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TROPICAL FORESTS

Demographic trade-offs predict tropical
forest dynamics
Nadja Rüger1,2,3*, Richard Condit4,5, Daisy H. Dent3,6, Saara J. DeWalt7, Stephen P. Hubbell3,8,
Jeremy W. Lichstein9, Omar R. Lopez3,10, Christian Wirth1,11,12, Caroline E. Farrior13

Understanding tropical forest dynamics and planning for their sustainable management require
efficient, yet accurate, predictions of the joint dynamics of hundreds of tree species. With increasing
information on tropical tree life histories, our predictive understanding is no longer limited by species
data but by the ability of existing models to make use of it. Using a demographic forest model, we
show that the basal area and compositional changes during forest succession in a neotropical forest can
be accurately predicted by representing tropical tree diversity (hundreds of species) with only five
functional groups spanning two essential trade-offs—the growth-survival and stature-recruitment
trade-offs. This data-driven modeling framework substantially improves our ability to predict
consequences of anthropogenic impacts on tropical forests.

T
ropical forests are highly dynamic. Only
about 50% of the world’s tropical forests
are undisturbed old-growth forests (1).
The remaining half comprises forests
regenerating after previous land use, tim-

ber or fuelwood extraction, or natural distur-
bances. Even unmanaged old-growth forests
are a dynamic mosaic of patches recovering
from single or multiple treefall gaps (2). Thus,
understanding how forest structure and com-
position of the diverse tree flora change during
recovery from disturbance is fundamental to
predicting carbon dynamics, as well as to plan-
ning sustainable forest management (3). De-
spite the importance of regenerating tropical
forests for the global carbon cycle and timber
industry, our mechanistic understanding and
ability to forecast compositional changes of
these forests remain severely limited (4).
Conceptually, tropical forest succession has

been viewedmostly through a one-dimensional
lens distinguishing species along a fast-slow
life-history continuum, or growth-survival trade-
off (4–6). “Fast” species are light-demanding
and grow quickly, but survive poorly, and dom-
inate early successional stages, whereas “slow”
species are shade-tolerant and grow slowly,
but survive well, and reach dominance in later
successional stages. However, several studies
suggest that tropical tree communities are also
structured along a second major trade-off axis
that is orthogonal to the growth-survival trade-
off: the stature-recruitment trade-off (7, 8).
The stature-recruitment trade-off distinguishes

long-lived pioneers (LLPs) from short-lived
breeders (SLBs). LLPs grow fast and live long,
and hence attain a large stature, but exhibit
low recruitment. SLBs grow and survive poor-
ly, and hence remain short-statured, but pro-
duce large numbers of offspring (8). However,
we are lacking a systematic assessment of
how important these trade-offs are for tropical
forest dynamics.
To evaluate the importance of the growth-

survival and stature-recruitment trade-offs for
tropical forest dynamics, we parameterized the
perfect plasticity approximation (PPA) model
(9, 10) with demographic trade-offs derived from
forest inventory data. The PPAmodel simulates
the dynamics of a potentially large number of

species based on a small set of demographic
rates (growth, survival, and recruitment) and
accounts for height-structured competition for
light by distinguishing up to four canopy layers
(11). Canopy gaps are filled by the tallest trees
from lower canopy layers, without regard for
their horizontal position [perfect plasticity as-
sumption (9)].
Our study site is the tropical moist forest at

Barro Colorado Island (BCI), Panama, where
recruitment, growth, and survival of individ-
ual trees have been monitored in a 50-ha plot
for more than 30 years (2, 11, 12). To account
for the dependence of these demographic
rates on light availability, we assigned all mon-
itored individuals of 282 tree and shrub spe-
cies to one of four canopy layers on the basis
of their size and the size of their neighbors
(11, 13) and estimated model parameters (an-
nual diameter growth and survival rates) for
each species in each canopy layer (8). Addi-
tionally, we calculated species recruitment
rates per unit of basal area. A dimension re-
duction of model parameters [weighted prin-
cipal components analysis (PCA) (14)] reveals
the two demographic trade-offs, that is, the
growth-survival trade-off and the stature-
recruitment trade-off, which together explain
65% of demographic variation among the 282
species (Fig. 1).
Our goal here is to explore whether this

low-dimensional demographic trade-off space
can capture tropical forest dynamics, and if so,
how much demographic diversity is necessary
to accurately predict changes in basal area (a
proxy for carbon storage in aboveground bio-
mass) over time. We used species’ positions in
the trade-off space to estimate model param-
eters for all 282 species (11), thus smoothing
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Fig. 1. Demographic trade-offs for
282 tree species at BCI, Panama.
Arrows show loadings of a weighted
PCA on annual diameter growth and
survival rates of individuals ≥1 cm in
diameter in four canopy layers
(where Growth1 indicates growth in
full sun and Growth4 indicates growth
of individuals that are shaded by
three canopy layers) and the number
of sapling recruits per unit of basal
area. Colored dots are locations in
demographic space of plant functional
types (PFTs) that were used in
model scenarios 1 and 3.
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across observed relationships between demo-
graphic rates. We simulated forest dynamics
under four scenarios that differed in the num-
ber of trade-offs (one versus two) and level of
demographic diversity [number of simulated
species or plant functional types (PFTs); Table
1 and Fig. 2A]. We tested model performance
for the 50-ha old-growth plot at BCI (also used
to derive demographic rates) and for a chrono-
sequence of nearby secondary forests that
share a similar topography and soil and a
majority of tree species (15).
To compare the observed dynamics of the

50-ha old-growth plot in BCI with model pre-
dictions, we initialized the model with in-
ventory data from 1985 and simulated forest
dynamics until 2010. When only the growth-
survival trade-off was included, basal area
was predicted to decline because of a decline
in the number of trees >20 cm in diameter,

especially of fast species (Fig. 2B and fig. S1).
Including the stature-recruitment trade-off
improved the match between predicted and
observed basal area and aboveground biomass
(AGB; Fig. 2B and figs. S2 and S3) for different
PFTs and size classes (figs. S4 and S5). How-
ever, when all species were simulated individ-
ually (scenario 4), the number of large trees
(>60 cm in diameter) and basal area were in-
correctly predicted to increase (fig. S1). This
was attributable to the greater influence of
measurement errors due to small sample sizes
when parameterizing the model for 282 spe-
cies (11), although most species-level predic-
tionswere reliable (fig. S6).Maximumdiameters
were accurately predicted by all scenarios, ex-
cept for scenario 2, where observed maximum
diameters >150 cm were not reproduced (fig.
S7). This test shows that the model scenarios
that included both trade-offs were able to re-

produce the structure and stability of the
forest over the time span that was used to de-
rive demographic rates.
Next, we tested the ability of the model to

predict successional changes in secondary for-
ests. We used the same model parameteriza-
tion scenarios, initialized the model with data
from 40-year-old secondary forest, and com-
pared predictions of forest dynamics with ob-
servations from a chronosequence of 60-, 90-,
and 120-year-old secondary forests (two 1-ha
plots in each age class). As in old-growth forest,
predictions of secondary succession were most
accurate when forest diversity was represented
by five PFTs spanning both demographic trade-
offs. When only the growth-survival trade-off
was included, the increase of basal area (Fig.
2C) and AGB (fig. S2) during succession was
underestimated because the number of large
trees (>60 cm in diameter) was underestimated
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Fig. 2. Predicted and observed basal area in four model scenarios. Model
scenarios are shown in Table 1. (A) Locations of species (colored dots) and
representative PFTs used for model scenarios (black dots) in demographic
space; each species was assigned to a PFT on the basis of proximity in
demographic space and color coded as in Fig. 1. (B and C) Predicted (lines)

and observed (asterisks) basal area by PFT in old-growth tropical forest (BCI;
black is total basal area) (B) and secondary tropical forest in the Barro Colorado
Nature Monument (C). RSME is the root mean square error of prediction of
total basal area, and MASE is the mean absolute scaled error of PFT-level
predictions (11). Lines and asterisks are color coded as in Fig. 1.
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(fig. S8). By contrast, when both trade-offs were
included, observed successional changes in
basal area, AGB, and abundance for different
PFTs and size classes were accurately repro-
duced (Fig. 2C and figs. S2 and S8 to S10).
However, when all species were simulated
individually (scenario 4), the number of large
trees (>60 cm in diameter) and basal area of
fast species and LLPswere overestimated. The
observed peak in basal area in the 90-year-old
secondary forest is likely caused by remnant
trees in the study plots and disappears when
larger spatial scales are considered (16). The
diameter distribution after 400 years of simu-
lation closely matched the observed diameter
distribution onlywhenboth demographic trade-
offs were included (Fig. 3A).
In addition to the above simulations, we also

ran simulations with alternative initial condi-
tions to explore the robustness of our results.
The alternative initial conditions [bare ground
and20-year-old forest; (11)] didnot qualitatively
affect our results. For all initial conditions, the
five-PFT scenario spanning both demographic
trade-offs yielded predictions that best matched
observations (fig. S11). Together, the old-growth
and secondary forest simulations suggest a close
match between the five-PFT scenario and the
available data. However, even with this multi-
decadal dataset, we have only a limited capacity
to rigorously test a forest dynamics model.

For example, we used chronosequence data to
represent the first 120 years of secondary suc-
cession because no time series of direct observa-
tions of succession exists for such a long period.
To assess whether the forest in the 50-ha plot

at BCI is at equilibrium with the local distur-
bance regime, we simulated forest succession
(starting from 40 years as above) under sce-
nario 3 for 1000 years without any external
disturbances. Here, the slow and LLP PFTs
codominated the forest after 400 to 500 years
(fig. S12). The fast PFT died out because the
canopy gaps that it requires for persistence
(17) are treated inourmodel in a simplistic (non–
spatially explicit) manner. In reality, however,
the forest is composed of a mosaic of patches of
different successional age since the last distur-
bance event (18). Thus, we compared the sim-
ulated successional trajectories of the fast and
slow PFTs with observed species composition
at the 0.1-ha scale to infer the patch-scale age
distribution [fig. S13; (11)]. This model-inferred
age distribution suggests that themajority of
the 0.1-ha patches within the BCI 50-ha plot
are between 50 and 250 years old. This is con-
sistent with light detection and ranging (LIDAR)
data collected on BCI, which suggest that be-
tween 0.43 and 1.6% of the area is disturbed
every year, corresponding to an average dis-
turbance interval between 63 and 233 years
(11, 19).Whenwe use the estimated proportion

of 0.1-ha patches in each age class to generate
the PFT composition at equilibrium with the
disturbance regime, predictions closelymatch
observations (Fig. 3B).
These results suggest that the forest in the

50-ha plot at BCI is at equilibrium with the
local disturbance regime. This helps to re-
solve a long-standing dispute of whether LLPs
are a transient feature of successional forests
(5, 20, 21) and shows that, in this forest, they
are not transient but an integral and domi-
nant component of the old-growth forest. In-
deed, LLPs dominate most successional stages
and contribute more AGB than any other
demographic group, except in very young for-
ests (<40 years) or patches that have remained
undisturbed for a long time (>400 years, fig.
S12). They can maintain populations in the
absence of large-scale disturbances and com-
pensate for their low recruitment by growing
quickly up to the canopy or emergent layer,
where they may persist as a seed source for
several centuries (8).
Overall, our results suggest that two demo-

graphic trade-offs are needed to accurately
predict successional patterns in tropical forest
structure and composition. Considering only
the fast-slow continuum of life histories is not
sufficient because it ignores LLPs, one of the
most important (in terms of tree size and
AGB) components in many tropical forests.
Although the existence of LLPs has long been
recognized (4), they have often been assumed
to be part of the fast-slow continuum—that is,
considered to be midsuccessional—because
they reach their highest basal area in inter-
mediate stages of succession (5). However,
LLPs lie on a second demographic dimension
(8, 22), and this second dimension is essential
to understanding tropical forest dynamics.
Our results also suggest that a small number

of demographic niches is sufficient to capture
the dynamics of the BCI forest. Specifically,
just five PFTs were sufficient to adequately
capture successional patterns of forest compo-
sition and carbon dynamics (Figs. 2 and 3). To
explore the robustness of the five-PFT ap-
proach under future climate, we used rela-
tionships between climate, functional traits,
and demographic rates to implement our
model simulations under alternative future
climate scenarios (11). As under current con-
ditions, the five-PFT and species-level mod-
els yielded similar predictions to each other
under future climate scenarios (fig. S14), sug-
gesting that a limited number of PFTs may be
sufficient to capture the community response
to climate change. This conclusion warrants
further investigation with models that include
physiological mechanisms not included in our
model, as well as additional functional axes
(e.g., drought tolerance) that are likely to be
relevant at broader spatial or temporal scales.
Nevertheless, our results suggest that functional
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Fig. 3. Model validation. (A) Diameter distribution in 400-year-old simulated forest for the four model
scenarios shown in Table 1. N stems, number of stems. (B) Predicted and observed basal area in model
scenario 3. Observed basal area is from an old-growth tropical forest in BCI, Panama. Predicted basal area is
based on the estimated number of 0.1-ha patches in each age class [fig. S13; (11)].

Table 1. Model scenarios. Model scenarios differ in the number of included trade-offs and the level
of demographic diversity.

Scenario Trade-offs Demographic diversity

1 Growth-survival Three PFTs (fast, intermediate, slow)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

2 Growth-survival 282 species
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

3 Growth-survival, stature-recruitment Five PFTs (fast, slow, LLP, SLB, intermediate)
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .

4 Growth-survival, stature-recruitment 282 species
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. .
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diversity in species-rich tropical forestsmay be
much smaller than taxonomic diversity and
that tropical forest diversity could be accu-
rately represented in Earth systemmodels by a
small number of PFTs that span the relevant
functional axes (23).
Beyond suggesting a simple yet accurate

means to represent tropical forest functional
diversity with a limited number of PFTs, our
study also demonstrates the feasibility of em-
bracing species-level diversity. Together, the
demographic forest model and the empirical
demographic trade-offs define an objective
and reproducible workflow that also delivers
stable predictions of forest dynamics when
run at the species level. Such workflows, along
with the increasing availability of tropical for-
est inventory data, offer the opportunity to
develop truly species-based models to support
the evidence-based planning of forest restora-
tion and sustainable tropical forest manage-
ment by predicting rates and trajectories of
forest regrowth at both the species and com-
munity levels (3).
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