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ég In turbulent premixed flames at low Karlovitz number, combustion heat release can have a significant impact on
21 turbulence. Thermal expansion in flame induces dilatation, and the corresponding pressure-dilatation correlation acts
;i as a primary source of turbulent kinetic energy (TKE). As a consequence, the flame-normal component of the normal
24 Reynolds stresses significantly increases. Additionally, for sheared flames, typical of jet flames, the shear component
25
26 of the Reynolds stresses exhibits counter-Boussinesq behavior. For flames at low Karlovitz number, where these
27 effects dominate, no models have successfully predicted all Reynolds stress components. To develop more complete
28
29 turbulence models, heat release effects on the evolution of all Reynolds stress components need to be analyzed. In this
gg work, Reynolds stress budgets are evaluated from Direct Numerical Simulation (DNS) databases of spatially-evolving
32 turbulent premixed planar jet flames at low and high Karlovitz numbers. In the Reynolds stress budgets, the velocity-
33 . . .. . . .
34 pressure gradient correlation term is important at both Karlovitz numbers but serves fundamentally different roles in
35 each case. In the budgets for the normal components, the velocity-pressure gradient correlation term is decomposed
36
37 into a redistribution term and an isotropic term, where the redistribution term acts to redistribute energy between the
gg Reynolds stress components and the isotropic term is the pressure-dilatation source term of turbulent kinetic energy.
40 At high Karlovitz number, the isotropic term is negligible, and the redistribution term acts to isotropize the turbulence
jé as in non-reacting flows. Conversely, at low Karlovitz number, the isotropic term acts as a large source, and the
43 redistribution term preferentially injects energy into the flame-normal component at the expense of other components
44
45 which acts to make the turbulence less isotropic. In the budget for the shear component, the shear production term
46 dominates the velocity-pressure gradient correlation term at high Karlovitz number, but the opposite is observed at
47
48 low Karlovitz number. The dominance of the velocity-pressure gradient correlation term at low Karlovitz number
ég is primarily induced by the flame-generated mean pressure gradient and ultimately leads to the counter-Boussinesq
51 behavior of the shear component. The overall analysis indicates that any turbulence model that relies on small-scale
52 . . L o .
53 isotropy and/or rapid isotropization will fail to capture the heat release effects on turbulence at low Karlovitz number.
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1. Introduction

Turbulent combustion is characterized by nonlinear interactions between turbulence and combustion heat release.
The heat release induces thermal expansion, that is, flow dilatation, and accelerates the flow velocity in the flame-
normal direction. Bilger [1] has argued that, when the time scales of this combustion-induced dilatation are faster
than those of the turbulence-induced strain, heat release should have a significant influence on the turbulence struc-
ture; Hamlington et al. [2] have made a similar argument that turbulence is weakly affected by combustion heat release
at high turbulence intensity. Based on these arguments, for the purpose of the scaling of heat release effects on the
turbulence, MacArt et al. [3] defined a critical Karlovitz number as Ka.; = p,/p, — 1, where p, is the density of the
unburned gas, and p, is the density of the burned gas. The local Karlovitz number is defined as Ka = ¢/, where
7 is the flame time scale, and 7, is the Kolmogorov time scale. When the local Karlovitz number is less than the
critical Karlovitz number, that is, Ka <« Ka,,, the heat release effects on the turbulence are expected to be dominant
and vice versa. MacArt et al. [3] confirmed this scaling in a parametric Direct Numerical Simulation (DNS) study of
low Mach number spatially-evolving turbulent premixed planar jet flames at low and high Karlovitz numbers. In the
turbulent kinetic energy (TKE) budget, at high Karlovitz number, production by mean shear is the dominant source of
the TKE and is balanced by viscous dissipation, and pressure-dilatation is negligible. However, at low Karlovitz num-
ber, pressure-dilatation is the dominant source of the TKE and is balanced by both viscous dissipation and production
by mean shear, which become sinks of TKE. In addition, while the scalar flux and the Reynolds stresses are conven-
tionally modeled using the gradient-transport and the Boussinesq hypothesis, respectively, at low Karlovitz number,
the scalar flux actually exhibits counter-gradient behavior, and the Reynolds stresses exhibit analogous “counter-
Boussinesq” behavior. Conventional models work only at high Karlovitz number where the influence of heat release
is diminished. Therefore, when heat release strongly affects turbulence, the use of conventional turbulence models
originally developed for non-reacting flows is fundamentally flawed.

Several efforts have been undertaken to develop turbulence models accounting for heat release effects on turbu-
lence. For premixed flames in the zero Karlovitz number limit, that is, an infinitely thin flame, the Bray-Moss-Libby
(BML) framework has been used to model the scalar flux and the Reynolds stresses [4]. In addition, in order to
model the scalar flux for premixed flames at finite Karlovitz number, Veynante et al. [5] linearly combined the BML
model and the gradient-transport model, which is valid in the infinite Karlovitz number limit. For premixed flames
in isotropic turbulence, this scalar flux model was able to capture the transition of the flame-normal scalar flux from
counter-gradient transport to gradient transport. Their work was extended to also model the Reynolds stresses for
premixed flames at finite Karlovitz number by MacArt et al. [3] by combining the BML model and the conventional
model based on the Boussinesq hypothesis. This Reynolds stress model was able to capture the significant increase
in the flame-normal component of the normal Reynolds stresses resulting from the heat release effects. However,
the flame-parallel normal components and the counter-Boussinesq behavior of the shear component of the Reynolds

stresses were not accurately predicted. MacArt et al. [3] speculated that the Reynolds stress models based on the com-
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bination of the BML framework and the Boussinesq hypothesis miss the effects of pressure redistribution of energy
between the Reynolds stress components. This hypothesis needs to be evaluated to develop a more accurate Reynolds
stress model.

The aim of this work is to fully characterize the heat release effects on the evolution of all Reynolds stress compo-
nents, not just the turbulent kinetic energy [3], by evaluating and comparing the Reynolds stress budgets from turbulent
premixed planar jet flames at low and high Karlovitz numbers, which are below and above the critical Karlovitz num-
ber, respectively. From the budget analysis, the influences of pressure redistribution are specifically investigated, and a
more complete understanding of counter-Boussinesq behavior of the shear component is developed. Previous studies
that have analyzed the heat release effects on the Reynolds stress budgets relied on configurations of premixed statis-
tically planar flames in isotropic turbulence without large-scale shear and corresponding non-zero shear component
of the Reynolds stresses, limiting their analyses to the flame-normal component [6, 7, 8].

An outline of the paper is as follows. In Section 2, the DNS databases are described in detail. In Section 3,
the turbulence statistics including the Reynolds stress components and the Reynolds stress budgets are evaluated
and compared between two Karlovitz number cases. The pressure redistribution processes in the Reynolds stress
budgets are analyzed in detail regarding their role in the evolution of the Reynolds stresses. In Section 4, based on
these insights, the inter-dependence between the effects of large-scale shear and the flame on the shear component
of the Reynolds stresses are further discussed. In Section 5, results and implications for turbulence modeling are

summarized.

2. Direct Numerical Simulations

Previous DNS databases [3] of spatially-evolving turbulent premixed planar jet flames at low and high Karlovitz
numbers have been analyzed in this work. The DNS configuration consists of a turbulent central jet of a stoichio-
metric hydrogen-air mixture diluted with nitrogen (20% by volume to prevent flashback) and laminar coflow jets of

equilibrium products. For this mixture, a reaction progress variable is defined as the normalized oxygen mass fraction:

C — YOz,u - YOZ ,
Yo,u— Yo,

ey

where Yo, and Yo, are the oxygen mass fraction in the unburned and burned gas mixtures, respectively. The
bulk Reynolds number defined as Rey = UyHy/v, where Uy and H, are the velocity and height of the central jet,
respectively, and v is the kinematic viscosity, is Rey = 5,000 for both Karlovitz number cases. For this fuel-air
mixture, the laminar flame speed is s; = 1.195 m/s, the laminar flame thickness is 0 = 0.435 mm, and the critical
Karlovitz number is Ka,, = 6.7. The in-flame Karlovitz number Kag_ 5, defined where the density-weighted mean
progress variable is 0.5, is greater than Ka,, at high Karlovitz number (Case K2) and less than Ka,, at low Karlovitz

number (Case K1). The in-flame Damkdhler number Dag_ 5, where Da = 71/7r and 7y is the integral time scale, is
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0.05 for Case K2 and 0.60 for Case K1. The domain sizes in the streamwise, cross-stream, and spanwise directions
are 24H, x 16H, x 3H, for Case K2 and 12H, X 24H, x 3H, for Case K1. Simulation parameters at the streamwise

location x/Hy = 3 are summarized in Table 1.
[Table 1 about here.]

The transport equations for mass, momentum, species mass fractions, and temperature with the ideal gas equation
of state are solved using a low Mach number, semi-implicit, iterative, finite difference solver with a structured grid in
Cartesian coordinates [9, 10]. For chemistry, a detailed nine species hydrogen chemical kinetic model is used [11]. For
molecular transport, a constant non-unity Lewis number, which has been validated for laminar and turbulent premixed
hydrogen-air flames by Burali et al. [12], is used for each species.

The streamwise, cross-stream, and spanwise directions are denoted by x, y and z, respectively. The spanwise direc-
tion z is statistically homogeneous. Statistics are averaged in the spanwise direction z and time ¢ over approximately
29.7 (Case K2) and 47.9 (Case K1) centerline integral times and collected at the streamwise location x/Hy = 3 for both
Karlovitz number cases. Convergence of the statistics have been confirmed by also considering half as much data. In
addition, the results at downstream locations have been examined and provide qualitatively similar conclusions drawn
at the upstream location x/Hj = 3 regarding the underlying physics.

For a quantity ¢, means and fluctuations are denoted by ¢ and ¢’ = ¢ — @, respectively, and density-weighted
means and fluctuations are denoted by ¢ = p¢/p and ¢’ = ¢ — @, respectively. Because all of the statistics analyzed
in this work are (anti-)symmetric about the jet centerline, figures below show the statistics only for one side of the
centerline in the positive y-direction. To facilitate comparison of the two Karlovitz number cases, all statistics are
plotted against the density-weighted mean progress variable C rather than the corresponding cross-stream physical
coordinate y. In addition, the local centerline streamwise velocity Uy, the local centerline density p.i, and the jet half-
width y;, are used for normalizing the results. In order to reduce the influence of numerical error on the higher-order
statistics considered in this work, the DNS databases have been recomputed, compared to MacArt et al. [3], with a
larger number of sub-iterations used to converge the implicit mid-point method for time advancement, resulting in
negligibly small residuals in each of the budgets shown in subsequent figures.

Additional details about the DNS databases can be found in Ref. [3].

3. Results

3.1. Reynolds Stress Budgets

The components of the density-weighted Reynolds stresses R;; = w;u; — @;ii;, normalized by U2, are shown in
Figure 1, which is also shown in Ref. [3] but is reproduced here from the recomputed DNS databases to facilitate
discussion of the Reynolds stress budgets; the non-density-weighted Reynolds stresses are qualitatively similar and

are included in Appendix A. For Case K2, due to the minimal influence of combustion heat release, the overall profiles

4
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of the Reynolds stress are similar to non-reacting turbulent shear flows [13]. The largest component is the streamwise
component R;; because the streamwise velocity is fastest; the cross-stream component R, and the spanwise compo-
nent R33 are much smaller than R;;. In addition, the shear component R, is positive for all C, while the gradient of
the streamwise velocity in the cross-stream direction (9it; /0x;) is negative. This is qualitatively consistent with the
Boussinesq hypothesis. For Case K1, R,, increases significantly through the flame because the flow velocity acceler-
ates in the flame-normal direction due to thermal expansion and the flame-normal vector is mostly aligned with the
cross-stream direction [3]. In addition, it is important to note that the sign of Ry, is negative for C > 0.1, even though
0ity /0x, is negative for all C. This is inconsistent with the Boussinesq hypothesis and results from the influence of
heat release; in other words, the Reynolds stresses are not anti-aligned with the strain rate tensor. This mechanism

will be investigated in the remainder of this paper through the analysis of the Reynolds stress budgets.
[Figure 1 about here.]

The Reynolds stress transport equations describe the evolution of the R;; components:

6pR,-j o0 /_. 0 (. T 0 (= 77 4 7
5 = on (pukR,-j) _ﬁ_xk (puk u; uj) +6_xk (Tjkui ) + 6_xk (Tikuj)
BO Bl B2 B3 )
_u’fa_p _u'fa_p _pR % ﬁR % —T: % — T %
! (9xj J axi ki (’)xk ki ox i 0x ik 6xk
N—
B4 B5 B6

The terms in Eq. 2 correspond to the following: unsteadiness (B0), convective transport (B 1), turbulent transport (B2),
viscous transport (B3), velocity-pressure gradient correlation (B4), shear production (BS5), and viscous dissipation
(B6). Figure 2 shows the Reynolds stress budgets, normalized by g U 031 /y12, for both Cases K2 and K1. For Case
K2, although the velocity-pressure gradient correlation term is negligible in the TKE budget [3], it is important in the
budgets for the normal components of the Reynolds stresses, extracting energy (negative) from the largest component
(R11) and injecting energy (positive) into the smaller components (R, and Ris3). Therefore, the velocity-pressure
gradient correlation term acts to isotropize the turbulence as in non-reacting flows [14]. In the budget for R;,, the
negative velocity-pressure gradient correlation term is consistent with a return to isotropy since R, is positive, and
R, remains positive due to the influence of the large positive shear production term. For Case K1, the velocity-
pressure gradient correlation term is also the dominant source in the budget for R;; in most of the flame (Figure 2d).
However, unlike Case K2, in Case K1, Ry; is the largest normal component of the Reynolds stresses, so the velocity-
pressure gradient correlation term acts to make the turbulence less isotropic. The velocity-pressure gradient is also
positive, albeit smaller in magnitude, for the other normal components of the Reynolds stresses. In the budget for
R15, the velocity-pressure gradient correlation term is negative and has the largest magnitude of all terms for C < 0.4,
which results in a negative shear component of the Reynolds stresses. The velocity-pressure gradient correlation term

having the same sign as the shear component of the Reynolds stresses is inconsistent with a return to isotropy.

5
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[Figure 2 about here.]

3.2. Decomposition of Velocity-Pressure Gradient Correlation

Comparing the two Karlovitz number cases, the velocity-pressure gradient correlation plays a fundamentally dif-
ferent role. At high Karlovitz number, this term acts to isotropize the turbulence as in non-reacting flows, but, at low
Karlovitz number, this term reinforces anisotropy. To investigate these differences, the velocity-pressure gradient cor-

relation term can be decomposed into two terms in variable density flows, a redistribution term (®;;) and an isotropic

term (I1;;) [15, 16]:

wop _ 0P wor _ 00 2,00 2 ,0p
—u— - — =|-u— —u— + —u —6;;| —=u/ —6;;.
Pox; o Pox; Jox;g 3 7Roxe V) 37koxg 3)
N———
B4 ;; IL;;

The isotropic term appears in the TKE budget and includes the pressure-dilatation source term as well as the pressure
transport term. In the redistribution term, the trace of the velocity-pressure gradient correlation term is subtracted
from itself. Therefore, the redistribution term does not appear in the TKE budget and has no direct contribution to
the evolution of the TKE. Instead, the redistribution term works to redistribute energy between the R;; components.
For the normal components of R;;, Figure 3 shows the decomposition of the velocity-pressure gradient correlation
term in Eq. 3, normalized by p Ufl /y1/2. For Case K2, the isotropic term is negligible as expected from the fact
that the pressure-dilatation is negligible in the TKE budget. The streamwise component of the redistribution term
(@) is negative, while other components of the redistribution term (D, and ®s3) are positive. The role of the
velocity-pressure gradient correlation term for Case K2 becomes more clear, isotropizing the turbulence through the
redistribution term by acting to move energy from the largest normal component to the smaller normal components.
For Case K1, the isotropic term is large and positive as expected from the fact that the pressure-dilatation is the
dominant source in the TKE budget. The cross-stream component of the redistribution term (®,,) is positive, while
other components of the redistribution term (®;; and ®33) are negative. Therefore, the sign of the redistribution term
is essentially opposite to Case K2, preferentially injecting energy into the largest flame-normal component (R;,) and
increasing its relative magnitude at the expense of other components. This reinforcement of the anisotropy is driven

by the thermal expansion in the flame, which is inherently anisotropic.
[Figure 3 about here.]

In the budget for R,,, the velocity-pressure gradient correlation term can be further decomposed into mean pressure

terms (¢g.n)) and fluctuating pressure terms (¢§§)) [16]:

,0p ,0p _ —op 0p —0p  Op
—U T — Uy — = —U]T— U] — Uy — —U

u = .
1 6X2 2 axl ! 6x2 1 6X2 2 6x1 2 (9x1 (4)
— S e Nt et et st et e’
B o A T T
6
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Figure 4 shows the decomposition of the velocity-pressure gradient correlation term in Eq. 4, normalized by pe U 31 /y1/2-
For Case K2, the mean pressure terms are much smaller in magnitude than the fluctuating pressure terms. At high
Karlovitz number, hydrodynamic effects dominate over flame effects, and the mean pressure gradient in a free jet is
very small. Therefore, the return to isotropy, that is, the sink in the budget for the positive R}, is due primarily to

the influence of the fluctuating pressure gradient. Conversely, for Case K1, the mean pressure terms are larger in

(m)

magnitude than the fluctuating pressure terms. Therefore, the mean pressure term ¢,

is the dominant and negative
source term in the budget for Rj, and primarily causes the counter-Boussinesq behavior of R5. q)(l[;) has large and
negative values for two reasons. First, the flame generates a negative mean pressure gradient in the flame-normal
direction (that is, —9p/dx, > 0) due to thermal expansion, which is dominant over hydrodynamic effects at low

Karlovitz number. Second, u_’l’ is negative due to the correlation of the density and velocity fluctuations. The mean of

the density-weighted fluctuations can be written as

_ 74
w =20 )
p

In the present DNS configuration, reactants have a faster streamwise velocity and are denser than the products. There-
fore, the density fluctuations and streamwise velocity fluctuations are positively correlated, and u_’l' is negative accord-

ing to Eq. 5.

[Figure 4 about here.]

4. Discussion

The decomposition of the velocity-pressure gradient correlation term in the budget for R}, demonstrates the im-
portance of the mean pressure term in the development of the counter-Boussinesq behavior of Ry, in low Karlovitz
number flames. This term depends on both the sign of the pressure gradient, which is negative from reactants to
products, and the sign of u_’l’ which depends on the sign of the correlation of the density and streamwise velocity
fluctuations so would depend on whether the streamwise velocity of the reactants is faster or slower compared to the
products.

Figure 5 shows two different configurations of the flame and the reactants/products streams. The mean streamwise
velocity of the reactants stream is faster than that of the products stream in the first configuration shown in Figure 5a
and vice versa in the second configuration shown in Figure 5b. In other words, in the two configurations, only the
sign of the shear dii| /0x; is reversed: dit; /0x, < O in the first and i1y /dx, > 0 in the second. The first corresponds
to the present DNS configuration. The correlation of the density and velocity fluctuations becomes opposite in sign
for two configurations such that u_’l’ is negative in the first and is positive in the second. For both configurations, at
low Karlovitz number, the mean pressure gradient in the flame-normal direction is negative, that is, —dp/dx, > 0.
Therefore, the dominant mean pressure term ¢(1r2“) (= —u_'l’ 0p/0x;y) and the corresponding R, become negative in

7
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the first configuration and become positive in the second configuration. However, since the sign of the shear is also

reversed, in both cases, ¢(lr;) induces the counter-Boussinesq behavior of Rj;.
[Figure 5 about here.]

Through this simple thought experiment with the alternative configuration, the interactions between the large-scale
shear and the flame are important in determining the sign of the shear component of the Reynolds stresses but ulti-
mately do not affect the inducement of the counter-Boussinesq behavior of shear component of the Reynolds stresses
by the flame. In other words, there is no competition between the large-scale shear and the flame in determining
whether the shear component of the Reynolds stresses is Boussinesq or counter-Boussinesq; the shear component of
the Reynolds stresses is always counter-Boussinesq in low Karlovitz number flames. The interactions between the
large-scale shear and the flame have been overlooked in most previous works that have considered statistically planar
flame configurations without large-scale shear.

In addition to indirectly influencing the sign of the velocity pressure gradient correlation, the sign of the shear
directly influences the sign of shear production. The shear production term in the budget for R, can be simplified since

the gradients in the streamwise and spanwise directions are smaller than the gradients in the cross-stream direction:

0t 8_u]1( ~ —l_?Rlzg—Z —/_?Rzzg—;t; (6)
At low Karlovitz number, dii;/0x, in the first term on the right hand side of Eq. 6 is large and positive for both
configurations due to the velocity acceleration in the flame-normal direction. Therefore, the sign of the first term is
always opposite to the sign of Rj;. This means that for both configurations considered, the first term opposes the
influence of the mean pressure term q)(l‘;) in the evolution of Rj,. However, the magnitude of this first shear production
term is less than the magnitude of the pressure gradient term for smaller values of the progress variable. At low
Karlovitz number, the second term in Eq. 6 can be argued to scale with pcszU /1, where p. is the characteristic
gas density, sp is the laminar flame speed, AU is the bulk streamwise velocity difference between the reactants and
products streams, and [ is the bulk flow length scale. However, ¢(1‘;) can be argued to scale with pcsiAU /6g, where 6
is the laminar flame thickness. Because dr is much thinner than [ at low Karlovitz number, the second term in Eq. 6 is

much smaller in magnitude than ¢(1[;) . Note that the scaling of the first term of the shear production term can be argued

(m)

to scale similarly to the mean pressure term ¢,,,

if the shear component of the Reynolds stresses is taken to scale as
sLAU. Conversely, at high Karlovitz number, the second term in Eq. 6 is expected to scale as p.u’>?AU/I, where u’ is
the turbulence intensity, and dominates over the first term in Eq. 6 and the velocity-pressure gradient correlation term.

As a final note, at high Karlovitz number, the mean pressure gradient has been found to play a negligible role in the
evolution of the Reynolds stresses (or other quantities such as the vorticity [17]). However, this conclusion is strongly
influenced by the fact that the free jet considered here has no significant mean hydrodynamic pressure gradient. For

flows with a large mean hydrodynamic pressure gradient, this pressure gradient has been shown to strongly interact

8
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with the flame through the baroclinic production of vorticity [18]. The influence of such externally imposed pressure
gradients on the Reynolds stresses at high Karlovitz number is beyond the scope of the current work but is certainly

worthy of future investigation.

5. Conclusions

Reynolds stress budgets have been evaluated to analyze heat release effects on the the Reynolds stresses in turbu-
lent premixed jet flames at low and high Karlovitz numbers. The velocity-pressure gradient correlation term in the
budgets serves fundamentally different roles at the two Karlovitz numbers. At high Karlovitz number, the velocity-
pressure gradient correlation term acts to isotropize the turbulence as in non-reacting flows, while, at low Karlovitz
number, the term becomes the dominant source of the largest flame-normal component and makes the turbulence less
isotropic.

In the budgets for the normal components, the velocity-pressure gradient correlation term is decomposed into a
redistribution term and an isotropic term. At high Karlovitz number, the isotropic term is negligible as expected from
the fact that the pressure-dilatation is negligible in the TKE budget. The redistribution term extracts energy from the
largest component and injects energy into smaller components. This corresponds to the classical return to isotropy.
On the other hand, at low Karlovitz number, the isotropic term is large as expected from the fact that the pressure-
dilatation is the dominant source in the TKE budget. The redistribution term preferentially injects energy into the
flame-normal component at the expense of other components. This is associated with anisotropic dilatation effects in
the flame.

In the budget for the shear component, the velocity-pressure gradient correlation term is decomposed into a mean
pressure term and a fluctuating pressure term. At high Karlovitz number, since there is no mean hydrodynamic
pressure gradient, the fluctuating pressure dominates. Conversely, at low Karlovitz number, the velocity-pressure
gradient correlation term is dominated by the mean pressure gradient established by the flame. The large magnitude
of this term leads to the counter-Boussinesq behavior of the shear component of the Reynolds stresses.

Based on the budget analyses, two challenges in turbulence modeling for turbulent premixed combustion at low
Karlovitz number are explicitly highlighted. First, the conventional assumption of nearly isotropic turbulence, which
is the basis of the Boussinesq hypothesis, is not valid when the anisotropic dilatation effects in the flame are dominant.
Second, the indirect influence of the heat release through redistribution via the velocity-pressure gradient correlation
term needs to be considered and cannot simply be assumed to isotropize the turbulence. More comprehensive models
that resolve these challenges are required to adequately capture heat release effects on turbulence, and three possible

approaches for modeling the Reynolds stresses in low Karlovitz number premixed flames are summarized here.

¢ One potential approach is to generalize the Boussinesq model to capture the redistribution between the Reynolds

stress components. Speziale [19] has reviewed the development of nonlinear generalizations of the Boussinesq
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model, which can relax the purely dissipative nature of the standard Boussinesq model and account for higher-
order and nonlinear processes generating anisotropy in the Reynolds stresses. Because those models have been
developed for non-reacting flow, modifications should be made by considering the heat release effects on the

turbulence, especially for determining the nonlinear model parameters.

e Another approach is to simply solve the Reynolds stress transport equations. However, closure models for the
unclosed terms in the Reynolds stress transport equations, which have been developed for non-reacting flows,
are unlikely to be valid for the flames at low Karlovitz number. Specifically, the model for the velocity-pressure
gradient correlation term must be able to capture the fundamentally different role of this term between low and
high Karlovitz number regimes. Lipatnikov and Chomiak [8] have reviewed modeling efforts that consider heat
release effects on the turbulence in the context of closing the Reynolds stress transport equations. However,
most previous work is limited to flames without large-scale shear and do not consider the shear component
of the Reynolds stresses. In this work, the dominant terms in the budget for the shear component have been
analyzed and discussed in detail, and these insights could be leveraged in future studies for the development of

closure models for the Reynolds stress transport equations.

e Finally, MacArt et al. [20] have recently proposed an integrated modeling approach to account for the heat
release effects on the turbulence based on conditional averaging with respect to the flame structure variable.
The rationale for this approach is that development of algebraic turbulence models or even closure for the
Reynolds stress transport equations is extremely challenging in the low Karlovitz number regime since the
models must capture both the effects of the flame dynamics (i.e., the effects of the local flame motion) and the
direct effects of the heat release (i.e., all heat release effects except for the flame dynamics) on the turbulence.
By utilizing the flame conditioning, the flame dynamics are removed, isolating the direct heat release effects.
The major findings in this work, particularly with respect to the role of the pressure-related terms, could be

helpful in developing closure models in this new turbulence modeling framework.

As a final note, for the high Karlovitz number case (Case K2), all scales of the turbulence are faster than the flame
(Da < 1). For the low Karlovitz number case (Case K1), all scales of the turbulence are slower than the flame
(Ka < Ka,). Therefore, the two Karlovitz number cases can be considered as the limiting cases. When the Karlovitz
number is fixed, an increase in the Reynolds number is accompanied by an increase in the Damkohler number. By
increasing the Damkd&hler number at the high Karlovitz number case, an intermediate regime, where Ka > Ka,, and
Da > 1, could be realized. In this intermediate regime, the flame is slower and larger than the Kolmogorov scale of the
turbulence but faster and smaller than the integral scale of the turbulence. However, the Reynolds numbers required
to reach such a regime with significant scale separation between the Kolmogorov scale, the flame, and the integral
scale are well beyond current computational capabilities (trillions of grid points scaling up the present simulations).

However, such a regime is certainly worthy of future investigation.

10
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Appendix A. Non-Density-Weighted Reynolds Stress Components

Another common assumption in turbulence modeling for reacting flows is modeling the density-weighted Reynolds
stresses using models for the non-density-weighted Reynolds stresses in non-reacting flows. The density-weighted
Reynolds stresses with the non-density-weighted Reynolds stresses are shown in Figure 6, where both are normalized
by Uczl. For Cases K2 and K1, the density-weighted and non-density-weighted Reynolds stresses are qualitatively

similar with only slight differences in the peak locations and the magnitudes resulting from the weighting by density.

[Figure 6 about here.]
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Figure 1: The density-weighted Reynolds stress components, normalized by Uczl’ at the streamwise location x/Hy = 3.
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Figure 3: Decomposition of the the velocity-pressure gradient correlation term into the redistribution term and the isotropic term, normalized by
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Figure 4: Decomposition of the velocity-pressure gradient correlation term in the budget for Rj» into the mean pressure term and the fluctuating
pressure term, normalized by g UC3l /1,2, at the streamwise location x/Hp = 3.
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Figure 5: Different configurations of the flame and the reactants/products streams. The flame is indicated by the red wavy lines, and the reac-
tants/products streams are indicated by the black lines with arrows.
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Table 1: Relevant DNS parameters [3]

Case K2 K1

Uy (m/s) 934 23.4

Hy (mm) 1.08 4.32

Rey 5,000 5,000

Ka, 6.7 6.7

Kag_g s 54 3.7

Dag_g 5 0.05 0.60

Domain (LxXx Hx W) 24H,x 16H, x3H, 12H,x24H, x 3H,
Grid points 1536 x 576 x 256 768 x 586 x 256
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