R L B i B I

)

where the last equation follows because we have (b, b) = (b,b) and (z,z) = n.

We note that A = I, is positive definite. Therefore, by property (i) of Lemma 7, the matrix M’ is positive
semi-definite if and only if M, is positive semi-definite. Likewise, using property (i7) of Lemma 7, we have
that

det M’ = det(I,) - det(M’,) = det(,) - det (L(g ; *2’ Z>D = (b, 2)2.

Therefore, det M’ = 0 if and only if (b, z) = 0. Thus, M’ is positive semi-definite/singular if and only if
(b, z) = 0. However, (b, z) = 0 if and only if there exists 2 € {£1} such that (b,2) = 0. <=

We observe that a real symmetric n X n matrix is positive semi-definite if and only if —M is negative
semi-definite. Lemma 8 and this observation imply Theorem 1.

3. Finding invertible signings

In this section, we focus on invertible signings and prove Theorem 2. We prove a much more general
statement in comparison to the one given in Theorem 6, which we believe could be of independent interest.
We start by introducing the background needed to state the general version.

Symmetric signings of asymmetric sub-matrices. Let M be a symmetric n x n matrix. For X, Y C [n]
being a subset of row and column indices of the same cardinality, let M[X,Y] denote the submatrix of M
obtained by picking the rows in X and the columns in Y. We note that M[X,Y] is a square matrix, but it
may not be symmetric even though M is symmetric. We are interested in finding a symmetric n x n signing
s so that the square submatrix M (s)[X,Y] is invertible. We emphasize that for a symmetric signing s, the
(possibly asymmetric) matrix M(s)[X, Y] is symmetric on X NY’, that is, the [z, j]’th and the [j,7]’th entries
of the matrix M(s)[X,Y] are the same for every i,j € X NY.

Perfect 2-matchings in subgraphs. Let G be a simple undirected graph, possibly containing self-loops.
Let X,Y be vertex subsets of G. We consider the subgraph G[XUY] induced by XUY. An (X, Y)-cycle-cover
is a collection of edges of the subgraph G[X U Y] that induce a vertex-disjoint union of paths and cycles
(cycles could be loop edges) in G[X UY] such that (1) every cycle is a subgraph of G[X NY7], (2) every vertex
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Fig. 1. An (X,Y)-cycle-cover F. Furthermore, by our definitions below, the edge {a,b} is in Paths(F) while the edge {u,v} is in
Matchings(F').

of X UY is incident to at least one edge, and (3) every path either has one end-vertex in X \ Y, the other
end-vertex in Y\ X, and all intermediate vertices in X NY’, or has both end-vertices in X NY with only one
edge (see Fig. 1 for an example). We note that (X, X)-cycle-covers correspond to perfect 2-matchings in G[X]
and hence, (V, V')-cycle-covers correspond to perfect 2-matchings in G. It follows that in (X, X)-cycle-covers
all paths are only a single edge in G. Furthermore, the existence of an (X, Y')-cycle-cover is possible only if
|X| = |Y]. The following lemma states that the existence of an (X,Y)-cycle-cover in a given graph can be
verified efficiently.

Lemma 9. There exists a polynomial-time algorithm that decides if there is an (X,Y)-cycle-cover in a given
graph G for given vertex subsets XY of G.

Proof. We recall that determining if a bipartite graph has a perfect matching can be done in polynomial
time. Hence, it will suffice to show that deciding if an (X,Y)-cycle-cover exists in G can be reduced in
polynomial time to deciding if a perfect matching exists in a bipartite graph. Let L := {v; | v € X} and
R = {v, | v € Y}. Let H be the bipartite graph with vertex set L U R and edge set {{v;,u.} | {v,u} €
(X xY)NE}. We will show that there is an (X, Y)-cycle-cover in G if and only if there is a perfect matching
in H.

Let F be an (X,Y)-cycle-cover in G. Consider the edge set M = {{vj,u,} | {v,u} € (X xY)NF}. We
note that for each v € X \ 'Y the degree of v; in M is one. Likewise, for each v € Y \ X the degree of v,
in M is one. Finally, if v € X N'Y then the degrees of v; and v, in M is one or two. It follows that M is a
perfect 2-matching in H and hence there must be a perfect matching in H.

Next, let M be a perfect matching in H. Consider the edge set F' = {{v,u} | {v;,u,} € M}. We note
that F' contains no edge between vertices in Y\ X. Likewise, F' contains no edge between vertices in X \ Y.
Moreover, for each v € X \ YUY \ X the degree of v is exactly one. Finally, for each v € X NY the degree
of v is one or two. It follows that F is an (X,Y)-cycle-cover in G. <«

Let M € R™ ™ be a symmetric matrix, X, Y C [n] with |X| = |Y| and s be a symmetric n X n signing.
Recall that we are interested in finding a symmetric n x n signing s so that the square submatrix M (s)[X, Y]
is invertible. We derive a convenient expression for det(M (s)[X, Y]) that is based on (X, Y)-cycle-covers. For
an (X,Y)-cycle-cover F, let Cycles(F'), Paths(F'), and Matchings(F') denote the set of cycles in F', paths
in F with end-vertices in X \ Y and Y \ X, and paths in F' that are contained in G[X N Y], respectively.
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Moreover, let Loops(F') and NTCs(F') denote the set of self-loops and non-trivial-cycles in F. We emphasize
that Cycles(F') = Loops(F') UNTCs(F). We also note that Cycles(F'), Paths(F'), and Matchings(F') are all
vertex-disjoint from one another and if X =Y then Paths(F) = (). We define

M(S)Cyclcs(F) = H H M(s)[u, UL

CeCycles(F) {u,v}eC

M () paths(F) = H H M(s)[u,v], and

PePaths(F) {u,v}€eP

M (8)Matchings(F) = H M (s)[u,v]*.
{u,v}EMatchings(F)

With this notation, we have the following claim that the determinant of M (s)[X,Y] is a {£1}-linear

combination of terms corresponding to (X, Y')-cycle-covers in G.

Lemma 10 ((X,Y)-cycle-cover Expansion). Let M € R™*™ be a symmetric n X n matriz, X,Y C [n] with
|X| = |Y]|, and s be a symmetric n X n matriz. Let G be the support graph of M and F be the set of all
(X,Y)-cycle-covers in G. Then, there exists A\p € {£1} for all F' € F such that

det(M(s)[X, Y]) = Z AR - 2|NTCS(F)‘ . M(S) Cycles(F) * M(S)Paths(F) : M(S)Matchings(F)~
FeF

Moreover, if there are Fy,Fy € F such that Cycles(Fy) = Cycles(Fy) and Paths(Fy) = Paths(Fy) then
Ar, = Ap,.

Proof. For simplicity, we denote M’ = M[X,Y]. Let k := | X| and let Sy denote the set of permutations

on k elements. Then, by the permutation expansion of the determinant, we have

k

det(M'(s)) = Z sgn(o) - Hs[i,a(i)] - M'[i,0(i)].

o€Sy i=1

We recall that sgn(o) € {+1}. Moreover, if 01,09 € Si such that o7 and o3 have the same cycle structure
then sgn(o1) = sgn(o2). Now, we note that there is a one-to-one correspondence between Sy, and bijections
from X to Y. So, we may view o € Sj as a bijection ¢’ : X — Y. Now, consider the graph H, on
vertex set X UY and edge set F,» = {{u,v} | o/(u) = v}. Since ¢’ is a bijection, it follows that F, is
an (X,Y)-cycle-cover in the complete graph on vertex set X UY. Moreover, since each non-trivial-cycle in

an (X,Y)-cycle-cover can take one of two orientations in any corresponding permutation, there are QINTCs(F)]
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distinct permutations which map to each (X,Y)-cycle-cover F. Hence,

[ sli, o)) M[i o) = [] slu. o’ (w)] - M[u, o’ (u)]

i=1 ueX
= M(S)Cycles(Fal) . M(S)Paths(Fal) . M(S)Matchings(FU/) .

The above-term is non-zero only if F,/ is an (X,Y)-cycle-cover in the support graph of G. Furthermore,
if Fi,Fy € F such that Cycles(F) = Cycles(Fs) and Paths(Fy) = Paths(F,) then Ap, = Ap, since the
corresponding permutations would have the same cycle structure. <«

To prove Theorems 6 and 2, we show the following theorem which gives a generalized structural
characterization: it characterizes the existence of invertible symmetric signings for (potentially asymmetric)

submatrices of symmetric matrices.

Theorem 11. Let M be a real symmetric n X n matriz with support graph G and X,Y C [n] with | X| = |Y|.
The following are equivalent:

(i) There exists an (X,Y)-cycle-cover in G.
(i) There exists a symmetric signing s such that M(s)[X,Y] is invertible.

Moreover, there exists a polynomial-time algorithm that takes a real symmetric nxn matriz M and X, Y C [n]
as input and verifies if there exists a symmetric signing s such that M(s)[X,Y] is invertible and if so, find

such a signing.

Notation. Let M be a real symmetric n X n matrix with support graph G. Let A and B be vertex subsets of
G. We define E[A, B] to be the set of edges with one end-vertex in A and the other end-vertex in B. We use
E[A] to denote E[A, A]. Let e be an edge in G corresponding to the non-zero entry M[u,v] (= M[v, u]). We
define M€ as the matrix obtained by setting M [u,v] and M|v,u] to 0. For a signing s and row and column
indices u,v € [n], we can obtain another signing s’ such that s'[u,v] = —s[u,v], §'[v,u] = —s[v,u] and
s'[i, 7] = sli, j] for every entry (i,7) € [n] x [n]\ {(u,v), (v,u)}. We call this operation as s’ obtained from s
by flipping on {u,v}.

Proof of Theorem 11. We first present a constructive proof of the characterization. We will then use the
proof to design the algorithm.

Lemma 10 immediately shows that (i) implies (7): If we have a symmetric signing s such that M (s)[X,Y]
is invertible, then at least one of the terms in the (X,Y)-cycle-cover expansion of det(M(s)[X,Y]) is
non-zero. Hence, there exists an (X, Y)-cycle-cover in G.

We show that (¢) implies (i7). Suppose not. Among the counterexamples, consider the ones with |X|
minimum and among these, pick a matrix M with minimum number of non-zero entries. Since we chose a

counterexample, we have that

(A) there exists an (X,Y)-cycle-cover in G, but
(B) there is no symmetric signing s such that M(s)[X, Y] is invertible.

We will arrive at a contradiction by showing that a signing s satisfying (i7) exists. We begin with the following
claim about the counterexample.

Claim 12. E[X\Y,Y|=0and EY \ X, X]| = 0.
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Proof. Suppose there exists an edge e € E[X \Y,Y]. Let e := {u,v} with uw € X\Y and v € Y. Then there
exists @ € {£1} such that the determinant of M(s)[X,Y] can be expressed as a linear function of s[u, v]:

det(M(s)[X,Y]) = - s[u,v] - M[u,v] - det(M(s)[X —u,Y —v]) 4 det(M®(s)[X,Y]). (1)

Case 1. Suppose there exists an (X, Y)-cycle-cover F' containing e. We observe that F—e is an (X —u, Y —v)-
cycle-cover in G. Since we have a smallest counterexample, it follows that there exists a symmetric signing
s such that det(M (s)[X —u,Y —v]) # 0. Since det(M (s)[X,Y]) is a linear function of s[u, v], it follows that
det(M(s)[X,Y]) # 0 or det(M(s")[X,Y]) # 0 where s’ is a signing obtained from s by flipping on {u, v}.
Hence, we have a contradiction to assumption B about the counterexample.

Case 2. Suppose that every (X,Y)-cycle-cover in G does not contain e. Then there is no (X —u,Y — v)-
cycle-cover in G. Since (i¢) implies (), it follows that det(M(s)[X — u,Y — v]) = 0 for every symmetric
signing s. Let F be an (X, Y)-cycle-cover in G (as promised to exist by A). Then F is an (X, Y)-cycle-cover
in G — e. Since we have a smallest counterexample, it follows that there exists a symmetric signing s such
that det(M¢(s)[X,Y]) # 0. By (1), we observe that det(M(s)[X,Y]) # 0. Thus, the symmetric signing s is
a contradiction to assumption B about the counterexample.

Hence, E[X \ Y,Y] = 0. Similarly E[Y \ X, X]|=0. =

Now, if X \'Y # ) and there is no edge e € E[X \ Y, Y], then there is no (X,Y)-cycle-cover in G, a
contradiction to assumption A about the counterexample. Hence, X \ Y = (). Similarly, Y\ X = ). Thus,
we have X =Y in the counterexample. We next show that the counterexample cannot have any self-loop
edges.

Claim 13. There are no self-loop edges in E[X].

Proof. Suppose there exists a self-loop edge in E[X]. Let e = {u,u} for some u € X. Then, there exists
a € {£1} such that det(M(s)[X,Y]) is a linear function of s[u, ul:

det(M (s)[X, X]) = a - s[u, u] - M[u,u] - det(M (s)[X —u, X —u]) + det(M®(s)[X, X]). (2)

We arrive at a contradiction by proceeding similar to the proof of the previous claim. We avoid restating
the proof in the interests of brevity. <«

By Claim 13, the counterexample has no self-loop edges in F[X]. Our next claim strengthens this further
by showing that the counterexample has no (X,Y)-cycle-cover with cycle edges.

Claim 14. FEvery (X, X)-cycle-cover in G has no cycles.

Proof. Suppose there exists an (X, X)-cycle-cover F' in G with a cycle C induced by F. Let e = {u, v} be
an edge in the cycle. By Claim 13, we know that u # v. We observe that det(M(s)[X, X]) is a quadratic
function of s[u,v], i.e., there exists a € {£1} such that the determinant of M (s)[X, X] can be expressed as

det(M(s)[X, X]) = —s[u,v]* - M[u,v]?* - det(M(s)[X — {u,v}, X — {u,v}])

+ 20 - s[u,v] - M[u,v] - det(M®(s)[X —u, X —v]) (3)
+ det(M®(s)[X, X]).
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Furthermore, F' — e is an (X — u, X — v)-cycle-cover in G. Since we have a smallest counterexample, it
follows that there exists a symmetric signing s such that det(M¢(s)[X — u, X —v]) # 0. We now define the
quadratic function

f(z) == —2% M[u,v)? - det(M(s)[X — {u,v}, X — {u,v}])
+ 2ax - M[u,v] - det(M®(s)[X — u, X —v]) + det(M®(s)[X, X]),

and consider its roots. Since det(M¢(s)[X —u, X —v]) # 0, the sum of the roots of this quadratic equation is
non-zero. Since the real roots of a quadratic function are symmetric about the critical point of the parabola
defined by the function (i.e., symmetric about argmin f(x)), there exists © € {£1} that is not a root of
f(z). Hence, either det(M(s)[X,Y]) # 0 or det(M (s')[X,Y]) # 0 where s’ is a signing obtained from s by
flipping on {u,v}. Thus, either s or s’ contradict assumption B about the counterexample. <«

By Claims 12 and 13, the counterexample has X = Y with no loop edges in F[X]. Furthermore, by
Claim 14, every (X, X)-cycle-cover in G has no cycles. By definition of (X, X)-cycle-covers, it follows that
each (X, X)-cycle-cover in G corresponds to a perfect matching in G[X]. Let N be an (X, X)-cycle-cover in
G.

Claim 15. N is the unique (X, X)-cycle-cover in G.

Proof. Let e be an arbitrary edge in N. Suppose there exists an (X, X)-cycle-cover N’ in G — e. Then,
Claims 13 and 14 imply that N’ is also a perfect matching in G[X]. We consider N := NUN’. Since N and
N’ are perfect matchings in G[X], the set of edges N” induces a vertex-disjoint union of edges and cycles
of even length in G[X]. Hence, N” is an (X, X)-cycle-cover in G. Furthermore, since e € N \ N’, it follows
that N’ contains at least one cycle. This contradicts Claim 14. Thus, every edge e € N belongs to every
(X, X)-cycle-cover in G. Consequently, N is the unique (X, X)-cycle-cover in G. <«

Since N is the unique (X, X)-cycle-cover in G, by Lemma 10, we have that

det(M(s)[X, X)) = (=) ] M(s)[u, v]?
{u,v}eN

which is non-zero for every signing s. Thus, there exists a symmetric signing s such that det(M (s)[X, X]) # 0,
a contradiction to assumption B about the counterexample. This completes the proof of the characterization.
We note that the above proof of the characterization is constructive and immediately leads to the algorithm
FINDSIGNING(M, X, Y) in Fig. 2.

We now describe an efficient implementation of the non-trivial steps in FINDSIGNING. In Step 1, the
algorithm performs a brute-force search. We note that the search needs to be conducted only for the entries
slu,v] where u,v € X UY since det(M(s)[X,Y]) is independent of the remaining entries of the signing
s. Since | X UY] < 2, the search can be conducted in constant time by picking an arbitrary sign for the
remaining entries.

Lemma 9 implies that Steps 2 and 3.2 can be implemented to run in polynomial time. We recall that any
cycle edge in an (X, X)-cycle-cover must be a cycle edge in some perfect 2-matching in G[X]. Claim 16 shows
that Step 4.1 can be implemented to run in polynomial time. Finally, the recursive algorithm terminates in
polynomial time since each recursive call reduces either | X U Y| or the number of non-zero entries in M. <

Claim 16. There is a polynomial-time algorithm that given a graph, finds an edge that belongs to a cycle
in some perfect 2-matching of the graph or decides that no such edge exists.
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FINDSIGNING(M, X, Y):
Input: M € R™*"™ with support graph G, and X,Y C [n] satisfying | X| = |Y.
Output: A symmetric signing s € {£1}"*" such that M (s)[X,Y] is invertible if
such a signing exists.
L If|X] = |Y] < L:
1.1. If M[X,Y] > 0, then return 1 (the all-positive signing).
1.2. Else if M[X,Y] < 0, then return —1 (the all-negative signing).
1.3. Else return “No Invertible Signing”.
2. If there exists no (X, Y)-cycle-cover then return “No Invertible Signing”.
3. If B[X\Y,Y]UE[Y \ X, X] # 0:
3.1. Pick e .= {u,v} € E[X \Y,Y] such that u € X \ Y and v € Y or pick
e:={u,v} € E[Y \ X, X] such that u € Y\ X and v € X.
3.2. If there is no (X — u,Y — v)-cycle-cover in G:
3.2.1 s + FINDSIGNING(M®, X, Y).
3.3. Else: (when there is an (X — u,Y — v)-cycle-cover in G)
3.3.1 s +~ FINDSIGNING(M, X —u,Y —v).
3.4. If M(s)[X,Y] is invertible then return s.
3.5. Else return s’ obtained from s by flipping on {u, v}.
4. Else: (when sets X and Y are identical)
4.1. If there exists an (X,Y)-cycle-cover in G with a cycle edge {u,v}:
4.1.1. s < FINDSIGNING(M, X —u,Y —v).
4.1.2. If M(s)[X,Y] is invertible then return s.
4.1.3. Else return s’ obtained from s by flipping on {u,v}.
4.2. Else: (when all (X,Y)-cycle-covers are perfect matchings in G[X])
4.2.1 Return 1 (the all-positive signing).

Fig. 2. The algorithm FINDSIGNING(M, X,Y").

FINDCYCLEEDGE(G):

Input: A graph G with vertex set V.

Output: An edge e that is a cycle edge in some perfect 2-matching in G if one exists.
1. If there exists no perfect 2-matching in G then return “No edge”.
2. Let F' be a perfect 2-matching in G.

3. If F contains a cycle C then return any edge in C.
4. Fore € F:
4.1. Let N. be a perfect 2-matching in G — e if one exists.
4.2. If N, exists and has a cycle C' then return any edge in C.
. If Step 4 finds N, for some e € F, then return e.
. Else return “No edge”.

ot

D

Fig. 3. The algorithm FINDCYCLEEDGE(G).

Proof. To prove the claim we consider the algorithm FINDCYCLEEDGE(G) in Fig. 3. If at any point we
find a perfect 2-matching with a cycle then we return an edge from it. Hence, it only remains to show the
correctness of Steps 5 and 6. Let F' be a perfect 2-matching with no cycle edge. Suppose there exists a
perfect 2-matching N, for some edge e with no cycle edge. Then N, and F are both perfect matchings in G.
It follows that N, U F will be a perfect 2-matching where e is in a cycle and hence Step 5 is correct to return
e. Now suppose that for all e there is no perfect 2-matching N.. It follows that G has one unique perfect
2-matching F' that is a perfect matching and hence Step 6 correctly returns that no cycle edge exists.
Using the algorithm from Lemma 9 we can perform Steps 1, 2, and 4.1 in polynomial time. Thus,

FINDCYCLEEDGE(G) runs in polynomial time. <
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4. Counting invertible signings

In this section we turn our attention to counting the number of invertible signings and prove Theorem 3.
To this end, we identify a linear multivariate polynomial f such that it is the identically zero polynomial if
and only if an associated graph has no perfect 2-matching.

Definition 17. Let M € R™ ™ be a symmetric matrix and let s be a symmetric n x n matrix of variables.
Let G be the support graph of M, let F be the set of all perfect 2-matchings in G, and let Ap € {£1} for
all F' € F be the signs guaranteed by Lemma 10. We define fg as the polynomial

Z AR |NTCS(F M(l)Matchings(F) ! M(S)Cycles(F)
FeF
where 1 is the all-positive signing.

Remark 1. We note that fg(s) is a linear function of s[u,v] for every u,v (when all other entries are

INTCs(F)|

kept constant) and every term Ap - 2 - M (1) Matchings(F) - M (8)cycles(F) 18 a non-zero multiple of the

I 11

CeCycles(F) {u,v}eC

monomial

Remark 2. We also note that fg(s) = det(M(s)) for all symmetric n x n signing s since s[u, v]? = 1 for all
u,v € [n].

Lemma 18. Let M € R"*™ be a symmetric matriz and s be a symmetric n X n matriz of variables. Let G be
the support graph of M and F be the set of all perfect 2-matchings in G. With this notation, the polynomial
fa(s) is the zero polynomial if and only if F = 0.

Proof. If F = () then fg(s) is the zero polynomial by definition of fg(s). We now show that if F # () then
there exists a monomial in f;(s) that has non-zero coefficient. Let F' be a perfect 2-matching in G. We will

gs) = ] 11

CeCycles(F) {u,v}eC

now show that the monomial

has non-zero coefficient in fg(s). It is sufficient to prove that there exists at least one term in f(s) that is a
non-zero multiple of ¢g(s) and every term in fo(s) that is a non-zero multiple of g(s) has the same sign. Since
F is a perfect 2-matching in G' we know from the definition of f¢(s) that Ap - 2INTCs(F)] - M (1) Matchings(F) -
M (8)cycles(F) 18 @ term in fg(s) and is a non-zero multiple of g(s). Now suppose that there exists another
F' € F such that Ag - 2INTCs(F)| - M (1) Matchings(F7) - M (8)cycles(ry i @ non-zero multiple of g(s). We note
that

{{u,v} [{u,v} € C,C € Cycles(F)} = {{u,v} | {u,v} € C,C € Cycles(F')}.

That is, every edge in a cycle of F' is also in a cycle of F’. Hence, Cycles(F) = Cycles(F”). We recall that
Paths(F) = Paths(F’) = () since F' and F” are both perfect 2-matchings in G. Hence, by Lemma 10 we know
that Ap = A\pr and thus every term in fg(s) that is a non-zero multiple of g(s) has the same sign as the

oINTCs(F)|

term Ap - - M (1)Matchings(F) - M (8)cyeles(r)- Hence, fa(s) is not the zero polynomial. <

Before we begin the proof of Theorem 3 we demonstrate the power of Lemma 18 by providing a second
nonconstructive proof of Theorem 6 using the following celebrated result of Alon.
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Theorem 19 (Combinatorial Nullstellensatz [25]). Let F be an arbitrary field and f be a multivariate
polynomial over F with variables x1,...,x,. Let t1,...,t, be non-negative integers such that the degree of
[ equals 32" t;, and suppose the coefficient of [}, :Efl in f is non-zero. Given subsets Sy, ..., S, of F with
|Si| > t; for each i, there is a tuple (s1, ..., s,) satisfying f(s1,...,Sn) 7# 0, where each s; is selected from S;.

Alternative Proof of Theorem 6. Suppose there exists a perfect 2-matching in G. We will apply
Combinatorial Nullstellensatz (Theorem 19) by taking the field F to be the reals. Let s be a n x n symmetric
matrix of variables. Then by Lemma 18 the linear multivariate polynomial f(s) is not identically zero. That

n n
H H slu, U]t{"’”}

u=1v=u

is, the polynomial f(s) has a term

with non-zero coefficient such that tg, ,1 € {0,1} for all u,v € [n] where v < u and

DD tuw

u=1v=u

is the degree of f(s). Now consider Sy, .} = {1} for every u,v € [n] with v < u. We immediately have
that |Sqy vy > t{uwy for all u,v € [n] where v < u. Hence, by Combinatorial Nullstellensatz (Theorem 19),
there must exist an n X n matrix z where every entry of z takes a value from {£1} with z[u,v] = z[v, u]
for all u,v € [n], and such that fg(z) # 0. That is, there must exist a symmetric n X n signing z such that

det(M(2)) = fa(2) £ 0.

Now suppose there exists a symmetric n X n signing s’ such that M (s") is invertible. Then it follows that
fa(s') = det(M(s")) # 0. Hence, fo(s) is not the zero polynomial and by Lemma 18 we know that there
must exist a perfect 2-matching in G. <«

To show Theorem 3 we use the following variant of Combinatorial Nullsetllensatz. We say that a monomial
m in a multivariate polynomial f is mazimal among the monomials in f with non-zero coefficients if for any
other monomial m’ in f with non-zero coefficient, there exists a variable such that its degree in m is greater
than or equal to its degree in m/'.

Lemma 20 (Coefficient Formula [26,27]). Let F be an arbitrary field and f be a multivariate polynomial
over F with variables x1,...,x,. Letty, ... t, be non-negative integers such that the degree vector (t1,...,t,)

of variables (z1,...,x,) is mazimal among the monomials in [ with non-zero coefficients. For every i € [n],
let S; be a subset of F with [S;| =t; + 1 and let ¢;(z;) = 1, cg, (i — si). Then the coefficient of . gln

s equal to
s1€857 sn€Sn ¢/1(51) ¢;l(5n),
where ¢ (xz;) is the derivative of ¢;(xz;) with respect to x;.

We now have all the ingredients necessary to prove Theorem 3.

Proof of Theorem 3. Let
Ii(M) = {s € [£1)E©) )M(s) is invertible} , and
Iy(M) = {s € {il}E(G) )M(s) is singular} .

With this notation, we have that v(M) = |I'y (M)].
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Let F be the collection of perfect 2-matchings in G. By assumption, we know that F is non-empty. We
recall that fo(s) = det M(s) for every signing s.

Among the perfect 2-matchings in G with maximum number of cycles, let F* be one with maximum
number of cycle edges. Let k denote the number of cycle edges in F* with cycle edges labeled as 1,...,k
and let ¢ denote the number of matching edges in F* with matching edges labeled as k+1,..., k4 £. Thus,
the number of vertices in G is k + 2¢ and the edges with labels k+£¢+1,...,m are not in F*. We define the
polynomial

P(z) = fa(z) - ( 11 x) .

i=k+1

We will apply the coefficient formula (Lemma 20) on P, with ¢; = 1 and S; = {%1} for all 7. Since
F* is a perfect 2-matching with maximum number of cycle edges, the degree vector of the monomial
M(z)cyeles(F*) * (H;zk 41 xl) is maximal with the absolute value of the coefficient of this monomial being at
least 2INTCs(F)| We emphasize that this maximal term might not be the one with maximum degree in P.
We observe that ¢}(s;) € {2} for every s; € S;. By Lemma 20, we have the inequality

Ese{j:l}E(G) P(s)

2m
_ 2eenonl PO+ 2 ienan PO Xer, an|PE)]
- om - om
V(M) - max, | fo(s) - T pis il

2m
~v(M) - max, |[det M (s)]
2m

_ (M) - 2NTC(FDL. (@)
< om )

9INTCs(F™)| <

IN

where the last inequality follows from the fact that F'* is chosen to be a perfect 2-matching with maximum
number of cycles, so each perfect 2-matching contributes at most 2INTCS(FI to the term max, [det M(s)).
Thus, we have

Y(M)p(G) = 2. -«
5. Finding singular signings of bipartite graphs

In this section, we characterize bipartite graphs whose signed adjacency matrix is invertible for all
signings. We use this characterization to prove Theorem 4. We need two structural results (Lemma 21 and
Theorem 22) which are extensions of results due to Little [28] for our characterization. We include their
proofs for the sake of completeness.

Lemma 21 (Little [28]). Let G be a graph with adjacency matriz Ag. Then det(Ag(s)) is even for all
signings s if and only if G has an even number of perfect matchings.

Proof. We recall that the permutation expansion of the determinant of Ag(s) is

n

det(Ag(s)) = > sgn(o) - [ Ac(s)[i,o(i)]

oESn i=1

for all signings s.
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To prove the claim, it is sufficient to show that each perfect 2-matching in G that is not a perfect matching
must contribute an even number of distinct nonzero terms of the same sign to the determinant of Ag(s) for
all signings s.

Let M be a perfect 2-matching in G that is not a perfect matching. Let C' be the set of vertex disjoint
cycles in M. Then M corresponds to 2!€! distinct permutations of n and thus, leads to 2/€! distinct terms in
the permutation expansion of the determinant of Ag(s) for all signings s. Since all such permutations have
the same cycle structure it follows that all corresponding terms have the same sign. <«

Theorem 22 (Little [28]). Let G be a graph. Then G has an even number of perfect matchings if and only
if there is a set S C V(QG) such that every vertex in G has even number of neighbors in S. Moreover, if G has
an even number of perfect matchings, then such a set S can be found in polynomial time.

Proof. Suppose G has an even number of perfect matchings. Then by Lemma 21, we have that det(A(G)) is
even. Thus, the matrix A(G) is singular under modular 2 arithmetic. Consequently, there must exist a subset
of columns of A(G) that sum to the zero vector modulo 2. Let ) be such a set of columns and S C V(G)
be the set of vertices that correspond to the columns. We note that using Gaussian elimination on A(G)
under modular 2 arithmetic we can find such a @ in polynomial time and thus can find S in polynomial
time. Then 3 5 A(G)[r,q) =0 mod 2 for all 7 € [n]. Thus, every vertex v € V(&) must have an even
number of neighbors in S.

Now suppose there exists S C V(G) such that |[Ng(v) N V(G)] is even for all v € V(G) where Ng(v)
denotes the non-inclusive neighborhood of v in G. Let @ be the set of columns of A(G) that correspond to
the vertices of S. Then > 5 A(G)[r,q] =0 mod 2 for all € [n]. Thus, A(G) is singular under modular 2
arithmetic and det(A(G)) =0 mod 2. Therefore, by Lemma 21, the number of perfect matchings must be
even. <«

We now have the ingredients to characterize bipartite graphs whose signed adjacency matrix is invertible
for all signings.

Lemma 23. Let G be a bipartite graph and let Ag be the adjacency matriz of G. Then det(Ag(s)) # 0 for
all signings s if and only if G has an odd number of perfect matchings.

Proof. Suppose G has an odd number of perfect matchings. By Lemma 21, we have that det(Ag(s)) #0
for all signings s.

Now suppose that G has an even number of perfect matchings. By Theorem 22, there exists a set
S C V(G) such that |Ng(v) N S| is even for all v € V(G), where Ng(v) is the non-inclusive neighborhood of
v in G. We observe that the subgraph G[S] induced by S is bipartite with every vertex having even degree.
Thus, any closed walk on G[S] has even number of edges and every connected component in G[S] has an
Eulerian tour with even number of edges. Let C' be a connected component of G[S] with m edges and let
T := (e1,e2,...,€n) be an ordering of the edges that represents an Eulerian tour of C'. Then we sign edge
e; to be positive if ¢ is even and negative otherwise. Every vertex v € V(G) \ S has even number of edges
between v and vertices in S. We partition the edges incident to v into two arbitrary parts of equal size and
sign all the edges in one part to be positive and the rest of the edges in the other part to be negative. Let §
denote the resulting signing.

Under the signing § every vertex v of G has an equal number of positive and negative edges to vertices
in S. Thus, the sum of the column vectors corresponding to the vertices in S will be zero and hence
det(Ag(8)) =0. =
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We note that the proof of Lemma 23 is constructive since we can find a set S for which every vertex has
even number of neighbors in .S in polynomial time by Theorem 22. Thus, Theorem 4 follows from Theorem 22
and Lemma 23.

6. Minimum support increase to obtain an invertible signing

In this section, we study the problem of computing the solvability index of real symmetric matrices, thus
proving Theorem 5. We recall the following definition: For a real symmetric matrix M, the solvability index
of M is the smallest number of off-diagonal zero entries that need to be converted to non-zeros so that
the resulting symmetric matrix has an invertible signing. We remind the reader that the support-increase
operation preserves symmetry.

By our characterization in Theorem 6, computing the solvability index of a matrix reduces to the following
edge addition problem:

EDGEADD: Given a graph G (possibly with self-loops), find min |F'| where F' ranges over all sets of
non-edges of G with no loops such that G + F has a perfect 2-matching.

In the above, G + F' denotes the graph obtained by adding the edges in F' to G. In the rest of the section,
we will show that EDGEADD can be solved efficiently, which will imply Theorem 5.

Theorem 24. There is a polynomial-time algorithm to solve EDGEADD.

We need some terminology from matching theory. Let G be a graph on vertex set V and edge set E. For
a subset S of vertices, denote the induced subgraph of G on S as G[S] and the non-inclusive neighborhood of
S in G by N¢(S). We recall that a matching M in G is a subset of edges where each vertex is incident to
at most one edge in M. Let v(G) denote the cardinality of a mazimum matching in G and let

v§(G) == max er Z re<1l,and z. >0 forallec FE
ecE e€d(v)

denote the value of a mazimum fractional matching in G. For a matching M, we define a vertex u to be
M-exposed if none of the edges of M are incident to u, and a vertex v to be an M-neighbor of u if edge
{u,v} is in M. A vertex u in V is said to be inessential if there exists a maximum cardinality matching M
in G such that u is M-exposed, and is said to be essential otherwise. A graph H is factor-critical if there
exists a perfect matching in H — v for every vertex v in H. The following result is an immediate consequence
of the odd-ear decomposition characterization of Lovész [29].

Lemma 25 (Lovdsz [29]). If G is a factor-critical graph, then G has a perfect 2-matching.

The Gallai-Edmonds decomposition [30-32] of a graph G is a partition of the vertex set of G into three
sets (B, C, D), where B is the set of inessential vertices, C := Ng(B), and D :=V \ (BUC). Let By denote
the set of isolated vertices in G[B] and B>3 := B\ B;. For notational convenience, we will denote the Gallai—
Edmonds decomposition as (B = (By, B>3), C, D). The Gallai-Edmonds decomposition of a graph is unique
and can be found efficiently [32]. The following theorem summarizes the properties of the Gallai-Edmonds
decomposition that we will be using (properties (¢) and (i¢) are well-known and can be found in Schrijver [33]
while property (¢i¢) follows from results due to Balas [34] and Pulleyblank [35]—see Bock, Chandrasekaran,
Koénemann, Peis, and Sanita [36] for a proof of property (ii7)):

Theorem 26. Let (B = (B1, B>3),C, D) be the Gallai-Edmonds decomposition of a graph G. We have the
following properties:



20 C. Carlson, K. Chandrasekaran, H.-C. Chang et al. / Discrete Optimization 37 (2020) 100582

EDGEADD(G):
Input: A graph G with no isolated vertices and no self-loops.
Output: A set I of non-edges of G such that G + F contains a perfect 2-matching.
1. Find the Gallai-Edmonds decomposition (B = (B1, B>3),C, D) of G.
2. Find a maximum matching M that matches the largest number of By vertices.
3. Let S :={u € By | uis M-exposed}.
4. If |S] is even:
Pick an arbitrary pairing of the vertices in S.
5. If | S] is odd:
Consider a vertex s in S, pick a vertex ¢ in Ng(s) and let w be the M-neighbor of ¢.
Pair up u with s and pick an arbitrary pairing of the vertices in S\ {s}.
6. Return the set of pairs F.

Fig. 4. The algorithm EDGEADD(G).

(i) Each connected component in G[B] is factor-critical.
(ii) Every mazimum matching M in G contains a perfect matching in G[D] and matches each vertez in C
to distinct components in G[B].
(iii) Let M be a mazimum matching that matches the largest number of By wvertices. Then there are
2(vp(G) — v(G)) M-exposed vertices in B>g.

We observe that G contains a perfect 2-matching if and only if v4(G) = |V|/2. Therefore, adding edges
to get a perfect 2-matching in G is equivalent to adding edges to increase the maximum fractional matching
value to |V]/2.

Proof of Theorem 24. We will assume that G has no isolated vertices and no self-loops in the rest of
the proof. We make this assumption here in order to illustrate the main idea underlying the algorithm. This
assumption can be relaxed by a case analysis in the algorithm as well as the proof of correctness.

We use the algorithm EDGEADD(G) given in Fig. 4. We briefly describe an efficient implementation for
Step 2, since it is easy to see that other steps can be implemented efficiently. In order to find a maximum
matching that matches the largest number of B; vertices (as mentioned in property (iii) of Theorem 26), we
first find the Gallai-Edmonds decomposition and a maximum matching M. Then, we repeatedly augment
M by searching for M-alternating paths (of even-length) from M-exposed Bj vertices. This approach can be
implemented to run in polynomial time. Alternatively, Step 2 can also be implemented by solving a maximum
weight matching with suitably chosen weights.

We now argue the correctness of the algorithm. We first show that if |S| is odd, then there is a choice of
vertices ¢ and u as described in the algorithm EDGEADD(G). This is because G has no isolated vertices and
hence there exists a vertex ¢ in Ng(s). Moreover, by Theorem 26, since s is in By, it follows that ¢ is in C
and thus ¢ is matched by M to a vertex u in B. Now, Claim 27 proves feasibility and bounds the size of the
returned solution F' while Claim 28 proves the optimality. <«

Claim 27. The algorithm EDGEADD(G) returns a set F' of non-edges of G such that (1) G + F contains
a perfect 2-matching, and (2) |F| = [|V|/2 — v (G)].

Proof. By property (ii) of Theorem 26, the set F'is a set of non-edges of G. We will construct a perfect
2-matching in G + F. By property (7) of Theorem 26, every component in G[Bx>s] is factor-critical. By
Lemma 25, every component K in G[Bs3] contains a perfect 2-matching 2. Let Ny denote the support of
¥ Let K denote the components in G[Bs3] that contain an M-exposed vertex. We have two cases:
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Case 1: Suppose |S| is even. Let N denote the set of edges of M that do not match any vertices in
Ugex V(K). Now, the set of edges induced by (Uyex Nx) U N U F has a perfect 2-matching. A
perfect 2-matching = in G + F can be obtained by assigning z(e) := 2% (e) for edges e in Ukex Nk,
x(e) := 2 for edges e in N U F, and z(e) := 0 for the remaining edges in G + F.

Case 2: Suppose |S] is odd. Let N denote the set of edges of M\ {{t,u}} that do not match any vertices
in Ugex V(K). Now, (Ugexe Nx) UNU (F\ {s,u}) U{{t,u},{s,t},{s,u}} has a perfect 2-matching.
We note that the edges {t,u}, {s,t} were already present in the graph owing to the choice of ¢ and u
while the edge {s,u} was added as an edge from F. A perfect 2-matching x in G 4+ F can be obtained
by assigning z(e) = 2% (e) for edges e € Uyex Nk, x(e) = 1 for edges e in {{t,u},{s,t},{s,u}},
x(e) := 2 for edges e in N U (F \ {s,u}), and z(e) := 0 for the remaining edges in G + F.

Next we find the size of the set F returned by the algorithm. We observe that |F| = [|S|/2]. It remains to
bound |S|. For this, we count the number of vertices in the graph using the matched and exposed vertices.
We have that |V| = 2|M| + |S| 4+ {number of M-exposed vertices in B>3}. By property (i#i) of Theorem 26
and the choice of the matching M, we have |V| = 2|M| + |S| + 2(v¢(G) — v(G)). Since M is a maximum
cardinality matching, we know that |M| = v(G) and hence, |S| = |V|—2v¢(G). <«

Our next claim shows a lower bound on the optimal solution that matches the upper bound and hence
proves the optimality of the returned solution.

Claim 28. Let F' be a set of non-edges of G. Suppose G + F' has a perfect 2-matching. Then |F'| >
[V1/2 = ve(G)].

Proof. We first note that the addition of a non-edge can increase the value of the maximum fractional
matching by at most one. That is, for every graph H and every non-edge e of H, we have vy(H+e)—v;(H) <
1 (this can be shown by considering the dual problem, namely the minimum fractional vertex cover). Now,
consider an arbitrary ordering of the edges in the solution F’ and let F] denote the set of first ¢ edges
according to this order and let Fj} = (). Then,

||
V(G4 F') = vp(G) = 3 (p(G 4+ F) = v (G + Fi)) < |F.
i=1
Thus, we have |F'| > vy(G + F') — vy(G). We observe that if G + F’ has a perfect 2-matching, then
vi(G+ F') = |V|/2. Hence, |F’'| > |V|/2 — v4(G). Finally, we observe that |F’| has to be an integer and
hence, |[F'| > [|V|/2 —vf(G)]. =

7. Conclusion

In this work we investigated several problems related to finding signings of symmetric matrices with
natural spectral properties. We showed that NSDSIGNING and SINGULARODSIGNING are NP-complete.
In contrast, we showed that INVERTIBLESIGNING admits an efficient algorithm. Moreover, we proved that
SINGULARSIGNING admits an efficient algorithm when the input is the adjacency matrix of a bipartite graph.
We complement our algorithmic and hardness results with a non-trivial lower bound on the number of
invertible symmetric signings of a matrix whose support graph contains a perfect 2-matching. Finally, we
gave a polynomial-time algorithm to find the solvability index of a symmetric matrix.

Our work raises several interesting open questions related to signing symmetric matrices. We state some
of them here: Is it true that SINGULARSIGNING and INVERTIBLEODSIGNING have the same complexity
as SINGULARODSIGNING and INVERTIBLESIGNING respectively? Does there exist an efficiently verifiable
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characterization for the existence of singular signings for all simple graphs without self-loops (i.e., extend

Theorem 4 to all simple graphs without self-loops)? For those signing problems which are solvable efficiently,

is it also true that their search variants are efficiently solvable? We believe that answering these questions
would be helpful in understanding the complexity of BOUNDEDEVALUESIGNING for graph-related matrices.
In addition to exact algorithms, designing approximation algorithms for BOUNDEDEVALUESIGNING is also

of interest.
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