Contextually-aware Fetal Sensing in
Transabdominal Fetal Pulse Oximetry

Abstract—Transabdominal fetal pulse oximetry (TFO) is a non-
invasive technique that can provide physicians with a convenient
measure of fetal oxygen saturation. This is accomplished by
sending a known light intensity signal towards the mother’s
abdomen, where it is modified by the maternal and fetal tissues,
and observed some distance away. The measured signal, captured
by a photodetector, contains a mixture of both maternal and
fetal information, where the fetal portion must be extracted to
calculate the fetal oxygen saturation. However, the ability to
decouple the maternal and fetal components is highly dependent
on the physiological and structural parameters of the physical
system. In this work, we propose a contextually-aware sensing
approach that utilizes additional information about the physical
system (physiological, spatial, and temporal) to extract the fetal
signal. It does this by using easily-measurable parameters of the
mother’s physiology to reduce the maternal impact, incorporating
data fusion techniques to combine spatial information from
multiple detectors, and utilizing historical data points to improve
and validate the fetal signal estimates. The efficacy of the
proposed approach is supported by experimental evaluation using
in vivo measurements captured on pregnant sheep.

I. INTRODUCTION

Currently, physicians use cardiotocography (CTG) to mon-
itor fetal well-being during active labor. This technique eval-
uates the temporal relationship between uterine contractions
and changes in the fetal heart rate to identify signs of distress.
It is thought that decelerations in the fetal heart rate after
a uterine contraction is a sign of fetal distress. If occurring
over a long duration, it can be an appealing option to perform
an operative intervention (i.e. C-section) to quickly remove
the child. However, since its introduction, CTG has been
shown to have a horrendously high false-positive rate (99.8%
for cerebral palsy [1]), which has partly led to a significant
rise in emergency C-sections without reducing the rates of
adverse fetal outcomes [2]. C-sections are major abdominal
surgeries, which increase costs and health risks to both the
mother and child, such as higher-rates of type-1 diabetes,
chronic lung conditions, and post-operative complications [3]-
[5]. Currently, 1 in 3 children are born via C-section in the
United States [6] which exceeds the recommended range (10-
15%) put forth by the World Health Organization [7], [8]. In
addition to a mediocre interpretation reliability amongst obste-
tricians [9], a large proportion of C-sections are performed in
response to a non-reassuring CTG trace [10], making it clear
that this high-cost (increased C-sections) and low-benefit (no
change in adverse fetal outcomes) monitoring scheme needs
an alternative.

Transabdominal fetal pulse oximetry (TFO) can potentially
improve fetal outcomes by providing physicians with a more

objective metric of fetal well-being, namely fetal oxygen satu-
ration. This technique uses light to investigate the underlying
fetal tissue through a reflectance-based optical probe placed
on the maternal abdomen. Variations in the diffused light
intensity signal are caused by physiological changes in tissue
composition, and can be analyzed to estimate the fetal oxygen
saturation. A high-level diagram of transabdominal fetal pulse
oximetry (TFO) can be seen in Figure 1.

In general, light-based measurement modalities operate by
sending a known light signal into the body, where it is modified
by the human tissue, and observed some distance away. In
TFO, both maternal and fetal physiology causes the tissue
composition to change, resulting in a mixed (maternal+fetal)
signal. Since photons must first travel through the mother’s ab-
domen before reaching the fetus, any photons containing fetal
information will be corrupted with maternal noise. In addition,
the number of photons that reach the fetus is highly dependent
on the fetal depth, which varies between patients and as natural
birth progresses. These structural and physiological dynamics
makes extracting the fetal signal challenging.

To address the fetal signal extraction problem, we propose
a contextually-aware approach that extracts the fetal signal
by incorporating additional information about the physical
system (physiological, spatial, and temporal). It does this
by utilizing knowledge about the mother’s physiology to re-
duce the maternal noise (physiological), incorporating spatial-
information from multiple detectors to increase robustness
to unknown changes in fetal depth (spatial), and utilizing
historical measures of the fetal signal to improve and validate
new estimates of the fetal signal (temporal). This represents
a tightly-coupled cyber-physical system where the proposed
contextually-aware approach incorporates knowledge of the
physical system to process the raw measurements in the cyber-
system, and expose an underlying physical signal (fetal signal).
To accomplish this, we perform the following:

o First, we characterize the physical system by decom-
posing the mixed signal into its constituent parts and
performing Monte Carlo simulations, to profile the rela-
tionship between the mixed signal the physiological and
spatial parameters.

o Afterwards, we present the proposed contextually-aware
fetal sensing approach, which incorporates information
about the physical system, to extract the fetal signal, and
describe the details of each submodule.

o Lastly, we evaluate the proposed approach using in vivo
measurements captured on pregnant sheep/hypoxic fetal
lambs, using our transabdominal fetal oximetry system.
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Fig. 1.

A high-level overview of Transabdominal Fetal Pulse Oximetry [11]. Photons are sent through the maternal abdomen to investigate the fetal tissue,

before propagating back to a photodetector on the optical probe (optode) as a mixed (maternal+fetal) signal. Fetal signal extraction is performed to decouple
the maternal and fetal signals, before estimating the fetal oxygen saturation through conventional pulse oximetry calculations.

II. BACKGROUND
A. Overview of Pulse Oximetry

Pulse oximetry is a non-invasive method to estimate the
relative concentration of oxygenated hemoglobin in arterial
blood. At its core, it uses the Beer-Lambert Law, which
describes the changes in light intensity with respect to the
concentration of chromophores in a medium and the relative
distance between the light source and detector:

I,(A) = Tp(\) # 10~ Zi cilDrei(N)+L 0

where I, is the measured light intensity at a detector at time
t of wavelength A, Iy is the incident light intensity, ¢; and
€; 1s the concentration and molar extinction coefficient of the
i'" chromophore in the medium, and L is the path-length a
photon takes to get to the detector from the light source. This
can be written in terms of the relative change in absorption
(A A) between times t1 and ¢2 in the Modified Beer-Lambert
Law (MBLL):

AA = )/Tn(N) =D Acixe;x (L) (2)

The expected photon path-length ((L)) is used here since
discontinuities in the refractive index in a medium can cause
photons to non-deterministically scatter from their initial tra-
jectory.

When the medium is human tissue, cardiac contractions
cause arterial vascular tissue to pulsate accordingly. This
results in small, periodic dips in light-intensity seen at a
detector, also known as a photoplethysmogram (PPG), and
allows the optical capture of a person’s heart rate. In addition,
since oxy- and deoxy- hemoglobin (HbO2 and Hb) absorb
light at different levels in the red and near-infrared (NIR)
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spectral regions, analyzing the depth of light attenuation (A A)
from PPGs captured at these wavelengths can be used to infer
the arterial blood-oxygen saturation (SpO2).

SpO2 = cupoz/(crbo2 + CHY) 3)

In pulse oximetry, SpO2 is proportional to a modulation
ratio (R) which is defined as the ratio of two PPGs taken
in the red (A1) and NIR (\2) wavelengths.

AA)\l o loglo(IsysLolc,)\l/[diasl/olc,kl)
AAxs loglo(Isystole,)\Q/Idia,stole,AZ)

This proportionality factor is empirically determined using a
large number of healthy volunteers through the gold-standard
invasive blood-gas analysis measurements during controlled
desaturation experiments.

R =

x SpO2 (4)

B. Transabdominal Fetal Pulse Oximetry

Transabdominal fetal pulse oximetry (TFO) is a fully
non-invasive technique to measure fetal oxygen saturation.
This is accomplished by sending photons through the
maternal abdomen to investigate the underlying fetal tissue
using a reflectance-based optical probe (optode). The photons
propagate through the maternal and fetal tissues, which
causes the light intensity (signal) to vary according to the
Beer-Lambert Law. Some of the photons that reach the fetus
diffuse back towards the skin surface and are captured by
a photodetector, where the resulting mixed (maternal+fetal)
signal is measured, processed, and analyzed to extract the
fetal signal, which is used to estimate fetal oxygen saturation
through conventional pulse oximetry calculations. A high-
level view of this technique can be seen in Figure 1.



1) Mixed Signal Problem: In TFO, photons that contain
fetal information must make a round-trip through the mother’s
abdominal wall before reaching a detector. However, physi-
ological processes causes temporal changes in the mother’s
tissue composition, which alters the signal. Expanding the
MBLL for both maternal and fetal tissues, the signal measured
at a detector can be written as:

1

Ad= In(10)

(A,ua,’rnat * <L'mat> + A/-La,fet * <Lfet>) +£ (5)

where AA is the measured change in absorptivity at a de-
tector, Aplg mat and A, rer are the changes in absorption
coefficients caused by maternal and fetal tissues respectively,
(Limat) and (L) are the expected partial path-lengths pho-
tons take to reach the detector through respective tissues, and
¢ represents other noise factors seen in the measurement (e.g.
thermal noise) caused by the physical components used and
is considered to be Gaussian-distributed with zero-mean. Note
that we use the absorption coefficient (u,) here instead of the
molar extinction coefficient (¢). Both provide a measure of
light attenuation and are related by p, = In(10) * € * .

In order to estimate the fetal oxygenation using Equation 4,
the fetal signal must be extracted from the mixed signal.
Given the stochastic nature of light scattering and absorption,
decoupling the maternal and fetal signals can be challenging.
One approach is to use a conventional pulse oximeter on the
mother’s finger, to estimate the maternal contribution and
remove it from the mixed signal. This helps to provide an
additional measure of the mother’s cardiac response, but may
not fully represent the signal seen at the maternal abdomen,
where respiration effects are more evident. Further measures
of the mother’s physiology may be helpful in fully removing
the maternal contribution from the mixed signal.

2) Fetal Depth Variations: Prior to birth, the fetus resides
in the uterus and is typically located several centimeters
within the maternal abdomen. For highly-scattering materials
like tissue, this is optically deep, meaning that only a small
proportion of photons reaching a detector will have traversed
fetal tissues. In general, signals seen at the skin surface are
more sensitive to changes in the superficial (i.e. maternal)
tissues, and thus, the maternal noise dominates the mixed
signal.

For reflectance-mode sensors, the relative distance between
the light source and photodetector (source-to-detector or SD
distance) plays an important role in increasing the depth of
tissue investigated. The larger the SD distance, the deeper the
tissue being investigated but at a cost of overall light intensity
(strength). Optimizing this parameter can be difficult, since
patient variability can cause the fetal depth to vary drastically.
This can occur between different patients, or as the fetus
moves through the birth canal during natural delivery, and
causes the optimal SD distance to vary between patients and
over time [11]. To design a clinically-robust TFO system, it
is important that the fetal signal extraction must be robust to
both inter- and intra- patient variability.

III. PROBLEM STATEMENT

As previously described, the mixed signal is a result of
changes in tissue composition caused by maternal and fetal
physiology. In addition, the signal’s sensitivity to fetal tissues
is highly dependent on anatomical parameters like fetal depth.
Since tissue is a highly-scattering material, small changes
in fetal depth can have significant effects on the ability to
capture sufficient fetal information. To address this problem,
we propose a contextually-aware approach that can extract
the fetal signal by utilizing additional knowledge about the
physical system, namely physiological, spatial, and temporal
information. In this work, we first characterize the physical
system by decomposing the mixed signal into its constituent
parts, and simulate photon propagation through representative
tissue models to profile the relationship between spatial param-
eters to the mixed signal. Next, we present the contextually-
aware approach and describe its various submodules in detail.
Lastly, we evaluate the efficacy of the approach to identify
the fetal signal, by developing a TFO system prototype and
capturing in vivo measurements on pregnant sheep.

IV. CHARACTERIZING THE PHYSICAL SYSTEM

In this section, we characterize the physical system in order
to understand its effect on the mixed signal. In particular,
we decompose the mixed signal into maternal and fetal
components and describe the physiological changes that cause
the light intensity to vary, and simulate photon propagation
through representative tissue models to profile the relationship
between fetal depth, SD distance, and fetal signal sensitivity
(i.e. the proportion of signal that contains fetal information).

A. Decomposing the Mixed Signal

To understand the relationship between the mixed signal
and the underlying physiology it describes, we decompose
the mixed signal into the maternal and fetal components and
rewrite Equation 5 as:

AA = AAmat + AAf(’t +§ (6)

where AA,,, and AAy,, are the changes in absorptivity due
to maternal and fetal tissues respectively. In TFO, identifying
AA¢e is the goal. These changes are caused by the slight
arterial expansion from heart contractions occurring at the fetal
heart rate (FHR), typically occurring between 2-5 Hz [12]. As
described in Section II-B, this signal forms the basis upon
which fetal oxygen saturation can be calculated.
Physiological changes in the maternal tissue AA,,,; are
also present in the mixed signal. Some of these changes are
caused by the mother’s respiration and cardiac cycles:

AApar = DA + AAGdine (7

mat

In the cardiac cycle, arterial vascular tissues expand slightly
with each heart contraction, which increases the blood-tissue
volume ratio. Depending on the tissue perfusion, the amount
this rises typically varies between 2-10% [13]. While this is a
small percentage, it is enough to create a PPG waveform that
is used in conventional pulse oximetry. This maternal PPG
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Fig. 2. Tissue Model used in the Monte Carlo simulations. It consists of
four spherical regions, representing the maternal abdominal wall, maternal
uterus, amniotic fluid, and fetal tissues. Their physical dimensions and optical
properties can be seen in Table I.

waveform is synchronous with the maternal heart rate (MHR)
which typically occurs between 1-2 Hz. A number of common
medical devices can be used to measure the MHR, including
electrocardiogram (ECG) and conventional pulse oximeters.

Similarly, artifacts caused by respiration (breathing) may
also be present in AA,,,:. These respiratory induced vari-
ations (RIV) are thought to be caused by changes in the
peripheral venous pressure and increased rate of venous re-
turn [14]-[16]. While the variations change synchronously
with respiration rate (RR), its intensity is highly variable,
pending ventilation and physical parameters like tidal volume,
body position, and probe location [14]. Typically, respiration
occurs between 0.1-0.5 Hz. Respiratory rate can be monitored
through non-invasive nasal capnography.

B. Maternal-Fetal Contribution via Monte Carlo Simulations

While physiological changes in both maternal and fetal
tissues can cause the light intensity to change, their relative
contribution to the mixed signal can vary depending on which
tissues the photons traversed. Several key parameters that
affect this are the optical and physical properties of the
tissues. Importantly, the SD separation and fetal depth play
a significant role in the ability to capture sufficient fetal
information. To characterize this relationship, we simulated
photon propagation through representative tissue models, and
measured the fetal signal sensitivity, defined as the proportion
of photons that traversed the fetal tissue to total photons seen
at a detector.

1) Tissue Models: To model light propagation in the intra-
partum environment, we developed volumetric tissue models
that consisted of four spherical tissue regions, representing the
maternal abdominal wall, the uterus, amniotic fluid, and the
fetus, and are illustrated in Figure 2. Their optical properties
and physical dimensions were obtained through the literature,
and can be seen in Table I. To evaluate different fetal depths,
five tissue models were developed. Each tissue model had a
different abdominal wall thickness, to establish fetal depths

TABLE I
OPTICAL PROPERTIES OF TISSUE MODEL

Tissue Type: fta mm~Y)  pg (mm~Y) g (unitless) n (unitless)  z (cm) Ref.
Maternal Abdominal Wall ~ 0.009 12.003 0.9 14 0.2-42 [18],[19]
Maternal Uterus 0.01 8.15 0.9 14 0.7 [20]
Amniotic Fluid 0.004 0.1 09 1.334 0.1 [21]
Fetal Tissues 0.013 9.916 0.9 1.4 10 [22], [23]

ranging from 1 to 5 cm, matching those seen in the patient
population [17].

2) Monte Carlo Simulations: Given the stochastic nature
of photon propagation through highly-scattering materials
like tissue, numerical techniques like Monte Carlo simu-
lations are often used. We utilized a well-verified, GPU-
accelerated Monte Carlo simulation to evaluate photon propa-
gation through each of the aforementioned tissue models [24].
In this approach, photons are injected into a tissue model,
and its propagation through the tissue is monitored until it
escapes at the tissue surface or extinguished by the tissue.
A detailed description of the propagation algorithm can be
found in Fang and Boas’ work [24], and its salient points
are summarized here. Photon propagation through the tissue
is accomplished by using the optical properties of the tissue,
which describes the absorption and scattering probabilities,
the scattering anisotropy, and the index of refraction. At each
step, a photon is moved through the tissue and its energy is
decreased according to the Beer-Lambert Law, and a proba-
bility of scattering is determined using the optical properties
to seed an exponentially-weighted probability function. If a
scattering event occurs, the scattering direction is obtained
through the Henyey-Greenstein scattering phase function while
considering Fresnel’s equations at the tissue boundaries, and
the photon position and direction is updated. This process
is repeated until all photons are either extinguished through
absorption or escapes at the surface. Photons escaping at
the surface that also hit a detector are recorded to analyze
information about the tissues it traversed.

For each tissue model, 10 simulations were performed,
where each simulated 160 million photons propagating
through the tissue model at a wavelength of 850 nm. Detectors
were placed on the maternal abdomen with SD distances at
1.5, 3,4.5, 7, and 10 cm. Photons exiting the tissue that interact
with these detectors were recorded, to provide context on the
overall signal strength and the fetal signal sensitivity.

C. Results and Discussion

In total, 1.6 billion photons were simulated for each tis-
sue model, which provided sufficient information for the
sensitivity to converge at deeper fetal depths. Utilizing a
GPU-accelerated Monte Carlo tool [24], it took ~8 hrs to
complete all of the simulations, which is much faster than
single-threaded approaches which would have taken several
days [19]. The effect that SD distance and fetal depth have
on the fetal signal sensitivity can be seen in Figure 3. As we
can see, detectors with large SD distances capture a higher
proportion of photons that reach the fetus than those with
small SD distances. In particular, the fetal signal sensitivity
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Fig. 3. Results from the Monte Carlo simulations. a) Fetal Signal Sensitivity

(ratio of photons that traversed fetal tissues to total photons seen) at various
SD separations and fetal depths, b) Attenuation ratio vs SD separation (ratio
of number photons seen to total photons injected into the tissue).

monotonically-increases with SD distance, but decreases with
fetal depth. This is expected, since it is harder for photons
to reach the fetus when it is deeper. However, the attenuation
ratio, defined as the number of detected photons over the total
photons introduced into the skin, exponentially decreases with
SD distance, as described in Equation 1. In practice, fetal depth
is unavailable during the intrapartum period, and thus, it is
difficult to determine if sufficient fetal information is being
captured by a detector, without additional context.

V. CONTEXTUALLY-AWARE FETAL SENSING APPROACH

As argued previously, the structural and physiological dy-
namics of the physical system makes it difficult to decouple the
fetal and maternal components from the mixed signal. In this
section, we present a contextually-aware approach that extracts
the fetal signal by incorporating additional information about
the physical system (physiological, spatial, and temporal). In
particular, we utilize external measures of the mother’s physi-
ology to reduce the maternal noise (physiological), incorporate
known information about the SD distance to increase robust-
ness to unknown fetal depths through data fusion techniques
(spatial), and by utilizing historical estimates to improve
the ability to track and validate the fetal signal (temporal).
We assume that external measures of fetal information are
unavailable, as existing methods may interfere with the TFO
optode due to similar placement requirements on the mother.
A high-level diagram of the proposed approach can be seen
in Figure 4(b). In the following, each of the modules are
described in detail.

A. Maternal Noise Reduction

In the proposed approach, we incorporate external measures
of the mother’s physiology to reduce the maternal noise seen
in the mixed signal. As we described in Section IV-A, the
source of maternal noise is caused by respiration and cardiac
contractions. Therefore, we utilize the mother’s respiration
rate (MRR) and heart rate (MHR) to generate filters that
reduce their contribution to the measurements. Given the
periodicity of these physiological signals, we analyze the TFO
measurements in the frequency domain. First, we generate
the frequency-domain representation of each channel’s raw

data using the fast-fourier transform and estimate their power
spectral densities (PSD). The PSDs, in conjunction with ex-
ternal measures of the MRR and MHR, are used by the filter
generator to create ideal notch filters centered at the MHR and
MRR frequencies, and their associated harmonics identified as
strong peaks in the PSD at integer multiples of the fundamental
frequencies. Harmonics up to 6 Hz are considered, since the
fetal signal should be present within 2-5 Hz. The signals are
sent through the associated filters to reduce the maternal noise
in each of the channels.

AAfiltered = AAAfet +§ (8)

After maternal noise reduction, the filtered signals should
consist of only the fetal signal and random noise, as shown
above.

B. Data Fusion

In addition to incorporating physiological information, we
use data fusion to combine the measurements seen at each
detector (channel) to improve the fetal signal estimation. After
reducing the maternal noise, only the fetal content and random
noise should remain in each of the channels. However, if
the measurements are captured from a detector with a small
SD separation, it may not contain sufficient fetal information
(i.e. AAses ~ 0), whereas channels with a larger SD distance
will have higher fetal sensitivity but captures less photons
overall. Importantly, the fetal sensitivity monotonically in-
creases with SD distance. We use this information to combine
the measurements from each channel using a weighted-sums
approach where the weights represent the SD distance for
respective detectors, and thus provides a measure of relative
fetal information contained in that channel.

AApsums = Y _wixAApi i =Y wis(AAgeri+&) (9)

As seen in Figure 3, the shape of the fetal sensitivity to SD
distance relationship changes with fetal depth. However, fetal
depth is an unavailable parameter, and thus this knowledge
cannot be utilized. For this reason, we define our weights as
linear, evenly-separated weights between 0 and 1, where the
weight for the largest SD distance is assigned the value of 1
and smaller SD distances closer to 0. This linear-weighting
approach aims to improve robustness to unknown changes in
fetal depth.

In addition to incorporating spatially-aware sensing through
data fusion technique, another benefit is that the variance of &
is reduced in the fused signal. Since &; represents the random,
Gaussian-distributed with zero-mean, noise seen in the 3t
channel, the expectation of ) w; *§; will also be a Gaussian-
distributed, zero-mean random variable with reduced variance,
thus improving the fetal signal-to-noise ratio.

C. Fetal Signal Estimation

After data fusion, the resulting signal is then sent to the fetal
signal estimation module. In a simple manner, this module uses
the power spectral density of the fused signal, and searches



MRR  MHR MRR  MHR Channel
I | weights
1
Light Source - Light Source + + ] TR
Filter Filter ot R
Generator Generator
FHR yreq I Estimate
o
ch1 ch1 2
)( FFT | - x FFT | P b —H— &
- E -
ch2 z ch2 2. z
X M X e s HE LS
ch3 2 E> g > R h : 5 DO §
x iINER N ft 2 Estimate x "3 N R z H- = 1 Prediction Block:
[t 5 g o 5 * ° PIEFEWISE
Cha By By Cha = L E 3 Linear
x FFT | p> a x | -] —— ~ Representation
chs chs
x FFT | ol ! L1, x N N |
Maternal Noise Reduction Maternal Noise Reduction / Historical Context Module

a) Naive Approach

b) Proposed Approach

Fig. 4. A high-level view of the a) Naive Method and b) Proposed Approach, which consists of a maternal noise reduction, data fusion, fetal heart rate
estimation, and historical context submodules. These submodules incorporate additional information about the physical system, used to extract the fetal signal.

for the maximum power within lower- and upper- bounds of
typical fetal heart rates. We define the FHR prior as having
a lower bound of 2 Hz and an upper bound of 5 Hz, as
characterized in the literature [12]. This simple approach is
possible, because of the processing from earlier modules which
reduced the maternal noise and incorporated spatial context
into the fused signal.

D. Historical Context Module

As previously mentioned, physiological signals are non-
stationary, in that the fetal and maternal signals can vary
over time. In the case where the FHR moves behind the
maternal components or one of their harmonics, the maternal
noise reduction block will incorrectly filter away the fetal
signal. This causes the simplistic fetal estimation method to
incorrectly identify the fetal heart rate. To address this issue,
we use previous fetal estimates to generate a prediction model,
which is used to validate the fetal signal estimate based on its
trajectory. In this manner, we improve the fetal estimates by
utilizing temporal context into the approach.

Historical fetal estimates are used to generate a prediction
model (piecewise-linear representation) used to predict the
next fetal heart rate (FHRp,cq.), and determine the validity
of the estimated fetal heart rate (FHR.s ). If the estimate
is similar to the prediction, then FHR.,; is deemed valid
and is passed through to the output. However, if they differ
drastically, we consider the estimate to be invalid, and use
FHR,.cq. as the result. For our system, we consider a valid
change in FHR to occur within 0.35 Hz (or 21 bpm), which
covers 97% of the variation seen in the clinic [25].

FHRest,
FHRpred.

if [FHR ;. — FHR.cq.| < 0.35Hz

FHRcsu1t = otherwise

The resulting fetal heart rate is then stored in a historical
buffer, which uses the last 30 sec of estimates to generate
the next prediction model. In the case where the estimate
is invalid for an extended period of time (i.e. 30 sec), we

maintain the last FHR value rather than use FHR,.4.. This
accommodates for situations when the FHR is hidden behind
a maternal component (or harmonic) for a long duration. As
such, once the fetal signal moves away from the offending
maternal component, it will be picked up by the system as a
valid fetal estimate and continue normally.

VI. IN VIVO EVALUATION

To evaluate the approach, we developed a TFO system pro-
totype, and captured in vivo measurements on at-term pregnant
sheep/hypoxic fetal lambs. We compared the accuracy of the
proposed approach to identify the FHR against the true FHR
and a naive approach, which is shown in Figure 4(a). The
naive approach only utilizes the maternal noise reduction and
fetal estimation blocks to identify the FHR. Since the fetal
sensitivity is larger at far SD distances, the naive approach
only uses the channel located furthest from the light source to
estimate the fetal signal.

A. Hypoxic Fetal Lamb Animal Model

At-term pregnant sheep (136 gestational days) were used
in this experiment. After undergoing anesthesia, a balloon
catheter was placed in the aorta of the pregnant sheep, above
the blood-supply to the uterus, and inflated in a graded-
fashion to induce varying levels of hypoxia to the in utero
fetal lamb. The inflation was held at each grade for 10-
minutes to allow adequate time for the changes to be translated
to the fetus. An arterial blood line was placed in the fetal
lamb, and routed externally from the pregnant ewe, where
blood-pressure was measured and intermittent! blood sampling
was performed. The fetal HR, was generated from the fetal
blood pressure waveforms, and calculated by the anesthesia
monitoring system. The maternal heart rate was recorded via
a conventional pulse oximeter, and the respiratory rate was

I'Since each blood-draw removes a non-negligible amount of blood from the
fetus, only intermittent blood sampling was performed to reduce blood-loss.
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Fig. 5. Experimental setup of the Hypoxic Fetal Lamb Animal Models 1 and 2. Model 1 established a shallow fetal depth (1 cm), and Model 2 established
a deep fetal depth (5 cm). An image of the optode being placed on the pregnant sheep during the experiment can be seen on the right.

captured through the anesthesia system which monitored the
sheep’s end-tidal CO2.

In this experiment, two fetal depths were evaluated which
we label as Models 1 and 2. In Model 1, a shallow fetal
depth of 1 cm was established by closing the uterus around the
fetal neck, and suturing one ear of the fetus to the underside
of the maternal abdominal wall. In Model 2, the fetus was
fully-returned to the uterus, and previous incisions were closed
with suture. In this case, the fetal depth was estimated to be
about 5 cm. In both models, the amniotic fluid was replaced
by warm saline. An illustration depicting the different animal
models can be seen in Figure 5. All of the procedures were
reviewed and approved by an Institutional Animal Care and
Use Committee.

B. TFO System Prototype

To capture measurements on the pregnant ewes, we devel-
oped a TFO system prototype that consists of a multi-detector,
optical body-sensor network, an optode control system, and
custom software that controlled, captured, and displayed the
light intensity signals in real-time, and is shown in Figure 6.
Our optical body-sensor network consists of five detectors,
which correspond to Si-photodiodes located on the optical
probe (optode) with varying SD distances. The optode control
system manages signal actuation and acquisition, and was de-
signed and built on a custom printed-circuit board. Its submod-
ules are briefly summarized here. The actuation/acquisition
system uses lock-in detection to shift each wavelength-specific
signal to a frequency with less flicker-noise. In addition,
the acquisition pipeline also consists of several small-signal
amplifiers, a high-resolution analog-to-digital converter, and
a microcontroller which streams the data to custom software
running on a laptop. The software, written in Java, follows
a classic Model-View-Controller architecture and provides a
GUI for user-control, real-time measurement feedback, and
logs the information for post-processing.

C. Experimental Setup

Using our TFO system, measurements were taken on two
pregnant ewes, one of which represented Model 1 (shallow fe-
tal depth), and the other Model 2 (deep fetal depth). During the

experiments, the fetal parameters were logged intermittently
to reduce the overall blood-loss to the fetus. The maternal
parameters were also recorded and utilized in the maternal
noise reduction scheme.

To evaluate the approach, we utilized five recordings (three
from Model 1 and two from Model 2) of 10 minutes each.
The naive and proposed approaches were implemented in
Matlab (MathWorks, Inc.), which were subsequently used to
generate FHR estimates for each of the recordings (rounds).
Their results were compared against the true FHR (captured
at the fetal arterial line). Each 10 minute recording was
analyzed using a 60 sec window, with a stride of 15 sec,
where each window produces one FHR estimate. Since the true
fetal parameters were only recorded intermittently, namely at
2.5 min, 5 min, and 10 min per recording, only three FHR
estimates were compared for each round. To further highlight
the efficacy of the approach, we also display the full FHR
estimates next to the raw signal’s spectrogram, which displays

Fig. 6. Our Transabdominal Fetal Pulse Oximetry system used to capture
measurements on the pregnant sheep. It consists of a multi-detector, optical
body-sensor network (optode), an embedded optode control system, and
custom software running on a laptop.
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Fig. 7. Raw measurements captured on Channel 4 of Model 1, Round
2, annotated with the physiological signal sources. a) the raw time-series
measurements and b) corresponding power spectral density.

the change in frequency content over time.

D. Results and Discussion

An example of the raw, time-domain signal captured at a
channel and its power-spectral density can be seen in Figure 7.
These raw signals were used to estimate the FHR using the
naive and proposed approaches and were compared with the
true FHR measured via the fetal arterial line. Their results are
shown in Table II. For clarity, we use the naming convention
MIR3 to denote the 3rd Round of Model 1, and M2R1 to
denote the 1st Round of Model 2. As shown, the root mean-
squared error (RMSE) of the naive method (0.581 Hz) is
significantly worse than the proposed approach (0.159 Hz),
suggesting that the contextually-aware approach is more ac-
curate at identifying the fetal signal.

While intermittent recording of fetal parameters reduced
overall fetal blood-loss, it limited the number of true FHR val-
ues to compare the approaches with. To highlight the efficacy
of the approaches ability to track the fetal signal, we display
the FHR estimates alongside the offending maternal respiration
rate (MRR) and heart rates (MHR) from several rounds, next
to a spectrogram of the raw measurements in Figure 8. The
spectrogram displays the changes in frequency content over
time, and provides a visual comparison to compare the FHR
estimates with. For space reasons, the legend for the FHR
estimates are shown in the M2R1 (zoomed) plot. The top row
shows both maternal and fetal signal estimates, whereas the
bottom row is scaled to highlight the changes in fetal signal
estimates.

As shown in Figure 8, the FHR estimates from the proposed
approach and naive method work relatively well in most cases.
However, when the fetal signal begins to approach a maternal
harmonic, as seen in the bottom row of Figure 8, the naive
method fails drastically. In critical applications, such as fetal
health monitoring, this can be dangerous as an important
clinical-decision (such as performing an emergency C-section)
may be made based on the instantaneous faulty data. For
this reason, the worst-case error seen in a recording needs
to be small. The worst-case error seen in each experiment is
shown in Table II. For most of the experiments, the proposed

approach performed better than the naive approach, whereas
in others it performed equally-well. If evaluating the pregnant
sheep from Models 1 and 2 as a whole, rather than by
experiment, then the proposed approach performs drastically
better than naive method if looking at the worst-case error
(Model 1: 1.33 Hz vs 0.18 Hz, Model 2: 1.17 Hz vs. 0.4 Hz,
for naive vs. proposed worst-case error, respectively).

To elaborate on the utility of the Maternal Noise Reduction
and Data Fusion modules, we display a snapshot of the power
spectral densities (PSD) in the M2R1 measurement recording
in Figure 9. The PSD of the raw signals from each of the
channels are shown in Figure 9(a), and shows that the signal
contains a significant amount of maternal noise being gener-
ated by the mother’s respiration and heart contractions, evident
by the strong peaks at the MHR, MRR, and their harmonics.
Without any context of the maternal physiology, identifying
the fetal signal can be difficult. As such, by incorporating
additional information about the mother’s physiology, the
maternal noise is reduced in each channel, of which the result
can be seen in Figure 9(b). As can be seen, a strong peak
in the PSD is present in several channels. The naive method
simply uses the channel with the largest SD distance (i.e. Ch5)
and searches for the maximum power in the PSD between
2 to 5 Hz. In the proposed approach, however, data fusion
is performed to create a spatially-aware signal that utilizes
information from all of the detectors to improve the quality
of the fetal signal before sending it to the Fetal Estimation
module, the result of which can be seen in Figure 9(c). In
this particular instance, both approaches (naive and proposed)
accurately identifies the true FHR.

VII. RELATED WORK

A large multi-center study evaluated the usage of transvagi-
nal fetal pulse oximetry as a method to provide physicians
with fetal oxygenation [26]. In this semi-invasive technique,
an optical probe was inserted up the birth canal after the
amniotic sac ruptures (i.e. water-breaks) to make contact with
the fetus, where conventional reflectance-mode pulse oximetry
was performed. The investigators found that the addition of
fetal SpO2 helped with improving the confidence of fetal
well-being in the face of indeterminate EFM traces. As such,
fully non-invasive fetal oximetry can help provide a more
convenient method of measuring fetal SpO2, through transcu-
taneous means. However, this introduces additional challenges,
including patient variability and extracting the fetal signal.

To address these challenges in transabdominal fetal oxime-
try, several investigations have been performed that utilize
Monte Carlo simulations to numerically characterize light
propagation through the maternal and fetal tissue [19], [27],
[28]. Others have used optical tissue phantoms to do this
characterization or developed systems to mimic the pulsating
tissue [29], [30]. Other investigations have looked at tackling
the problem of fetal signal extraction, by investigating various
signal processing techniques [31]-[33]. In one of the investi-
gations [34], the authors used a comb filter to reduce maternal
noise from simulated measurements, as well as through an



TABLE II
ESTIMATES OF THE HYPOXIC FETAL LAMB’S FETAL HEART RATE FROM NAIVE AND PROPOSED APPROACHES

FHR Estimate (Hz)

Error (Hz)

Worst-Case Error (Hz)

=29

Experiment Time (Min) Naive  Proposed Approach  True FHR (Hz) Naive Proposed Approach  Naive  Proposed Approach
25 2.367 2.367 243 0.063 0.063
Model 1, Round 1 5 3733 2283 2.467 1266 0.184 1266 0.184
10 2.283 2.283 2.267 0.016 0.016
2.5 3.733 23 24 1.333 0.1
Model 1, Round 2 5 o4 2417 2417 0017 0 1.333 0.1
10 2417 2417 2.383 0.034 0.034
25 2217 2217 2.183 0.034 0.034
Model 1, Round 3 5 2217 2217 2233 0016 0.016 0.034 0034
10 245 245 2.55 0.1 0.1
2.5 32 32 3.233 0.033 0.033
Model 2, Round 1 5 3.133 3.15 3.183 0.05 0.033 1167 0.083
10 2.133 3.217 33 1.167 0.083
2.5 3.55 3.55 3.167 0.383 0.383
Model 2, Round 2 5 35 3.483 355 0.05 0.067 0.4 0.4
10 3.4 34 3 0.4 0.4
Root Mean Squared Error 0.581 0.159
(Hz)
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optical phantom, which performed well. Their technique rep-
resents a similar approach to the naive method introduced in
this paper. The authors in another study addresses the issue
of patient variability by optimizing the optode design using a
multi-objective optimization process [11].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that estimates the
fetal signal by incorporating additional physiological, spatial,
and temporal context about the physical system. We evaluated
the approach by capturing in vivo measurements on a pregnant
sheep animal model, and compared the proposed approach
with the true FHR. Currently, we are working on improving
the system, and evaluating the system in an antepartum (prior
to labor) scenario on pregnant human mothers.
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