Triplet Fingerprinting: More Practical and Portable Website
Fingerprinting with N-shot Learning

Payap Sirinam
Navaminda Kasatriyadhiraj Royal Air Force Academy
Bangkok, Thailand
payap_siri@rtaf.mi.th

Mohammad Saidur Rahman
Rochester Institute of Technology
Rochester, New York
saidur.rahman@mail.rit.edu

ABSTRACT

Website Fingerprinting (WF) attacks pose a serious threat to users’
online privacy, including for users of the Tor anonymity system.
By exploiting recent advances in deep learning, WF attacks like
Deep Fingerprinting (DF) have reached up to 98% accuracy. The DF
attack, however, requires large amounts of training data that needs
to be updated regularly, making it less practical for the weaker
attacker model typically assumed in WF. Moreover, research on
WEF attacks has been criticized for not demonstrating attack effec-
tiveness under more realistic and more challenging scenarios. Most
research on WF attacks assumes that the testing and training data
have similar distributions and are collected from the same type of
network at about the same time. In this paper, we examine how
an attacker could leverage N-shot learning—a machine learning
technique requiring just a few training samples to identify a given
class—to reduce the effort of gathering and training with a large
WEF dataset as well as mitigate the adverse effects of dealing with
different network conditions. In particular, we propose a new WF
attack called Triplet Fingerprinting (TF) that uses triplet networks
for N-shot learning. We evaluate this attack in challenging settings
such as where the training and testing data are collected multiple
years apart on different networks, and we find that the TF attack
remains effective in such settings with 85% accuracy or better. We
also show that the TF attack is also effective in the open world
and outperforms traditional transfer learning. On top of that, the
attack requires only five examples to recognize a website, making
it dangerous in a wide variety of scenarios where gathering and
training on a complete dataset would be impractical.

CCS CONCEPTS

« Security and privacy — Privacy-preserving protocols; « Net-
works — Network privacy and anonymity.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’19, November 11-15, 2019, London, United Kingdom

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6747-9/19/11...$15.00
https://doi.org/10.1145/3319535.3354217

Nate Mathews
Rochester Institute of Technology
Rochester, New York
nate.mathews@mail.rit.edu

Matthew Wright
Rochester Institute of Technology

Rochester, New York
matthew.wright@rit.edu

KEYWORDS

Tor; privacy; website fingerprinting; deep learning; n-shot learning;
triplet networks

ACM Reference Format:

Payap Sirinam, Nate Mathews, Mohammad Saidur Rahman, and Matthew
Wright. 2019. Triplet Fingerprinting: More Practical and Portable Website
Fingerprinting with N-shot Learning. In 2019 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’19), November 11-15, 2019,
London, United Kingdom. ACM, New York, NY, USA, 18 pages. https://doi.
org/10.1145/3319535.3354217

1 INTRODUCTION

The Tor anonymity system provides privacy to eight million users
a day [3, 18], but it has been shown to be vulnerable to a traffic
analysis attack called website fingerprinting (WF). WF exploits the
fact that the network traffic of each website has its own unique
pattern, and these patterns can be learned by a machine learning
classifier. The attacker must train the classifier by collecting a large
body of network traces between his client and the Tor network
from his own visits to websites of interest (monitored websites) and
other websites that users might visit (unmonitored websites). With
the trained classifier in hand, the attacker then intercepts traffic in
an encrypted connection between the victim and the first Tor node
and uses the classifier to determine whether or not she visited a
monitored site and if so, which website she visited. This allows a
local and passive network adversary as depicted in Figure 1, such
as the victim’s Internet service provider (ISP), someone sniffing the
wireless connection, or a compromised home router, to link the
user with her websites and break the anonymity provided by Tor.
When compared to the alternative end-to-end traffic confirmation
attack!, a weak WF attacker needs to be at only the client end of
the communication steam.

Previous work in WF attacks [5, 6, 10, 20, 21, 24, 33] demonstrated
effective performance in both the closed-world setting, in which
the user is assumed to only visit sites in the monitored set, and
the more realistic open-world setting, in which the user might visit
any website, whether monitored or not. The state-of-the-art WF
attack, Deep Fingerprinting (DF), uses a deep learning classifier to
achieve over 98% accuracy in the closed world and over 0.9 for both
! An end-to-end confirmation attack allows an attacker to associate a Tor client with

their destination by capturing on both ends of the circuit [19, 28, 38], and—unlike the
WF attack—is outside Tor’s protection guarantees.

User

Possible Attackers N

AN TN
NN

Figure 1: Possible local and passive network adversary that
can perform WF attacks.

precision and recall in the open world [27]. Moreover, the DF attack
can effectively undermine WTF-PAD, the WF defense that is the
main candidate to be deployed in Tor? with over 90% accuracy in
the closed world and over 0.9 precision in the open world.

While effective, DF requires large amounts of training data that
must regularly be updated, and this may not be practical for the
weaker attacker model typically assumed in WF. Moreover, there
has been criticism that WF attacks may not be effective in realistic
conditions [13, 23, 24, 34]. This is because most research in WF
attacks makes strong assumptions, such as that the testing and
training data have similar distributions and are collected with the
same type of network conditions at about the same time. These
assumptions may provide unrealistic advantages to attackers or
overlook limitations that can substantially reduce the performance
of WF in real attack scenarios. In this work, we thus revisit these
assumptions and explore approaches to address them. In particular,
the key contributions of our work are:

o We identify the following requirements for effective and real-
istic WF attacks: generalizability to variable testing conditions,
low bootstrap time, flexibility in applying to any website, trans-
ferability between different scenarios, and high performance.

e We propose a new attack, Triplet Fingerprinting (TF), to satisfy
our realistic attack requirements. Our attack uses triplet net-
works for N-shot learning (NSL) to achieve up to 95% accuracy
using only 20 examples per website.

o Furthermore, we investigate a challenging scenario in which
the model is pre-trained with a three-year-old dataset, and we
find that TF achieves near 85% accuracy when using only five
examples per class.

We are the first to examine the usage of transfer learning to
improve the bootstrapping of models, but find it’s performance
lacking when compared to triplet networks.

Finally, we show that TF remains effective in a small open-
world setting, achieving approximately 0.9 precision and 0.8
recall when tuned for precision. Performance however de-
grades significantly to 0.3 precision and 0.7 recall when the
world-size is significantly increased.

Overall, we find that the new TF attack provides compelling
properties that can help overcome or mitigate the adverse effects

2 As of Tor 0.4.0.5, a padding mechanism modeled after WTF-PAD has been used as an
implementation of proposal 254 [4].

of more realistic and more challenging scenarios that an attacker
may face. As the attack enables an adversary with low computing
resources and limited time to perform WE, it further shows the
seriousness of WF attacks in undermining the anonymity of Tor.
Finally, the findings set up a new direction of research to further
study how to apply NSL for more realistic WF attacks and how to
effectively counter TF and other NSL-based attacks.

2 BACKGROUND AND RELATED WORK
2.1 WF Attacks

Many researchers have examined the WF problem since Herrmann
et al. first evaluated the attack against Tor [12] in 2009. Until re-
cently, WF attacks used traditional machine learning (ML) classifiers
in which the attacker needs to perform feature engineering to hand-
craft a set of features to represent a site. This type of attack has
been shown to be effective with over 90% accuracy on 90 training
instances, and includes works such as k-NN [33], CUMUL [21] and
k-FP [10].

The emergence of deep learning (DL) in the last few years has
motivated researchers to apply DL to improve their WF attacks. In
2016, Abe and Goto used a Stacked Denoising Autoencoder (SDAE)
to achieve 88% accuracy in the closed world and 86% TPR and
2% FPR in the open world [5]. Later, Rimmer et al. demonstrated
that DL can be used to automate feature engineering process. In
their evaluations, they compared the performance of several deep-
learning models such as Convolutional Neural Network (CNN),
Long-Short Term Memory (LSTM), and SDAE with CUMUL attack
using a large dataset of 900 sites with 2,500 instances each. Their
results show that SDAE provides the best result with 96.3% accuracy
in the closed world and 71.3% TPR and 3.4% FPR in the open world.

Sirinam et al. proposed the Deep Fingerprinting (DF) attack [27],
a CNN-based WF attack that incorporates sophisticated properties
of recent CNNs used in computer vision to design the architecture.
The DF attack can achieve state-of-the-art accuracy at 98.3% in
the closed world. Moreover, the DF attack is the first to effectively
undermine the WTF-PAD defense [14], which was considered a
primary candidate for deployment in Tor. Sirinam et al. showed that
the DF attack can achieve 90.7% accuracy against the WTF-PAD
defense.

Recently, Bhat et al. [6] and Oh et al. [20] have further studied
the use of CNNs and unsupervised DNNs in their technical reports.
While both experiments show potential new research directions,
neither demonstrated accuracy as high as those reported with the
DF attack. Additionally, neither attack was shown to be effective
against WTF-PAD. Thus, our work mainly focuses on the DF attack
due to its state-of-the-art WF attack performance and ability to
defeat the WTF-PAD defense.

While these WF attacks achieve high performance in lab condi-
tions, several research groups have criticized such environments
as unrealistic [13, 23, 24, 34]. WF research attempts to model the
real-world environment by performing the experiments under a
set of assumptions. Over time, the community has revised and im-
proved these assumptions to be more realistic, but some of the key
assumptions have not been considered in the design of attacks. In
this work, we examine how an adversary can engineer attacks that
are more applicable in a real-world environment.

2.2 WF Attack Assumptions

In this section, we summarize and categorize the current assump-
tions that have been made in the WF literature. This allows us to
identify which attacker constraints have been appropriately evalu-
ated and which have not.

2.2.1 Closed- vs Open-world Scenario. WF attacks are evaluated
under two possible scenarios: closed world and open world. The
closed world assumes that there are only k websites that the client
can visit, where k is far smaller than the number of websites avail-
able in the real world. Despite being criticized as unrealistic [13],
the closed-world evaluation is still used as a metric to evaluate the
quality of the attacks and feature sets used in attacks. Subsequent
work also considers the open-world scenario to measure the at-
tack efficacy in a realistic setting. Here, we examine two additional
constraints when designing an open-world experiment:

o Size of the open world. Researchers have increased the number
of unmonitored websites in open-world datasets to evaluate
the ability of the WF classifier to distinguish between mon-
itored and unmonitored sites [10, 21, 24, 27, 33]. The size of
the unmonitored set has reached up to 400,000 websites in the
dataset of Rimmer et al. [24]. While even larger sets would be
more representative, given that the victim could be visiting any
page on any site in the world, there are diminishing returns
above a certain size. Further, it is likely that sites have widely
varying popularity for Tor users, so capturing the extended
tail of the distribution may not be meaningful in practice. In
this paper, we do not attempt to address the question of the
most appropriate size of the unmonitored set.

o Open-world evaluation model. There are two models used to
evaluate the performance of WF classifiers in open world: the
Standard model and the AWF model [24]. Under the Standard
model, samples from the unmonitored set are included in the
training data as an additional label. Researchers assume that
doing so will help the classifier to better distinguish between
the monitored and unmonitored websites. This model was used
by the majority of prior works [10, 21, 27, 33]. On the other
hand, the AWF model does not include unmonitored websites
in the training data set. The classifier instead uses a confidence
threshold based on the cross-entropy loss function to identify
unmonitored sites. Rimmer et al. [24] argue that even if the
attacker may gain benefit from including the unmonitored
websites, the size of the unmonitored set is still not represen-
tative of the actual size of the world of websites. The choice
of which model is best is an interesting point to consider, but
we stick with the more popular Standard model for this paper
and leave the question for future work.

2.2.2 Users’ Browsing Behavior. Most prior work [10, 21, 24, 27, 33]
assumes that Tor clients follow a rather specific behavior: they use
Tor to browse websites sequentially, and they use only a single tab
at a time so that website visits do not overlap. This is, of course, not
representative of real world behavior of a Tor client. As Tor con-
nections are slow, it is likely that clients will open several browser
tabs and visit sites concurrently [1, 31, 35]. The effects of multi-tab

Table 1: Impact on attack accuracy when training and testing
with different TBB versions. Data from Juarez at al. [13].

TBB Version | 2.4.7 (Test) 3.5(Test) 3.5.2.1(Test)
2.4.7 (Train) 62.70 £2.80 29.93 £2.54 12.30 +1.47

3.5 (Train) 16.28 +4.51 76.38 £4.97 72.43 +3.22
3.5.2.1 (Train) | 6.51 £1.15 66.75 +3.68 79.58 +2.45

browsing have been explored in prior work [13, 34], and we do not
further examine them in this paper.

2.2.3 Traffic Parsing and Background Traffic. In WF attacks, we
assume that the attacker can collect all the traffic generated by a
site and can effectively distinguish this traffic from other traffic
connections [13]. This assumption is guaranteed to be true only
when the attacker performs the attack at the guard node, which
allows him to extract the specific traffic by using the Tor circuit ID.
In the case that the attacker performs the attack as an eavesdropper
between the client and the guard node, all Tor traffic is multiplexed
in the TLS connection. Recent work has developed techniques to
effectively discriminate the Tor traffic from multiplexed TLS traf-
fic and split it into corresponding encrypted connections to each
website [34]. Thus, this assumption has been already handled and
is not the focus of our study.

3 ATTACKER GOALS

In this section, we identify elements of WF attacks that may be
improved to better suit realistic adversaries. Prior work on attack
design has largely discounted these requirements.

3.1 Generalizability

Previous research assumes that a WF attacker can train his classifier
under the same conditions as the victim, effectively making it a
targeted attack. Given this assumption, the attacker can replicate
the victim’s network conditions, Tor-browser-bundle (TBB) version,
and settings, and these can impact the attack’s performance [13].
Alternatively, the attacker may be interested to attack more than
one victim, i.e. to perform a untargeted attack. In this case, the at-
tacker should be prepared for users with different types of network
connections, TBB versions, and settings. This constraint makes WF
more difficult as the adversary’s classifier must remain effective
even when using such a diverse data set. Juarez et al. show [13]
that if the attacker had trained the WF classifier based on one TBB
version and tested with another, the accuracy of the attack drops
drastically as shown in Table 1.

Recent WF attack research [10, 21, 24, 27, 33] assumes that the
attacker performs a targeted attack by crawling a single data set
using similar machines under the same network conditions. This
data set is then used in both the training and testing phases, which
gives the attacker an unrealistic advantage for any untargeted at-
tack, as the distribution of traces would be more heterogeneous in
the real world. In this work, we investigate how a WF attack can
be crafted to avoid this assumption.

Table 2: Bootstrap time to create a WF classifier (AWF [24]).
The crawling rate is approx. 2,000 instances/day/computer
and 500,000 instances are required for training.

No.of Crawling Training Time Bootstrap

PCs Time (w/GPU) Time

1 250 days <1 hour 250 days
4 63 days <1 hour 63 days
8 32 days <1 hour 32 days
12 21 days <1 hour 21 days
24 11 days <1 hour 11 days

3.2 Bootstrap Time

To perform WF attacks, the attacker needs to train the classifier
to predict the unknown traffic captured from the client. This does
not, however, capture the bootstrap time, the total amount of time
required for the attacker to produce a ready-to-use classifier. This
time includes both the time required to crawl a training data set and
to train the classifier. It is important to note that the traffic traces
used for training the classifier tends to be dynamic and changes over
time due to many factors, such as changes in the website, changes
in network conditions, and changes in Tor. Thus, the attacker needs
to collect new network traffic frequently to avoid this mismatch
between the testing and training data.

To the best of our knowledge, there is no WF research that
comprehensively considers the bootstrap time. Prior work makes
the assumption that the dataset used to test the classifier is from the
same distribution that is used for training. However, in a realistic
scenario, the gap time between the training and testing phases
may be large enough to cause potential data mismatch issues which
would negatively affect performance. This concern has been studied
in prior work. Juarez et al. found that attack accuracy for k-NN
dropped from 80% to 30% within 10 days [13], while Rimmer et
al. found a drop in accuracy from 95% to 81% after 28 days using
an SDAE classifier [24]. Therefore, we can infer that the trained
classifier will only remain effective for a few weeks at best after
the classifier is initially trained.

The need to frequently re-train the classifier raises the question
in regards to the computing resources and time required for the
attacker to collect the new data. The longer the time used to collect
the new data, the higher the chance of the dataset’s staleness by
the time the attack is deployed. Table 2 shows the time required for
crawling the data (with typical PCs on a fast network connection)
used for training the classifier for AWF model [24]. Even when the
attacker uses two dozen computers for crawling, nearly two weeks
are needed to collect the large data set.

Unique to the literature so far, Wang and Goldberg examined the
issues of bootstrap time and data freshness for the k-NN attack [34].
They find that k-NN trained on as few as 31 instances per site is
nearly as effective as using 85 instances per site, with 0.77 TPR and
0.003 FPR. For five instances per site, however, they report a TPR of
just 0.253. Additionally, they still need to collect thousands of traces
to get 31 instances per site with a sufficiently large unmonitored set.
Our attack uses as little as five traces in total given a pre-trained
model. To address data freshness, they propose a technique to
update a trained k-NN classifier. This technique needs to be run
continuously, however, to maintain the freshness of data. If the

attacker obtains an older dataset, it will be too stale to help in their
approach. Our model, on the other hand, can use a years-old dataset
to build the pre-trained model.

3.3 Flexibility & Transferability

A WEF attack is a traditional classification problem in which the
attacker uses a fixed number of labels for training the classifier.
During the training process, the classifier is trained by learning to
locally map the input data to the given website. These following
steps briefly describe the training and prediction process:
o The attacker first determines the set of k monitored sites and
labels them as s1, s2, ... Sg.-

o He then gathers T training instances for each monitored site
and another U training instances for the unmonitored set.

o The attacker trains his classifier with the k X T + U collected
training traces with their corresponding labels.

e He eavesdrops on the victim to capture an unlabeled trace.

o In the prediction phase, the attacker uses the trained classifier
to predict the label of the victim’s trace.

Note that the possible predicted class is then limited to one of the
k websites that were previously used for training or to the unmoni-
tored set. Thus, the attacker is subject to an additional constraint.
Whenever the attacker wishes to add or remove a website from his
monitored set, he must re-train his classifier. This is yet another
issue which increases the time and resource requirements necessary
to perform the attack. In this work, we study how techniques such
as N-shot learning and transfer learning can be used to improve
WF attacks. It is important to note that resolving the flexibility and
transferability issues can directly ameliorate the bootstrap time
and generalizability issues since the time required to collect data is
reduced and more varied data set may be collected.

3.4 Goals for Improvement

We have described three areas of improvements of WF attacks,
including generalizability, bootstrap time, and flexibility and trans-
ferability issues. To improve the performance of WF attacks, we
have established the following key goals to address each issue.

Generalizability. The WF classifier should be robust to the data
mismatch issues that occur as a result of 1) staleness of training
data and 2) heterogeneous distributions of training and testing data.

Bootstrap time. The WF classifier that is trained on one dataset
should remain effective against traces collected later. If it needs to
be re-trained, the amount of training data required should be small
to reduce the effort needed for data collection.

Flexibility & Transferability. The WF classifier should enable
the attacker to flexibly add new sites to the monitored set or use
a completely new monitored set with only modest effort in data
collection and training,.

Attack Performance. After achieving the aforementioned goals, a
robust classifier must of course still achieve a high level of accuracy.

A classifier that is able to achieve these goals is much more
dangerous to the privacy of Tor users than one that requires the
attacker to have significant computing resources for frequently

gathering fresh training data specifically targeting each victim’s
circumstances. In the next section, we describe a technique that
leverages N-shot learning to meet these requirements.

4 N-SHOT LEARNING

DL has shown to be effective in many domains of applications
such as image recognition, speech recognition, and WF attacks [7,
11, 15, 17, 26, 27, 29]. However, traditional supervised DL algo-
rithms normally require 1) a large number of labeled examples used
for training the classifier, 2) distributions of training and testing
datasets that are matched or at least similar. Moreover, the models
can only make predictions for the set of classes on which it was
trained.

This style of learning contrasts with what we normally think of
as true intelligence. For example, a person can recognize the face
of someone by only seeing them a few times, and this ability scales
to thousands of different faces. The DL models currently in use for
WF are unable to do this. This is a key challenge in DL: How can
we build a model that can rapidly learn from very little data? This
challenge has motivated the development of the N-shot Learning
(NSL) technique [8, 32].

4.1 NSL Implementation

NSL is a recently developed ML procedure that allows a model to
accurately classify samples based on only a few training examples.
More precisely, NSL requires only a small number N of examples
for every given class. So, when N=5 (called 5-Shot Learning), the
classifier learns from a training dataset that contains only five
samples for every class. NSL has been broadly implemented in
face recognition [22, 25], where it is a compelling approach due to
constraints inherent in the task:

Limited training data. The classifier used to perform the face recog-
nition task cannot expect a rich dataset of training data. For example,
if we want to design a face recognition system for use at a company,
the system cannot require hundreds of photos from each employee
as that would be impractical to implement.

Ability to update class’ labels. In most uses of these classifiers, it is
expected that class labels will need to be added or removed from
the system frequently. For example, if there are new employees, the
classifier should be still effectively running without downtime for
re-training the classifier.

NSL is able to address both of these constraints by modifying
the learning process. We summarize the key differences between
the NSL and traditional supervised learning as the following:

Learning goal. Traditional supervised learning mainly focuses on
training the classifier to learn and locally map the input to its
corresponding class. In contast, NSL models are trained to learn how
to distinguish between different objects regardless of the previously
trained classes.

Prediction output. Traditional supervised learning aims to simply
predict a certain class within the set of training examples. By con-
trast, the model in NSL is treated as a feature extractor to generate
the embedded vectors of inputs from the learned model. These
embedded vectors are used to measure similarity and the expected

prediction output is to decide whether or not these inputs are in
the same class.

Transferability and flexibility. The transferability of the model
enables the practitioner to use models pre-trained by others and
make small changes to it. It is important to note that a rich dataset
is still necessary to initially train the NSL model. However, the NSL
model is used as a feature extractor without being locally bounded
to a set of classes. Thus, it can more readily generalize to new
classes. Moreover, NSL allows the practitioner to flexibly adopt a
pre-trained model from others who have more computing resources
and larger training datasets.

Number of learning examples. After the underlying model used by
NSL is trained, only a small number of examples are required for
each class to generate an embedded vector. The class embedded
vectors are used to train the final classifier to classify the given
inputs into their corresponding classes.

An early implementation of NSF used k-Nearest Neighbours
(k-NN) to directly measure the similarity between two different
samples, but this showed poor results due to being overly sensitive
to minor variations in raw data. To mitigate this problem, the model
needs to be capable of effectively extracting representative features
that are robust to variation before distance between samples is
measured. Koch et al. demonstrated that using deep learning for
feature extraction is an effective solution to this problem [16]. There
are two deep embedded networks that have seen use in NSL: Siamese
Networks [30] and Triplet Networks [25]. Siamese networks are
conceptually based on similarity learning in which we measure
how similar two comparable objects are. Triplet networks have
been shown to be more effective than Siamese networks [22, 25],
and we confirmed this for the WF problem in a preliminary study.
In the next section, we provide further details as to how an NSL
model can be constructed by using triplet networks.

5 TRIPLET NETWORKS

Triplet networks [22, 25] contain parallel and identical sub-networks
sharing the same weights and hyperparamenters as shown in Fig-
ure 2. Three different inputs called triplets are used to train the
networks. The triplets are randomly sampled from the training data
to create an array containing the vectors of three different input
examples: Anchor (A), Positive (P), and Negative (N). Each input is
individually fed to their corresponding sub-network during the
training phase. To explain the differences between A, P, and N,
let us craft a toy example. Let us say we have a dataset that con-
tains traffic examples from three different websites—wikipedia.org,
gmail.com and amazon.com—and each website has three examples.
Then sampling and generating the triplets used to train the network
proceeds as:

e Anchor Input (A): The anchor input is the example used as
the main reference—e.g. the first example from wikipedia.org.

e Positive Input (P): The positive input is chosen from the
remaining examples of the anchor’s class—e.g. the second
example from wikipedia.org.

e Negative Input (N): The negative input is sampled from any
class that is not the anchor—e.g. any of network traffic’s ex-
amples from gmail.com, or amazon.com.

Training Phase

£ A m | CNN | EEAEYR.)
z $ Shared Weights 8
i P mp | CNN g
] =
<

N =)

! 'Adopt only one subnetwork

3
5
z g
HME

Figure 2: The training phase of triplet networks and their
implementation for a classification task.

Classification

-

Network Traffic

(1)

x 2
1
1
1
3
Conv. Layer

Feature or
Embedded
Vector
3
K-NN

T Feature Extractor

Negative (N)
Negative (N)

Learning

Positive (P)
Positive (P)

Anchor (A) Anchor (A)

Figure 3: The learning process during training the model:
The triplet loss minimizes the distance of the network traf-
fic examples that are from the same website and maximize
network traffic examples from the different websites.

The formation of triplets is used to allow the triplet networks to
learn how to differentiate between different objects. In the training
phase as shown in Figure 2, we feed the triplets to the sub-networks;
anchor input A for the first sub-network, positive input P for the sec-
ond sub-network, and negative input N for the third sub-network.
Then the networks measure the similarity based on distance metric
D of anchor A with both P—D(A,P)—and N—D(A,N)—using their
embedded vectors.

To achieve the model’s learning goal, the triplet loss has the
distance D(A,P) trained to be less than or equal to the distance
D(A,N). In other words, we expect the network traffic traces from
the same website to be similar to each other (small distance between
A and P) and network traffic from different websites to be dissimilar
(large distance between A and N). Figure 3 illustrates the expected
learning process of the model, showing that during training process,
the model is learning to move A and P closer to each other and
expanding A and N farther apart in the embedding space.

Once the model training process is accomplished, we only use
one of the sub-networks as the feature extractor to perform the
classification task as shown in Figure 2.

6 TRIPLET NETWORKS IN WF

We propose the Triplet Fingerprinting (TF) attack to effectively per-
form WF attacks under more realistic and more challenging scenar-
ios by using the NSL technique with triplet networks. Our imple-
mentation of the TF attack uses the Python DL libraries Keras [2]
as the front-end and Tensorflow as the back-end.

Table 3: Hyperparameters selection of the triplet networks
used for the TF attack

Parameters Search Space Selected Value
Based Model GoogleNet, RestNet, DF
Xception, DF
Similarity Metrics Euclidean, Cosine Cosine
Mining Strategy Random, Semi-Hard-Negative
Hard-Negative,
Semi-Hard-Negative
Margin [0.0..0.5] 0.1
Optimizer SGD, Adam, SGD
Adamax, RMProp
Batch Size [32... 256] 64, 128
Embedded Vector’s Size [32 ... 256] 64

6.1 Hyperparameter Tuning

To develop the TF attack to effectively perform WF attack, we have
followed the implementation guidelines and techniques from the
previous work on applying NSL [22, 25, 30]. Moreover, we perform
the hyperparameter tuning process on the DL model to evaluate
the appropriate design and hyperparameters that can maximize the
performance of the TF attack. We follow the extensive candidates
search method [27] to evaluate and select the final value for each
parameter.

Base Model. The base model refers to the CNN model that is
used as the sub-network in the triplet networks as shown in the
Figure 2. We test with previously-proposed DL models used in
image recognition, including GoogleNet [29], RestNet [11] and
Xception [7]. Moreover, we also include the DF [27] model, the
state-of-the-art WF attack using DL. We find that the DF model
performs better than the other candidates with significantly less
training time. Thus, we choose the DF model as the sub-network
in the triplet networks.

Distance Metrics. We evaluate two traditional metrics: Euclidean
distance and Cosine distance. We find that Cosine distance provides
better results. The Cosine distance has some meaningful semantics
for ranking similarity based on mutual object frequency, whereas
the Euclidean distance does not. Ranking similarity based on mutual
objects is similar to finding the common bursts of traffic patterns,
which is one of the meaningful features in WF attacks.

Mining Strategy. To generate the triplets as the input fed into
the networks, we evaluate three different mining strategies used
to select the examples for forming triplets: Random, Hard-Negative
and Semi-Hard-Negative. The results demonstrate that Semi-Hard-
Negative provides the best results, which is consistent with prior
work [9, 25].

Table 3 shows a summary of the hyperparameter tuning process,
including the set of main parameters that we evaluate, their search-
ing range, and the final selected value for each parameter. We also
provide additional details of the hyperparameter tuning process for
all hyperparameters along with the intuitive explanation and the
preliminary results used for each selection in the Appendix D.

Collected Examples

Websites 1%t Example 2" Example NP Example

R L
D ol S

Collected Examples

P
T — -
Features Extractor
:E:\ from the Tripet Networks | —

Embedded Vectors

aa Embedded space
*a°

Y) N '
i 3 Embedded vector | N k-NN Classifier

Figure 4: NSL N-Training

Trained k-NN Classifier

6.2 Model Training and Testing

We now explain the step-by-step implementation of the TF attack,
including how to train the triplet networks (pre-training phase) to
generate the pre-trained model and how to use the model to perform
classification task in WF attack (attack phase). This explanation
will provide a better understanding of the following experimental
evaluations in Section 7.

6.2.1 Pre-Training Phase. The attacker creates the triplet networks
and uses the DF model as the sub-network along with fine-tuned
hyperparameters. It is important to note that we replace the softmax
layer in the DF model with the new FC layer used as the embedded
vector. In every epoch of training, the system feeds the batch of
triplet inputs generated from semi-hard-negative mining into the
model, as shown in Figure 2. The outcome of the pre-training phase
is the feature extractor that can be used later to help perform the
classification task.

6.2.2 Attack Phase. The attacker performs two steps during the
attack phase: N-training and testing. We use the term N-training
for the process of training his WF classifier from the N embedded
vectors generated from the triplet network’s feature extractor. This
helps prevent confusion with the pre-training phase, which refers
to the process of training the triplet networks to generate the feature
extractor. N-training and testing proceeds as follows:

N-training. The process of how the attacker new-trains the WF
classifier is shown in Figure 4 and proceeds as follows:

o Step 1: The attacker needs to collect N examples from each of
the monitored websites. For example, if the attacker performs
3-Shot learning, the attacker will need to collect three network
traces for each site.

o Step 2: The collected traffic examples are fed to the feature
extractor (triplet networks’ pre-trained model) to generate
corresponding embedded vectors for each site.

e Step 3: The embedded vectors are used to train a k-NN classi-
fier. Note that the attacker can use any type of classifier such
SVM, MLP, CNN, etc. A preliminary study indicated that k-NN
significantly outperforms other classifiers for this purpose.

A~
@ [— e Unknown Traffic

Unknown Traffic Features Extractor R bedaedvenar
Bty = | from the T
limllim] rom the Tripet =

Predicted

a

o Embedded Vector [:: N)

Trained k-NN Classifier

Figure 5: NSL classification (Testing)

Testing. The process of how the attacker tests the performance of
his classifier is depicted in Figure 5 and proceeds as follows:

e Step 1: The attacker captures the unknown network traffic
from the user.

o Step 2: The unknown traffic is fed into the same feature ex-
tractor used during the N-training process to generate the
embedded vectors for the unknown traffic.

e Step 3: The attacker uses his trained k-NN classifier to predict
a label for the embedded vector of the unknown traffic sample.

7 EXPERIMENTAL EVALUATIONS

In this section, we design a series of experimental evaluations to in-
vestigate the performance of the TF attack under different scenarios
with respect to the improvements sought, including generalizability,
bootstrap time, flexibility and transferability.

7.1 Dataset

We perform our experiments using datasets provided by other re-
searchers and used in the previous literature. We define the datasets
as follows:

Wang dataset [33]. The dataset contains both monitored and
unmonitored websites. The monitored websites were selected from
a list of websites blocked in China, the UK, and Saudi Arabia. On
the other hand, the unmonitored websites were chosen from the
Alexa Top sites 3. The dataset was collected using TBB version 3.X.
in 2013. We define each set of data as following:

e Wang100: The set of 100 monitored websites, where each

website has 90 examples.

e Wang9000: The set of 9,000 unmonitored websites, where
each website has 1 example.

AWF dataset [24] This dataset includes both monitored and un-
monitored websites, but all are from the Alexa Top sites. The dataset
was collected using TBB version 6.X. in 2016. We categorize the
AWEF dataset into three different sets:
e AWF100: The set of the first 100 monitored websites, where
each website has 2,500 examples.

3https://www.alexa.com/topsites

Table 4: The performance of prior attacks for NSL (Accuracy)

Table 5: The performance of WF attacks: Similar but mutu-

Type of Number of N Example(s) ally exclusive datasets (Accuracy)
Experiment 1 5 10 15 20 Type of Embedded Number of N Example(s)
P
CUMUL [21] 42.1+55 72.2+1.7 79.7 1.4 83.3+2.0 85.9+0.6 Experiment Yjﬁf 1 909507 9311002 9331503 - 92002
L. . - 9 +0. 1 +0. 3+0. 9+0.
k-FP[10] 363+ 1.6 79.3+ 1.0 83.9+ 1.0 85.9+0.6 87.5+ 0.8 Disjointed Websites " i 79.421.6 o)) " o s o

e AWF775: The set of the other 775 monitored websites, where
each website has 2,500 examples .

o AWF9000: The set of 9,000 unmonitored websites, where each
website has 1 example.

DF dataset [27]. The dataset consists of both monitored and un-
monitored websites crawled from the Alexa Top sites. As with the
AWF dataset, this dataset was collected using TBB version 6.X. in
2016. We categorize the DF dataset into two sets:

o DF95: The set of 95 monitored websites, where each website
has 1,000 examples.

o DF9000: The set of 9,000 unmonitored websites, where each
website has 1 example.

We choose these three datasets to support the different purposes
of our experiments. The intuitive explanation behind the selection
of each dataset will be later described in each experimental setup.

Data Representation: We follow the data representation used by
recent work in WF using DL [24, 27, 33]. The data used for training
and testing the model consists of network traffic examples from
various sources of dataset as mentioned above. All examples are
converted to fixed-length sequences with the size of 5000 length
feature vector as the input to the model. Thus, the dimension of
the input is 1D array of [n x 5000]; where n is the total number of
network’s sequences fed to the model. In each sequence, we ignored
packet size and timestamps and only take the traffic direction of
each packet in which +1 and -1 represent outgoing and incoming
packets, and 0 is used for padding

7.2 Statistical soundness

We run the experimental testing 10 times and find the mean and
standard deviation to report the final performance of the attack.
Furthermore, the network traffic examples used for N-training the
classifier and for testing the classifier are randomly shuffled and
sampled at every round of the evaluation to ensure that the results
are not evaluated from only specific data points.

7.3 Prior work baseline

To begin, we have reevaluated prior attacks CUMUL and k-FP under
the training sample restrictions of NSL.# For these experiments, we
split the AWF100 dataset into testing and training portions. The
number of samples used in the training portion is varied throughout
the experiments. The results for N=[1, 5, 10, 15, 20] training samples
per class can be seen in Table 4.

#We were unable to accurately reproduce the results of [36] and consequently we do
not include the wfin attack in our baseline experiments.

7.4 Similar but mutually exclusive datasets

The first experiment evaluates the attack scenario in which the
attacker pre-trains the feature extractor on one dataset and tests
on a different dataset with different classes (Disjointed websites).
More precisely, the websites’ URLs used during the pre-training
phase and the attack phase are mutually exclusive. In this scenario,
the training and testing datasets have a similar distribution in that
they are both collected with from the same period of time (2016)
using the same version of TBB (6.X).

Experimental setting: We train the triplet networks by using the
AWF775 dataset and test on AWF100. During the training phase,
we randomly sampled 25 examples for each website in the AWF775
dataset using the semi-hard-negative mining strategy to formulate
232,500 triplets to train the triplet networks.

During the testing phase, we use 90 randomly-sampled examples
for each website from the AWF100 dataset. We separate each site’s
examples into two different chunks, with 20 examples for the first
chunk and 70 examples for the second chunks. The examples in the
first chunk are reserved to evaluate the classification performance
onthe N = 1,5, 10, 15, 20 examples that are collected by the attacker
to N-train the k-NN classifier. The other 70 examples are used as
the testing data to evaluate the performance of the attack from
the trained k-NN classifier. Note that, we will apply these basic
experimental settings for the rest of the following experiments.

N-ALL vs N-MEV: The original implementation of N-shot learn-
ing classification is to use N embedded examples to N-train the
k-NN classifiers as mentioned in Section 6.2. We call this represen-
tation N-ALL. We propose a new approach to improve the perfor-
mance of the k-NN classifier by modifying the input representation.
Instead of using N examples for each website, we calculate the mean
of all N examples to generate a Mean Embedded Vector (MEV) used
to train the classifier.

We evaluate the classification performance that results from
using 1) N-ALL representation in which all of N embedded examples
for each website are fed to train the model, and 2) our proposed
N-MEV representation, in which the embedded vector is generated
from the mean of N embedded examples for each websites.

Results: Table 5 shows the performance of WF attacks on mutu-
ally exclusive training and testing datasets with different values
of N. Overall, the N-MEV vectors consistently provide better per-
formance than N-ALL in term of the accuracy of the attack. We
believe that the average of vectors in N-MEV helps reduce the noise
between embedded vectors of the same class. Therefore, we will
mainly use N-MEV representation to evaluate the next following
experimental evaluations.

The results also show that the accuracy of the attack could reach
to almost 80% of accuracy with only one example (1-shot learning).

Table 6: The impact of including different portions of the
websites during the training phase (Accuracy)

Type of Number of N Example(s)
Experiment 1 5 10 15 20
Disjointed Websites 79.4 +1.6 92.2+0.6 93.9+0.2 94.4+0.3 94.5+0.2
25% Inclusion 81.2+1.3 92.9+0.6 94.3+0.7 94.7+0.5 94.7+0.3
50% Inclusion 79.6 £1.9 92.7+0.8 94.1+0.9 94.7+0.7 95.0+0.5
75% Inclusion 79.7+1.7 93.0+£1.4 942+09 945+1.1 95.0+0.8
100% Inclusion 80.6+2.3 93.4+0.9 94.6+0.7 94.7+0.8 95.0+0.9

5-shot learning impressively attains 92% of accuracy. We observe
that the accuracy of the attacks starts leveling off after n >= 15 at
94% accuracy.

TF Goals: According to the results in the experiment, we sum-
marize how the TF attack can improve the performance of WF
attacks:

o Flexibility & transferability: The results show that even if
the classifier is trained on one dataset and tested on different
dataset in term of their websites’ labels, the performance still
remains effective. Therefore, the attacker can directly perform
WF attacks without worrying about whether or not the websites
that he would like to monitor were included in the classifier
during the training process.

e Bootstrap time: The attacker only needs to collect five exam-
ples per website, taking ~5 minutes per website, to N-train the
classifier. This supports cooperation among attackers in which
one attacker with more time to collect data can periodically train
the feature extractor, while other attackers only need to collect
data for their sites of interest close to the time of use.

e Performance of attack The results demonstrate that the TF
attack can still remain effective with over 90% accuracy.

Possible Advantages of the Attacker: The attacker may believe
that including some samples of the same class in both the pre-
training and N-training phases will improve performance (ie. the
pre-training and N-training datasets are not disjoint). This would
allow the triplet networks to train and test with the partial set of
websites that the model has seen before. As an example, an attacker
may believe that www.foxnews.com is commonly selected as a
monitored site by other attackers who use his model, so he decides
to include examples of www.foxnews.com during the training phase.
It is then interesting to evaluate whether or not this inclusion has
improved the model’s ability to identify sites of label www.foxnews.
com. To test this, we perform experimental evaluations to compare
the disjointed websites case with different percentages of inclusion.
The inclusion rates are ranged from from 25% to 100%. The results
of these experiments are shown in Table 6.

We find that allowing inclusion between our training sets does
not provide noticeable improvement in attack performance. A rea-
son for this may be related to the fact that DL models that use
softmax classification learn to locally map the given input to their
corresponding class. This leads to overfitting and a more rigid
model. By contrast, NSL with triplet networks has the model learn
to differentiate the given pair of inputs (similar or dissimilar) with-
out locally mapping to the particular website’s label to be assigned.
This allows the model to more effectively learn on small numbers

of samples. This is the compelling property of NSL which allows us
to achieve the flexibility and transferability goals of our classifier.

Furthermore, it is interesting to compare the performance of the
TF attack with previously-proposed WF attacks using hand-crafted
features as these attacks have been shown to be effective with less
training data than DL attacks. For this purpose, the TF attack trained
with 100% inclusion is most appropriate for comparison against
the baseline attacks. We find that the TF attack is clearly superior
to the baselines when small sample counts are used—e.g. CUMUL
and k-FP achieve 42.1% and 36.3% accuracy respectively where N=1
(1-shot learning) whereas TF attack reaches 80.6% accuracy. We
observe the accuracy improves significantly when the number of
N examples increases for both CUMUL and k-FP attacks, however
the performance of the TF attack still significantly outperforms
the baselines in all settings. This confirms that the TF attack is
distinctive in its ability to achieve high WF performance in low
traffic example settings.

7.5 WF attacks with different data distributions

Next, we evaluate the performance of the WF attack under the
scenario in which the training and testing data are collected from
different distributions.

Experimental setting: We use the same triplet model from the
first experiment trained with the AWF775 dataset. However, we
instead use the Wang100 dataset as the testing data to newly train
the k-NN classifier during the testing phase. The experimental set-
ting is designed to evaluate the performance of the attack in which
the model that is trained on one specific time and TBB version but
tested against a significantly different time®. The 3-year difference
between the AWF and Wang datasets ensures that the two’s distri-
butions differ significantly. To verify this we perform analysis using
Cosine similarity in Appendix A and conclude that these datasets
are very likely to be mismatched.

In these experiments, we decided to initially train TF on the a
dataset collected in 2016 and test on a dataset collected in 2013
primarily due to the larger variety of websites in the 2016 dataset.
Triplet networks learn to classify by identifying the differences
between classes, and so it is important that a large number of
classes are contained in the data which is used to initially train
the model. Since the objective of this experiment is to evaluate if
TF can mitigate the adverse effects of data mismatch between the
training phases, we believe the order of the timing does not affect
the validity of our evaluations.

Result: As we see in Table 7, the results show that the TF attack
remains fairly effective and achieves almost 85% with 5-shot learn-
ing. Moreover, we observe that the accuracy of the attack gradually
increase up to 87% with 20-shot learning.

WF Attack’s Goals of Improvements: In this experiment, the
results demonstrate that the TF attack achieves another one of our
goals:

o Generalizability: The results demonstrates that the feature ex-
tractor can be trained on traffic traces having one distribution

5 A real-world attacker must still capture a small dataset of fresh representative samples
for the testing phase.

Table 7: The performance of WF attacks with different dis-
tributions of training and testing datasets (Accuracy)

Table 9: The performance of WF attacks: Different distribu-
tions of datasets using transfer learning (Accuracy)

Type of Number of N Example(s) Approach Number of N Example(s)
Experiment 1 5 10 15 20 1 5 10 15 20
Different Distributions 73.1+1.8 84.5+0.4 86.2+0.4 86.6+0.3 87.0+0.3 Traditional 8.6+1.4 31.1+£0.9 49.0+£0.5 52.5+04 56.3+0.9
TF 73.1+1.8 845+04 86.2+0.4 86.6+03 87.0+0.3

Table 8: The performance of WF attacks: Similar but mutu-
ally exclusive datasets (Accuracy)

Number of N Example(s)
Approach 1 5 10 15 20
Traditional 27.9+5.0 87.6+0.4 93.4+0.2 952+0.1 951+0.1
TF 79.2+13 922+£0.6 93.9+0.2 944+03 945+0.2

and used in an attack on traffic traces with a different distribu-
tion. Thus, a WF attack using NSL allows the attacker to adopt
a feature extractor trained on older data and still perform WF
attacks with respectable accuracy.

7.6 Traditional Transfer Learning vs TF Attack

The transfer learning [37] is a machine learning technique in which
a model trained on one task can be effectively re-used on another.
This technique has widely shown to be effective in many domains of
applications. The intuition behind the effectiveness of the transfer
learning results from the ways that deep learning learns features
representations. In computer vision, deep learning tries to learn
and detect lower-level features such as edges in their earlier layers
and higher-level features such as objects in the deeper layers. This
hierarchical learning allows the users to directly transfer the knowl-
edge of learned features from the early layers and only fine-tune
the deeper layers to fit the model for their tasks. Thus, the user
does not need to re-train the model from scratch.

However, there are challenges in applying transfer learning to
the WF domain. These challenges come from the fact that the
distributions of data used to train the pre-trained model and test
the model are different due to changes in Web traffic over time.
Therefore, it is interesting to investigate how effective transfer
learning is when compared to the TF attack.

To clearly distinguish between the aforementioned transfer learn-
ing and the TF attack, we will use the term traditional approach to
represent the general transfer learning technique and use the TF
approach to represent our TF attack.

Experimental setting: To pre-train the model, we use the DF ar-
chitecture trained with the AWF775 dataset. We follow the recom-
mendations in machine learning (ML) to re-train model by freezing
k early layers out of the n total layers during the re-training pro-
cess®. We test with different values of k to maximize the accuracy
of the attack, and we find that freezing all layers except the last
FC layer with softmax provides the highest accuracy. Thus, we use
the setting where we freeze n — 1 layers to re-train the pre-trained
model. We then compare the performance of the attack in the tra-
ditional approach to the TF approach using two different scenarios
as in the previous experiments.

Result: Table 8 shows the performance of WF attacks using simi-
lar but mutually exclusive datasets. The results show that the TF

Shttp://www.deeplearningessentials.science/transferLearning/

Table 10: Open World: Results when tuned for precision and
tuned for recall (Similar but mutually exclusive datasets)

N-Examples Tuned for Precision Tuned for Recall
Precision Recall Precision Recall
5 0.871 0.808 0.804 0.893
10 0.908 0.788 0.730 0.948
15 0.891 0.829 0.692 0.966
20 0.873 0.862 0.706 0.968

approach performs significantly better compared to the traditional
approach when the available number of N examples is small (N =
1 or 5). We observe that after number N examples starts growing,
both approaches similarly perform well with over 93% accuracy.
The results suggest that if the attacker has a small dataset to re-train
the classifier, the TF approach is the better choice.

On the other hand, the effectiveness of the traditional approach is
significantly degraded under the more challenging scenario. Table 9
shows the performance of WF attacks with different distributions
of training and testing datasets. By contrast, the performance of
the TF attacks is noticeably higher, indicating that the TF approach
can better mitigate the negative effects of data mismatch. As we
see, with small N examples, the TF approach provides 50% higher
accuracy than the traditional approach. Furthermore, even if the
size of N becomes larger e.g. with 20 examples used for training
each website, the accuracy of the traditional approach is only 56%
whereas the TF approach reaches 87%. The results suggest that if
the attacker knows that the dataset used for pre-training is likely to
be dissimilar to the data in the attack phase, then the TF approach
is more effective.

7.7 Open-World Scenario

In the previous experiments, we explored the performance of the
TF attack under the closed-world scenario. However, this scenario
is unrealistic, as it assumes that the users will only visit websites
within the monitored set. In the following experiment, we evaluate
the performance of the TF attack in the more realistic open-world
setting. In the open-world, the classifier must learn to distinguish
between monitored and unmonitored sites. We use precision and
recall metrics to evaluate the performance of the attack.

Experimental Setting: We evaluate the open-world setting under
the standard model in which we include the unmonitored samples
as an additional label during training. We use AWF100 dataset as
monitored websites and AWF9000 as the unmonitored websites to
evaluate WF attacks with similar but mutually exclusive datasets.
Moreover, we use Wang100 dataset as monitored websites and
Wang9000 as the unmonitored websites to evaluate WF attacks
with different data distributions.

Table 11: Open World: Results when tuned for precision and
tuned for recall (Different data distributions)

N-Examples Tuned for Precision Tuned for Recall
p Precision Recall Precision Recall
5 0.973 0.831 0.950 0.950
10 0.953 0.879 0.922 0.971
15 0.944 0.903 0.908 0.983
20 0.933 0.907 0.905 0.978
1
0.9 LR
c
kel
@
8 08
g0 -e- 5-Shot 7
- 10-Shot i;‘%
~ - 4= 15-Shot \‘.v
071 | 9= 20-Shot -
v
0.8 0.9 1

Recall

Figure 6: Open-world: Precision and Recall (Similar but mu-
tually exclusive datasets)

Result: Figure 6 shows precision-recall curves in the open-world
setting for the attacks using similar but mutually exclusive datasets,
while Table 10 shows the results when the attack is tuned for preci-
sion or tuned for recall. The open-world results are fairly effective
with moderately high precision and recall. For example, with 10-
shot learning, the attacks reach to 0.908 precision and 0.788 recall
when tuned for precision, and 0.730 precision and 0.948 recall when
tuned for recall. In the case of WF attacks with different distribu-
tions as demonstrated in Figure 7 and Table 11, the results show
highly effective attacks. For example, with 10-shot learning, the
attacks could reach to 0.953 precision and 0.879 recall when tuned
for precision, and 0.922 precision and 0.971 recall when tuned for
recall. Overall, the performance of the TF attack in both scenarios
is effective.

It is interesting to see that the results of open-world scenarios
are conversely different from the closed-world scenario. However,
there is an intuitive explanation. As mentioned above, the perfor-
mance of WF attacks in open-world scenario relies on the ability
to distinguish between the monitored and unmonitored websites.
It turns out that the monitored and unmonitored websites in the
Wang dataset are distinctively different due to the criteria they
used to select the list of websites for each set. We observe that
many websites within the list of monitored websites are unique in
term of theirs contents making each website more fingerprintatble.
Thus, we believe the highly fingerprintable monitored websites in
Wang dataset is responsible for the inconsistent results between
the closed-world and open-world scenarios.

7.8 TF attack in the Larger Open World

In a realistic situation, the size of the unmonitored websites (UMW)
in the wild is nearly infinite. To the best of our knowledge, the

0.9
c
S
0
S [
& "8 [-e- 5-Shot
-m 10-Shot
| |- 15-Shot
071" |- 20-Shot
03 0.9 1

Recall

Figure 7: Open-world: Precision and Recall (Different data
distributions)

Table 12: Larger Open World: Results when tuned for preci-
sion and tuned for recall with growing sizes of unmonitored
websites.

Growing Sizes Tuned for Precision Tuned for Recall
Precision Recall Precision Recall

9k 0.908 0.788 0.730 0.948

50k 0.792 0.637 0.591 0.819

100k 0.669 0.639 0.429 0.817
200k 0.484 0.632 0.267 0.794
400k 0.333 0.639 0.297 0.710

largest size of the UMW in the open-word experiment is 400k
websites conducted by Rimmer et al. [24].

It is interesting to investigate the performance of the TF attack
against the growing size of the open world. Using Rimmer et al.
open-world dataset containing 400k UMW, we evaluate the pre-
cision and recall of the attack against various sizes of the UMW
including 50k, 100k, 200k, and 400k. Due to the limited space, we
selectively present the comparison of the results for 10-shot learn-
ing across the growing size of UMW. Moreover, we provide further
result details and comparison in Appendix B.

Table 12 and Figure 8 show the performance of the TF attack with
respect to the increased size of UMW. These results demonstrate
that there is a reduction of the performance when the attack has to
handle with the larger open world. Against the 400k unmonitored
websites, the performance of the TF attack significantly drops down
to 0.333 precision and 0.639 recall. However, the TF attack can still
provide reasonably effective performance with 0.792 and 0.669
precision against 50k and 100k, respectively and ~0.64 recall using
only 10 examples required to be collected for training the classifier.

7.9 TF Attack against WTF-PAD

We further evaluate the performance of the TF attack against WTF-
PAD, the defense that is the main candidate to be deployed in Tor.

Experimental Setting: To train the triplet networks, we simulated
defended traces using WTF-PAD. 7 However, we cannot simulate
WTF-PAD on the AWF dataset because it contains only packet’s
direction, while WTF-PAD requires timestamps. Therefore, we
instead simulated the WTF-PAD traces from the DF95 dataset which

7We synthesized the WTF-PAD dataset using the author-provided code.

0.9 &, 1
0.8 || m -.,.°°
0.7
< R e
S 06F e .
205 we- 9k
£ WVl v ORI -m 50k
0.4+ - -4- 100k | |
03 T . Ty -v- 200k
0.2+ =e= 400K |
Il
0.6 0.7 0.8 0.9 1
Recall

Figure 8: Open-world: Precision and Recall of the TF attack
against larger open world with growing sizes of unmoni-
tored websites.

Table 13: The performance of the TF attack against WTF-
PAD defense (Accuracy of the attack)

Type of N-Example
Experiment 1 5 10 15 20
Disjointed Websites 20.5+ 1.6 54.1+0.7 57.8 0.6 60.2+0.4 61.2+0.4
Different Distributions 15.5+1.7 39.8 +0.5 47.2+1.1 50.1+0.4 51.7+0.5

contains both packet direction and timing. Furthermore, we use a
model trained on the WTF-PAD simulated DF95 dataset and WTF-
PAD simulated Wang100 as the N-training and testing datasets,
respectively, to evaluate the performance of the TF attack with
different data distributions.

Result: Table 13 shows the performance of the TF attack against
WTF-PAD defense in two different scenarios. The results reveal
that the accuracy of the attacks in both cases significantly decrease
compared to the non-defended dataset in Table 5 and Table 7. As we
see, it requires at least 15 examples in the case of WF attacks with
similar but mutually exclusive datasets to reach to 60% accuracy.
In the case of WF attacks with different data distributions, the
performance can only reach to 50% accuracy with 15 examples.

However, if we compare the performance of the TF attack using
small dataset with the previously-proposed WF attacks, the TF
attack achieves comparable results. For example, the TF attack
(60.2%) performs nearly the same as the CUMUL (60.3%) and AWF
(60.8%) attacks. Moreover, it can outperform SDAE (36.9%), k-NN
(16.0%) and k-FP (57.0%) attacks.

8 DISCUSSION

Based on what we have observed in our experiments, we now
discuss other key benefits of NSL in WF:

WF attacks against interactive websites: Many websites change
content frequently, as new articles or other information is posted,
and these sites are particularly challenging to fingerprint. NSL
allows the attacker to quickly collect mostly up-to-date network
traffic examples and immediately use them to train the WF classifier.
This may allow the attacker to achieve better performance on these
frequently changing sites by using very fresh data that accurately
characterizes the current state of the site.

Webpage fingerprinting: Most prior work (with exception of [21])
only performs WF on the homepages of each websites and does

not consider all webpages within the website. The TF attack makes
the fingerprinting of many webpages from a given website more
feasible due to the reduced data requirements.

Threat landscape: The ability to use a pre-trained feature extractor
with a few network examples may allow a less powerful adversary
to perform WF. Thus, NSL expands the threat landscape, such that
the attack is not limited to attackers with significant computing
resources.

Countermeasures: The results from our WTF-PAD experiment
demonstrates that the TF attack is not as effective as the DF attack
when traffic is protected. This suggests that light-weight padding
mechanisms may be further developed to target NSL attacks.

Limitations: While we investigated dataset mismatch during the
initial training phase, we were not able to evaluate the effects of mis-
match during new-training. However, we feel this scenario is easily
avoided in real-world application since the burden of collecting a
fresh samples is low and many adversaries (eg. ISP or compromised
router) can likely replicate their target’s network conditions.

In addition, we have left the problem of session extraction and
multi-tab browsing unaddressed. Recent work [35] has proposed
algorithmic stream-splitting and chunk-based classification to ad-
dress these problems, however attack performance remains inad-
equate for real-world application. To appropriately address these
problems new classifiers will need to be developed.

9 CONCLUSION

In this study, we investigated the use of N-shot learning to improve
a WF attack under more realistic and more challenging scenarios
than found in most papers on WF attacks. We propose the Triplet
Fingerprinting (TF) attack leveraging triplet networks for N-shot
learning, which allows an attacker to train on just a few samples per
site. We evaluate the TF attack under several challenging scenarios.
The results show that the TF attack remains effective with 85%
accuracy even in a scenario in which the data used for training
and testing are from multiple years apart and collected on different
networks. Moreover, we also demonstrate that the TF attack is
effective in the open-world setting and can outperform traditional
transfer learning. These results demonstrate that an attacker with
relatively low computing resources can also perform WF attacks
with fairly effective performance.

Reproducibility
The source code of the implementation and a dataset to repro-

duce our results is publicly available at https://github.com/triplet-
fingerprinting/tf.

ACKNOWLEDGMENTS

We appreciate our discussions with Dr. Leon Reznik, Dr. Sumita
Mishra and Dr. Peizhao Hu that helped develop this paper. Moreover,
we thank the anonymous reviewers for their helpful feedback and
Dr. Amir Houmansadr for shepherding our work.

This material is based upon work supported by the National
Science Foundation under Grants No. CNS-1423163, CNS-1722743
and DGE-1433736.

REFERENCES

[9

[10

(11

[12

(13

[14

[15

[16

[17

(18

[19

[20

[21

[22

[23

[24

[25

[26

=

]

]

]

]

]

]

]
]

]

2011. Test Pilot New Tab Study Results. https://blog.mozilla.org/ux/2011/08/test-
pilot-new-tab-study-results/. (2011). (accessed: August, 2018).

2017. Keras. https://keras.io/. (2017).

2017. Users - Tor metrics. https://metrics.torproject.org/userstats-relay-country.
html. (2017).

2019. New Release: Tor 0.4.0.5. https://blog.torproject.org/new-release-tor-0405.
(2019). [Online; accessed May-2019].

K. Abe and S. Goto. 2016. Fingerprinting attack on Tor anonymity using deep
learning. In in the Asia Pacific Advanced Network (APAN).

Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. 2018. Var-CNN and
DynaFlow: Improved Attacks and Defenses for Website Fingerprinting. "https:
//arxiv.org/pdf/1802.10215.pdf". (2018). (accessed: August, 2018).

F. Chollet. 2017. Xception: Deep Learning with Depthwise Separable Convolu-
tions. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVFR).
1800-1807. https://doi.org/10.1109/CVPR.2017.195

Li Fei-Fei, R. Fergus, and P. Perona. 2006. One-shot learning of object categories.
IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 4 (April 2006),
594-611. https://doi.org/10.1109/TPAMI.2006.79

Ben Harwood, BG Kumar, Gustavo Carneiro, Ian Reid, Tom Drummond, et al. 2017.
Smart mining for deep metric learning. In Proceedings of the IEEE International
Conference on Computer Vision. 2821-2829.

Jamie Hayes and George Danezis. 2016. k-fingerprinting: A robust scalable
website fingerprinting technique. In USENIX Security Symposium. USENIX Asso-
ciation, 1-17.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. 2009. Website
fingerprinting: attacking popular privacy enhancing technologies with the multi-
nomial Naive-Bayes classifier. In ACM Workshop on Cloud Computing Security.
ACM, 31-42.

Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. 2014.
A critical evaluation of website fingerprinting attacks. In ACM Conference on
Computer and Communications Security (CCS). ACM, 263-274.

Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright. 2016.
Toward an efficient website fingerprinting defense. In European Symposium on
Research in Computer Security (ESORICS). Springer, 27-46.

Simonyan Karen and Zisserman Andrew. 2015. Very deep convolutional networks
for large-scale image recognition. (2015).

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese neural
networks for one-shot image recognition. In ICML Deep Learning Workshop,
Vol. 2.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classifica-
tion with deep convolutional neural networks. In Advances in Neural Information
Processing Systems. Curran Associates, Inc., 1097-1105.

Akshaya Mani, T. Wilson-Brown, Rob Jansen, Aaron Johnson, and Micah Sherr.
2018. Understanding Tor Usage with Privacy-Preserving Measurement. In Pro-
ceedings of the Internet Measurement Conference 2018 (IMC °18). ACM, New York,
NY, USA, 175-187. https://doi.org/10.1145/3278532.3278549

Alireza Bahramali Milad Nasr and Amir Houmansadr. 2018. DeepCorr: Strong
Flow Correlation Attacks on Tor, Using Deep Learning. In ACM Conference on
Computer and Communications Security (CCS). ACM, 1962-1976. https://doi.org/
10.1145/3243734.3243824

Se Eun Oh, Saikrishna Sunkam, and Nicholas Hopper. 2018. p-FP: Extraction,
Classification, and Prediction of Website Fingerprints with Deep Learning. "https:
//arxiv.org/abs/1711.03656.pdf". (2018). (accessed: August, 2018).

Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze, Jan Pennekamp,
Klaus Wehrle, and Thomas Engel. 2016. Website fingerprinting at Internet scale.
In Network & Distributed System Security Symposium (NDSS). IEEE Computer
Society, 1-15.

Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. 2015. Deep face
recognition.. In BMVC, Vol. 1. 6.

Mike Perry. 2015. Padding Negotiation. ~ Tor Protocol Specification
Proposal. https://gitweb.torproject.org/torspec.git/tree/proposals/254-padding-
negotiation.txt. (2015). (accessed: October 1, 2017).

Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter
Joosen. 2018. Automated Website Fingerprinting through Deep Learning. In
Proceedings of the 25nd Network and Distributed System Security Symposium
(NDSS 2018). Internet Society.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A
Unified Embedding for Face Recognition and Clustering. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Roei Schuster, Vitaly Shmatikov, and Eran Tromer. 2017. Beauty and the Burst:
Remote identification of encrypted video streams. In USENIX Security Symposium.
USENIX Association, 1357-1374.

[27

Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. 2018. Deep
Fingerprinting: Undermining Website Fingerprinting Defenses with Deep Learn-
ing. The 25th ACM SIGSAC Conference on Computer and Communications Security
(CCS ’18) (2018).
Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer Rexford, Mung
Chiang, and Prateek Mittal. 2015. RAPTOR: Routing Attacks on Privacy in Tor..
In USENIX Security Symposium. 271-286.
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. (June 2015).
Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. Deepface:
Closing the gap to human-level performance in face verification. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 1701-1708.
C. v. d. Weth and M. Hauswirth. 2013. DOBBS: Towards a Comprehensive
Dataset to Study the Browsing Behavior of Online Users. In 2013 IEEE/WIC/ACM
International Joint Conferences on Web Intelligence (WI) and Intelligent Agent
Technologies (IAT), Vol. 1. 51-56. https://doi.org/10.1109/WI-IAT.2013.8
Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. 2016. Match-
ing networks for one shot learning. In Advances in Neural Information Processing
Systems. 3630-3638.
Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.
Effective attacks and provable defenses for website fingerprinting. In USENIX
Security Symposium. USENIX Association, 143-157.
Tao Wang and Ian Goldberg. 2016. On realistically attacking Tor with website
fingerprinting. In Proceedings on Privacy Enhancing Technologies (PoPETs). De
Gruyter Open, 21-36.
Yixiao Xu, Tao Wang, Qi Li, Qingyuan Gong, Yang Chen, and Yong Jiang. 2018.
A Multi-tab Website Fingerprinting Attack. In Proceedings of the 34th Annual
Computer Security Applications Conference (ACSAC ’18). ACM, New York, NY,
USA, 327-341. https://doi.org/10.1145/3274694.3274697
[36] Junhua Yan and Jasleen Kaur. 2018. Feature Selection for Website Fingerprinting.
In Proceedings on Privacy Enhancing Technologies (PETS).
[37] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How Transfer-
able Are Features in Deep Neural Networks?. In Proceedings of the 27th Interna-
tional Conference on Neural Information Processing Systems - Volume 2 (NIPS’14).
MIT Press, Cambridge, MA, USA, 3320-3328. http://dl.acm.org/citation.cfm?id=
2969033.2969197
Ye Zhu, Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao. 2010.
Correlation-based traffic analysis attacks on anonymity networks. IEEE Transac-
tions on Parallel and Distributed Systems 21, 7 (2010), 954-967.

[28

[29

'S
=

[31

[32

(33]

(34]

@
i

(38]

A DATASET’S DISTRIBUTION ANALYSIS

In Section 7.5, we study the performance of the triplet fingerprinting
attack under more challenging scenarios. One of the experiments
that we aim to evaluate is the performance of the attack against
the adverse effect causing from a data mismatch issue. The issue
happens when the distributions of training and testing datasets
are significantly different. We use two different datasets including
1) AWF dataset collected in 2016 using Tor browser version 6 as
the training data, and 2) Wang dataset collected in 2013 using Tor
browser version 3 as the testing data.

Even if the three-year gap of different periods and three differ-
ent versions of Tor browsers between AWF and Wang datasets
can presumably ensure the significant difference in term of their
distributions, we provide further investigation to evaluate how
significantly different between these datasets are. We provide eval-
uations based on two metrics including the basic network traffic
statistic and the similarity measurement.

A.1 Basic Network Traffic Statistic

Common Websites in Wang and AWF datasets: We analyze
the network traffic statistic on websites that are commonly listed
in the Wang and the AWF datasets. We first evaluate the number
of incoming and outgoing packets which directly represents the
change in each website’s contents in term of the size of the website
over periods of time. Table 14 demonstrates the average numbers

Table 14: The comparison between the average number of
incoming and outgoing packets for common websites in the
Wang and the AWF datasets

Number of Packets

Websites ‘Wang Dataset AWF Dataset
Outgoing Incoming Outgoing Incoming

nicovideo.jp 307 4016 255 2584
youtube.com 153 1896 291 3094
rakuten.co.jp 48 478 382 4617
dropbox.com 142 2457 436 4286
xvideos.com 165 2983 139 1536
excite.co.jp 356 3346 414 2504
nikkeibp.co.jp 413 3250 423 4572
archive.org 26 87 118 1421
twitter.com 59 717 163 2214
t.co 17 48 22 47
scribd.com 376 3896 354 2791
facebook.com 75 866 101 795
appspot.com 63 314 74 255
vimeo.com 203 3318 425 4574
soundcloud.com 176 2043 673 3115
drtuber.com 289 3322 329 4119
imgur.com 160 568 366 4340
fc2.com 125 1255 131 1042
wordpress.com 103 988 347 1367
imdb.com 268 1886 427 4550
xhamster.com 211 2180 173 1723
xing.com 80 740 208 878
extratorrent.cc 237 2028 259 2836

of outgoing and incoming packets for each website. The results
show that there are significant changes in term of the number of
outgoing and incoming packets in most of the websites.

Moreover, we take a closer look on the burst-level packets statis-
tic by measuring the number of incoming and outgoing bursts. It is
important to note that the number of bursts is commonly used by
WF classifiers to measure the distinctive patterns of the traffic and
the network’s activities such as the total number of objects from
which the user needs to fetch (number of requests and responds for
each given website). Table 15 demonstrates the significant changes
in term of the number of incoming and outgoing bursts for com-
mon websites in the Wang and the AWF datasets. Therefore, the
significant changes of the basic network statistic and bursts for the
common websites in the Wang and the AWF datasets reveals the
likelihood of mismatched data.

Aggregation Analysis of Wang and AWF datasets: We further
investigate aggregation analysis of the basic network traffic statistic
in all websites from both datasets. Instead of focusing on the com-
mon websites, we measure the traffic statistic for all 100 websites
of each dataset. The results of the aggregation analysis provide
the statistical analysis for the whole datasets used for training and
testing the classifier. Table 16 and Figure 9- 10 show the significant
difference on both the number of network’s packets and the number

Table 15: The comparison between the average number of
incoming and outgoing bursts for common websites in the
Wang and the AWF datasets

Number of Bursts

Websites Wang Dataset AWF Dataset
Outgoing Incoming Outgoing Incoming
nicovideo.jp 116 116 131 131
youtube.com 69 68 157 157
rakuten.co.jp 21 21 200 200
dropbox.com 68 67 233 233
xvideos.com 72 72 70 70
excite.co.jp 131 131 208 207
nikkeibp.co.jp 120 120 247 247
archive.org 8 8 62 62
twitter.com 32 31 103 102
t.co 9 9 11 11
scribd.com 147 146 168 168
facebook.com 32 32 53 53
appspot.com 32 32 40 40
vimeo.com 92 92 231 230
soundcloud.com 72 72 293 292
drtuber.com 88 88 185 184
imgur.com 59 59 197 197
fc2.com 55 55 70 70
wordpress.com 46 45 165 164
imdb.com 81 80 225 225
xhamster.com 59 59 86 86
xing.com 38 38 99 98
extratorrent.cc 91 91 144 144
5000 - T
4000 -
2
£ 3000-
<
5
3 2000 -
£
=z
1000 - e
L = T
Wang Datset AWF Datset Wang Datset AWF Datset
Ougoing Packets Incoming Packets

Figure 9: The box plot of the basic statistical analysis in term
of the number of packets for all websites in the Wang and
the AWF datasets

of the traffic’s bursts. The results support the evidence that there
is a mismatch of the AWF dataset used for training and the Wang
dataset used for testing the classifier.

500

400+ e B
[’}
B
2 3001
s § §
]
E}
£ 200-
3 200 ‘

100 ‘ 1

\T‘
oA 4
Wang Datset AWF Datset Wang Datset AWF Datset
Ougoing Bursts Incoming Bursts

Figure 10: The box plot of the basic statistical analysis in
term of the number of bursts for all websites in the Wang
and the AWF datasets

Wang Dataset AWF Dataset

ﬁicovideo.jp
@-....
..
" ‘o a°
® A Q -
}' extratorrent.cc ;" extratorrent.cc
e » Intrasimilarity

Intersimilarity

Figure 11: Similarity measurement by using the intrasimi-
larity and the intersimilarity based on the Cosine distance
metric

A.2 Similarity Measurement

We extensively analyze the difference of the two datasets by using
a similarity measurement. The similarity measurement is used to
evaluate how similar of two network traffic’s vectors in the latent
space. We apply the Cosine distance to calculate the distance be-
tween a pair of network traffic; the smaller distance represents the
higher similarity of the given pair of network traffic.

In the set of common websites in both Wang and AWF datasets,
we first measure the intrasimilarity in which the Cosine distance is
calculated for all possible pairs of the same website. Moreover, we
additionally measure the intersimilarity in which we calculate the
Cosine distance for all possible pairs of network traffic examples
from website A in the Wang dataset and network traffic examples
from website A in the AWF dataset. The illustration of how the
pairs of network traffic examples are used to measure the similarity
is demonstrated in Figure 11.

Table 16: The aggregation analysis of the basic network sta-
tistical analysis for all websites in Wang and AWF datasets
(the average of the number of incoming and outgoing pack-
ets vs. the average of the number of incoming and outgoing
bursts)

Number of Packets Number of Bursts

Dataset
Outgoing Incoming Outgoing Incoming
Wang 156 1532 59 59
AWF 315 2735 160 160

Table 17: The comparison between the intrasimilarity and
the intersimilarity for common websites in the Wang and
the AWF datasets

Intrasimilarity Intersimilarity

Websites
Wang AWF Wang - AWF

nicovideo.jp 0.7 0.7 0.56
youtube.com 0.64 0.63 0.55
rakuten.co.jp 0.74 0.73 0.19
dropbox.com 0.8 0.66 0.57
xvideos.com 0.66 0.68 0.53
excite.co.jp 0.62 0.49 0.51
nikkeibp.co.jp 0.6 0.7 0.55
archive.org 0.52 0.72 0.11
twitter.com 0.76 0.57 0.49
t.co 0.33 0.32 0.2
scribd.com 0.66 0.63 0.56
facebook.com 0.69 0.64 0.62
appspot.com 0.52 0.4 0.35
vimeo.com 0.71 0.69 0.61
soundcloud.com 0.72 0.5 0.56
drtuber.com 0.71 0.72 0.65
imgur.com 0.38 0.72 0.19
fc2.com 0.71 0.62 0.6
wordpress.com 0.66 0.42 0.45
imdb.com 0.56 0.69 0.39
xhamster.com 0.74 0.69 0.6
xing.com 0.71 0.43 0.48
extratorrent.cc 0.55 0.65 0.54

Table 17 demonstrates the intersimilarity and the intrasimilarity
resulted from the average of similarity from all pairs of network traf-
fic examples. The results show that there are significant reductions
of the intersimilarity in many common websites compared to the in-
trasimilarity of them. Thus, it can be inferred that the similarity for
the same website in different datasets has significantly decreased in
the latent space supporting the evidence that the common websites
in Wang and AWF dataset are likely to be mismatched.

B LARGER OPEN-WORLD SCENARIO

We comprehensively evaluate the performance of the TF attack
against the larger open world to measure the realistic capability of

0.9
- ~... B .
0.8 R N e
0.7 :_::.': ~
306 R T
2 5 T Y Se., B
3 -o- 9k ey RO
a 041w 50k e *
0.3 |.e= 100k * ey
0.2 |ay= 200k
0.1 -e= 400k
01 02 03 04 05 06 07 08 09
Recall
(a) 5-Shot
1
0.9 o,
0.8 e
0.7 - %
c .
5 0.6 .
2 ..
205 A
[0 o .
& 0 Yo
0.2 el B
0.1
01 02 03 04 05 06 07 08 09 1
Recall
(c) 15-Shot

0.9 o...
0.8 - ~o.
0.7 P S RS =
S 06 .*“ ‘n
205 -0- 9k e o,
£ g4 |-m 50k T e
0.3 -+ 100k ~-... ‘~.v
09 |=v-200k
0.1 =e= 400k
01 02 03 04 05 06 07 08 09 1
Recall
(b) 10-Shot
1
0.9 [
0.8 ey,
o 0,
0.7 A S
.y

S 06

(2]

S 0.5 =o- 9k ~.y *.

g:’ 0.4 -m- 50k '\‘ s
0.3 =¢= 100k Vv, W =
0.2 =v= 200k 0....’v
0.1 |=e= 400k e

01 02 03 04 05 06 07 08 09 1
Recall
(d) 20-Shot

Figure 12: Open World: Each sub-figure shows the Precision-Recall of the TF attack using different N-Shot learning against

different sizes of unmonitored websites.

the attack when the size of unmonitored websites (UMW) increases.
This reflects a realistic challenge in the real world since the larger
the size of the UMW is, the higher the chance of coalition of the
similar websites, resulting the increased chance of misclassifica-
tion. We experiment the open-world scenario with growing sizes
of UMW including 9k, 50k, 100k, 200k, and 400k by using Rimmer
et al. dataset. In each of N-Shot learning, we demonstrate the pre-
cision and recall of the TF attack against different size of UMW.
We compare them side by side as shown in Figure 12. The results
demonstrate the impact of the larger open world in two folds. First,
we observe the reduction of performance of the TF attack with
respect to the increased size of UMW for each of N-Shot learning.
Second, the precision and recall have improved when the size of
the number of N examples (N-Shot) increases. Overall, the attack
still remains fairly effective till the size of unmonitored websites
reaches to 100k with almost ~0.6-0.7 precision and ~0.6-0.9 recall.

C TOP-N AND K-WAY ACCURACY

In this part, we further investigate the performance of the TF at-
tack under the closed-world scenario by using Top-n and k-Way
accuracy.

Top-n: The top-n accuracy is the percentage of correct predictions
in which we consider not only the highest probability, but also
the top-n probability values. In WF attacks, using top-n prediction
helps the attacker to scope down n possible websites that the user
may visit.

k-Way: The k-Way accuracy evaluates classification performance
at particular sizes of monitor set—e.g. 100 monitored sites is 100-way
accuracy. It is interesting to investigate how the attack accuracy
may improve if the attacker targets a limited set of monitored
websites.

Experimental Setting: In the Top-n and k-Way accuracy, we set
n=1[1, 2, 5] and k = [100, 75, 50, 25] to evaluate the performance of
the attacks for all possible combinations of n and k with different
number of N example(s). To effectively demonstrate the impact of
Top-n accuracy, we fixed the size of k-Way to be 100. Likewise, we
show the impact of k-Way accuracy by fixing the Top-n where n=1.

Result:

e WF with similar but mutually exclusive datasets: As we
see from Figure 13, we observe that the consistent improve-
ment in Top-2 and Top-5 predictions where N >= 5 and the
accuracy can reach up to 95% accuracy in Top-2 prediction
with 5-Shot learning. For k-Way results, the smaller size of
problem demonstrates the improvement of accuracy e.g. 50-
Way with 5-Shot learning, the accuracy slightly improves from
100-Way with ~2%. Moreover, we observe that 1-Shot learning
gains larger increase with ~4% accuracy compared to others.

WF with different data distributions: According to Fig-
ure 14, we observe that the attacks have larger increase com-
pared to the WF attacks regardless of website’s label especially
with N >= 5. In terms of Top-n prediction, from Top-1 to Top-2
and from Top-1 to Top-5, the accuracy consistently improves
with ~5% and ~10% respectively. For k-Way prediction, the

accuracy of the attack gradually improves as k gets smaller
except for 1-Shot learning that gains significant increase with
~5% accuracy when k is reduced from k = 100 to k = 50.

Overall, the results show the consistent increase of the accuracy
with the larger Top-n and smaller k-Way. The improved accuracy
form Top-1 to Top-2 can be interpreted that the triplet model cannot
perform well enough to move the embedded vector to be closest to
the corresponding website in the embedding space. However, it is
closed enough to be in the second closest neighbor. This suggests
that the improvement of the subnetwork or the larger number of
websites used for training model can possibly be the key factors to
substantially improve quality of the model and ultimately increase
the performance of the attacks. The results also reveal that if the
attacker is interested in detecting a smaller set of websites, the
performance of the attack can be improved.

D TF ATTACK’S HYPERPARAMETER
TUNING PROCESS

In this part, we provide intuitive explanation and the preliminary
results used for each parameter selection in addition to what is
mentioned in Section 6.1. For each selection, we vary the range of
parameters to run the model. We only use the subset of training
and testing data due to the fact that using the full size of data
requires large amount of time to complete each evaluation. We then
compare the result given by each setting and finally selected the
most effective one.

e Based Model: We test with previously-proposed state-of-the-
art DL models used in image recognition literature including
GoogleNet [29], RestNet [11] and Xception [7] and compared
with DF [27] model; the state-of-the-art model dedicatedly
designed for the WF task. Our preliminary results demonstrate
that the DF model can perform slightly better with significantly
less training time required. It turns out that using the DF as
the base model takes approximately 400s on each epoch of
training. On the other hand, the very deep learning models
such as GoogleNet, RestNet and Xception require over 600s on
each epoch of training. Thus, we choose the DF model as the
subnetwork in the triplet networks.

o Distance Metrics: We compare two distance metrics generally
used in the N-Shot learning applications including Cosine
distance and Euclidean distance. Our preliminary results shows
that using the Cosine distance provides higher performance
than using the Euclidean one with ~2-3% better accuracy.

e Mining Strategy: We evaluate three different mining strate-
gies used to generate the triplets input including Random, Hard-
Negative and Semi-Hard-Negative. The results shows that the
Semi-Hard-Negative perform better than the rest in term of
the accuracy of the attack e.g. ~7% and ~40% when compared
with Random and Hard-Negative minings respectively.

e Margin: The margin’s value defines a radius around the em-
bedded vector and helps for the learning process. The value is
specific for each type of data’s input, thus, we have to find the
best m value that is suitable for network traffic and provide ef-
fective performance to the model. We find that margin’s value

m = 0.1 can provide better results than others with ~0.3-2.9%
higher accuracy.

Optimizer: The optimizer is a mathematical model used to
measure and update the weights’ learning with respect to the
loss model. We evaluate different types of optimizer used dur-
ing the training process including SGD, ADAM, Adamax and
RMProp. SGD performs best with slightly higher performance
compared to others with ~0.3-1.7% better accuracy. Thus, we
choose SGD as optimizer used during the model’s training
process.

Batch Size: Batch size is the number of inputs that are sampled
to be fed to the network during the training process. We find
that batch size = 64 and batch size = 128 can provide ~1.5%
better accuracy than others. Thus, we choose to use them as
the final choices.

Embedded Vector’s Size: The embedded vectors size is the
size of the last dense layer in each subnetwork. It contains
the vectors of the output after feeding the input through the
learned model to extract features. We find that there is no
noticeable difference between our candidates. Thus, we simply
select the embedded vectors size = 64 as the final selection
because it requires less number of training parameters in the
network helping reduce the time for training the model.

2 90 —%— 1-Shot Learning I 901
- —¥— 5-Shot Learning =
] —=— 10-Shot Learning f‘.:
3 —&— 15-Shot Learning o
£ 854 —e— 20-Shot Learning < 85
—#— 1-Shot Learning
80 4 *—*/—* 80 1 ~¥- 5-Shot Learnlnlg
—=— 10-Shot Learning
—&— 15-Shot Learning
—e— 20-Shot Learning
75 T T T 75 T T T T
1 2 5 100 75 50 25
Top-n kWay

Figure 13: The Top-n (Left) and the k-Way (Right) accuracy of WF attacks with similar but mutually exclusive datasets

100 100
—%— 1-Shot Learning
—¥— 5-Shot Learning

95 —=— 10-Shot Learning
——
——

—%— 1-Shot Learning
—¥— 5-Shot Learning
954 —=— 10-Shot Learning
——
——

15-Shot Learning
20-Shot Learning

15-Shot Learning
20-Shot Learning

90 90
> - > o
g 851 v 8 85 v —
3 3
3 3
o o
< <
80 80

75 1 4/ 75
*

*
70 T T T 70 T T T T
1 2 5 100 75 50 25
Top-n KkWay

Figure 14: The Top-n (Left) and the k-Way (Right) accuracy of WF attacks with different data distributions.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 WF Attacks
	2.2 WF Attack Assumptions

	3 Attacker Goals
	3.1 Generalizability
	3.2 Bootstrap Time
	3.3 Flexibility & Transferability
	3.4 Goals for Improvement

	4 N-shot Learning
	4.1 NSL Implementation

	5 Triplet Networks
	6 Triplet Networks in WF
	6.1 Hyperparameter Tuning
	6.2 Model Training and Testing

	7 Experimental Evaluations
	7.1 Dataset
	7.2 Statistical soundness
	7.3 Prior work baseline
	7.4 Similar but mutually exclusive datasets
	7.5 WF attacks with different data distributions
	7.6 Traditional Transfer Learning vs TF Attack
	7.7 Open-World Scenario
	7.8 TF attack in the Larger Open World
	7.9 TF Attack against WTF-PAD

	8 Discussion
	9 Conclusion
	Acknowledgments
	References
	A Dataset's Distribution Analysis
	A.1 Basic Network Traffic Statistic
	A.2 Similarity Measurement

	B Larger open-world scenario
	C Top-n and k-Way Accuracy
	D TF Attack's Hyperparameter Tuning Process

