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ABSTRACT

Cost of data centers has risen sharply in the past few years. Today,
it represents about 3% of total US energy consumption with pro-
jections to increase further in the coming years. In this paper, we
focus on the server infrastructure and observe that workload con-
solidation techniques, which maximize power efficiency of server
systems, do not automatically optimize the overall system power
efficiency especially when compute engines and the corresponding
on-board cooling systems are considered holistically. We design
SpinSmart, a framework that explores optimal server fan speeds
to minimize the overall system energy consumption. We explore
core capping strategies that estimate the desired number of CPU
cores to be used at any given time to minimize combined CPU+fan
power. Our experimental results show that we are able to achieve
1) energy savings of up to 10% of total energy and 80% of cooling
energy when compared to workload consolidation without core
capping strategy; 2) cooling energy savings up to 42% when com-
pared to the strategy that randomly assigns jobs to all the servers
and cores.
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1 INTRODUCTION

As the number and size of active components (servers and network
equipment) continue to dominate the energy landscape, we note
that the cooling elements, which actively work to maintain the
appropriate temperature inside data centers, account for almost
50% of total energy [1, 15]. At server level, fans also consume a sig-
nificant part of the total energy, sometimes up to 51% according to
the configuration of the servers [6]. Right-sizing the energy budgets
of compute and cooling, while maintaining the Quality of Service
(QoS) requirements in data centers, is a challenging problem [20].
Prior works, that optimize system energy under QoS constraints
of workloads, typically consolidate the workload onto the fewest
number of servers so that other servers can remain in sleep (inac-
tive) states [7, 9, 10, 19]. While such a strategy is effective to reduce
CPU power, it can inadvertently raise the thermal profile of active
servers, resulting in increased power consumption of its fans. Con-
sequently, the overall system power efficiency may be lower. This
may also lead to increased QoS violations especially when fans are
no longer able to handle increased workload, leading to frequent
operational interruptions (to bring down system temperature).

In this paper we propose SpinSmart, a framework that explores
server fan speed control through predicting CPU temperature with
a thermal resistance-based model [18] . We design an optimal fan
speed control algorithm with lookahead capability that determines
system cooling needs based on past power profile. We also introduce
additional optimization, such as core capping, that estimates the
desired number of active cores among the available ones, such that
we can minimize the overall system energy (that includes CPU
and server fan components). We perform a detailed evaluation of
SpinSmart using a combination of analytical modelling and real
system experiments using Intel Xeon-based tower servers.

The contributions of our work are as follows:

e We observe that server consolidation techniques, which pack
workloads onto the fewest number of servers possible, can
lead to increased power consumption of server fans. We
posit that the overall system power efficiency can be affected
when the corresponding cooling systems are not considered
for system energy optimization.

e We propose SpinSmart, a framework that explores how to
determine optimal server fan speeds based on CPU power,
thermal profile and ambient temperature (along with look-
ahead capability for adjusting fan speeds), such that the
overall system power is minimized.
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Table 1: States for server and CPU.

SYMBOL  DESCRIPTION

C0(4)S0  There are tasks to process, both the system and CPU
are active

C0(;)S0  There are no tasks to process, both the system and
CPU are active

C150 The CPU enters halt state (shallow package sleep
state), while the rest of the system remains active

C6S0 The CPU enters deep sleep state, while the rest of the
system remains active

C6S3 The system (including CPU) enters deep sleep sate

e We present a core capping strategy, where we determine
the desired number of active cores at any given time, such
that the combined CPU and fan power can be optimized.
Our experimental results show that SpinSmart is able to 1)
achieve energy savings of up to 10% of total energy and 80%
of cooling energy when compared to workload consolidation
that greedily assigns jobs to maximize sleep periods of inac-
tive servers; 2) achieve up to 42% savings in cooling energy
compared to a framework without workload consolidation.

2 BACKGROUND

In this section, we provide some background on server workload

consolidation techniques and their effect on system power.
To reduce energy consumption of servers in data centers, prior

works have proposed the use of low power states [7, 10]. However,
higher job latency can be caused by placing servers into low power
states, resulting in the failure to meet the Quality of Service (QoS)
requirements [19]. Job service latency can be high due to (1) queuing
effects - for example, this will happen if there are not enough servers
to handle a burst of arriving jobs; (2) having to wake up from low
power states. As shown in Table 1, for system and CPU, there are
different sleep states that can save energy by power gating different
components [7]. Cy state is the low-power state for processor, while
Sx is the low-power state for the system. There is latency associated
with waking up for both the system and CPU, and latencies are
higher if CPU is in deeper sleep states, as observed in Table 2 for a
typical server. These latencies are reported by Linux cpuidle driver
[14]. Also, such higher wakeup latencies can impact job completion
times, which may in turn lead to extra system energy consumption.

Frameworks that use low-power states [8, 19] to minimize system
energy typically decrease the number of active servers/CPUs by
concentrating jobs onto a few servers and allowing the rest of the
CPUs to enter a deeper sleep state. This is broadly referred to as
workload consolidation (WC). WC tends to concentrate the jobs
onto as few servers as possible and let the remaining servers enter
the package sleep state to save energy. On the other hand, when
there is no WC, jobs tend to be assigned to servers randomly making
it difficult for servers to go to sleep.

One of the advantages of WC is that by scheduling servers into
active and sleep states based on workload requirements, they can
minimize the energy cost while meeting the QoS requirements.
To study the impact of the WC strategy on overall system power,
we use one of the recently proposed state of the art frameworks,
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Table 2: Wake-up latencies for different C-states and S-
states [19].

STATE WAKE-UP LATENCY
Core Sleep C1 10 ps

Core Sleep C6 82 us

Package Sleep C6 1 ms

System Sleep 5s

.
Q
S}

CPU Power (%)
NoE
3838

0

Figure 1: A CPU power trace of Workload-Adaptive Server
Provisioning (WASP).
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Figure 2: CPU power fluctuations in active and inactive
(sleep) periods.

Workload-Adaptive Server Provisioning (WASP) [19], that orches-
trates servers into different low power states.

Figure 1 shows the CPU power of a single server under 30% uti-
lization on a 10-server configuration running websearch workload
with 4 ms job size for WASP [19]. The utilization can be controlled
by setting different job inter-arrival intervals according to job sizes.
By subdividing the CPU power trace into active and package sleep
periods, we observe a cyclic pattern in power consumption (Fig-
ure 2). This is because, the workload consolidation strategy packs
all of its jobs to maximize server utilization (high CPU power), and
puts the inactive servers into sleep mode (low CPU power). Such
a strategy can save basic system energy (not including CPU part)
through sleep states, however it would also lead to a high CPU uti-
lization when the servers are active. We note that without judicious
use of server workload consolidation, the cooling system could be
under peak utilization as well. In this paper, we use CPU fan to
understand server cooling requirements.

3 UNDERSTANDING SYSTEM POWER AND
THERMALS

In this section, we study the relationship between CPU and fan. We
utilize the thermal model from Wang et al. [18] and model a single
CPU tower server with the necessary parameters in that model.

The thermal model for a tower server under steady-state condi-
tions is given by (1), where the ambient temperature and the heat
generation have stabilized. We note that stability is reached when
the cooling system is capable of removing the heat generated and
maintains a nearly constant temperature.

Cs
—S)nR + C4) + Tamb

o 1)

Tepu = Q(
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where, Tepy is the temperature of the CPU, T,,,,;, is the temperature
of the ambient environment, Q represents the heat generated by
the CPU, ng is the number of fans, and FS is the fan speed. Note
that in the server we use for our experiments (PowerEdge T620),
the speeds of all the fans are the same and therefore consider their
thermal resistances R as a whole. C3, C4 and np are the parameters
that need to be identified through experiments.

A steady state thermal model helps to predict CPU temperature
under given ambient temperature, CPU power, and fan speed. It re-
veals the balance between the heat generated by CPU (CPU power),
the heat transferred from CPU to the air and the CPU temperature;
thus this model can also be used to generate desired fan speed
under certain temperature and power requirement. According to
the interface and tools we use in later sections, it takes about 1
sec to return the measurement of fan speed and CPU power, and
around 3 sec to adjust fan speed. A steady-state based model would
fail to predict temperature if the granularity of CPU power changes
is much smaller than the time it takes for the system to reach its
steady state after a CPU power change, that is, around 2 to 3 sec-
onds. Therefore, we need to consider transient heat to predict CPU
temperature accurately. To do so, we consider a time sloted system;
here we use 1 sec as the prediction granularity.

According to transient heat transfer theory [18], the rate of
change in a device’s temperature, the rate of heat generated from
the device and the rate of heat transferred from a device to air are

relevant to predicting the temperature in the next time slot [18]. As

dTcpu
dt

resents the rate of CPU temperature change and % (Tymp — Tepu)
is the rate of heat transferred from CPU to the air. By including the
parameters of transient heat transfer into our thermal model, we
can reduce the error in temperature prediction. The thermal model
with transient heat transfer is shown below:

shown in (2), Q is the heat generated from the device, C; rep-

dT, C,
Cr—g™ = % Tamb = Tepu) +Q @
AtC At
Mepu(k+1) = (1= 2 Mepu(k) = 70 3)
et G @

R:W—st+

ATcpy (k) here is the difference between Tepy and Ty, at slot
time = k ( ATcpy (k) = Tepy (k) — Tymp (k) ). C1, Ca are the co-
efficients of the rate of change in CPU temperature and the rate
of the heat transferred from CPU to air respectively; they can be
identified through experiments. Q represents the heat generated
by server while R is the thermal resistance. At is the granularity of
time slot. R only depends on FS, the relationship between R and
FS is shown in (4), where C3, C4 and np are the same as (1). The
details of calculating the value of parameters (C; to C4) are given
in Section 5.2.

It is well-known that the relationship between fan power and
fan speed (rpm) is approximately a cubic function [3]. We use
equation (5) to represent this cubic function, where Prg is the fan
power, FS is the fan speed, and a; are constants to be determined.
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PFszao-FS3+a1-F52+a2~FS+a3

®)

Note that given the cubic law relationship in (5), WC strategies,
which concentrate jobs in as few servers as possible, can lead to
significant increase in cooling demand, in turn increasing the CPU
power of these servers as well.

4 OPTIMAL FAN SPEED CONTROL

Under low-power state based framework, the server utilization
varies, thus the fan speed control should be considered indepen-
dently from other servers and it depends on the utilization of the
server itself. In this section, we develop a framework to minimize
the sum of power of all fans in a server subject to maintaining the
CPU temperature under a desired limit.

4.1 Fan Speed Control Algorithm

Using equations (3), (4) and (5), the CPU temperature in time slot
k + 1 can be estimated for given CPU power, ambient and current
CPU temperature and fan speed. For each time slot, we use (8) to
predict temperature, and limit the total fan power under a maximum
value as in (7). Server fan speed settings are typically discrete,
thus we limit the optimal fan speed to be one of the available
speed settings. For the sake of completeness, we also simulate the
continuous speed case. These are shown in (9).

(6)
()

®)

minng - Prg

st Topu(k+1) < Trnaa

AtC, At
ATepu(k+1) = (1 - a)ATcpu(k) - C—IQ

if FS is continuous

FSmin < FS < FSmax,
if FS isdiscrete

FSe Fsauailable’

Algorithm 1: Basic Fan Speed Control (BFC) Algorithm

Get current Tymp, Pepu (k). Tepu (k);

Use thermal model (3) (4) and FSyip to predict the
Tepu(k +1) of next slot;

if Tepy(k+1) > Tipax then
| Find FS(k + 1) such that Tepy = Tmax;

else
| FS(k+1)=FSmin

end

Return FS(k + 1);

Here ny represents the number of fans. Note that the thermal
resistance and the speed are the same for all the fans. The constraint
is that the predicted temperature in the next slot does not exceed
the desired maximum CPU temperature, and the fan speed does
not exceed its maximum allowable speed. The At we use here is
1 sec granularity (based on IPMItool temperature measurement
specifications [5]). For given CPU power and ambient temperature,
we want to find an appropriate fan speed that 1) ensures that the
temperature will never rise over the maximum no matter how long
the current CPU state lasts, and 2) is as small as possible. Algorithm
1 is the basic fan speed control algorithm (BFC), which always gives
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the minimum fan speed and fan power to contain the temperature
within desired settings.

4.2 Fan Speed With Look-Ahead

Recall that in Figure 2 we showed system power profile with WC. If
we consider the fan speed value obtained from BFC, the fan speed
will remain consistently low for a number of time slots, until when
a prediction is made in slot k that the CPU will overheat in slot
k+1, at which point the fan speed will rise rapidly and remain high.
This phenomenon is shown Figure 3.

Given the cubic relationship, the sudden increase in fan speed
may not be the most power-efficient way to operate the cooling
system, and could result in increased overall energy consumption
of the cooling equipment (since the fan runs longer to bring down
the CPU temperature). To alleviate this problem, we develop a look-
ahead based optimization framework to minimize the overall fan
power, using which we derive the optimal fan speeds. We formulate
the problem as a linear program, and solve it using AMPL [16], a
sophisticated modeling tool that supports diverse optimization.

Ic
minZ nf . Pps(k)

(10)
k=0
s.t for k in [0, LaT.]] : (11)
AtCo At
ATepu(k +1) = ATepu (k) — ClR—(k)ATCP”(k) - C_lQ
forkin [[aT.], T, — 1] : (12)
AtCy
ATepy(k +1) = ATepu (k) — ClR—(k)ATCpu(k)
forkin [0, T, — 1] : (13)
FSmin < FS(k) < FSmax
forkin [0, T, — 1] : (14)
Prs(k)=ag-FS®(k)+a;-FS?(k)+ay-FS(k)+as
forkin [0, T, — 1] : (15)
Tcpu(k) < Tmax
Tcpu(o) = Tinitial (16)

In this optimization, T, is the total time of a cycle as shown
in Figure 2, while « represents the utilization of this cycle. The
constraints (11) and (15) require that every prediction of the CPU
temperature during the active period ([0, (1—a)T.]) does not exceed
its maximum temperature. Similarly, constraint (12) and (15) give
the requirement during package sleep period. Tj,;;i4; is the CPU
temperature at the beginning and also the end of each cycle.

Compared to (6), this optimization gives the optimal fan speed
for each slot based on a given cycle rather than an instantaneous
optimal value. This is based on a profiled CPU power trace as shown
in Figure 2, which reveals that active and sleep periods alternate,
determined by profiling the history of CPU power patterns.

By analyzing the CPU power trace generated by any workload
aware server provisioning strategies such as WASP, we can deter-
mine, for each cycle in Figure 2, that the active period is at least
Ta,:n and the duration of the package sleep state must be at least
Ti,,;,- We can use this insight in the optimization for a given cycle

s Tamin
by setting Te = Ty,,,;,, + Tiyp, and o = —g=.
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Figure 3: Optimal fan speed during active period in a basic
fan speed control (BFC) cycle.

From the results of this linear program, we have observed that
once the CPU is active, the optimized fan speed increases linearly
(with time) after the temperature reaches a certain point; we set
this point as the temperature increase point (Tincrease) and set the
fan speed at this point as the initial fan speed (F;,izial)- Finitial and
Tincrease and the linear function only depend on T4y

Algorithm 2: Lookahead-based Fan Speed Control (LFC)
Algorithm

Get current Typmp, Pepu (k). Tepu (k);
Get current Tincrease and Fipjpiq1 according to Trnax,
generate linear function for fan speed;
Use transient thermal model and FSy;,;, to predict the
Tepu(k + 1) of next slot;
if Tcpu(k +1) > Tipax then
‘ Find FS(k + 1) that can stablize Tcpy at Tmax;
else
if Pcpu(k) > Pactive then
if Tepu (k+1) > Tincrease then
| Use linear function to generate FS(k + 1)
else
‘ FS(k +1) = FSmin
end

else
| FS(k+1)=FSnin
end

end
Return FS(k + 1);

Our lookahead-based fan speed control algorithm (LFC) is given
in Algorithm 2. For lower complexity, instead of solving the linear
program (10) online during the execution of the LFC algorithm, we
solve it offline by using the power profile in an active period, and
obtain the linear function for fan speed. This function is then used
along with Trnax, Tincrease, and Fijpiq1 to determine the optimal
fan speed. Compared to BFC, LFC considers the history of CPU
power pattern, and sets the fan speed accordingly.

5 EVALUATING SERVER FAN CONTROL
ALGORITHMS

In this section, we compare the energy for the fan speed control
algorithms outlined in Section 4.



e-Energy’20 E2DC

5.1 Platform

We use Remote Access Controller Admin (RACADM) and IPMItool
to measure and gather data from our servers (PowerEdge T620).
RACADM command-line utility provides a scriptable interface that
allows users to configure Remote Access Controllers (RAC), which
are responsible for system profile settings and remote management
[2]. Through this interface we can manage and change fan speeds
using the ‘system.thermalsettings‘ command. Other information
like temperature and power can also be measured and logged by
this utility, however it takes a few seconds for RACADM to give
feedback on the data it gathers.

We use IPMItool to measure CPU temperature and power [5]. IP-
MTItool is a utility to configure the Intelligent Platform Management
Interface (IPMI) - through this interface users can systematically
monitor and manage the health and other features of the system.
We use subcommands such as sdr and sensor [5] to read the data
from the sensors inside RACADM. The processing time is much
faster compared to the RACADM command line. In practice, the
measurement granularity for IPMItool is 1 sec, and for RACADM
is 5 sec. We validate the readings from IPMItool by using power
meters that report the power consumption of the whole server.

5.2 Validation of Thermal Models

We use the sensors embedded in the PowerEdge T620 server to
obtain the CPU temperature, the fan speed, and its corresponding
fan power. The first step is to obtain the power for each CPU core
and different C-states. We modify the available C-states in the Linux
kernel to make sure that the core will not enter certain low-power
states while it is idle. Then under these different C-state scenarios,
we use the dd Linux command to control CPU utilization and
measure the power using the IPMItool and power meter (HOBO
onset UX120-018). The results from IPMItool are verified using
multimeter wall power readings. We use the measurement of the
CPU power under zero utilization as the baseline power. Since CPU
power increases linearly with number of active cores, we use a
linear function to represent the dependence between the number of
active cores and CPU power. We also assume that the power during
wake-up period is half of the sum of peak power and the power
of current low-power state; this was validated by prior studies as
well [19]. The results for a 10-core CPU are shown in Table 3, where
the constant values represent the base power for CPU chip and the
platform power (off-chip components like DRAM, power supply
unit etc.). The dynamic power consumption for each additional
active core is obtained via regression through running CPU-bound
kernels. While the server we have in the lab is a 10-core CPU, we
extrapolate the model for a 28-core CPU (PowerEdge T620) and
simulate the performance of our algorithms on such a server. The
power model of the (theoretical) 28-core CPU obtained from the
10-core CPU is shown in Table 4.

We use RACADM to set different fan speeds (720 RPM, 2160
RPM and 4120 RPM) and measure the power using both the IPMI-
tool and power meter. By fitting the power measurement Prg and
corresponding fan speed FS to (5), we can obtain the parameters
from ay to a3 and build this power model.

Then we measure the corresponding CPU temperature under dif-
ferent fan speeds given different CPU powers. These measurements
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Table 3: Power parameters for server with one 10-core CPU
under different states.

STATE POWER(WATTS)

Core Sleep C1 41.5+4.089 - (ng-1) +81.5
Core Sleep C6 39.5+4.31 - (ng-1) +81.5
Package Sleep C6  7.0+74.5

System Sleep 13.8

ng is the number of cores in active state.

Table 4: Power parameters for server with one 28-core CPU
under different states.

STATE

Core Sleep C1
Core Sleep C6
Package Sleep C6
System Sleep

PowER(WATTS)
68.87+4.85 - (ng-1) +81.5
61.79+5.11 - (ng-1) +81.5
104.75

13.8

n, is the number of cores in active state.
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Figure 4: Temperature profiles measured on CPU versus es-
timation by our thermal model.

are used to generate the stable thermal model. Stable model here is
used both in BFC and LFC to find a minimum fan speed to ensure
the CPU temperature will never be higher than the desired max-
imum under current CPU temperature and ambient temperature.
The CPU power represents Q in (1). For given Q, T, and Tcpy,
we can obtain the thermal resistance R for different fan speeds, and
use that to define the value of C3 and C4 according to (4).

Next, we change the CPU workload using dd Linux command,
and use IPMItool to measure the CPU temperature and CPU power
during this transient period. We also change the fan speed and
measure the temperature trace under the same CPU power trace.
This temperature trace under different changes can be used to
identify the parameters C; and Cy to build the transient model.

Since the thermal resistance R is only relative to the fan speed
[18], by applying (4) to (3), we can predict the CPU temperature in
the next slot (Tcpy (k + 1)) according to current CPU temperature
(Tepu (k)), CPU power (represented by Q) and the fan speed (repre-
sented by R). Figure 4 shows the comparison between the measured
and predicted CPU temperature. We note that our estimated tem-
perature fairly tracks the measured temperature, validating the
efficacy of the model to predict CPU temperature accurately.
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Figure 5: The CPU power trace with workload consolidation
under different sized jobs and utilization around 30%.
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Figure 6: Fan power comparison with and without WC under
different algorithms.

5.3 Fan Speed Control with and without
look-ahead

Here we assume a CPU with 28 cores as shown in Table 4, allowing
us to stress test the model on the cooling system.

We plot in Figure 5 the CPU power trace of two different sizes of
jobs under 30% CPU utilization. Since the CPU power for small jobs
(Web service-like) stays at peak power once the CPU is in active
period, it will cause a significant demand for cooling compared to
large jobs (DNS service-like) .

This optimization begins to increase the fan speed gradually
long before the time when the CPU temperature rises as in the
optimization (9). This is because the optimization is based on a
prediction that once the CPU wakes up, it will run at full utilization
and last for at least T,,,,,. However, this does not mean that once
the CPU is awake, the fan will speed up immediately. Only if CPU is
awake and the temperature grows larger than these increase points,
the fan speed increases.

We now give energy comparison between with and without WC
strategy under LFC. Since the workload assignment without WC
is random and therefore the power profile is not predictable, we
only use BFC for the case without WC. As shown in Figure 6, the
energy saving efficiency of LFC is better for lower utilization; for
30% utilization it can almost eliminate the negative impact from
WC.

In last section we mentioned that LFC works better when the
initial temperature is lower. However, the initial temperature in a
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Figure 7: Energy comparison between simulation and exper-
iment.

whole CPU power trace equals the temperature at the end of each
package sleep state period. A lower initial temperature means a
lower average temperature, which also means a lower CPU power.
Though LFC can save more proportioned energy under low system
utilization, the amount of the energy that is saved is small because
the demand for cooling system is also low in this case.

We also simulated a small server farm with 10 servers under 30%
utilization and use the average of corresponding CPU power trace
to generate dd Linux command line scripts. We ran these scripts
and adjusted the fan speed to its optimal fan speed according to LFC,
then used power meter to record total energy. Figure 7 shows the
comparison between the simulation and the experimental results
of the two frameworks with and without WC strategy, the results
show that the error between simulation and experiment is very
small (~4%).

6 CORE CAP FOR LOW-POWER STATE
BASED OPTIMAL FRAMEWORK

Experimental results from the last section show that, WC frame-
works such as WASP tend to concentrate jobs to as few servers
as possible, so that other servers will have more opportunity to
enter a deep sleep state to save energy. The implicit assumption in
WC strategies is that all cores in an awake server are active. Note
that the server power (and hence the fan power) can be decreased
by limiting the number of active cores in the server. This strategy
inevitably means that either more servers must be kept awake or
the active servers will take longer to process the jobs. This section
investigates the potential benefits in cooling offered by limiting the
number of active cores in each server.

6.1 Core Cap

For a given server, as shown in Table 3, since the base power of
the system is large, it seems to be more efficient to put the server
into system sleep state. But, the wake-up energy from system sleep
state of this server will also be high. The wake-up power is almost
as much as the power of package sleep state, not to mention that a
wake-up latency of 5 sec will also cause a potential QoS violation.

Compared to keeping all the servers active, or putting all of them
into system sleep state from time to time, the most energy-saving
arrangement is to find a subset of N, servers, that will always be
awake (never enter system sleep state), while the rest of the servers
stay in system sleep state. As shown in (17), N represents the total
number of servers, u represents the utilization of N servers, u, is
the average utilization of Ny, servers that are chosen to keep awake.
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(17)

In (17), the constraint of u,; < 1 makes sure that the utilization
of each awake server will not reach or exceed 100 percent. As
shown in Table 3, the server power can be seen as consisting of two
parts: CPU power and basic system power. Reducing the number
of awake servers and keeping them working at full load can save
significant basic system energy, but may cause a severe latency
issue. (17) uses Ny to limit the amount of active servers to minimize
server energy. We suggest another constraint on the number of
cores in active servers to minimize cooling energy. Capping the
number of available cores will increase the server active time and
the overall system energy not including cooling energy, but it will
also decrease peak power of active servers and has the potential to
lower the demand for cooling. We investigate the energy trade off
between these two parts.

},ua<l

6.2 Constraint on Core Cap

The constraint on the core cap is that the utilization of available
cores must not exceed 100% because the QoS rapidly degrades as
the utilization approaches 100%. If N is the number of servers, U is
the utilization, Cpqyx is the number of total cores per server, and
Ccap represents the core capping (i.e., number of available cores),
UC,qyp 18 the corresponding utilization for Ccqp available cores:

CmaxNU
ucca == N
? ccapNa
In (18), Cnax NU represents the necessary cores of the whole

system, Ccqp N, is the available servers and cores adjusted. To sat-
isfy the workload demand, the utilization uc,,,, will change along

(18)

with Ceqp and Nj. If the number of available servers and cores
decreases, the utilization of cores will increase correspondingly. No
matter how we change Ccqp and Ny, uc,, » should be larger than 0
and smaller than 1.

6.3 Energy Comparison

The energy effects of core cap can be seen as two parts, the first
part is the increase in the CPU energy, the second part is the energy
saving from decreasing cooling demands.

Here we give energy comparisons for different core caps and
utilizations to find a balance point, where core caps can achieve a
proper energy trade-off and minimize the total energy. We simulate
frameworks with different core capping and record the energy
with and without fan power under different utilizations (Low: 30%,
Medium: 50% and High: 70%). The number of jobs is a constant, thus
the total execution time will decrease while utilization increases,
the system power without CPU or fan occupies more than half of
the total power, and less execution time means less total energy.

Figure 8 gives the comparison of the energy with and without
fans for different core caps under WC strategy. The energy with-
out fan shows a slightly growing trend while core caps decrease,
however the total energy shows a convex behavior, and reaches its
minimum around the best core cap. The best core cap is the same for
the three utilization levels. As shown in the figure, the core cap can
decrease, or even eliminate the negative impact on cooling system
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Figure 8: Energy with and without fan under different uti-
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Figure 9: Normalized fan energy under different utilizations
and core caps using 5-stage fan speeds.

caused by workload consolidation. Under a 26-core limitation, we
can observe that such cap can save more than 80% cooling energy
under low utilization, and the energy saving efficiency is still good
(70%) under high utilization. The increase of the system energy is
small, only around 1% under this best core limitation.

PowerEdge T620 has 3 controllable fan speeds: 720 rpm , 2140
rpm and 4120 rpm. Finally, to study the possible benefits with more
fan speeds, we add two more values 1430 rpm and 3130 rpm to
simulate under a 5-stage fan speed situation. Figure 9 shows the
normalized energy comparison under this 5-stage fan speed model.
We can observe that fan energy under WC (without core caps) is
significantly higher than without WC, and core caps decrease the
fan energy for WC strategy. Under 30% utilization, WC with 26 core
cap can achieve 42% fan energy saving compared to without WC.

7 RELATED WORK

Several techniques have been suggested to optimize fan speed and
minimize cooling energy for data centers. The workload assignment
problem considering cooling system cost has been investigated
before; for example, by Moore et al. [12]. They build a theoretic
thermodynamic formulation based on steady-state hot spots and
cold spots of data centers and develop workload assignment algo-
rithms. Based on the results, they suggest an alternative approach
which considers location in workload distribution. In later work,
such as the research by Pakbaznia [13], the workload distribution
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along with the ON-OFF state of the servers in data centers is in-
vestigated with the goal of minimizing the total energy cost for
both servers and cooling equipment. They investigate High Perfor-
mance Computing (HPC) scenarios where the jobs inside the data
center run for hours or days; thus the granularity of the workload
changes is assumed to be much longer than the time it takes for the
temperature inside the data center to reach its steady state after a
workload changes [11].

All of these above papers consider cooling energy in the work-
load assignment. However, for works such as [13], the granularity of
workload assignment is large time scale, thus the utilization is more
steady compared to the works which deal with finer time-scale
granularity. Workload assignments suggested in [12, 13] consider
the cooling efficiency of the servers based on their location inside
the data center, as well as the different states of the server, such as
ON and OFF. However, switching between different states might
cause a critical QoS problem for small time-scale jobs, because of
relatively large wakeup latencies, which are not considered.

Thermal model with optimal algorithm and Proportional-integral-
derivative (PID) fan speed control techniques are normally used in
the cooling energy optimization of servers. PID controller is also
investigated to solve the stability concerns caused by the time lag
and quantization of enterprise server sensors [4]. These techniques
can make a good effort for any given CPU power or task schedule
to save cooling energy; however failing to minimize CPU power
and cooling power synchronously might reduce the effect. Studies
such as [17] use Dynamic Voltage-Frequency Scaling (DVFS) with
fan speed control to minimize the cooling power and CPU power
together, while leakage power is also considered. Reducing cool-
ing power can cause a high temperature and increase the leakage
power, and it finds a balance between cooling and leakage power
while minimizing the global power. However, the techniques ap-
plied single server might not optimize the overall system energy in
a cluster of servers.

8 CONCLUSIONS

A typical approach for energy optimization is to consolidate the
workload in as few servers as possible and let the remaining servers
stay in sleep states. While this approach is effective in minimizing
CPU energy, it is not effective when the energy of the fans are also
taken into account. In this paper, we have developed an optimal fan
speed control algorithm called SpinSmart when workload consoli-
dation is employed, and workload scheduling strategies to minimize
overall energy consumption in data centers are considered. Our
LFC predicts the temperature of the CPU in the near future by con-
sidering the current temperature, the ambient temperature and the
power profile trace of a typical server with WC, and then controls
the fan speed to keep the CPU temperature within a prescribed safe
limit, while minimizing overall energy.

We further improve our scheme by a strategy called core cap-
ping. Core capping limits the utilization of a CPU by capping the
number of active cores inside a CPU. While this may lead to more
CPUs being active, our counter-intuitive results suggest that this is
an effective strategy for overall energy minimization because the
cooling energy for a CPU with very high utilization may dominate
the energy needed for keeping an additional CPU active.
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