
Bonsai: High-Performance Adaptive Merge Tree
Sorting

Nikola Samardzic∗, Weikang Qiao∗, Vaibhav Aggarwal, Mau-Chung Frank Chang, Jason Cong
University of California, Los Angeles Los Angeles CA, USA

{nikola.s, wkqiao2015, vaibhav.a}@ucla.edu, mfchang@ee.ucla.edu, cong@cs.ucla.edu

Abstract—Sorting is a key computational kernel in many
big data applications. Most sorting implementations focus on
a specific input size, record width, and hardware configuration.
This has created a wide array of sorters that are optimized only
to a narrow application domain.

In this work we show that merge trees can be implemented on
FPGAs to offer state-of-the-art performance over many problem
sizes. We introduce a novel merge tree architecture and develop
Bonsai, an adaptive sorting solution that takes into consideration
the off-chip memory bandwidth and the amount of on-chip
resources to optimize sorting time. FPGA programmability allows
us to leverage Bonsai to quickly implement the optimal merge
tree configuration for any problem size and memory hierarchy.

Using Bonsai, we develop a state-of-the-art sorter which specif-
ically targets DRAM-scale sorting on AWS EC2 F1 instances. For
4-32 GB array size, our implementation has a minimum of 2.3x,
1.3x, 1.2x and up to 2.5x, 3.7x, 1.3x speedup over the best designs
on CPUs, FPGAs, and GPUs, respectively. Our design exhibits
3.3x better bandwidth-efficiency compared to the best previous
sorting implementations. Finally, we demonstrate that Bonsai can
tune our design over a wide range of problem sizes (megabyte to
terabyte) and memory hierarchies including DDR DRAMs, high-
bandwidth memories (HBMs) and solid-state disks (SSDs).

Index Terms—merge sort, performance modeling, memory
hierarchy, FPGA

I. Introduction

There is a growing interest in FPGA-based accelerators for
big data applications, such as general data analytics [1]–[3],
genomic analysis [4], compression [5] and machine learning
[6]–[11]. In this paper we focus on sorting given its importance
in many data center applications. For example, MapReduce
keys coming out of the mapping stage must be sorted prior
to being fed into the reduce stage [12]. Thus, the throughput
of the sorting procedure limits the throughput of the whole
MapReduce process. Large-scale sorting is also needed to run
relational databases; the sort-merge join algorithm has been
the focus of many research groups, with sorting as its main
computational kernel [13], [14].

Data processing systems like Hive [15], Spark SQL [16],
and Map-Reduce-Merge [17] implement relational functions
on top of Spark and MapReduce; sorting is a known bottleneck
for many relational operations on these systems.

CPUs offer a convenient, general-purpose sorting platform.
However, implementations on a single CPU are shown to
be many times inferior to those on GPUs or FPGAs (e.g.,
[18], [19]). For example, PARADIS [20], the state-of-the-art

*indicates co-first authors and equal contribution for this work

CPU sorter, works at < 4 GB/s for inputs over 512 MB in
size. Additionally, the CPU architecture is specialized to work
with 32/64-bit data and sorting wide records usually leads to
much lower performance, as CPU has no efficient support for
gathering 32- or 64-bit portions of large keys together [21],
[22].

Regarding GPU-based sorting, hybrid radix sort (HRS) [18]
offers state-of-the-art performance for arrays up to 64 GB in
size, with the best reported throughput of over 20 GB/s for
2 GB arrays. In general, GPU sorters perform well (>5 GB/s)
only when the entire array fits into the GPU’s memory (4-
8 GB) [23]–[26]. HRS is able to sort up to 64 GB of data
by using the CPU to merge smaller subsets of the input
data that are initially sorted on the GPU. Nonetheless, this
CPU-side merging dominates the computation time for large
enough arrays: for 32 GB arrays, GPU-based sorters spend the
majority of their compute time on the CPU. Most GPU sorters
also focus exclusively on 32- or 64-bit wide records, which
are more amenable to GPU’s parallel instructions. As many
workloads require wider records [27] [28], this restriction is
often unacceptable.

The two best performing FPGA sorters are SampleSort
[19] and Terabyte sort [29]. SampleSort sorts up to 14 GB of
data at 4.44 GB/s, offering the best FPGA-accelerated sorting
performance after our work. However, SampleSort relies on
the CPU for sampling and bucketing, which limits scalability:
indeed, for arrays over 16 GB, the performance drops 3x.
Terabyte Sort [29] implements a merge tree-based FPGA
sorting system that can sort up to 1 TB of data. However,
our analysis shows that their design misses many optimization
opportunities and does not perform well on smaller-scale
sorting tasks (§IV-C). Other FPGA sorters focus exclusively
on arrays that can fit in on-chip memory (< 1 MB) [30]–[35]
and will be discussed in §VII-A.

Table I shows the best known solutions for different problem
sizes use both different algorithms and different hardware
platforms, with none of them performing well across all
problem sizes. In fact, most solutions are not able to sort at all
outside a preset range of input sizes (dashes in Table I indicate
no reported result). This implies that data center engineers
need to procure multiple different hardware platforms and
familiarize themselves with many different sorting approaches
in order to achieve good performance across all problem sizes.
Further, almost all sorters consider only a small range of record
widths.

1

TABLE I: Sorting time in ms per GB (lower is better). Best sorters for CPU, GPU, and FPGA across different problem sizes
compared to Bonsai. Performance of distributed sorters [36], [37] multiplied by number of server nodes used. Dashes (‘-’)
indicate no reported result.

4 GB 8 GB 16 GB 32 GB 64 GB 128 GB 512 GB 2 TB 100 TB
CPU PARADIS [20] 436 436 395 388 363 - - - -
CPU distributed [36] - - - - - 508 508 508 466
GPU HRS [18] 208 208 208 224 260 267 - - -
GPU distributed [37] - - - - - - 2,909 3,368 -
FPGA SampleSort [19] 215 217 220 643 - - - - -
FPGA TerabyteSort [29] - - - - 3,401 4,366 4,347 4,347 6,210
Bonsai 172 172 172 172 172 250 250 250 375

To overcome these problems, we present Bonsai, a merge
tree-based adaptive sorting solution which can tune our merge
tree architecture to sort a wide range of array sizes (megabytes
to terabytes) on a single CPU-FPGA server node. It considers
the scalability of sorting kernels with respect to not only
the problem size, but also available computational resources,
memory sizes, memory bandwidths, and record width. Bonsai
uses a set of analytical performance and resource models in
order to configure our adaptive merge tree architecture to
any combination of available hardware and problem sizes.
Furthermore, our general approach helps computer architects
better understand what performance benefits future compute
and memory technology may bring, as well as how these
improvements can best be integrated with our merge tree
sorter.

In particular, we explore the unique reconfigurability of the
FPGA, which allows Bonsai to adapt the sorting kernel to meet
changing sorting demands within hundreds of milliseconds
[38]. The problem size, record width, latency vs. throughput
trade-offs, and available memory and compute hardware are
all considered when optimizing our merge tree configurations.

We choose to base our design on the merge sort algorithm
[39] as it has both the asymptotically optimal number of
operations and predictable, sequential memory access patterns
(ideal for memory burst and coalescing). Furthermore, due to
its asymptotically optimal I/O complexity [40], merge sort is
generally regarded as the preferred technique for sorting large
amounts of data within a single computational node [25].

Alternatively, bucketing algorithms like sample or radix
sort have been effectively used in many data center-scale
distributed sorters, but are only useful when the ratio of
problem size to the number of processors is relatively low [41].
In comparison, our implementation exhibits much better per-
node performance on terabyte-scale problems than any such
distributed sorting system (Table I).

Our contributions include:
• A novel adaptive merge tree (AMT) architecture, which

allows for the independent optimization of merge tree
throughput and the number of concurrently merged arrays
(§II). Our architecture can be optimally adapted to the
available on-chip resources and off-chip memory band-
width. We also introduce new features necessary for high
performance of merge trees (§V).

• We develop Bonsai, a complete and adaptive sorting
solution which uses a set of comprehensive models to tune
the AMT configuration to reduce sorting time (§III). We

explain how the models can be used to optimize our de-
sign for different memory systems, such as DRAM, high-
bandwidth memory (HBM), and flash memory (§IV).

• We use Bonsai to develop a state-of-the-art complete
sorting system for DRAM-scale sorting on AWS F1. Our
design has a minimum of 2.3x, 1.3x, 1.2x and up to
2.5x, 3.7x, 1.3x speedup over the best sorters on CPUs,
FPGAs, and GPUs, respectively and exhibits 3.3x better
bandwidth-efficiency compared to all previous sorting
implementations.

• We further demonstrate the versatility of our approach
by using Bonsai to create an SSD sorter whose projected
performance is 17.4x better than any other single-node
sorter [29] and 2x better per-node latency than any
distributed terabyte-scale sorting implementation [37].

A. Hardware Mergers

Hardware mergers are the basic building blocks of merge
trees. We call a k-merger a hardware merger that can merge
two sorted input streams at a rate of k records per cycle. The
k-merger is designed to expect k-record tuples at its two input
ports and outputs one k-record tuple each cycle. We use some
combination of 1-, 2-, 4-, 8-, 16-, and 32-mergers in our AMT
designs, although using even bigger mergers is also possible.

In order to output k records per cycle, mergers use a pipeline
of two 2k-record bitonic half-mergers [42]. A 2k-record bitonic
half-merger is a fully-pipelined network that merges two k-
record sorted arrays per cycle [43]. The network is made up of
log k steps. In each step, k compare-and-exchange operations
are executed in parallel on different pairs of records. Thus,
the bitonic half-merger merges with latency log k and requires
k log k logic units.

The logic required by the 2k-merger is asymptotically
dominated by the two bitonic half-mergers. Thus, the logic
utilization of a 2k-merger is Θ(k log k). The mergers consume
no on-chip block memory other than registers.

Note that Bonsai and the AMT architecture can use any
underlying merger design as a building block, and are not
limited to our specific merger implementation.

B. Problem Formulation

In this paper, we focus our attention on optimizing sorting
on a single FPGA for input size ranging from megabytes to
terabytes of data. Nonetheless, our design can also be used as
a building block for a larger distributed sorting system.

2

TABLE II: Bonsai input parameters.
Symbol Definition

N Number of records in array
r Record width in bytes

(a) Array parameters.

Symbol Definition
βDRAM Bandwidth of off-chip memory
βI/O Bandwidth of I/O bus

CDRAM Off-chip memory capacity in bytes
CBRAM On-chip memory capacity in bytes
CLUT Number of on-chip logic units

b Size of read batches in bytes
(b) Hardware parameters.

Symbol Definition
f Merger frequency

mk Logic utilization of a k-merger
ck Logic utilization of a k-coupler

(c) Merger architecture parameters.

Bonsai’s goal is to minimize sorting time by optimizing
the choice of adaptive merge trees (AMTs) to the available
hardware, merger architecture, and input size (Table II).

AMTs are constructed by connecting mergers and cou-
plers together (details in §II). We view mergers/couplers as
black box components and do not optimize their design
with Bonsai. Thus, the resource utilization and frequency of
mergers/couplers are treated as input parameters to our model.

We present how mergers and couplers can be connected to
create various AMTs in §II. We explain how AMTs can be
configured to minimize sorting time (§III-A). We introduce a
resource utilization model that we use to understand if an AMT
configuration is implementable on available hardware (§III-B).
Finally, we present the Bonsai-optimal AMT configurations
for three different types of off-chip memories and synthesize
the respective configurations on an FPGA (§IV). We report
performance of the DRAM sorter and experimentally validate
Bonsai’s predictions in §VI.

II. AMT Architecture Framework
Adaptive merge trees (AMTs) are constructed by connecting

mergers into a complete binary tree. AMTs are uniquely de-

2-M

4-M

1-M 1-M1-M 1-M

1-M 1-M1-M 1-M 1-M 1-M1-M 1-M 1-M 1-M1-M 1-M 1-M 1-M1-M 1-M

Coupler

2-M

Data Loader
Fig. 1: Example architecture of an AMT with throughput p = 4
and number of leaves ` = 16. 1-M, 2-M, and 4-M represent
1-, 2-, and 4-mergers, respectively.

1
2

3

I/O

I/O

DRAM

FPGA

4
Fig. 2: Illustration of single AMT tree configuration and its
associated data movement flow. The triangle represents the
AMT tree.

fined by their throughput and number of leaves. The through-
put of an AMT is the number of merged elements it outputs per
cycle out of the tree root (we call this value p). The number of
leaves of an AMT, denoted `, represents the number of sorted
arrays the AMT concurrently merges; ` is important because
it determines the number of recursive passes the data needs to
make through the AMT.

Our AMT architecture allows for any combination of p and
` to be implemented as long as there are sufficient on-chip
resources. To implement a p and ` AMT, we put a p-merger
at the root of the AMT, two p/2-mergers as its children, then
four p/4-mergers as their children, etc., until the binary tree
has log2 ` levels and can thus merge ` arrays. In general, the
tree nodes at the k-th level are p/2k-mergers. If for a given
level k, we have 2k > p, we use 1-mergers. For example, for
the AMT with throughput p = 4 and 16 leaves (` = 16), we
would use a 4-merger at the root, two 2-mergers as the root’s
children, four 1-mergers as the root’s grandchildren, and eight
1-mergers as the root’s great-grandchildren (Figure 1).

In order to feed the output of a p/2-merger to the parent p-
merger, a p-coupler is used between tree levels to concatenate
adjacent p/2-element tuples into p-element tuples suitable for
input into the parent p-merger (Figure 1).

Merge sort is run by recursively merging arrays using
AMTs. The array is first loaded onto DRAM (step 1, Figure
2) via an I/O bus (either PCI-e from the host or SSD, or an
Ethernet port from another FPGA or host). Then we stream the
data through the AMT, which merges the input elements into
sorted subsequences (steps 2-3). Steps 2-3 are then recursively
repeated until the entire input is merged into a single sorted
array. We call each such recursive merge a stage. Once the
data is sorted, it is output back via the I/O bus (step 4).

During the first stage, the AMT merges unsorted input
data from DRAM and outputs `-element sorted subsequences
back onto DRAM. In the second stage, the `-element sorted
subsequences are loaded back into the AMT, which in turn
merges ` different `-element sorted subsequences; thus, the
output of the second stage are `2-element sorted subsequences.
In general, the k-th stage will produce `k-element sorted
subsequences. Therefore, the total number of merge stages
required to sort an N-element array is dlog` Ne.

As recognized in [29] and [44], merging more arrays (i.e.,
increasing `) reduces the total number of merge stages required
to sort an array, thereby reducing the sorting time. On the other
hand, using an AMT with higher throughput (i.e., increasing
p) reduces the execution time of each stage. Thus, there is

3

TABLE III: AMT configuration parameters.
Symbol Definition

p Number of records output per cycle by a merge tree
` Number of input arrays of a merge tree

λunrl Number of unrolled merge trees
λpipe Number of pipelined merge trees

a natural trade-off between p and `, as increasing either of
them requires using additional limited on-chip resources. The
Bonsai model shows that different choices of p and ` are
optimal for different problem sizes, as described in §III, and
§IV.

Our AMT architecture can be configured to work with any
key and value width up to 512 bits without any resource
utilization overhead or performance degradation; if necessary,
even wider records can be implemented by using bit-serial
comparators in the mergers [45].

In order to read/write from/to off-chip memory at peak
bandwidth, reads and writes must be batched into 1-4 KB
chunks. The data loader implements batched reads and writes,
thereby abstracting off-chip memory access to the AMT. The
data loader may consume considerable amounts of on-chip
memory, as it needs to store ` pre-fetched batches on-chip.
Nonetheless, it allows us to utilize the full bandwidth of off-
chip memory. Further microarchitecture details are presented
in §V.

III. AMT Architecture Extensions and Performance
Modeling

In this section, we introduce AMT configurations and ex-
plain how different configurations impact performance (§III-A)
and resource utilization (§III-B), which in turn help to create
Bonsai, an optimizer that finds the optimal AMT configuration
parameters (Table III) given the input parameters (Table II).
Bonsai is introduced in §III-C.

A. AMT Configurations

An AMT configuration (summarized in Table III) is defined
by specifying: the AMT throughput p, the AMT leaf count `,
the amount of AMT unrolling λunrl (§III-A2), and the amount
of AMT pipelining λpipe (§III-A3).

Each AMT is uniquely defined by its throughput (p) and
leaf count (`), which we denote as AMT (p, `). In order to
ease implementation, we use the same p and ` values for all
AMTs within a configuration. A λunrl-unrolled configuration
means λunrl AMTs are implemented to work independently
in parallel. Conversely, a λpipe-pipelined configuration implies
ordering λpipe AMTs in a sequence so that the output of one
AMT is used as input to the next AMT. We allow for both
unrolling and pipelining to be used by replicating a λpipe-
pipelined configuration λunrl times (§III-A4).

1) Optimizing single-AMT configurations: In this section,
we model the performance of AMT (p,`).

As discussed in §II, the total number of merge stages
required to sort an N-element array is dlog` Ne. The amount of
time required to complete each stage depends on the through-
put of the AMT (= p f r) and off-chip memory bandwidth,

HBM

MUX

...
FPGA

13

2 22 22

Fig. 3: Design and data movement of an unrolled tree config-
uration. Each triangle represents a merge tree.

denoted βDRAM. Thus, the time needed to complete each
stage is Nr/min{p f r, βDRAM}. The sorting time is equal to
the amount of time needed to complete all dlog` Ne stages:

Latency =
Nr · dlog` Ne

min{p f r, βDRAM}
. (1)

In general, our model’s predictions and experimental results
suggest that increasing p is more beneficial than increasing `
up until the AMT throughput reaches the DRAM bandwidth.

2) AMT unrolling: The total sorting time can be further im-
proved by employing multiple AMTs to work independently.
Of course, this is only useful if the off-chip memory bandwidth
can meet the increased throughput demands of using multiple
AMTs. When λunrl AMTs are used to sort a sequence, we
first partition the data into λunrl equal-sized disjoint subsets
of non-overlapping ranges and then have each AMT work on
one subset independently (Figure 3). This partitioning can be
pipelined with the first merge stage and thus has no impact
on sorting time. To ensure the merge time of each AMT will
be approximately the same, all AMTs within a configuration
are chosen to have the same p and ` value. As each AMT
sorts its subset independently, the sorting time of unrolled
configurations is the same as the time it takes for a single
AMT to sort N/λunrl elements, assuming no other bottlenecks.
Importantly, the off-chip memory bandwidth available to each
AMT is no longer βDRAM, but βDRAM/λunrl as the unrolled
AMTs are required to share the available memory bandwidth.
Thus, for a λunrl-unrolled configuration, we have

Latency =
Nr · dlog` (N/λunrl)e

min{p f r, βDRAM/λunrl}
. (2)

As partitioning data into λunrl non-overlapping subsets may
cause interconnect issues for large values of λunrl, another
approach is to forgo partitioning and let each AMT sort a
pre-defined address range. After each AMT finishes sorting
its address range, we rely on merging these sorted ranges by
using a subset of the AMTs from the original configuration.
This approach is preferred when λunrl is larger than a certain
range, but incurs a performance penalty because the final few
merge stages cannot use all available AMTs. 1

3) AMT pipelining: We will assume that DRAM bandwidth
(βDRAM) will be multitudes greater than I/O bandwidth, de-
noted βI/O [46]. For large data stored on the SSD, the array
is sent over the I/O bus to the sorting kernel at throughput

1The comparison of non-overlapping and address-based partitioning is left
for future work.

4

Bank 1 Bank 2 Bank 3 Bank 4
DRAM

FPGA

1

2

3 4 5

6
I/O I/O

Fig. 4: Design and data movement of a pipelined tree config-
uration.

βI/O; the kernel then sorts the array and returns it back to the
SSD over the I/O bus. If we use λunrl unrolled AMTs to sort
the input array in parallel as in §III-A2, the I/O bus will idle
until the sorting procedure is completed. Since I/O bandwidth
is a scarce resource, it would be better if the I/O bus would
never idle. Therefore, we introduce AMT pipelining, which
configures AMTs so that data can be read from and written
to the I/O bus at a constant rate over time.

We can pipeline multiple AMTs in such a way that each
merge stage of the sorting procedure is executed on a different
AMT (Figure 4). Thus, at any point in time, each AMT
executes its stage on a different input array. Concretely, when
the first array comes over the I/O bus, it is sent to the first AMT
in the pipeline and merged into `-element sorted subsequences
(steps 1-3, Figure 4). Once this initial stage is completed, the
array is forwarded via a DRAM bank to a second AMT which
performs the second merge stage (step 4). Concurrently, a
second array can be fed into the first AMT in the pipeline
(steps 1-2). Once this stage completes, a third array is fed
into the first AMT, while the second and first arrays are
independently merged by the second and third AMTs in the
pipeline, respectively. Thus, the pipelined approach ensures a
constant throughput of sorted data to the I/O bus (step 6).
AMT pipelining is useful when multiple arrays need to be
sorted. Thus, we use AMT pipelining in the first phase of the
SSD sorter, where the input data is first sorted into DRAM-
size subsequences (§IV-C). Specifically, using pipelining with
λpipe = 4 lowers the execution time of the first phase of the
SSD sorter by 2x.

Similarly to unrolling, pipelining divides the available
DRAM bandwidth between the AMTs in the pipeline: when
λpipe AMTs are used, the bandwidth of the pipeline will be
limited to βDRAM/λpipe. Further, the throughput of the pipeline
is limited by the I/O bandwidth (βI/O), as well as by the
throughput of the AMTs used in the pipeline (= p f r). Thus,
the throughput of a p and ` λpipe-pipeline is

Throughput = min{p f r, βDRAM/λpipe, βI/O}, (3)

with the sorting time being

Latency =
Nr · λpipe

min{p f r, βDRAM/λpipe, βI/O}
. (4)

In contrast to unrolling, the total amount of data an AMT
pipeline can sort is limited by two factors. First, each AMT

in a pipeline must store its intermediate output onto DRAM.
Specifically, in a λpipe-pipelined configuration, the biggest
array that can be sorted without spilling data out of DRAM is
CDRAM/λpipe. Second, in a λpipe-pipelined AMT (p,`) configu-
ration, each array passes through at most λpipe merge stages
(the data cannot be sent backwards in the pipeline). Thus, the
maximum amount of data this pipeline can sort is `λpipe . This
constraint can be mitigated by pre-sorting small subsequences
of the input data before the initial merge stage. In summary,
the greatest number of records N that a p and ` λpipe-pipelined
configuration can sort is

N ≤ min{CDRAM/λpipe, `
λpipe }. (5)

4) Combining pipelining and unrolling: We allow for both
unrolling and pipelining to be used in configurations; this is
done by replicating a λpipe-pipelined configuration λunrl times.
Combining Equations 2, 3, and 4, we get the sorting time of
a λpipe-pipelined, λunrl-unrolled configuration:

Latency =
Nr · λpipe

min{p f r, βDRAM/(λpipeλunrl), βI/O}
, (6)

Throughput = λunrl ·min{p f r, βDRAM/(λpipeλunrl), βI/O}. (7)

B. Resource Utilization

In order for Bonsai to decide which AMT configurations
can be implemented on a given chip, we need to develop good
models for logic and on-chip memory utilization. We discuss
resource utilization of a single AMT (p,`); if k AMTs are used
in a configuration, the resource utilization of the configuration
will be exactly k times higher than that of a single AMT.

1) Logic utilization: AMTs are made up of mergers and
couplers. Thus, we approximate the look-up table (LUT)
utilization of an AMT by adding up the LUT utilization of
the mergers and couplers used to build the AMT; the LUT
utilization of an AMT (p,`) can be written as:

LUT (p, `) =

log∑̀
n=0

2n(mdp/2ne + 2cdp/2ne), (8)

with c2n and m2n being the number of LUTs used by
a 2n-coupler and 2n-merger, respectively;the n-th summand
corresponds to the LUT utilization at depth n of the tree.

Our experiments show that this simple model predicts LUT
utilization of AMTs within 5% of that reported by the Vivado
synthesis tool for all AMTs we were able to synthesize (i.e.,
AMTs for which p ≤ 32 and ` ≤ 256) (Figure 10).

To ensure that an AMT (p,`) can be synthesized on a chip,
we require that

LUT(p, `) < CLUT, (9)

where CLUT is the number of LUTs available on the FPGA.

5

Fig. 5: The sorting time of optimal AMT configurations for
different values of off-chip memory bandwidth compared to
best sorters on CPU (PARADIS) [20], GPU (HRS) [18], and
FPGA (SampleSort) [19]. The time required to stream the
entire data from and to memory is also included (I/O lower
bound). We use a 16 GB input size with 32-bit records.

2) On-chip memory utilization: The data loader is tasked to
read the input data from DRAM in 1-4 KB sequential batches.
Read batching is necessary for the DRAM to operate at peak
bandwidth. As each of the ` input leaves to the AMT are
stored in separate segments on DRAM, each leaf requires a
separate input buffer for storing batched reads. In order for an
AMT (p,`) to be synthesizable on chip, we must ensure all `
input buffers can fit in on-chip memory. Thus, we have

b · ` ≤ CBRAM, (10)

where b is the size of the read batches and CBRAM is the
amount of on-chip memory. When an FPGA is used, CBRAM
equals the amount of on-chip BRAM.

C. Bonsai AMT Optimizer

We now put the performance and resource models together
to define Bonsai. Bonsai is an optimization strategy that
exhaustively prunes all AMT configurations that fit into on-
chip resources and picks the one with either minimal sorting
time (latency-optimal) or maximal throughput (throughput-
optimal). Specifically, Bonsai outputs the optimal AMT con-
figuration (Table III) given array, hardware, and merger archi-
tecture parameters (Table II).

Formally, Bonsai’s latency optimization model finds

argmin
p,`,λunrl

{
N dlog`(N/λunrl)e

min{βDRAM/λunrl, p f r}

}
,

subject to

λunrl · LUT(p, `) ≤ CLUT

λunrl · b` ≤ CBRAM.

Pipelining is not used in the latency optimization model,
because it does not improve sorting time. However, pipelining
is used for optimizing sorting throughput.

In case many N-element arrays need to be sorted, optimizing
for throughput gives better total time than optimizing for the
latency of sorting a single N-element array; notably, we opti-
mize for throughput in the first phase of the SSD sorter, where
the data is first sorted into many DRAM-scale subsequences
(details in IV-C). When optimizing for throughput, Bonsai
finds

argmax
p,`,λunrl,λpipe

{
λunrl ·min{βI/O, βDRAM/(λpipeλunrl), p f r}

}
,

subject to
λpipeλunrl · LUT(p, `) ≤ CLUT

λpipeλunrl · b` ≤ CBRAM

min{CDRAM/(λpipeλunrl), `λpipe } ≥ N.

Bonsai can pick AMT configurations that optimally utilize
any off-chip memory bandwidth. The predicted and measured
sorting time of Bonsai on a modern FPGA is presented as a
function of available DRAM bandwidth in Figure 5 along with
previously best performing CPU, FPGA, and GPU sorters.

Importantly, Bonsai can list all implementable AMT con-
figurations in decreasing order of performance. Therefore, if
the most optimal design is impossible to synthesize due to
constraints not anticipated by the model, other close-to-optimal
configurations can be tried.

IV. Optimal Configurations inModern Hardware
In this section we present optimal AMT configurations

on an FPGA for three vastly different off-chip memories:
DDR DRAM (∼32 GB/s bandwidth, 16-64 GB capacity),
HBM (256-512 GB/s bandwidth, ∼16 GB capacity), and SSD
(<10 GB/s I/O bandwidth, 512 GB-2 TB capacity).

A. DRAM Sorting

As a concrete case study, we use Bonsai to construct a
sorter on the AWS EC2 F1.2xlarge instance, which offers a
modern FPGA connected to a 64 GB DDR4 DRAM that runs
at 32 GB/s concurrent read and write.2

The latency-optimized configuration for this setup uses a
single AMT (32, 256) (Figure 2). The throughput of the p = 32
AMT for 32-bit records is exactly 32 GB/s when it runs at
250MHz. Thus this configuration matches the peak bandwidth
of DRAM and then builds as many leaves (`) as can be
implemented on the FPGA. The reason why ` cannot be made
larger than 256 is that the data loader uses up the on-chip
memory (Equation 10).

The data is loaded from the host onto DRAM through the
PCI-e (step 1, Figure 2). Then the data is streamed onto
the FPGA (step 2), where the AMT merges the data and
writes the merged subsequences back onto DRAM (step 3).
The throughput of this streamed merge is 32 GB/s. Steps 2-3
are then repeated as many times as are necessary for all the
subsequences to be merged into a single array. Finally, the
sorted data is streamed back over the PCI-e (step 4).

2The measured DRAM read and write speed is roughly 29GB/s.

6

Bank 1 Bank 2 Bank 3 Bank 4
DRAM

FPGA

1

2

3 4 5

6

SSD/Flash

FPGA

7
8

I/O I/O

I/O I/O

Fig. 6: Optimal terabyte-scale tree configuration and data flow.
The top FPGA implements phase one, and the bottom FPGA
implements phase two. The two phases can be implemented
on a single FPGA via reprogramming.

Our experimental results show that our DRAM sorter has
state-of-the-art sorting time for 4-32 GB array size, with a
minimum of 2.3x, 1.3x, 1.2x and up to 2.5x, 3.7x, 1.3x
lower sorting time than best CPU, FPGA, and GPU sorters,
respectively. Details are presented in §VI-C.

B. High-Bandwidth Memory Sorting

Recently, Intel and Xilinx announced a release of a high-
bandwidth memory (HBM) for FPGAs that is expected to
achieve up to 512 GB/s bandwidth and has a capacity of up
to 16 GB [47]. We now show that our design scales well
with memory bandwidth by describing the optimal AMT
configuration for such HBMs.

When sorting 32-bit integers with the HBM acting as
DRAM, our model decides the optimal configuration to be
λunrl = 16 AMT (32, 2) (Figure 3). Data is streamed onto the
sorting kernel (step 1) and each AMT independently merges a
subsequence of the input data (step 2). Since λunrl is large, we
do not partition the data into non-overlapping intervals before
sending them to AMTs. Instead, each AMT sorts a predefined
address range. Once each AMT sorts its range, there are only
16 sorted subsequences left, meaning that there will not be
sufficient input for all AMTs in the next stage. Therefore,
half of the AMTs are idled, and the remaining 16/2 = 8
AMTs do one more merge stage. Then half of these AMTs
are idled, and the remaining 8/2 = 4 AMTs perform one more
merge stage. This continues until the entire array is eventually
merged. Therefore, all merge stages except the last four use
all 16 AMTs and thus utilize the full memory bandwidth of
512 GB/s. We experimentally support our HBM predictions in
§VI-D.

C. SSD Sorting

Our analysis can be expanded to allow for multi-tier off-
chip memory hierarchies in order for it to be applicable to
problem sizes beyond the capacity of DRAM. We now discuss
how Bonsai can be used to optimize sorting on an FPGA
that uses a 64 GB DRAM with 32 GB/s concurrent read and

write bandwidth together with a 2 TB SSD with 8 GB/s I/O
bandwidth.

The key insight for such two-level hierarchies is that the
sorting procedure should be divided into two distinct phases,
with each phase using a different AMT configuration. In the
first phase, data is streamed from SSD to DRAM. Once data
is on DRAM, we aim to sort as much data as would fit onto
DRAM before sending the data back to SSD. We process the
entire input in this way. Thus, at the end of the first phase,
the SSD will contain many DRAM-size sorted subsequences.

In the second phase, these sorted subsequences are merged
in as few stages as is possible. It is crucial that the number
of stages in the second phase is minimized, as every merge
stage requires a full round trip to SSD and is thus limited in
throughput by the relatively low SSD bandwidth.

In the first phase, the entire input data completes exactly
one round trip from SSD to DRAM and back. Thus, we
can minimize the total execution time of this phase by using
throughput-optimal Bonsai optimization.

The throughput-optimal configuration for the AWS F1 in-
stance with 32-bit records sorting 8 GB arrays is shown in
Figure 4. The pipeline contains 4 AMT (8, 64). The DRAM
has four memory banks, each connecting to the FPGA at four
different ports. Each DRAM bank can read and write to the
FPGA simultaneously at a peak rate of 8 GB/s. Thus, each
AMT saturates the bandwidth capacity of one bank. Further,
the I/O bandwidth is 8 GB/s. This implies that the data stream
out of the last AMT in the pipeline (step 6) will saturate the
I/O bandwidth. Thus, the throughput of this pipeline will be
min{βI/O, β/λpipe, p f r} = 8 GB/s. The greatest amount of data
we can sort with this pipeline is 8 GB, assuming we pre-sort
the input data into 256-element subsequences (Equation 5).

In the second phase of SSD sorting, the SSD effectively
acts as the only off-chip memory, as each stage in this
phase requires a round trip to SSD. Thus, we can minimize
latency directly by reconfiguring the FPGA using the latency-
optimized AMT configuration. The latency-optimized design
when the SSD is off-chip memory consists of one AMT (8,
256). Note that p of our AMT is not high because peak
SSD bandwidth is relatively low (<9 GB/s). Conversely, the
AMT will have many leaves (`) in order to minimize the
total number of stages required to do the necessary merges.
Therefore, this AMT configuration effectively mitigates the
impact of low SSD bandwidth by reducing the total amount
of memory accesses.

The optimal AMT configuration for SSD sorting of 32-
bit records with SSD on AWS F1 is given in Figure 6.
Steps 1-6 refer to the first phase and use the throughput-
optimal configuration for 8 GB arrays. Once the first phase
is completed, we reprogram the FPGA to a latency-optimized
configuration for the second phase (steps 7-8).

The first phase will operate at 8 GB/s and output 8 GB
sorted subsequences. As the second phase merges 256 subse-
quences concurrently, it can merge a total of 256·8 GB = 2 TB
of data in only one SSD round trip. This round trip is also
executed at 8 GB/s. Thus, this system is expected to sort 2 TB

7

Merge Tree

16 GB
DDR4

4 DDR4 Banks

DDR
Controller

AXI
Crossbar

FIFO ……

Unpacker

FIFO FIFO FIFO

Unpacker Unpacker Unpacker

Zero
Append

Zero
Append

Zero
Append

Zero
Append

Zero
Filter FIFO Packer

AWS EC2 F1
Xilinx UltraScale+ FPGA

Addr
Calc

PCIe XDMA

Host

Address

FIFO
Information

I/O

Input data
Output data

Fig. 7: The organization of a single merger tree system on the
AWS EC2 F1 instance. The host can configure the merge tree
kernel and prepare the data to be sorted through the PCIe DMA
channels. To make full use of the external DRAM bandwidth,
the communication between the sorting kernel and the DDR
controller is always through a 512-bit wide AXI-4 interface,
regardless of the record width: the Unpacker will extract one
record from the 512-bit FIFOs per cycle automatically once the
record width is set by the user and the packer will concatenate
the output of the merge tree into 512-bit wide data. The role
of FIFOs, zero append and zero filter are discussed in detail
in V-A and V-B.

of data in 512 s (4 GB/s). This is over 17x less time than the
state-of-the-art single-server-node sorter in [29].

In order to sort up to 256·2 TB=512 TB of data, we only
need to run one more merge stage of the AMT (8, 256). Thus,
we can sort up to 512 TB of data at 8/3 =2.66 GB/s on a single
FPGA. This is significantly better than all previous scalability
results (Table I). In general, our design can sort even bigger
arrays just by increasing the number of merge stages. Our SSD
sorter offers 17.3x lower latency than the best previous single
server node terabyte-scale sorter (§VI-E).

V. OtherMicroarchitecture Considerations

In this section we describe the microarchitecture of the
proposed merge tree. Figure 7 shows a block diagram of the
major components of our sorting system on an AWS EC2 F1
instance. Below we specifically present two important design
considerations that enable the merge tree to work efficiently.

A. Data Loader

All AMT configurations read and write data in a stream.
All reads from a specific leaf of the AMT are from continuous
memory addresses. Thus, the AMT architecture has amenable
off-chip memory access patterns.

The data loader performs the data reads and ensures off-
chip memory is operating at peak bandwidth. Reads to any
specific leaf occur in batches and are initiated by the data
loader. Each leaf has an input buffer that is implemented as
a FIFO, which is as wide as the DRAM bus (512 bits) and
can hold two full read batches. The data loader checks in a
round-robin fashion if any input buffer has enough free space
to hold a new read batch. Whenever the data loader encounters
an input buffer with sufficient free space, it performs a batched
load into the buffer. In order to be able to do this, the data
loader maintains a pointer to which address was last loaded
into each input buffer.

In case one input buffer becomes empty, the AMT will
automatically stall until the data loader feeds the buffer with
more data. While running our experiments, we did not have
any input buffer become empty (unless we were pausing the
data loader in order to ensure the AMT behaves correctly with
empty input buffers).

Due to batched and sequential reads/writes, the data loader
allows the off-chip memory to operate at peak bandwidth, as
verified by our experiments.

B. Intermediate State Flushing

During a merge stage, the AMT’s intermediate state needs to
be flushed and prepared for new input from another distinct
set of inputs. Assume we sort an N-record array using an
AMT with ` leaves. If at the current stage we have a-record
sorted subsequences at the input, the AMT’s intermediate state
will have to be flushed N/(` · a) times for this stage alone.
Even when sorting MB-scale data, the AMT’s state will be
flushed hundreds of thousands of times over the entire sorting
procedure, especially at the early stages of the sorting process
where we have many short runs to merge. Therefore, it is
crucial that the state flushing scheme is efficient.

To address this issue, we use a reserved record value (called
a terminal record) that is propagated through the datapath to
signify to mergers that one of their input arrays has been
fully processed. This approach improves on the work in [48].
Our design feeds exactly one terminal record between adjacent
input arrays. The terminal record propagates through the AMT
causing only a single-cycle delay when flushing each merger’s
state in preparation for new input. We use the value zero as the
terminal record (zero append and zero filter in Figure 7). The
zero append will append a zero as a terminal record whenever
an entire sorted subsequence is fed into an input buffer. At the
output of the merge tree, these terminal records are filtered out
using a zero filter. Although we reserve zero for the terminal
record, any other value may be used.

VI. Experimental Results

In this section, we present experiments to validate the
model’s resource and performance predictions (§VI-B),
demonstrate the performance of our DRAM Sorter (§VI-C),
and validate our performance projections for the HBM sorter
(VI-D) and SSD Sorter (§VI-E). Finally, we discuss the
scalability in input size and record width (VI-F) .

8

Fig. 8: Sorting time per GB of various AMTs on an AWS F1 instance (bars) and predicted by our performance model (·).

Fig. 9: Sorting time per GB of various AMTs on an AWS F1 instance (bars) and predicted by our performance model (·).

= 2 = 4 = 8 = 16 = 32 = 64 = 128 = 256

20

23

26

LU
T

(x
1k

)

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

Fig. 10: Measured LUT utilization of various AMTs (bars) vs. our resource model’s predictions (·).

A. Experimental Setup

We implement all experiments on an Amazon AWS
F1.2xlarge instance that uses a single Virtex UltraScale+ 16nm
VU9P FPGA with a 64 GB DDR DRAM that has 4 banks,
each with 8 GB/s concurrent read and write bandwidth and
a capacity of 16 GB. We use Xilinx Vivado version 2018.3
for synthesis and implementation of our designs, which we
developed in Verilog. Our designs are running at 250 MHz or
higher frequency.

We benchmark our sorter on 32-bit integers generated
uniformly at random. We also use gensort to generate a
benchmark of 100 byte records (10-byte key, 90-byte value) in
accordance with the guidelines in Jim Gray’s sort benchmark
[49]. We hash the 90-byte value to a 6-byte index, which
allows us to feed the 10-byte key and 6-byte value into a 16-
byte AMT sorter. We generate datasets that are 64 MB-32 GB
in size.

B. Model Validation

1) Resource Model Results: The resource utilization results
reported by the synthesis tool are within 5% of our resource
utilization predictions for all AMTs we were able to implement
on the AWS EC2 F1 instance; that is, all AMTs such that
p ≤ 32 and ` ≤ 256. We report LUT utilization for all trees
we were able to implement on the AWS FPGA in Figure 10.

2) Performance Model Results: In order to validate our
performance model, we measured the sorting time of various
AMTs for input sizes ranging 512 MB-16 GB and report
results in Figures 8 and 9. All sorting time results are within
10% of those predicted by our performance model.

We notice that when AMTs have the same throughput p, the
AMT with the greater number of leaves ` gives better or equal
performance. Similarly, when two AMTs have the same num-
ber of leaves `, the AMT with the higher throughput p has bet-

Fig. 11: Comparison of our DRAM sorter (Bonsai) to state-of-
the-art results on CPU (PARADIS) [20], GPU (HRS) [18], and
FPGA (SampleSort) [19]. Results presented in sorting time per
GB (lower is better).

ter performance, as long as DRAM bandwidth is not saturated.
Once DRAM bandwidth is saturated, increasing throughput
p does not decrease sorting time; however, increasing the
number of leaves ` reduces the total number of merge stages,
thus reducing sorting time even when the AMT throughput
is high enough to saturate DRAM bandwidth. Thus, optimal
single-AMT configurations always have throughput p exactly
high enough to saturate DRAM bandwidth, with as many
leaves ` as on-chip resources permit.

C. DRAM Sorter Results

1) DRAM sorter latency: We implement the latency-
optimized DRAM sorter from §IV-A, which consists of a
single AMT (32, 64). We limit ` to 64 because designs with
more leaves have lower frequency due to FPGA routing
congestion. Our experiments show that for 4-32 GB input size

9

TABLE IV: Resource utilization breakdown of the optimal
DRAM sorter on AWS F1.

Component LUT Flip Flop BRAM
Data loader 110,102 604,550 960
Merge tree 102,158 100,264 0
Presorter 75,412 64,092 0
Total 287,672 768,906 960
Available 862,128 1,761,817 1,600
Utilization 33.3% 43.6% 60%

Fig. 12: Bandwidth-efficiency at 16 GB input size. Comparison
of Bonsai’s DRAM sorter to state-of-the-art results on CPU
(PARADIS) [20], GPU (HRS) [18], FPGA (SampleSort) [19].

the latency-optimized DRAM sorter has better performance
than all previous sorters on any hardware.

As shown in Figure 11, when sorting 32GB data our imple-
mentation has 2.3x, 3.7x, and 1.3x lower sorting time than the
best designs on CPUs, FPGAs, and GPUs, respectively. The
DRAM sorter does not perform well for input size beyond that
of DRAM capacity (64 GB). For input size over 64 GB, the
SSD Sorter offers better performance.

The resource utilization breakdown of the latency-optimized
DRAM sorter is given in Table IV. We use a 16-record bitonic
network to presort the data into 16-record subsequences before
the first merge stage. This reduces the total number of stages
by one, and the total execution time by 10-20%, depending on
input size. Table IV demonstrates that the FPGA has additional
resources available to leverage future improvements in DRAM
bandwidth, which is the bottleneck in our DRAM sorter.

2) Bandwidth-efficiency: Formally, bandwidth-efficiency is
defined as the ratio of the throughput of the sorter to
the available bandwidth of off-chip memory; for example,
the DRAM-scale sorter used in the first phase of terabyte-
scale sorting sorts at a throughput of 7.19 GB/s; since the
DRAM bandwidth is 32 GB/s, the bandwidth-efficiency of
our DRAM sorter is 7.19/32 = 0.225. As implementations
of many algorithms are bottlenecked by memory bandwidth,
bandwidth-efficiency is one of the most important scalability
concerns in many problem domains. Additionally, memory
accesses account for most of the energy consumed by many
computer systems [50]. Thus, bandwidth-efficiency is directly
related to energy consumption. We show the bandwidth-
efficiency of our sorter in comparison to other bandwidth-
efficient implementations in Figure 123. To the best of our
knowledge, our implementation has the highest bandwidth
efficiency: specifically 3.3x better bandwidth-efficiency than

3For SampleSort we use 1/latency as the throughput since the original paper
doesn’t report throughput at this data scale

TABLE V: Execution time breakdown of sorting 2 TB of data.
Phase Time Percentage
Phase One 256s 49.6%
Reprogramming 4.3s 0.8%
Phase Two 256s 49.6%
Total 516.3s

Fig. 13: Latency per GB of latency-optimized Bonsai sorters
across 0.5 GB-100 TB input size, along with reasons for in-
creases in latency.

any other sorter, when working with a 8 GB/s DRAM (labeled
‘Bonsai 8’). When working with 32 GB/s DRAM bandwidth
using 4 DRAM banks, Bonsai still gives 2.25x improvement
in bandwidth-efficiency compared to all other sorters (labeled
‘Bonsai 32’).

D. HBM Sorter Results

The new Xilinx U50 board has a high-bandwidth memory
tile that incorporates 32 DDR4 memory banks, with each
bank providing up to 8 GB/s read/write bandwidth [51]. As
current DDR4 DRAM has 4 DRAM banks, each providing
up to 8 GB/s read/write bandwidth, we verify our HBM
performance projections by implementing designs that saturate
a single DRAM bank; then we make resource utilization
projections for what would be required to scale the design
to 32 banks.

In order to experimentally verify our results, we first
synthesized 16 AMT (16, 2) on an AWS F1 instance. The
synthesis tool shows these AMTs can perform at 250 MHz, as
predicted. Since we did not have access to HBM, we verified
that unrolling scales well by using DRAM banks. As the
DRAM bandwidth is 32 GB/s, we showed that two p = 16
AMTs saturate DRAM bandwidth, with each AMT using two
DRAM banks. We also showed that four p = 8 AMTs saturate
DRAM bandwidth, with each AMT working independently on
a single DRAM bank. This demonstrates that unrolling scales
both performance and resource utilization linearly with the
unrolling amount, λunrl.

E. SSD Sorter Results

We validate our conclusions from §IV-C by independently
verifying the throughput of each of the two phases. We
throttled the DRAM throughput to that of modern SSD Flash
(8 GB/s), and run the pipeline in phase one (Figure 4) on
AWS F1. The pipeline effectively saturates I/O bandwidth of
8 GB/s, as predicted by our model.

10

In order to verify the second phase, we again throttle the
DRAM to operate at 8 GB/s and implement an AMT (8, 256).
Again, the design operates at 8 GB/s. This validates our per-
formance predictions for SSD sorting. We also experimentally
verify that reprogramming the FPGA between the two phases
will take an average time of 4.3s. The summary of our results
is given in Table V. Our SSD sorter offers 17.3x lower latency
on sorting 1 TB of data compared to the best previous single
server node terabyte-scale sorter [29].

F. Scalability Analysis

We measure scalability as sorting time (latency) per GB of
input data. If a sorter is able to achieve the same latency per
GB for a wide range of input sizes, then it has good scalability.
As demonstrated by Table I, our sorter exhibits scalability that
is multiple times better than all previous work.

1) Scalability in Input Size: In order to understand the
scalability of our system, we now describe the reasons for
latency per GB increases across a wide range of input size.
Figure 13 shows the latency per GB of the Bonsai sorter for
input size 0.5 GB to 1024 TB.

The latency per GB increases at four distinct points, marked
by arrows on Figure 13. The first latency increase (labeled
‘extra stage’) happens at 2 GB because the DRAM sorter needs
to feed the data to the AMT one additional time; that is,
the data requires an extra merge stage to be sorted (1.33x
performance penalty). The second latency increase (labeled
‘switch to SSD sorter’) happens at 128 GB when the input
data is too large to fit onto DRAM; at this point, data is
initially stored in an SSD (1.33x performance penalty). The
third latency increase (labeled ‘extra stage in second phase’)
happens at 32 TB because an extra merge stage in the second
phase of the SSD sorter is needed to merge all the data
(1.5x performance penalty). The fourth performance penalty
happens at 4096 TB and increases latency per GB by 1.33x;
this is again caused by a need for an extra merge stage in the
second phase of the SSD sorter.

2) Scalability in Record Width: Table VI shows that the
AMT building blocks for 32- and 128-bit records exhibit

TABLE VI: LUT utilization and throughput of building-block
elements.

Element Th-put LUT
1-merger 1 GB/s 300
2-merger 2 GB/s 622
4-merger 4 GB/s 1,555
8-merger 8 GB/s 3,620
16-merger 16 GB/s 8,500
32-merger 32 GB/s 18,853

Element Th-put LUT
FIFO 1 GB/s 50
2-coupler 1 GB/s 142
4-coupler 2 GB/s 273
8-coupler 4 GB/s 530
16-coupler 8 GB/s 1,047
32-coupler 16 GB/s 2,079

(a) 32-bit records

Element Th-put LUT
1-merger 4 GB/s 1,016
2-merger 8 GB/s 2,210
4-merger 16 GB/s 5,604
8-merger 32 GB/s 13,051
16-merger 64 GB/s 29,970
32-merger 128 GB/s 77,732

Element Th-put LUT
FIFO 4 GB/s 134
2-coupler 4 GB/s 576
4-coupler 8 GB/s 1,938
8-coupler 16 GB/s 2,081
16-coupler 32 GB/s 4,142
32-coupler 64 GB/s 8,266

(b) 128-bit records

comparable resource utilization for equal-throughput elements,
with 128-bit records offering somewhat better throughput
per LUT. For example, a 128-bit record 4-merger has the
same throughput as a 32-bit record 16-merger, but almost
50% less logic utilization. This is because the bigger the
record width, the less data shuffling is required within each
merger. Specifically, the 128-bit record 4-merger has the same
throughput as the 32-bit 16-merger, but the 128-bit 4-merger
needs a much smaller number of compare-and-swap operations
to output 4 records per cycle versus the 16 records per cycle
that the 32-bit 16-merger must output. More formally, the
logic complexity of the compare-and-swap unit grows linearly
with record width, while the number of compare-and-swap
units within a merger grows superlinearly (Θ(k log k)) with
the number of records. Thus, 1 GB of wider records requires
less resources to be sorted in the same amount of time as one
GB of narrower records.

VII. RelatedWork

A. FPGA Sorting

In addition to [29] and [19] (§I), [30] and [32] give a fairly
comprehensive analysis of sorting networks on FPGAs, but
limit the discussion to sorting on the order of MB elements,
with [32] arguing for a heterogeneous implementation where
small chunks are first sorted on the FPGA and then later
merged on the CPU. Still, their reported performance has
little advantage over a CPU for larger input sizes. The authors
in [33] present a domain-specific language to automatically
generate hardware implementations of sorting networks; they
consider area, latency, and throughput. The unbalanced FIFO-
based merger in [34] presents an interesting approach to
merging arrays, but is not applicable to large sorting problems.
In [35] the authors use a combination of FIFO-based and
tree-based sorting to sort gigabytes of data. This work also
removed any global intra-node control signals and allowed for
larger trees to be constructed. However, it lacks an end-to-end
implementation and focuses only on building the sorting kernel
and reporting its frequency and resource utilization. Further,
due to the recent innovation in hardware merger designs,
memory and I/O, and increases in FPGA LUT capacity, their
analysis has become more limited. Our work extends their
analysis and improves performance by using higher throughput
merge trees.

B. GPU Sorting

The work in [52] models sorting performance of GPUs. The
model allows researchers to predict how different advances in
hardware would impact the relative performance of various
state-of-the-art GPU sorters. Their results indicate that perfor-
mance is limited by shared and global memory bandwidth.
Specifically, the main issue with GPU sorters compared to
CPU implementations seems to be that GPU’s shared memory
is multiple times smaller than CPU RAM. This implies global
memory accesses are more frequent with GPUs than disk or
flash accesses in CPU implementations.

11

The work in [18] focuses on building a bandwidth-efficient
radix sort GPU sorter with an in-place replacement strategy
that mitigates issues relating to low PCIe bandwidth. To the
best of our knowledge, their strategy provides state-of-the-art
results on GPU, reporting they sort up to 2 GB of data at
over 20 GB/s. When integrated as a CPU-GPU heterogeneous
sorter with CPU does the merging, they are able to sort 16 GB
in roughly 3.3s. Nonetheless, this approach is not scalable, as
it relies on executing merge stages on CPU. Specifically, at
32 GB, the CPU computation dominates the execution time of
the heterogeneous sorter.

VIII. Conclusions

In this paper we present Bonsai, a comprehensive model and
sorter optimization strategy that is able to adapt sorter designs
to available hardware. When Bonsai’s optimized design is
implemented on an AWS F1 FPGA, it yields a minimum of
2.3x, 1.3x, 1.2x and up to 2.5x, 3.7x, 1.3x speedup over the
best sorters on CPUs, FPGAs and GPUs as well as exhibits
3.3x better bandwidth-efficiency compared to the best previous
sorting implementation.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their valuable comments and helpful suggestions. This
work is supported in part by the NSF CAPA REU Supplement
award # CCF-1723773, the CRISP center under the JUMP
program, Mentor Graphics and Samsung under the CDSC
Industrial Partnership Program. The authors also thank Xilinx
for equipment donation and Amazon for AWS credits.

Nikola Samardzic owes special thanks to the Rodman family
for their continued support through the Norton Rodman En-
dowed Engineering Scholarship at UCLA. He also thanks the
donors that contributed to the UCLA Achievement Scholarship
and the UCLA Womens’ Faculty Club Scholarship.

References

[1] B. Sukhwani, T. Roewer, C. L. Haymes, K.-H. Kim, A. J. McPadden,
D. M. Dreps, D. Sanner, J. Van Lunteren, and S. Asaad, “Contutto:
A novel FPGA-based prototyping platform enabling innovation in the
memory subsystem of a server class processor,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2017.

[2] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu, and
Arvind, “BlueDBM: An appliance for big data analytics,” in Proceedings
of the 42nd Annual International Symposium on Computer Architecture
(ISCA), 2015.

[3] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger, “A cloud-scale acceleration architecture,” in
The 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), 2016.

[4] L. Wu, D. Bruns-Smith, F. A. Nothaft, Q. Huang, S. Karandikar, J. Le,
A. Lin, H. Mao, B. Sweeney, K. Asanovic, D. A. Patterson, and
A. D. Joseph, “FPGA accelerated INDEL realignment in the Cloud,”
in Proceedings of the 25th Annual International Symposium on High-
Performance Computer Architecture (HPCA), 2019.

[5] W. Qiao, J. Du, Z. Fang, M. Lo, M. F. Chang, and J. Cong, “High-
throughput lossless compression on tightly coupled cpu-fpga plat-
forms,” in 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2018.

[6] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: Efficient inference engine on compressed deep
neural networks,” in International Symposium on Computer Architecture
(ISCA), 2016.

[7] J. Fowers, K. Ovtcarov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel,
A. Sapek, G. W. L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield,
E. S. Chung, and D. Burder, “A configurable cloud-scale DNN processor
for real-time AI,” in International Symposium on Computer Architecture
(ISCA), 2018.

[8] J. Park, H. Sharma, D. Mahajan, J. K. Kim, P. Olds, and H. Es-
maeilzadeh, “Scale-out acceleration for machine learning,” in Interna-
tional Symposium on Microarchitecture (MICRO), 2017.

[9] H. Zhu, D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and M. Erez,
“Kelp: Qos for accelerated machine learning systems,” in International
Symposium on High Performance Computer Architecture (HPCA), 2019.

[10] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K. Kim,
and H. Esmaeilzadeh, “Tabla: A unified template-based framework for
accelerating statistical machine learning,” in International Symposium
on High Performance Computer Architecture (HPCA), 2016.

[11] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Toward uniformed representation and acceleration for deep convolutional
neural networks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 11, pp. 2072–2085, 2019.

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Operating System Design and Implementation (OSDI),
2004.

[13] C. Barthels, I. Müller, T. Schneider, G. Alonso, and T. Hoefler, “Dis-
tributed join algorithms on thousands of cores,” in Very Large Data
Bases (VLDB), 2017.

[14] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu, “Multi-core, main-
memory joins: Sort vs. hash revisited,” in Operating System Design and
Implementation (OSDI), 2004.

[15] A. Thusoo, J. S. Sarma, N. Jain, P. Chakka, N. Zhang, S. Antony, H. Liu,
and R. Murthy, “Hive - a petabyte scale data warehouse using hadoop,”
in International Conference on Data Engineering (ICDE), 2010.

[16] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark
SQL: Relational data processing in spark,” in International Conference
on Management of Data, 2015.

[17] H. chih Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, “Map-
Reduce-Merge: Simplified relational data processing on large clusters,”
in International Conference on Management of Data, 2007.

[18] E. Stehle and H.-A. Jacobsen, “A memory bandwidth-efficient hybrid
radix sort on GPUs,” in International Conference on Management of
Data (SIGMOD), 2017.

[19] H. Chen, S. Madaminov, M. Ferdman, and P. Mildred, “Sorting large
data sets with FPGA-accelerated samplesort,” in International Sympo-
sium on Field-Programmable Custom Computing Machines (FCCM),
2019.

[20] M. Cho, D. Brand, and R. Bordawekar, “PARADIS: An efficient parallel
algorithm for in-place radix sort,” in Very Large Data Bases (VLDB),
2015.

[21] H. Inoue and K. Taura, “SIMD- and cache-friendly algorithm for sorting
an array of structures,” in Very Large Data Bases (VLDB), 2015.

[22] J. Chhugani, W. Macy, and A. Baransi, “Efficient implementation of
sorting on multi-core SIMD CPU architecture,” in Very Large Data
Bases (VLDB), 2008.

[23] “Nvidia thrust.” https://developer.nvidia.com/thrust. Accessed: 2019-10-
30.

[24] “Nvidia CUB.” https://github.com/NVlabs/cub. Accessed: 2019-10-30.
[25] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting

algorithms for manycore GPUs,” in International Symposium on Parallel
& Distributed Processing (IPDPS), 2009.

[26] D. Merrill and A. Grimshaw, “High performance and scalable radix
sorting: A case study of implementing dynamic parallelism for GPU
computing,” Parallel Processing Letters, 2011.

[27] C. Binnig, S. Hildenbrand, and F. Farber, “Dictionary-based order-
preserving string compression for column stores,” in Proceedings of the
2009 ACM SIGMOD International Conference on Management of Data
(SIGMOD), 2009.

[28] P. Bohannon, P. Mcllroy, and R. Rastogi, “Main-memory index structures
with fixed-size partial keys,” in Proceedings of the 2001 ACM SIGMOD
International Conference on Management of Data (SIGMOD), 2001.

12

https://developer.nvidia.com/thrust
https://github.com/NVlabs/cub

[29] S.-W. Jun, S. Xu, and Arvind, “Terabyte sort on FPGA-accelerated flash
storage,” in International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2017.

[30] R. Chen, S. Siriyal, and V. Prasanna, “Energy and memory efficient
mapping of bitonic sorting on FPGA,” in International Symposium on
Field-programmable Gate Arrays (FPGA), 2015.

[31] K. Fleming, M. King, and M. C. Ng, “High-throughput pipelined
mergesort,” in International Conference on Formal Methods and Models
for Co-Design (MEMOCODE), 2008.

[32] J. Matai, D. Richmond, D. Lee, Z. Blair, Q. Wu, A. Abazari, and
R. Kastner, “Resolve: Generation of high-performance sorting architec-
tures from high-level synthesis,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (FPGA),
FPGA ’16, 2016.

[33] M. Zuluaga, P. Milder, and M. Püschel, “Computer generation of
streaming networks,” in Design Automation Conference (DAC), 2012.

[34] R. Marcelino, H. C. Neto, and J. M. P. Cardoso, “Unbalanced FIFO
sorting for FPGA-based systems,” in International Conference on Elec-
tronics, Circuits, and Systems (ICECS), 2009.

[35] D. Koch and J. Tørresen, “FPGAsort: A high performance sorting
architecture expoiting run-time reconfiguration on FPGAs for large
problem sorting,” in Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays (FPGA), 2011.

[36] J. Jiang, L. Zheng, J. Pu, X. Cheng, C. Zhao, M. R. Nutter, and J. D.
Schaub, “Tencent sort.” Technical Report.

[37] H. Shamoto, K. Shirahata, A. Drozd, H. Sato, and S. Matsuoka, “GPU-
accelerated large-scale distributed sorting coping with device memory
capacity,” in Transactions on Big Data, 2016.

[38] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of partial
reconfiguration in FPGA systems: A survey and a cost model,” in ACM
Transactions on Reconfigurable Technology and Systems (TRETS), 2011.

[39] D. E. Knuth, Art of Computer Programming: Sorting and Searching.
Addison-Wesley Professional, 2nd ed., 1998.

[40] A. Aggarwal and J. S. Vitter, “The input/output complexity of sorting
and related problems,” in Research Report, RR-0725 INRIA, 1988.

[41] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith,
and M. Zagha, “A comparison of sorting algorithms for the connection
machine CM-2,” in Intl. Symp. on Parallel Algorithms and Architectures,
1991.

[42] A. Farmahini-Farahani, H. J. Duwe, M. J. Schulte, and K. Compton,
“Modular design of high-throughput, low-latency sorting units,” in
Transactions on Computers, 2008.

[43] K. E. Batcher, “Sorting networks and their applications,” in American
Federation of Information Processing Societies, 1968.

[44] K. Manev and D. Koch, “Large utility sorting on FPGAs,” in Interna-
tional Conference on Field-Programmable Technology (FPT), 2018.

[45] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann
Publishers, 2nd ed., 2004.

[46] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz,
A. Shayesteh, and V. Balakrishnan, “Performance analysis of NVMe
SSDs and their implication on real world databases,” in International
Systems and Storage Conference (SYSTOR), 2015.

[47] M. Deo, J. Schulz, and L. Brown, “Intel Stratix 10 MX devices solve
the memory bandwidth challenge,” 2019.

[48] S. Mashimo, T. V. Chu, and K. Kise, “A high-performance and cost-
effective hardware merge sorter without feedback datapath,” in Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2018.

[49] “Sort benchmark home page.” http://sortbenchmark.org/. Accessed:
2019-10-30.

[50] C.-L. Su, C.-Y. Tsui, and A. M. Despain, “Saving power in the control
path of embedded processors,” in Design & Test of Computers, 1994.

[51] “Alveo u50 data center accelerator card.” https://www.xilinx.com/
products/boards-and-kits/alveo/u50.html. Accessed: 2019-10-30.

[52] B. Karsin, V. Weichert, H. Casanova, J. Iacono, and N. Sitchinava,
“Analysis-driven engineering of comparison-based sorting algorithms on
GPUs,” in International Conference on Supercomputing (ICS), 2018.

13

http://sortbenchmark.org/
https://www.xilinx.com/products/boards-and-kits/alveo/u50.html
https://www.xilinx.com/products/boards-and-kits/alveo/u50.html

	Introduction
	Hardware Mergers
	Problem Formulation

	AMT Architecture Framework
	AMT Architecture Extensions and Performance Modeling
	AMT Configurations
	Optimizing single-AMT configurations
	AMT unrolling
	AMT pipelining
	Combining pipelining and unrolling

	Resource Utilization
	Logic utilization
	On-chip memory utilization

	Bonsai AMT Optimizer

	Optimal Configurations in Modern Hardware
	DRAM Sorting
	High-Bandwidth Memory Sorting
	SSD Sorting

	Other Microarchitecture Considerations
	Data Loader
	Intermediate State Flushing

	Experimental Results
	Experimental Setup
	Model Validation
	Resource Model Results
	Performance Model Results

	DRAM Sorter Results
	DRAM sorter latency
	Bandwidth-efficiency

	HBM Sorter Results
	SSD Sorter Results
	Scalability Analysis
	Scalability in Input Size
	Scalability in Record Width

	Related Work
	FPGA Sorting
	GPU Sorting

	Conclusions
	References

