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ABSTRACT

Website Fingerprinting (WF) attacks pose a serious threat to users’

online privacy, including for users of the Tor anonymity system.

By exploiting recent advances in deep learning, WF attacks like

Deep Fingerprinting (DF) have reached up to 98% accuracy. The DF

attack, however, requires large amounts of training data that needs

to be updated regularly, making it less practical for the weaker

attacker model typically assumed in WF. Moreover, research on

WF attacks has been criticized for not demonstrating attack effec-

tiveness under more realistic and more challenging scenarios. Most

research on WF attacks assumes that the testing and training data

have similar distributions and are collected from the same type of

network at about the same time. In this paper, we examine how

an attacker could leverage N-shot learningÐa machine learning

technique requiring just a few training samples to identify a given

classÐto reduce the effort of gathering and training with a large

WF dataset as well as mitigate the adverse effects of dealing with

different network conditions. In particular, we propose a new WF

attack called Triplet Fingerprinting (TF) that uses triplet networks

for N-shot learning. We evaluate this attack in challenging settings

such as where the training and testing data are collected multiple

years apart on different networks, and we find that the TF attack

remains effective in such settings with 85% accuracy or better. We

also show that the TF attack is also effective in the open world

and outperforms traditional transfer learning. On top of that, the

attack requires only five examples to recognize a website, making

it dangerous in a wide variety of scenarios where gathering and

training on a complete dataset would be impractical.
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1 INTRODUCTION

The Tor anonymity system provides privacy to eight million users

a day [3, 18], but it has been shown to be vulnerable to a traffic

analysis attack called website fingerprinting (WF). WF exploits the

fact that the network traffic of each website has its own unique

pattern, and these patterns can be learned by a machine learning

classifier. The attacker must train the classifier by collecting a large

body of network traces between his client and the Tor network

from his own visits to websites of interest (monitored websites) and

other websites that users might visit (unmonitored websites). With

the trained classifier in hand, the attacker then intercepts traffic in

an encrypted connection between the victim and the first Tor node

and uses the classifier to determine whether or not she visited a

monitored site and if so, which website she visited. This allows a

local and passive network adversary as depicted in Figure 1, such

as the victim’s Internet service provider (ISP), someone sniffing the

wireless connection, or a compromised home router, to link the

user with her websites and break the anonymity provided by Tor.

When compared to the alternative end-to-end traffic confirmation

attack1, a weak WF attacker needs to be at only the client end of

the communication steam.

Previouswork inWF attacks [5, 6, 10, 20, 21, 24, 33] demonstrated

effective performance in both the closed-world setting, in which

the user is assumed to only visit sites in the monitored set, and

the more realistic open-world setting, in which the user might visit

any website, whether monitored or not. The state-of-the-art WF

attack, Deep Fingerprinting (DF), uses a deep learning classifier to

achieve over 98% accuracy in the closed world and over 0.9 for both

1An end-to-end confirmation attack allows an attacker to associate a Tor client with
their destination by capturing on both ends of the circuit [19, 28, 38], andÐunlike the
WF attackÐis outside Tor’s protection guarantees.





2.2 WF Attack Assumptions

In this section, we summarize and categorize the current assump-

tions that have been made in the WF literature. This allows us to

identify which attacker constraints have been appropriately evalu-

ated and which have not.

2.2.1 Closed- vs Open-world Scenario. WF attacks are evaluated

under two possible scenarios: closed world and open world. The

closed world assumes that there are only k websites that the client

can visit, where k is far smaller than the number of websites avail-

able in the real world. Despite being criticized as unrealistic [13],

the closed-world evaluation is still used as a metric to evaluate the

quality of the attacks and feature sets used in attacks. Subsequent

work also considers the open-world scenario to measure the at-

tack efficacy in a realistic setting. Here, we examine two additional

constraints when designing an open-world experiment:

• Size of the open world. Researchers have increased the number

of unmonitored websites in open-world datasets to evaluate

the ability of the WF classifier to distinguish between mon-

itored and unmonitored sites [10, 21, 24, 27, 33]. The size of

the unmonitored set has reached up to 400,000 websites in the

dataset of Rimmer et al. [24]. While even larger sets would be

more representative, given that the victim could be visiting any

page on any site in the world, there are diminishing returns

above a certain size. Further, it is likely that sites have widely

varying popularity for Tor users, so capturing the extended

tail of the distribution may not be meaningful in practice. In

this paper, we do not attempt to address the question of the

most appropriate size of the unmonitored set.

• Open-world evaluation model. There are two models used to

evaluate the performance of WF classifiers in open world: the

Standard model and the AWF model [24]. Under the Standard

model, samples from the unmonitored set are included in the

training data as an additional label. Researchers assume that

doing so will help the classifier to better distinguish between

the monitored and unmonitored websites. This model was used

by the majority of prior works [10, 21, 27, 33]. On the other

hand, the AWF model does not include unmonitored websites

in the training data set. The classifier instead uses a confidence

threshold based on the cross-entropy loss function to identify

unmonitored sites. Rimmer et al. [24] argue that even if the

attacker may gain benefit from including the unmonitored

websites, the size of the unmonitored set is still not represen-

tative of the actual size of the world of websites. The choice

of which model is best is an interesting point to consider, but

we stick with the more popular Standard model for this paper

and leave the question for future work.

2.2.2 Users’ Browsing Behavior. Most prior work [10, 21, 24, 27, 33]

assumes that Tor clients follow a rather specific behavior: they use

Tor to browse websites sequentially, and they use only a single tab

at a time so that website visits do not overlap. This is, of course, not

representative of real world behavior of a Tor client. As Tor con-

nections are slow, it is likely that clients will open several browser

tabs and visit sites concurrently [1, 31, 35]. The effects of multi-tab

Table 1: Impact on attack accuracywhen training and testing

with different TBB versions. Data from Juarez at al. [13].

TBB Version 2.4.7 (Test) 3.5 (Test) 3.5.2.1 (Test)

2.4.7 (Train)

3.5 (Train)

3.5.2.1 (Train)

62.70 ± 2.80

16.28 ± 4.51

6.51 ± 1.15

29.93 ± 2.54

76.38 ± 4.97

66.75 ± 3.68

12.30 ± 1.47

72.43 ± 3.22

79.58 ± 2.45

browsing have been explored in prior work [13, 34], and we do not

further examine them in this paper.

2.2.3 Traffic Parsing and Background Traffic. In WF attacks, we

assume that the attacker can collect all the traffic generated by a

site and can effectively distinguish this traffic from other traffic

connections [13]. This assumption is guaranteed to be true only

when the attacker performs the attack at the guard node, which

allows him to extract the specific traffic by using the Tor circuit ID.

In the case that the attacker performs the attack as an eavesdropper

between the client and the guard node, all Tor traffic is multiplexed

in the TLS connection. Recent work has developed techniques to

effectively discriminate the Tor traffic from multiplexed TLS traf-

fic and split it into corresponding encrypted connections to each

website [34]. Thus, this assumption has been already handled and

is not the focus of our study.

3 ATTACKER GOALS

In this section, we identify elements of WF attacks that may be

improved to better suit realistic adversaries. Prior work on attack

design has largely discounted these requirements.

3.1 Generalizability

Previous research assumes that aWF attacker can train his classifier

under the same conditions as the victim, effectively making it a

targeted attack. Given this assumption, the attacker can replicate

the victim’s network conditions, Tor-browser-bundle (TBB) version,

and settings, and these can impact the attack’s performance [13].

Alternatively, the attacker may be interested to attack more than

one victim, i.e. to perform a untargeted attack. In this case, the at-

tacker should be prepared for users with different types of network

connections, TBB versions, and settings. This constraint makes WF

more difficult as the adversary’s classifier must remain effective

even when using such a diverse data set. Juarez et al. show [13]

that if the attacker had trained the WF classifier based on one TBB

version and tested with another, the accuracy of the attack drops

drastically as shown in Table 1.

Recent WF attack research [10, 21, 24, 27, 33] assumes that the

attacker performs a targeted attack by crawling a single data set

using similar machines under the same network conditions. This

data set is then used in both the training and testing phases, which

gives the attacker an unrealistic advantage for any untargeted at-

tack, as the distribution of traces would be more heterogeneous in

the real world. In this work, we investigate how a WF attack can

be crafted to avoid this assumption.



Table 2: Bootstrap time to create a WF classifier (AWF [24]).

The crawling rate is approx. 2,000 instances/day/computer

and 500,000 instances are required for training.

No. of

PCs

Crawling

Time

Training Time

(w/GPU)

Bootstrap

Time

1 250 days <1 hour 250 days

4 63 days <1 hour 63 days

8 32 days <1 hour 32 days

12 21 days <1 hour 21 days

24 11 days <1 hour 11 days

3.2 Bootstrap Time

To perform WF attacks, the attacker needs to train the classifier

to predict the unknown traffic captured from the client. This does

not, however, capture the bootstrap time, the total amount of time

required for the attacker to produce a ready-to-use classifier. This

time includes both the time required to crawl a training data set and

to train the classifier. It is important to note that the traffic traces

used for training the classifier tends to be dynamic and changes over

time due to many factors, such as changes in the website, changes

in network conditions, and changes in Tor. Thus, the attacker needs

to collect new network traffic frequently to avoid this mismatch

between the testing and training data.

To the best of our knowledge, there is no WF research that

comprehensively considers the bootstrap time. Prior work makes

the assumption that the dataset used to test the classifier is from the

same distribution that is used for training. However, in a realistic

scenario, the gap time between the training and testing phases

may be large enough to cause potential data mismatch issues which

would negatively affect performance. This concern has been studied

in prior work. Juarez et al. found that attack accuracy for k-NN

dropped from 80% to 30% within 10 days [13], while Rimmer et

al. found a drop in accuracy from 95% to 81% after 28 days using

an SDAE classifier [24]. Therefore, we can infer that the trained

classifier will only remain effective for a few weeks at best after

the classifier is initially trained.

The need to frequently re-train the classifier raises the question

in regards to the computing resources and time required for the

attacker to collect the new data. The longer the time used to collect

the new data, the higher the chance of the dataset’s staleness by

the time the attack is deployed. Table 2 shows the time required for

crawling the data (with typical PCs on a fast network connection)

used for training the classifier for AWF model [24]. Even when the

attacker uses two dozen computers for crawling, nearly two weeks

are needed to collect the large data set.

Unique to the literature so far, Wang and Goldberg examined the

issues of bootstrap time and data freshness for the k-NN attack [34].

They find that k-NN trained on as few as 31 instances per site is

nearly as effective as using 85 instances per site, with 0.77 TPR and

0.003 FPR. For five instances per site, however, they report a TPR of

just 0.253. Additionally, they still need to collect thousands of traces

to get 31 instances per site with a sufficiently large unmonitored set.

Our attack uses as little as five traces in total given a pre-trained

model. To address data freshness, they propose a technique to

update a trained k-NN classifier. This technique needs to be run

continuously, however, to maintain the freshness of data. If the

attacker obtains an older dataset, it will be too stale to help in their

approach. Our model, on the other hand, can use a years-old dataset

to build the pre-trained model.

3.3 Flexibility & Transferability

A WF attack is a traditional classification problem in which the

attacker uses a fixed number of labels for training the classifier.

During the training process, the classifier is trained by learning to

locally map the input data to the given website. These following

steps briefly describe the training and prediction process:

• The attacker first determines the set of k monitored sites and

labels them as s1, s2, ... sk .

• He then gathers T training instances for each monitored site

and anotherU training instances for the unmonitored set.

• The attacker trains his classifier with the k ×T +U collected

training traces with their corresponding labels.

• He eavesdrops on the victim to capture an unlabeled trace.

• In the prediction phase, the attacker uses the trained classifier

to predict the label of the victim’s trace.

Note that the possible predicted class is then limited to one of the

k websites that were previously used for training or to the unmoni-

tored set. Thus, the attacker is subject to an additional constraint.

Whenever the attacker wishes to add or remove a website from his

monitored set, he must re-train his classifier. This is yet another

issue which increases the time and resource requirements necessary

to perform the attack. In this work, we study how techniques such

as N-shot learning and transfer learning can be used to improve

WF attacks. It is important to note that resolving the flexibility and

transferability issues can directly ameliorate the bootstrap time

and generalizability issues since the time required to collect data is

reduced and more varied data set may be collected.

3.4 Goals for Improvement

We have described three areas of improvements of WF attacks,

including generalizability, bootstrap time, and flexibility and trans-

ferability issues. To improve the performance of WF attacks, we

have established the following key goals to address each issue.

Generalizability. The WF classifier should be robust to the data

mismatch issues that occur as a result of 1) staleness of training

data and 2) heterogeneous distributions of training and testing data.

Bootstrap time. The WF classifier that is trained on one dataset

should remain effective against traces collected later. If it needs to

be re-trained, the amount of training data required should be small

to reduce the effort needed for data collection.

Flexibility & Transferability. The WF classifier should enable

the attacker to flexibly add new sites to the monitored set or use

a completely new monitored set with only modest effort in data

collection and training.

Attack Performance. After achieving the aforementioned goals, a

robust classifier must of course still achieve a high level of accuracy.

A classifier that is able to achieve these goals is much more

dangerous to the privacy of Tor users than one that requires the

attacker to have significant computing resources for frequently



gathering fresh training data specifically targeting each victim’s

circumstances. In the next section, we describe a technique that

leverages N-shot learning to meet these requirements.

4 N-SHOT LEARNING

DL has shown to be effective in many domains of applications

such as image recognition, speech recognition, and WF attacks [7,

11, 15, 17, 26, 27, 29]. However, traditional supervised DL algo-

rithms normally require 1) a large number of labeled examples used

for training the classifier, 2) distributions of training and testing

datasets that are matched or at least similar. Moreover, the models

can only make predictions for the set of classes on which it was

trained.

This style of learning contrasts with what we normally think of

as true intelligence. For example, a person can recognize the face

of someone by only seeing them a few times, and this ability scales

to thousands of different faces. The DL models currently in use for

WF are unable to do this. This is a key challenge in DL: How can

we build a model that can rapidly learn from very little data? This

challenge has motivated the development of the N-shot Learning

(NSL) technique [8, 32].

4.1 NSL Implementation

NSL is a recently developed ML procedure that allows a model to

accurately classify samples based on only a few training examples.

More precisely, NSL requires only a small number N of examples

for every given class. So, when N=5 (called 5-Shot Learning), the

classifier learns from a training dataset that contains only five

samples for every class. NSL has been broadly implemented in

face recognition [22, 25], where it is a compelling approach due to

constraints inherent in the task:

Limited training data. The classifier used to perform the face recog-

nition task cannot expect a rich dataset of training data. For example,

if we want to design a face recognition system for use at a company,

the system cannot require hundreds of photos from each employee

as that would be impractical to implement.

Ability to update class’ labels. In most uses of these classifiers, it is

expected that class labels will need to be added or removed from

the system frequently. For example, if there are new employees, the

classifier should be still effectively running without downtime for

re-training the classifier.

NSL is able to address both of these constraints by modifying

the learning process. We summarize the key differences between

the NSL and traditional supervised learning as the following:

Learning goal. Traditional supervised learning mainly focuses on

training the classifier to learn and locally map the input to its

corresponding class. In contast, NSLmodels are trained to learn how

to distinguish between different objects regardless of the previously

trained classes.

Prediction output. Traditional supervised learning aims to simply

predict a certain class within the set of training examples. By con-

trast, the model in NSL is treated as a feature extractor to generate

the embedded vectors of inputs from the learned model. These

embedded vectors are used to measure similarity and the expected

prediction output is to decide whether or not these inputs are in

the same class.

Transferability and flexibility. The transferability of the model

enables the practitioner to use models pre-trained by others and

make small changes to it. It is important to note that a rich dataset

is still necessary to initially train the NSL model. However, the NSL

model is used as a feature extractor without being locally bounded

to a set of classes. Thus, it can more readily generalize to new

classes. Moreover, NSL allows the practitioner to flexibly adopt a

pre-trained model from others who have more computing resources

and larger training datasets.

Number of learning examples. After the underlying model used by

NSL is trained, only a small number of examples are required for

each class to generate an embedded vector. The class embedded

vectors are used to train the final classifier to classify the given

inputs into their corresponding classes.

An early implementation of NSF used k-Nearest Neighbours

(k-NN) to directly measure the similarity between two different

samples, but this showed poor results due to being overly sensitive

to minor variations in raw data. To mitigate this problem, the model

needs to be capable of effectively extracting representative features

that are robust to variation before distance between samples is

measured. Koch et al. demonstrated that using deep learning for

feature extraction is an effective solution to this problem [16]. There

are two deep embedded networks that have seen use in NSL: Siamese

Networks [30] and Triplet Networks [25]. Siamese networks are

conceptually based on similarity learning in which we measure

how similar two comparable objects are. Triplet networks have

been shown to be more effective than Siamese networks [22, 25],

and we confirmed this for the WF problem in a preliminary study.

In the next section, we provide further details as to how an NSL

model can be constructed by using triplet networks.

5 TRIPLET NETWORKS

Triplet networks [22, 25] contain parallel and identical sub-networks

sharing the same weights and hyperparamenters as shown in Fig-

ure 2. Three different inputs called triplets are used to train the

networks. The triplets are randomly sampled from the training data

to create an array containing the vectors of three different input

examples: Anchor (A), Positive (P), and Negative (N). Each input is

individually fed to their corresponding sub-network during the

training phase. To explain the differences between A, P, and N,

let us craft a toy example. Let us say we have a dataset that con-

tains traffic examples from three different websitesÐwikipedia.org,

gmail.com and amazon.comÐand each website has three examples.

Then sampling and generating the triplets used to train the network

proceeds as:

• Anchor Input (A): The anchor input is the example used as

the main referenceÐe.g. the first example from wikipedia.org.

• Positive Input (P): The positive input is chosen from the

remaining examples of the anchor’s classÐe.g. the second

example from wikipedia.org.

• Negative Input (N): The negative input is sampled from any

class that is not the anchorÐe.g. any of network traffic’s ex-

amples from gmail.com, or amazon.com.







Table 4: The performance of prior attacks forNSL (Accuracy)

Type of

Experiment

Number of N Example(s)

1 5 10 15 20

CUMUL [21] 42.1 ± 5.5 72.2 ± 1.7 79.7 ± 1.4 83.3 ± 2.0 85.9 ± 0.6

k-FP [10] 36.3 ± 1.6 79.3 ± 1.0 83.9 ± 1.0 85.9 ± 0.6 87.5 ± 0.8

• AWF775: The set of the other 775 monitored websites, where

each website has 2,500 examples .

• AWF9000: The set of 9,000 unmonitored websites, where each

website has 1 example.

DF dataset [27]. The dataset consists of both monitored and un-

monitored websites crawled from the Alexa Top sites. As with the

AWF dataset, this dataset was collected using TBB version 6.X. in

2016. We categorize the DF dataset into two sets:

• DF95: The set of 95 monitored websites, where each website

has 1,000 examples.

• DF9000: The set of 9,000 unmonitored websites, where each

website has 1 example.

We choose these three datasets to support the different purposes

of our experiments. The intuitive explanation behind the selection

of each dataset will be later described in each experimental setup.

Data Representation: We follow the data representation used by

recent work in WF using DL [24, 27, 33]. The data used for training

and testing the model consists of network traffic examples from

various sources of dataset as mentioned above. All examples are

converted to fixed-length sequences with the size of 5000 length

feature vector as the input to the model. Thus, the dimension of

the input is 1D array of [n x 5000]; where n is the total number of

network’s sequences fed to the model. In each sequence, we ignored

packet size and timestamps and only take the traffic direction of

each packet in which +1 and -1 represent outgoing and incoming

packets, and 0 is used for padding

7.2 Statistical soundness

We run the experimental testing 10 times and find the mean and

standard deviation to report the final performance of the attack.

Furthermore, the network traffic examples used for N -training the

classifier and for testing the classifier are randomly shuffled and

sampled at every round of the evaluation to ensure that the results

are not evaluated from only specific data points.

7.3 Prior work baseline

To begin, we have reevaluated prior attacks CUMUL and k-FP under

the training sample restrictions of NSL.4 For these experiments, we

split the AWF100 dataset into testing and training portions. The

number of samples used in the training portion is varied throughout

the experiments. The results for N=[1, 5, 10, 15, 20] training samples

per class can be seen in Table 4.

4We were unable to accurately reproduce the results of [36] and consequently we do
not include the wfin attack in our baseline experiments.

Table 5: The performance of WF attacks: Similar but mutu-

ally exclusive datasets (Accuracy)

Type of

Experiment

Embedded

Vectors

Number of N Example(s)

1 5 10 15 20

Disjointed Websites
N-ALL

79.4 ± 1.6
90.9 ± 0.7 93.1 ± 0.2 93.3 ± 0.3 93.9 ± 0.2

N-MEV 92.2 ± 0.6 93.9 ± 0.2 94.4 ± 0.3 94.5 ± 0.2

7.4 Similar but mutually exclusive datasets

The first experiment evaluates the attack scenario in which the

attacker pre-trains the feature extractor on one dataset and tests

on a different dataset with different classes (Disjointed websites).

More precisely, the websites’ URLs used during the pre-training

phase and the attack phase are mutually exclusive. In this scenario,

the training and testing datasets have a similar distribution in that

they are both collected with from the same period of time (2016)

using the same version of TBB (6.X).

Experimental setting: We train the triplet networks by using the

AWF775 dataset and test on AWF100. During the training phase,

we randomly sampled 25 examples for each website in the AWF775

dataset using the semi-hard-negative mining strategy to formulate

232,500 triplets to train the triplet networks.

During the testing phase, we use 90 randomly-sampled examples

for each website from the AWF100 dataset. We separate each site’s

examples into two different chunks, with 20 examples for the first

chunk and 70 examples for the second chunks. The examples in the

first chunk are reserved to evaluate the classification performance

on theN = 1, 5, 10, 15, 20 examples that are collected by the attacker

to N -train the k-NN classifier. The other 70 examples are used as

the testing data to evaluate the performance of the attack from

the trained k-NN classifier. Note that, we will apply these basic

experimental settings for the rest of the following experiments.

N-ALL vs N-MEV: The original implementation of N -shot learn-

ing classification is to use N embedded examples to N -train the

k-NN classifiers as mentioned in Section 6.2. We call this represen-

tation N-ALL. We propose a new approach to improve the perfor-

mance of the k-NN classifier by modifying the input representation.

Instead of usingN examples for each website, we calculate themean

of all N examples to generate a Mean Embedded Vector (MEV) used

to train the classifier.

We evaluate the classification performance that results from

using 1)N-ALL representation in which all ofN embedded examples

for each website are fed to train the model, and 2) our proposed

N-MEV representation, in which the embedded vector is generated

from the mean of N embedded examples for each websites.

Results: Table 5 shows the performance of WF attacks on mutu-

ally exclusive training and testing datasets with different values

of N . Overall, the N-MEV vectors consistently provide better per-

formance than N-ALL in term of the accuracy of the attack. We

believe that the average of vectors in N-MEV helps reduce the noise

between embedded vectors of the same class. Therefore, we will

mainly use N-MEV representation to evaluate the next following

experimental evaluations.

The results also show that the accuracy of the attack could reach

to almost 80% of accuracy with only one example (1-shot learning).



Table 6: The impact of including different portions of the

websites during the training phase (Accuracy)

Type of

Experiment

Number of N Example(s)

1 5 10 15 20

Disjointed Websites 79.4 ± 1.6 92.2 ± 0.6 93.9 ± 0.2 94.4 ± 0.3 94.5 ± 0.2

25% Inclusion 81.2 ± 1.3 92.9 ± 0.6 94.3 ± 0.7 94.7 ± 0.5 94.7 ± 0.3

50% Inclusion 79.6 ± 1.9 92.7 ± 0.8 94.1 ± 0.9 94.7 ± 0.7 95.0 ± 0.5

75% Inclusion 79.7 ± 1.7 93.0 ± 1.4 94.2 ± 0.9 94.5 ± 1.1 95.0 ± 0.8

100% Inclusion 80.6 ± 2.3 93.4 ± 0.9 94.6 ± 0.7 94.7 ± 0.8 95.0 ± 0.9

5-shot learning impressively attains 92% of accuracy. We observe

that the accuracy of the attacks starts leveling off after n >= 15 at

94% accuracy.

TF Goals: According to the results in the experiment, we sum-

marize how the TF attack can improve the performance of WF

attacks:

• Flexibility & transferability: The results show that even if

the classifier is trained on one dataset and tested on different

dataset in term of their websites’ labels, the performance still

remains effective. Therefore, the attacker can directly perform

WF attacks without worrying about whether or not the websites

that he would like to monitor were included in the classifier

during the training process.

• Bootstrap time: The attacker only needs to collect five exam-

ples per website, taking ∼5 minutes per website, to N -train the

classifier. This supports cooperation among attackers in which

one attacker with more time to collect data can periodically train

the feature extractor, while other attackers only need to collect

data for their sites of interest close to the time of use.

• Performance of attack The results demonstrate that the TF

attack can still remain effective with over 90% accuracy.

Possible Advantages of the Attacker: The attacker may believe

that including some samples of the same class in both the pre-

training and N-training phases will improve performance (ie. the

pre-training and N-training datasets are not disjoint). This would

allow the triplet networks to train and test with the partial set of

websites that the model has seen before. As an example, an attacker

may believe that www.foxnews.com is commonly selected as a

monitored site by other attackers who use his model, so he decides

to include examples of www.foxnews.com during the training phase.

It is then interesting to evaluate whether or not this inclusion has

improved the model’s ability to identify sites of label www.foxnews.

com. To test this, we perform experimental evaluations to compare

the disjointed websites case with different percentages of inclusion.

The inclusion rates are ranged from from 25% to 100%. The results

of these experiments are shown in Table 6.

We find that allowing inclusion between our training sets does

not provide noticeable improvement in attack performance. A rea-

son for this may be related to the fact that DL models that use

softmax classification learn to locally map the given input to their

corresponding class. This leads to overfitting and a more rigid

model. By contrast, NSL with triplet networks has the model learn

to differentiate the given pair of inputs (similar or dissimilar) with-

out locally mapping to the particular website’s label to be assigned.

This allows the model to more effectively learn on small numbers

of samples. This is the compelling property of NSL which allows us

to achieve the flexibility and transferability goals of our classifier.

Furthermore, it is interesting to compare the performance of the

TF attack with previously-proposed WF attacks using hand-crafted

features as these attacks have been shown to be effective with less

training data than DL attacks. For this purpose, the TF attack trained

with 100% inclusion is most appropriate for comparison against

the baseline attacks. We find that the TF attack is clearly superior

to the baselines when small sample counts are usedÐe.g. CUMUL

and k-FP achieve 42.1% and 36.3% accuracy respectively where N=1

(1-shot learning) whereas TF attack reaches 80.6% accuracy. We

observe the accuracy improves significantly when the number of

N examples increases for both CUMUL and k-FP attacks, however

the performance of the TF attack still significantly outperforms

the baselines in all settings. This confirms that the TF attack is

distinctive in its ability to achieve high WF performance in low

traffic example settings.

7.5 WF attacks with different data distributions

Next, we evaluate the performance of the WF attack under the

scenario in which the training and testing data are collected from

different distributions.

Experimental setting: We use the same triplet model from the

first experiment trained with the AWF775 dataset. However, we

instead use the Wang100 dataset as the testing data to newly train

the k-NN classifier during the testing phase. The experimental set-

ting is designed to evaluate the performance of the attack in which

the model that is trained on one specific time and TBB version but

tested against a significantly different time5. The 3-year difference

between the AWF and Wang datasets ensures that the two’s distri-

butions differ significantly. To verify this we perform analysis using

Cosine similarity in Appendix A and conclude that these datasets

are very likely to be mismatched.

In these experiments, we decided to initially train TF on the a

dataset collected in 2016 and test on a dataset collected in 2013

primarily due to the larger variety of websites in the 2016 dataset.

Triplet networks learn to classify by identifying the differences

between classes, and so it is important that a large number of

classes are contained in the data which is used to initially train

the model. Since the objective of this experiment is to evaluate if

TF can mitigate the adverse effects of data mismatch between the

training phases, we believe the order of the timing does not affect

the validity of our evaluations.

Result: As we see in Table 7, the results show that the TF attack

remains fairly effective and achieves almost 85% with 5-shot learn-

ing. Moreover, we observe that the accuracy of the attack gradually

increase up to 87% with 20-shot learning.

WF Attack’s Goals of Improvements: In this experiment, the

results demonstrate that the TF attack achieves another one of our

goals:

• Generalizability: The results demonstrates that the feature ex-

tractor can be trained on traffic traces having one distribution

5A real-world attacker must still capture a small dataset of fresh representative samples
for the testing phase.



Table 7: The performance of WF attacks with different dis-

tributions of training and testing datasets (Accuracy)

Type of

Experiment

Number of N Example(s)

1 5 10 15 20

Different Distributions 73.1 ± 1.8 84.5 ± 0.4 86.2 ± 0.4 86.6 ± 0.3 87.0 ± 0.3

Table 8: The performance of WF attacks: Similar but mutu-

ally exclusive datasets (Accuracy)

Approach
Number of N Example(s)

1 5 10 15 20

Traditional 27.9 ± 5.0 87.6 ± 0.4 93.4 ± 0.2 95.2 ± 0.1 95.1 ± 0.1

TF 79.2 ± 1.3 92.2 ± 0.6 93.9 ± 0.2 94.4 ± 0.3 94.5 ± 0.2

and used in an attack on traffic traces with a different distribu-

tion. Thus, a WF attack using NSL allows the attacker to adopt

a feature extractor trained on older data and still perform WF

attacks with respectable accuracy.

7.6 Traditional Transfer Learning vs TF Attack

The transfer learning [37] is a machine learning technique in which

a model trained on one task can be effectively re-used on another.

This technique has widely shown to be effective in many domains of

applications. The intuition behind the effectiveness of the transfer

learning results from the ways that deep learning learns features

representations. In computer vision, deep learning tries to learn

and detect lower-level features such as edges in their earlier layers

and higher-level features such as objects in the deeper layers. This

hierarchical learning allows the users to directly transfer the knowl-

edge of learned features from the early layers and only fine-tune

the deeper layers to fit the model for their tasks. Thus, the user

does not need to re-train the model from scratch.

However, there are challenges in applying transfer learning to

the WF domain. These challenges come from the fact that the

distributions of data used to train the pre-trained model and test

the model are different due to changes in Web traffic over time.

Therefore, it is interesting to investigate how effective transfer

learning is when compared to the TF attack.

To clearly distinguish between the aforementioned transfer learn-

ing and the TF attack, we will use the term traditional approach to

represent the general transfer learning technique and use the TF

approach to represent our TF attack.

Experimental setting: To pre-train the model, we use the DF ar-

chitecture trained with the AWF775 dataset. We follow the recom-

mendations in machine learning (ML) to re-train model by freezing

k early layers out of the n total layers during the re-training pro-

cess6. We test with different values of k to maximize the accuracy

of the attack, and we find that freezing all layers except the last

FC layer with softmax provides the highest accuracy. Thus, we use

the setting where we freeze n − 1 layers to re-train the pre-trained

model. We then compare the performance of the attack in the tra-

ditional approach to the TF approach using two different scenarios

as in the previous experiments.

Result: Table 8 shows the performance of WF attacks using simi-

lar but mutually exclusive datasets. The results show that the TF

6http://www.deeplearningessentials.science/transferLearning/

Table 9: The performance of WF attacks: Different distribu-

tions of datasets using transfer learning (Accuracy)

Approach
Number of N Example(s)

1 5 10 15 20

Traditional 8.6 ± 1.4 31.1 ± 0.9 49.0 ± 0.5 52.5 ± 0.4 56.3 ± 0.9

TF 73.1 ± 1.8 84.5 ± 0.4 86.2 ± 0.4 86.6 ± 0.3 87.0 ± 0.3

Table 10: OpenWorld: Results when tuned for precision and

tuned for recall (Similar but mutually exclusive datasets)

N-Examples
Tuned for Precision Tuned for Recall

Precision Recall Precision Recall

5 0.871 0.808 0.804 0.893

10 0.908 0.788 0.730 0.948

15 0.891 0.829 0.692 0.966

20 0.873 0.862 0.706 0.968

approach performs significantly better compared to the traditional

approach when the available number of N examples is small (N =

1 or 5). We observe that after number N examples starts growing,

both approaches similarly perform well with over 93% accuracy.

The results suggest that if the attacker has a small dataset to re-train

the classifier, the TF approach is the better choice.

On the other hand, the effectiveness of the traditional approach is

significantly degraded under the more challenging scenario. Table 9

shows the performance of WF attacks with different distributions

of training and testing datasets. By contrast, the performance of

the TF attacks is noticeably higher, indicating that the TF approach

can better mitigate the negative effects of data mismatch. As we

see, with small N examples, the TF approach provides 50% higher

accuracy than the traditional approach. Furthermore, even if the

size of N becomes larger e.g. with 20 examples used for training

each website, the accuracy of the traditional approach is only 56%

whereas the TF approach reaches 87%. The results suggest that if

the attacker knows that the dataset used for pre-training is likely to

be dissimilar to the data in the attack phase, then the TF approach

is more effective.

7.7 Open-World Scenario

In the previous experiments, we explored the performance of the

TF attack under the closed-world scenario. However, this scenario

is unrealistic, as it assumes that the users will only visit websites

within the monitored set. In the following experiment, we evaluate

the performance of the TF attack in the more realistic open-world

setting. In the open-world, the classifier must learn to distinguish

between monitored and unmonitored sites. We use precision and

recall metrics to evaluate the performance of the attack.

Experimental Setting: We evaluate the open-world setting under

the standard model in which we include the unmonitored samples

as an additional label during training. We use AWF100 dataset as

monitored websites and AWF9000 as the unmonitored websites to

evaluate WF attacks with similar but mutually exclusive datasets.

Moreover, we use Wang100 dataset as monitored websites and

Wang9000 as the unmonitored websites to evaluate WF attacks

with different data distributions.





Figure 8: Open-world: Precision and Recall of the TF attack

against larger open world with growing sizes of unmoni-

tored websites.

Table 13: The performance of the TF attack against WTF-

PAD defense (Accuracy of the attack)

Type of

Experiment

N-Example

1 5 10 15 20

Disjointed Websites 20.5 ± 1.6 54.1 ± 0.7 57.8 ± 0.6 60.2 ± 0.4 61.2 ± 0.4

Different Distributions 15.5 ± 1.7 39.8 ± 0.5 47.2 ± 1.1 50.1 ± 0.4 51.7 ± 0.5

contains both packet direction and timing. Furthermore, we use a

model trained on the WTF-PAD simulated DF95 dataset and WTF-

PAD simulated Wang100 as the N-training and testing datasets,

respectively, to evaluate the performance of the TF attack with

different data distributions.

Result: Table 13 shows the performance of the TF attack against

WTF-PAD defense in two different scenarios. The results reveal

that the accuracy of the attacks in both cases significantly decrease

compared to the non-defended dataset in Table 5 and Table 7. As we

see, it requires at least 15 examples in the case of WF attacks with

similar but mutually exclusive datasets to reach to 60% accuracy.

In the case of WF attacks with different data distributions, the

performance can only reach to 50% accuracy with 15 examples.

However, if we compare the performance of the TF attack using

small dataset with the previously-proposed WF attacks, the TF

attack achieves comparable results. For example, the TF attack

(60.2%) performs nearly the same as the CUMUL (60.3%) and AWF

(60.8%) attacks. Moreover, it can outperform SDAE (36.9%), k-NN

(16.0%) and k-FP (57.0%) attacks.

8 DISCUSSION

Based on what we have observed in our experiments, we now

discuss other key benefits of NSL in WF:

WF attacks against interactive websites: Many websites change

content frequently, as new articles or other information is posted,

and these sites are particularly challenging to fingerprint. NSL

allows the attacker to quickly collect mostly up-to-date network

traffic examples and immediately use them to train theWF classifier.

This may allow the attacker to achieve better performance on these

frequently changing sites by using very fresh data that accurately

characterizes the current state of the site.

Webpage fingerprinting: Most prior work (with exception of [21])

only performs WF on the homepages of each websites and does

not consider all webpages within the website. The TF attack makes

the fingerprinting of many webpages from a given website more

feasible due to the reduced data requirements.

Threat landscape: The ability to use a pre-trained feature extractor

with a few network examples may allow a less powerful adversary

to perform WF. Thus, NSL expands the threat landscape, such that

the attack is not limited to attackers with significant computing

resources.

Countermeasures: The results from our WTF-PAD experiment

demonstrates that the TF attack is not as effective as the DF attack

when traffic is protected. This suggests that light-weight padding

mechanisms may be further developed to target NSL attacks.

Limitations: While we investigated dataset mismatch during the

initial training phase, we were not able to evaluate the effects of mis-

match during new-training. However, we feel this scenario is easily

avoided in real-world application since the burden of collecting a

fresh samples is low and many adversaries (eg. ISP or compromised

router) can likely replicate their target’s network conditions.

In addition, we have left the problem of session extraction and

multi-tab browsing unaddressed. Recent work [35] has proposed

algorithmic stream-splitting and chunk-based classification to ad-

dress these problems, however attack performance remains inad-

equate for real-world application. To appropriately address these

problems new classifiers will need to be developed.

9 CONCLUSION

In this study, we investigated the use of N-shot learning to improve

a WF attack under more realistic and more challenging scenarios

than found in most papers on WF attacks. We propose the Triplet

Fingerprinting (TF) attack leveraging triplet networks for N-shot

learning, which allows an attacker to train on just a few samples per

site. We evaluate the TF attack under several challenging scenarios.

The results show that the TF attack remains effective with 85%

accuracy even in a scenario in which the data used for training

and testing are from multiple years apart and collected on different

networks. Moreover, we also demonstrate that the TF attack is

effective in the open-world setting and can outperform traditional

transfer learning. These results demonstrate that an attacker with

relatively low computing resources can also perform WF attacks

with fairly effective performance.
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A DATASET’S DISTRIBUTION ANALYSIS

In Section 7.5, we study the performance of the triplet fingerprinting

attack under more challenging scenarios. One of the experiments

that we aim to evaluate is the performance of the attack against

the adverse effect causing from a data mismatch issue. The issue

happens when the distributions of training and testing datasets

are significantly different. We use two different datasets including

1) AWF dataset collected in 2016 using Tor browser version 6 as

the training data, and 2) Wang dataset collected in 2013 using Tor

browser version 3 as the testing data.

Even if the three-year gap of different periods and three differ-

ent versions of Tor browsers between AWF and Wang datasets

can presumably ensure the significant difference in term of their

distributions, we provide further investigation to evaluate how

significantly different between these datasets are. We provide eval-

uations based on two metrics including the basic network traffic

statistic and the similarity measurement.

A.1 Basic Network Traffic Statistic

Common Websites in Wang and AWF datasets: We analyze

the network traffic statistic on websites that are commonly listed

in the Wang and the AWF datasets. We first evaluate the number

of incoming and outgoing packets which directly represents the

change in each website’s contents in term of the size of the website

over periods of time. Table 14 demonstrates the average numbers









accuracy of the attack gradually improves as k gets smaller

except for 1-Shot learning that gains significant increase with

∼5% accuracy when k is reduced from k = 100 to k = 50.

Overall, the results show the consistent increase of the accuracy

with the larger Top-n and smaller k-Way. The improved accuracy

form Top-1 to Top-2 can be interpreted that the triplet model cannot

perform well enough to move the embedded vector to be closest to

the corresponding website in the embedding space. However, it is

closed enough to be in the second closest neighbor. This suggests

that the improvement of the subnetwork or the larger number of

websites used for training model can possibly be the key factors to

substantially improve quality of the model and ultimately increase

the performance of the attacks. The results also reveal that if the

attacker is interested in detecting a smaller set of websites, the

performance of the attack can be improved.

D TF ATTACK’S HYPERPARAMETER
TUNING PROCESS

In this part, we provide intuitive explanation and the preliminary

results used for each parameter selection in addition to what is

mentioned in Section 6.1. For each selection, we vary the range of

parameters to run the model. We only use the subset of training

and testing data due to the fact that using the full size of data

requires large amount of time to complete each evaluation. We then

compare the result given by each setting and finally selected the

most effective one.

• Based Model: We test with previously-proposed state-of-the-

art DL models used in image recognition literature including

GoogleNet [29], RestNet [11] and Xception [7] and compared

with DF [27] model; the state-of-the-art model dedicatedly

designed for the WF task. Our preliminary results demonstrate

that the DFmodel can perform slightly better with significantly

less training time required. It turns out that using the DF as

the base model takes approximately 400s on each epoch of

training. On the other hand, the very deep learning models

such as GoogleNet, RestNet and Xception require over 600s on

each epoch of training. Thus, we choose the DF model as the

subnetwork in the triplet networks.

• DistanceMetrics:We compare two distancemetrics generally

used in the N-Shot learning applications including Cosine

distance and Euclidean distance. Our preliminary results shows

that using the Cosine distance provides higher performance

than using the Euclidean one with ∼2ś3% better accuracy.

• Mining Strategy: We evaluate three different mining strate-

gies used to generate the triplets input including Random,Hard-

Negative and Semi-Hard-Negative. The results shows that the

Semi-Hard-Negative perform better than the rest in term of

the accuracy of the attack e.g. ∼7% and ∼40% when compared

with Random and Hard-Negative minings respectively.

• Margin: The margin’s value defines a radius around the em-

bedded vector and helps for the learning process. The value is

specific for each type of data’s input, thus, we have to find the

best m value that is suitable for network traffic and provide ef-

fective performance to the model. We find that margin’s value

m = 0.1 can provide better results than others with ∼0.3ś2.9%

higher accuracy.

• Optimizer: The optimizer is a mathematical model used to

measure and update the weights’ learning with respect to the

loss model. We evaluate different types of optimizer used dur-

ing the training process including SGD, ADAM , Adamax and

RMProp. SGD performs best with slightly higher performance

compared to others with ∼0.3ś1.7% better accuracy. Thus, we

choose SGD as optimizer used during the model’s training

process.

• Batch Size: Batch size is the number of inputs that are sampled

to be fed to the network during the training process. We find

that batch size = 64 and batch size = 128 can provide ∼1.5%

better accuracy than others. Thus, we choose to use them as

the final choices.

• Embedded Vector’s Size: The embedded vectors size is the

size of the last dense layer in each subnetwork. It contains

the vectors of the output after feeding the input through the

learned model to extract features. We find that there is no

noticeable difference between our candidates. Thus, we simply

select the embedded vectors size = 64 as the final selection

because it requires less number of training parameters in the

network helping reduce the time for training the model.




	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 WF Attacks
	2.2 WF Attack Assumptions

	3 Attacker Goals
	3.1 Generalizability
	3.2 Bootstrap Time
	3.3 Flexibility & Transferability
	3.4 Goals for Improvement

	4 N-shot Learning
	4.1 NSL Implementation

	5 Triplet Networks
	6 Triplet Networks in WF
	6.1 Hyperparameter Tuning
	6.2 Model Training and Testing

	7 Experimental Evaluations
	7.1 Dataset
	7.2 Statistical soundness
	7.3 Prior work baseline
	7.4 Similar but mutually exclusive datasets
	7.5 WF attacks with different data distributions
	7.6 Traditional Transfer Learning vs TF Attack
	7.7 Open-World Scenario
	7.8 TF attack in the Larger Open World
	7.9 TF Attack against WTF-PAD

	8 Discussion
	9 Conclusion
	Acknowledgments
	References
	A Dataset's Distribution Analysis
	A.1 Basic Network Traffic Statistic
	A.2 Similarity Measurement

	B Larger open-world scenario
	C Top-n and k-Way Accuracy
	D TF Attack's Hyperparameter Tuning Process

