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Abstract

In turbulent premixed flames at low Karlovitz number, combustion heat release can have a significant impact on

turbulence. Thermal expansion in flame induces dilatation, and the corresponding pressure-dilatation correlation acts

as a primary source of turbulent kinetic energy (TKE). As a consequence, the flame-normal component of the normal

Reynolds stresses significantly increases. Additionally, for sheared flames, typical of jet flames, the shear component

of the Reynolds stresses exhibits counter-Boussinesq behavior. For flames at low Karlovitz number, where these

effects dominate, no models have successfully predicted all Reynolds stress components. To develop more complete

turbulence models, heat release effects on the evolution of all Reynolds stress components need to be analyzed. In this

work, Reynolds stress budgets are evaluated from Direct Numerical Simulation (DNS) databases of spatially-evolving

turbulent premixed planar jet flames at low and high Karlovitz numbers. In the Reynolds stress budgets, the velocity-

pressure gradient correlation term is important at both Karlovitz numbers but serves fundamentally different roles in

each case. In the budgets for the normal components, the velocity-pressure gradient correlation term is decomposed

into a redistribution term and an isotropic term, where the redistribution term acts to redistribute energy between the

Reynolds stress components and the isotropic term is the pressure-dilatation source term of turbulent kinetic energy.

At high Karlovitz number, the isotropic term is negligible, and the redistribution term acts to isotropize the turbulence

as in non-reacting flows. Conversely, at low Karlovitz number, the isotropic term acts as a large source, and the

redistribution term preferentially injects energy into the flame-normal component at the expense of other components

which acts to make the turbulence less isotropic. In the budget for the shear component, the shear production term

dominates the velocity-pressure gradient correlation term at high Karlovitz number, but the opposite is observed at

low Karlovitz number. The dominance of the velocity-pressure gradient correlation term at low Karlovitz number

is primarily induced by the flame-generated mean pressure gradient and ultimately leads to the counter-Boussinesq

behavior of the shear component. The overall analysis indicates that any turbulence model that relies on small-scale

isotropy and/or rapid isotropization will fail to capture the heat release effects on turbulence at low Karlovitz number.
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1. Introduction1

Turbulent combustion is characterized by nonlinear interactions between turbulence and combustion heat release.2

The heat release induces thermal expansion, that is, flow dilatation, and accelerates the flow velocity in the flame-3

normal direction. Bilger [1] has argued that, when the time scales of this combustion-induced dilatation are faster4

than those of the turbulence-induced strain, heat release should have a significant influence on the turbulence struc-5

ture; Hamlington et al. [2] have made a similar argument that turbulence is weakly affected by combustion heat release6

at high turbulence intensity. Based on these arguments, for the purpose of the scaling of heat release effects on the7

turbulence, MacArt et al. [3] defined a critical Karlovitz number as Kacr ≡ ρu/ρb − 1, where ρu is the density of the8

unburned gas, and ρb is the density of the burned gas. The local Karlovitz number is defined as Ka ≡ τF/τη, where9

τF is the flame time scale, and τη is the Kolmogorov time scale. When the local Karlovitz number is less than the10

critical Karlovitz number, that is, Ka � Kacr, the heat release effects on the turbulence are expected to be dominant11

and vice versa. MacArt et al. [3] confirmed this scaling in a parametric Direct Numerical Simulation (DNS) study of12

low Mach number spatially-evolving turbulent premixed planar jet flames at low and high Karlovitz numbers. In the13

turbulent kinetic energy (TKE) budget, at high Karlovitz number, production by mean shear is the dominant source of14

the TKE and is balanced by viscous dissipation, and pressure-dilatation is negligible. However, at low Karlovitz num-15

ber, pressure-dilatation is the dominant source of the TKE and is balanced by both viscous dissipation and production16

by mean shear, which become sinks of TKE. In addition, while the scalar flux and the Reynolds stresses are conven-17

tionally modeled using the gradient-transport and the Boussinesq hypothesis, respectively, at low Karlovitz number,18

the scalar flux actually exhibits counter-gradient behavior, and the Reynolds stresses exhibit analogous ”counter-19

Boussinesq” behavior. Conventional models work only at high Karlovitz number where the influence of heat release20

is diminished. Therefore, when heat release strongly affects turbulence, the use of conventional turbulence models21

originally developed for non-reacting flows is fundamentally flawed.22

Several efforts have been undertaken to develop turbulence models accounting for heat release effects on turbu-23

lence. For premixed flames in the zero Karlovitz number limit, that is, an infinitely thin flame, the Bray-Moss-Libby24

(BML) framework has been used to model the scalar flux and the Reynolds stresses [4]. In addition, in order to25

model the scalar flux for premixed flames at finite Karlovitz number, Veynante et al. [5] linearly combined the BML26

model and the gradient-transport model, which is valid in the infinite Karlovitz number limit. For premixed flames27

in isotropic turbulence, this scalar flux model was able to capture the transition of the flame-normal scalar flux from28

counter-gradient transport to gradient transport. Their work was extended to also model the Reynolds stresses for29

premixed flames at finite Karlovitz number by MacArt et al. [3] by combining the BML model and the conventional30

model based on the Boussinesq hypothesis. This Reynolds stress model was able to capture the significant increase31

in the flame-normal component of the normal Reynolds stresses resulting from the heat release effects. However,32

the flame-parallel normal components and the counter-Boussinesq behavior of the shear component of the Reynolds33

stresses were not accurately predicted. MacArt et al. [3] speculated that the Reynolds stress models based on the com-34
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bination of the BML framework and the Boussinesq hypothesis miss the effects of pressure redistribution of energy35

between the Reynolds stress components. This hypothesis needs to be evaluated to develop a more accurate Reynolds36

stress model.37

The aim of this work is to fully characterize the heat release effects on the evolution of all Reynolds stress compo-38

nents, not just the turbulent kinetic energy [3], by evaluating and comparing the Reynolds stress budgets from turbulent39

premixed planar jet flames at low and high Karlovitz numbers, which are below and above the critical Karlovitz num-40

ber, respectively. From the budget analysis, the influences of pressure redistribution are specifically investigated, and a41

more complete understanding of counter-Boussinesq behavior of the shear component is developed. Previous studies42

that have analyzed the heat release effects on the Reynolds stress budgets relied on configurations of premixed statis-43

tically planar flames in isotropic turbulence without large-scale shear and corresponding non-zero shear component44

of the Reynolds stresses, limiting their analyses to the flame-normal component [6, 7, 8].45

An outline of the paper is as follows. In Section 2, the DNS databases are described in detail. In Section 3,46

the turbulence statistics including the Reynolds stress components and the Reynolds stress budgets are evaluated47

and compared between two Karlovitz number cases. The pressure redistribution processes in the Reynolds stress48

budgets are analyzed in detail regarding their role in the evolution of the Reynolds stresses. In Section 4, based on49

these insights, the inter-dependence between the effects of large-scale shear and the flame on the shear component50

of the Reynolds stresses are further discussed. In Section 5, results and implications for turbulence modeling are51

summarized.52

2. Direct Numerical Simulations53

Previous DNS databases [3] of spatially-evolving turbulent premixed planar jet flames at low and high Karlovitz54

numbers have been analyzed in this work. The DNS configuration consists of a turbulent central jet of a stoichio-55

metric hydrogen-air mixture diluted with nitrogen (20% by volume to prevent flashback) and laminar coflow jets of56

equilibrium products. For this mixture, a reaction progress variable is defined as the normalized oxygen mass fraction:57

C =
YO2,u − YO2

YO2,u − YO2,b
, (1)58

where YO2,u and YO2,b are the oxygen mass fraction in the unburned and burned gas mixtures, respectively. The59

bulk Reynolds number defined as Re0 ≡ U0H0/ν, where U0 and H0 are the velocity and height of the central jet,60

respectively, and ν is the kinematic viscosity, is Re0 = 5, 000 for both Karlovitz number cases. For this fuel-air61

mixture, the laminar flame speed is sL = 1.195 m/s, the laminar flame thickness is δF = 0.435 mm, and the critical62

Karlovitz number is Kacr = 6.7. The in-flame Karlovitz number KaC̃=0.5, defined where the density-weighted mean63

progress variable is 0.5, is greater than Kacr at high Karlovitz number (Case K2) and less than Kacr at low Karlovitz64

number (Case K1). The in-flame Damköhler number DaC̃=0.5, where Da ≡ τl/τF and τl is the integral time scale, is65
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0.05 for Case K2 and 0.60 for Case K1. The domain sizes in the streamwise, cross-stream, and spanwise directions66

are 24H0 × 16H0 × 3H0 for Case K2 and 12H0 × 24H0 × 3H0 for Case K1. Simulation parameters at the streamwise67

location x/H0 = 3 are summarized in Table 1.68

[Table 1 about here.]69

The transport equations for mass, momentum, species mass fractions, and temperature with the ideal gas equation70

of state are solved using a low Mach number, semi-implicit, iterative, finite difference solver with a structured grid in71

Cartesian coordinates [9, 10]. For chemistry, a detailed nine species hydrogen chemical kinetic model is used [11]. For72

molecular transport, a constant non-unity Lewis number, which has been validated for laminar and turbulent premixed73

hydrogen-air flames by Burali et al. [12], is used for each species.74

The streamwise, cross-stream, and spanwise directions are denoted by x, y and z, respectively. The spanwise direc-75

tion z is statistically homogeneous. Statistics are averaged in the spanwise direction z and time t over approximately76

29.7 (Case K2) and 47.9 (Case K1) centerline integral times and collected at the streamwise location x/H0 = 3 for both77

Karlovitz number cases. Convergence of the statistics have been confirmed by also considering half as much data. In78

addition, the results at downstream locations have been examined and provide qualitatively similar conclusions drawn79

at the upstream location x/H0 = 3 regarding the underlying physics.80

For a quantity φ, means and fluctuations are denoted by φ̄ and φ′ ≡ φ − φ̄, respectively, and density-weighted81

means and fluctuations are denoted by φ̃ ≡ ρφ/ρ̄ and φ′′ ≡ φ − φ̃, respectively. Because all of the statistics analyzed82

in this work are (anti-)symmetric about the jet centerline, figures below show the statistics only for one side of the83

centerline in the positive y-direction. To facilitate comparison of the two Karlovitz number cases, all statistics are84

plotted against the density-weighted mean progress variable C̃ rather than the corresponding cross-stream physical85

coordinate y. In addition, the local centerline streamwise velocity Ũcl, the local centerline density ρ̄cl, and the jet half-86

width y1/2 are used for normalizing the results. In order to reduce the influence of numerical error on the higher-order87

statistics considered in this work, the DNS databases have been recomputed, compared to MacArt et al. [3], with a88

larger number of sub-iterations used to converge the implicit mid-point method for time advancement, resulting in89

negligibly small residuals in each of the budgets shown in subsequent figures.90

Additional details about the DNS databases can be found in Ref. [3].91

3. Results92

3.1. Reynolds Stress Budgets93

The components of the density-weighted Reynolds stresses Ri j ≡ ũiu j − ũiũ j, normalized by Ũ2
cl, are shown in94

Figure 1, which is also shown in Ref. [3] but is reproduced here from the recomputed DNS databases to facilitate95

discussion of the Reynolds stress budgets; the non-density-weighted Reynolds stresses are qualitatively similar and96

are included in Appendix A. For Case K2, due to the minimal influence of combustion heat release, the overall profiles97
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of the Reynolds stress are similar to non-reacting turbulent shear flows [13]. The largest component is the streamwise98

component R11 because the streamwise velocity is fastest; the cross-stream component R22 and the spanwise compo-99

nent R33 are much smaller than R11. In addition, the shear component R12 is positive for all C̃, while the gradient of100

the streamwise velocity in the cross-stream direction (∂ũ1/∂x2) is negative. This is qualitatively consistent with the101

Boussinesq hypothesis. For Case K1, R22 increases significantly through the flame because the flow velocity acceler-102

ates in the flame-normal direction due to thermal expansion and the flame-normal vector is mostly aligned with the103

cross-stream direction [3]. In addition, it is important to note that the sign of R12 is negative for C̃ > 0.1, even though104

∂ũ1/∂x2 is negative for all C̃. This is inconsistent with the Boussinesq hypothesis and results from the influence of105

heat release; in other words, the Reynolds stresses are not anti-aligned with the strain rate tensor. This mechanism106

will be investigated in the remainder of this paper through the analysis of the Reynolds stress budgets.107

[Figure 1 about here.]108

The Reynolds stress transport equations describe the evolution of the Ri j components:109

∂ρ̄Ri j

∂t︸︷︷︸
B0

=−
∂

∂xk

(
ρ̄ũkRi j

)
︸           ︷︷           ︸

B1

−
∂

∂xk

(
ρ̄ũ′′k u′′i u′′j

)
︸               ︷︷               ︸

B2

+
∂

∂xk

(
τ jku′′i

)
+

∂

∂xk

(
τiku′′j

)
︸                              ︷︷                              ︸

B3

−u′′i
∂p
∂x j
− u′′j

∂p
∂xi︸               ︷︷               ︸

B4

−ρ̄Rki
∂ũ j

∂xk
− ρ̄Rk j

∂ũi

∂xk︸                     ︷︷                     ︸
B5

−τ jk
∂u′′i
∂xk
− τik

∂u′′j
∂xk︸                  ︷︷                  ︸

B6

.

(2)110

The terms in Eq. 2 correspond to the following: unsteadiness (B0), convective transport (B1), turbulent transport (B2),111

viscous transport (B3), velocity-pressure gradient correlation (B4), shear production (B5), and viscous dissipation112

(B6). Figure 2 shows the Reynolds stress budgets, normalized by ρ̄clŨ3
cl/y1/2, for both Cases K2 and K1. For Case113

K2, although the velocity-pressure gradient correlation term is negligible in the TKE budget [3], it is important in the114

budgets for the normal components of the Reynolds stresses, extracting energy (negative) from the largest component115

(R11) and injecting energy (positive) into the smaller components (R22 and R33). Therefore, the velocity-pressure116

gradient correlation term acts to isotropize the turbulence as in non-reacting flows [14]. In the budget for R12, the117

negative velocity-pressure gradient correlation term is consistent with a return to isotropy since R12 is positive, and118

R12 remains positive due to the influence of the large positive shear production term. For Case K1, the velocity-119

pressure gradient correlation term is also the dominant source in the budget for R22 in most of the flame (Figure 2d).120

However, unlike Case K2, in Case K1, R22 is the largest normal component of the Reynolds stresses, so the velocity-121

pressure gradient correlation term acts to make the turbulence less isotropic. The velocity-pressure gradient is also122

positive, albeit smaller in magnitude, for the other normal components of the Reynolds stresses. In the budget for123

R12, the velocity-pressure gradient correlation term is negative and has the largest magnitude of all terms for C̃ < 0.4,124

which results in a negative shear component of the Reynolds stresses. The velocity-pressure gradient correlation term125

having the same sign as the shear component of the Reynolds stresses is inconsistent with a return to isotropy.126
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[Figure 2 about here.]127

3.2. Decomposition of Velocity-Pressure Gradient Correlation128

Comparing the two Karlovitz number cases, the velocity-pressure gradient correlation plays a fundamentally dif-129

ferent role. At high Karlovitz number, this term acts to isotropize the turbulence as in non-reacting flows, but, at low130

Karlovitz number, this term reinforces anisotropy. To investigate these differences, the velocity-pressure gradient cor-131

relation term can be decomposed into two terms in variable density flows, a redistribution term (Φi j) and an isotropic132

term (Πi j) [15, 16]:133

−u′′i
∂p
∂x j
− u′′j

∂p
∂xi︸               ︷︷               ︸

B4

=

−u′′i
∂p
∂x j
− u′′j

∂p
∂xi

+
2
3

u′′k
∂p
∂xk

δi j

︸                                     ︷︷                                     ︸
Φi j

−
2
3

u′′k
∂p
∂xk

δi j︸         ︷︷         ︸
Πi j

.
(3)134

The isotropic term appears in the TKE budget and includes the pressure-dilatation source term as well as the pressure135

transport term. In the redistribution term, the trace of the velocity-pressure gradient correlation term is subtracted136

from itself. Therefore, the redistribution term does not appear in the TKE budget and has no direct contribution to137

the evolution of the TKE. Instead, the redistribution term works to redistribute energy between the Ri j components.138

For the normal components of Ri j, Figure 3 shows the decomposition of the velocity-pressure gradient correlation139

term in Eq. 3, normalized by ρ̄clŨ3
cl/y1/2. For Case K2, the isotropic term is negligible as expected from the fact140

that the pressure-dilatation is negligible in the TKE budget. The streamwise component of the redistribution term141

(Φ11) is negative, while other components of the redistribution term (Φ22 and Φ33) are positive. The role of the142

velocity-pressure gradient correlation term for Case K2 becomes more clear, isotropizing the turbulence through the143

redistribution term by acting to move energy from the largest normal component to the smaller normal components.144

For Case K1, the isotropic term is large and positive as expected from the fact that the pressure-dilatation is the145

dominant source in the TKE budget. The cross-stream component of the redistribution term (Φ22) is positive, while146

other components of the redistribution term (Φ11 and Φ33) are negative. Therefore, the sign of the redistribution term147

is essentially opposite to Case K2, preferentially injecting energy into the largest flame-normal component (R22) and148

increasing its relative magnitude at the expense of other components. This reinforcement of the anisotropy is driven149

by the thermal expansion in the flame, which is inherently anisotropic.150

[Figure 3 about here.]151

In the budget for R12, the velocity-pressure gradient correlation term can be further decomposed into mean pressure152

terms (φ(m)
i j ) and fluctuating pressure terms (φ(f)

i j ) [16]:153

−u′′1
∂p
∂x2
− u′′2

∂p
∂x1︸                ︷︷                ︸

B4 (= Φ12)

= −u′′1
∂p̄
∂x2︸   ︷︷   ︸

φ(m)
12

−u′′1
∂p′

∂x2︸   ︷︷   ︸
φ(f)

12

−u′′2
∂p̄
∂x1︸   ︷︷   ︸

φ(m)
21

−u′′2
∂p′

∂x1︸   ︷︷   ︸
φ(f)

21

.
(4)154
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Figure 4 shows the decomposition of the velocity-pressure gradient correlation term in Eq. 4, normalized by ρ̄clŨ3
cl/y1/2.155

For Case K2, the mean pressure terms are much smaller in magnitude than the fluctuating pressure terms. At high156

Karlovitz number, hydrodynamic effects dominate over flame effects, and the mean pressure gradient in a free jet is157

very small. Therefore, the return to isotropy, that is, the sink in the budget for the positive R12, is due primarily to158

the influence of the fluctuating pressure gradient. Conversely, for Case K1, the mean pressure terms are larger in159

magnitude than the fluctuating pressure terms. Therefore, the mean pressure term φ(m)
12 is the dominant and negative160

source term in the budget for R12 and primarily causes the counter-Boussinesq behavior of R12. φ(m)
12 has large and161

negative values for two reasons. First, the flame generates a negative mean pressure gradient in the flame-normal162

direction (that is, −∂ p̄/∂x2 > 0) due to thermal expansion, which is dominant over hydrodynamic effects at low163

Karlovitz number. Second, u′′1 is negative due to the correlation of the density and velocity fluctuations. The mean of164

the density-weighted fluctuations can be written as165

u′′1 = −
ρ′u′1
ρ̄
. (5)166

In the present DNS configuration, reactants have a faster streamwise velocity and are denser than the products. There-167

fore, the density fluctuations and streamwise velocity fluctuations are positively correlated, and u′′1 is negative accord-168

ing to Eq. 5.169

[Figure 4 about here.]170

4. Discussion171

The decomposition of the velocity-pressure gradient correlation term in the budget for R12 demonstrates the im-172

portance of the mean pressure term in the development of the counter-Boussinesq behavior of R12 in low Karlovitz173

number flames. This term depends on both the sign of the pressure gradient, which is negative from reactants to174

products, and the sign of u′′1 , which depends on the sign of the correlation of the density and streamwise velocity175

fluctuations so would depend on whether the streamwise velocity of the reactants is faster or slower compared to the176

products.177

Figure 5 shows two different configurations of the flame and the reactants/products streams. The mean streamwise178

velocity of the reactants stream is faster than that of the products stream in the first configuration shown in Figure 5a179

and vice versa in the second configuration shown in Figure 5b. In other words, in the two configurations, only the180

sign of the shear ∂ũ1/∂x2 is reversed: ∂ũ1/∂x2 < 0 in the first and ∂ũ1/∂x2 > 0 in the second. The first corresponds181

to the present DNS configuration. The correlation of the density and velocity fluctuations becomes opposite in sign182

for two configurations such that u′′1 is negative in the first and is positive in the second. For both configurations, at183

low Karlovitz number, the mean pressure gradient in the flame-normal direction is negative, that is, −∂ p̄/∂x2 > 0.184

Therefore, the dominant mean pressure term φ(m)
12 (≡ −u′′1 ∂p̄/∂x2) and the corresponding R12 become negative in185
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the first configuration and become positive in the second configuration. However, since the sign of the shear is also186

reversed, in both cases, φ(m)
12 induces the counter-Boussinesq behavior of R12.187

[Figure 5 about here.]188

Through this simple thought experiment with the alternative configuration, the interactions between the large-scale189

shear and the flame are important in determining the sign of the shear component of the Reynolds stresses but ulti-190

mately do not affect the inducement of the counter-Boussinesq behavior of shear component of the Reynolds stresses191

by the flame. In other words, there is no competition between the large-scale shear and the flame in determining192

whether the shear component of the Reynolds stresses is Boussinesq or counter-Boussinesq; the shear component of193

the Reynolds stresses is always counter-Boussinesq in low Karlovitz number flames. The interactions between the194

large-scale shear and the flame have been overlooked in most previous works that have considered statistically planar195

flame configurations without large-scale shear.196

In addition to indirectly influencing the sign of the velocity pressure gradient correlation, the sign of the shear197

directly influences the sign of shear production. The shear production term in the budget for R12 can be simplified since198

the gradients in the streamwise and spanwise directions are smaller than the gradients in the cross-stream direction:199

−ρ̄Rk1
∂ũ2

∂xk
− ρ̄Rk2

∂ũ1

∂xk
≈ −ρ̄R12

∂ũ2

∂x2
− ρ̄R22

∂ũ1

∂x2
. (6)200

At low Karlovitz number, ∂ũ2/∂x2 in the first term on the right hand side of Eq. 6 is large and positive for both201

configurations due to the velocity acceleration in the flame-normal direction. Therefore, the sign of the first term is202

always opposite to the sign of R12. This means that for both configurations considered, the first term opposes the203

influence of the mean pressure term φ(m)
12 in the evolution of R12. However, the magnitude of this first shear production204

term is less than the magnitude of the pressure gradient term for smaller values of the progress variable. At low205

Karlovitz number, the second term in Eq. 6 can be argued to scale with ρcs2
L∆U/l, where ρc is the characteristic206

gas density, sL is the laminar flame speed, ∆U is the bulk streamwise velocity difference between the reactants and207

products streams, and l is the bulk flow length scale. However, φ(m)
12 can be argued to scale with ρcs2

L∆U/δF, where δF208

is the laminar flame thickness. Because δF is much thinner than l at low Karlovitz number, the second term in Eq. 6 is209

much smaller in magnitude than φ(m)
12 . Note that the scaling of the first term of the shear production term can be argued210

to scale similarly to the mean pressure term φ(m)
12 , if the shear component of the Reynolds stresses is taken to scale as211

sL∆U. Conversely, at high Karlovitz number, the second term in Eq. 6 is expected to scale as ρcu′2∆U/l, where u′ is212

the turbulence intensity, and dominates over the first term in Eq. 6 and the velocity-pressure gradient correlation term.213

As a final note, at high Karlovitz number, the mean pressure gradient has been found to play a negligible role in the214

evolution of the Reynolds stresses (or other quantities such as the vorticity [17]). However, this conclusion is strongly215

influenced by the fact that the free jet considered here has no significant mean hydrodynamic pressure gradient. For216

flows with a large mean hydrodynamic pressure gradient, this pressure gradient has been shown to strongly interact217
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with the flame through the baroclinic production of vorticity [18]. The influence of such externally imposed pressure218

gradients on the Reynolds stresses at high Karlovitz number is beyond the scope of the current work but is certainly219

worthy of future investigation.220

5. Conclusions221

Reynolds stress budgets have been evaluated to analyze heat release effects on the the Reynolds stresses in turbu-222

lent premixed jet flames at low and high Karlovitz numbers. The velocity-pressure gradient correlation term in the223

budgets serves fundamentally different roles at the two Karlovitz numbers. At high Karlovitz number, the velocity-224

pressure gradient correlation term acts to isotropize the turbulence as in non-reacting flows, while, at low Karlovitz225

number, the term becomes the dominant source of the largest flame-normal component and makes the turbulence less226

isotropic.227

In the budgets for the normal components, the velocity-pressure gradient correlation term is decomposed into a228

redistribution term and an isotropic term. At high Karlovitz number, the isotropic term is negligible as expected from229

the fact that the pressure-dilatation is negligible in the TKE budget. The redistribution term extracts energy from the230

largest component and injects energy into smaller components. This corresponds to the classical return to isotropy.231

On the other hand, at low Karlovitz number, the isotropic term is large as expected from the fact that the pressure-232

dilatation is the dominant source in the TKE budget. The redistribution term preferentially injects energy into the233

flame-normal component at the expense of other components. This is associated with anisotropic dilatation effects in234

the flame.235

In the budget for the shear component, the velocity-pressure gradient correlation term is decomposed into a mean236

pressure term and a fluctuating pressure term. At high Karlovitz number, since there is no mean hydrodynamic237

pressure gradient, the fluctuating pressure dominates. Conversely, at low Karlovitz number, the velocity-pressure238

gradient correlation term is dominated by the mean pressure gradient established by the flame. The large magnitude239

of this term leads to the counter-Boussinesq behavior of the shear component of the Reynolds stresses.240

Based on the budget analyses, two challenges in turbulence modeling for turbulent premixed combustion at low241

Karlovitz number are explicitly highlighted. First, the conventional assumption of nearly isotropic turbulence, which242

is the basis of the Boussinesq hypothesis, is not valid when the anisotropic dilatation effects in the flame are dominant.243

Second, the indirect influence of the heat release through redistribution via the velocity-pressure gradient correlation244

term needs to be considered and cannot simply be assumed to isotropize the turbulence. More comprehensive models245

that resolve these challenges are required to adequately capture heat release effects on turbulence, and three possible246

approaches for modeling the Reynolds stresses in low Karlovitz number premixed flames are summarized here.247

• One potential approach is to generalize the Boussinesq model to capture the redistribution between the Reynolds248

stress components. Speziale [19] has reviewed the development of nonlinear generalizations of the Boussinesq249
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model, which can relax the purely dissipative nature of the standard Boussinesq model and account for higher-250

order and nonlinear processes generating anisotropy in the Reynolds stresses. Because those models have been251

developed for non-reacting flow, modifications should be made by considering the heat release effects on the252

turbulence, especially for determining the nonlinear model parameters.253

• Another approach is to simply solve the Reynolds stress transport equations. However, closure models for the254

unclosed terms in the Reynolds stress transport equations, which have been developed for non-reacting flows,255

are unlikely to be valid for the flames at low Karlovitz number. Specifically, the model for the velocity-pressure256

gradient correlation term must be able to capture the fundamentally different role of this term between low and257

high Karlovitz number regimes. Lipatnikov and Chomiak [8] have reviewed modeling efforts that consider heat258

release effects on the turbulence in the context of closing the Reynolds stress transport equations. However,259

most previous work is limited to flames without large-scale shear and do not consider the shear component260

of the Reynolds stresses. In this work, the dominant terms in the budget for the shear component have been261

analyzed and discussed in detail, and these insights could be leveraged in future studies for the development of262

closure models for the Reynolds stress transport equations.263

• Finally, MacArt et al. [20] have recently proposed an integrated modeling approach to account for the heat264

release effects on the turbulence based on conditional averaging with respect to the flame structure variable.265

The rationale for this approach is that development of algebraic turbulence models or even closure for the266

Reynolds stress transport equations is extremely challenging in the low Karlovitz number regime since the267

models must capture both the effects of the flame dynamics (i.e., the effects of the local flame motion) and the268

direct effects of the heat release (i.e., all heat release effects except for the flame dynamics) on the turbulence.269

By utilizing the flame conditioning, the flame dynamics are removed, isolating the direct heat release effects.270

The major findings in this work, particularly with respect to the role of the pressure-related terms, could be271

helpful in developing closure models in this new turbulence modeling framework.272

As a final note, for the high Karlovitz number case (Case K2), all scales of the turbulence are faster than the flame273

(Da < 1). For the low Karlovitz number case (Case K1), all scales of the turbulence are slower than the flame274

(Ka < Kacr). Therefore, the two Karlovitz number cases can be considered as the limiting cases. When the Karlovitz275

number is fixed, an increase in the Reynolds number is accompanied by an increase in the Damköhler number. By276

increasing the Damköhler number at the high Karlovitz number case, an intermediate regime, where Ka > Kacr and277

Da > 1, could be realized. In this intermediate regime, the flame is slower and larger than the Kolmogorov scale of the278

turbulence but faster and smaller than the integral scale of the turbulence. However, the Reynolds numbers required279

to reach such a regime with significant scale separation between the Kolmogorov scale, the flame, and the integral280

scale are well beyond current computational capabilities (trillions of grid points scaling up the present simulations).281

However, such a regime is certainly worthy of future investigation.282
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Appendix A. Non-Density-Weighted Reynolds Stress Components288

Another common assumption in turbulence modeling for reacting flows is modeling the density-weighted Reynolds289

stresses using models for the non-density-weighted Reynolds stresses in non-reacting flows. The density-weighted290

Reynolds stresses with the non-density-weighted Reynolds stresses are shown in Figure 6, where both are normalized291

by Ũ2
cl. For Cases K2 and K1, the density-weighted and non-density-weighted Reynolds stresses are qualitatively292

similar with only slight differences in the peak locations and the magnitudes resulting from the weighting by density.293

[Figure 6 about here.]294
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Figure 1: The density-weighted Reynolds stress components, normalized by Ũ2
cl, at the streamwise location x/H0 = 3.
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(g) R12, Case K2
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Figure 2: The density-weighted Reynolds stress budgets, normalized by ρ̄clŨ3
cl/y1/2, at the streamwise location x/H0 = 3.
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Figure 3: Decomposition of the the velocity-pressure gradient correlation term into the redistribution term and the isotropic term, normalized by
ρ̄clŨ3

cl/y1/2, at the streamwise location x/H0 = 3.
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Figure 4: Decomposition of the velocity-pressure gradient correlation term in the budget for R12 into the mean pressure term and the fluctuating
pressure term, normalized by ρ̄clŨ3

cl/y1/2, at the streamwise location x/H0 = 3.
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Reactants Products

(a)
Reactants Products

(b)

Figure 5: Different configurations of the flame and the reactants/products streams. The flame is indicated by the red wavy lines, and the reac-
tants/products streams are indicated by the black lines with arrows.
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Figure 6: The density-weighted Reynolds stress components (solid lines) with the non-density-weighted Reynolds stress components (dashed
lines), where both are normalized by Ũ2

cl, at the streamwise location x/H0 = 3.
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Table 1: Relevant DNS parameters [3]

Case K2 K1
U0 (m/s) 93.4 23.4
H0 (mm) 1.08 4.32
Re0 5,000 5,000
Kacr 6.7 6.7
KaC̃=0.5 54 3.7
DaC̃=0.5 0.05 0.60
Domain (L × H ×W) 24H0 × 16H0 × 3H0 12H0 × 24H0 × 3H0

Grid points 1536 × 576 × 256 768 × 586 × 256
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