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ABSTRACT: The construction of models of system behavior is of great
importance throughout science and engineering. In bioengineering and
bionanotechnology, these often take the form of dynamic models that
specify the evolution of different species over time. To ensure that
scientific observations and conclusions are consistent and that systems
can be reliably engineered on the basis of model predictions, it is
important that models of biomolecular systems can be constructed in a
reliable, principled, and efficient manner. This review focuses on efforts
to address this need by using domain-specific programming languages as
the basis for custom design tools for researchers working on
computational nucleic acid devices, where a domain-specific language
is simply a programming language tailored to a particular application
domain. The underlying thesis of our review is that there is a continuum
of practical implementation strategies for computational nucleic acid
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systems, which can all benefit from appropriate domain-specific languages and software design tools. We emphasize the need for
specialized yet flexible tools that can be realized using domain-specific languages that compile to more general-purpose

representations.
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n recent decades, many of the key processes of life have been

found to involve the storage and processing of information,
mediated by the sequence-specific chemistry of biopolymers
such as DNA and RNA. Given this significant computational
component, it is perhaps no surprise that the intersection of
computer science and the biological sciences has become a
fertile area of research and that computer science has
contributed a broad range of tools to the biological and
biomedical sciences. This review focuses on one area in which
the methods of computer science find application in
bioengineering: constructing and analyzing computational
nucleic acid systems.

Models, in particular kinetic models, are of central importance
throughout science and engineering. They provide a mathe-
matical framework for expressing predictions about the behavior
of a system, for testing those predictions against experimental
data, and for building forward-engineered systems with specific
behaviors. Given the ever increasing complexity of the
computational nucleic acid systems that can now be built in
the laboratory, it is vital that models are constructed and used
appropriately and that they faithfully embody our assumptions
about the system in question. Therefore, scientists and engineers
must be able to create, test, and distribute models of biological
systems that are robust and demonstrably correct. In this review,
we argue that domain-specific languages, a well-known tool from
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computer science, offer an ideal solution for researchers that
enables them to create models rapidly, with a high degree of
assurance that they are accurate, and in a manner that makes
them amenable to scrutiny by other members of the research
community.

A domain-specific language (DSL) is a programming language
that was designed specifically for use in a particular application
area, or domain.' General-purpose programming languages,
such as Java or Python, are intended for use by a broad range of
programmers to express a wide range of different kinds of
programs that will span many different application domains.
DSLs, on the other hand, have a cut-down set of features that
focus on the needs of a particular application domain. The
benefit of a DSL is that, in its targeted application domain, the
specialized features of the language allow programs to be written
extremely concisely. This allows the core ideas to be expressed in
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Table 1. A Continuum of Implementation Techniques for Computational Nucleic Acid Devices”

DNA strand displacement circuits

mode of operation DNA hybridization
in vitro operation +
in vivo operation +

enzymatic components

in vitro enzyme-driven DNA circuits

DNA hybridization, enzyme catalysis

RNA synthetic biology

RNA interactions, enzyme catalysis

+ +
- +
+ +

“Moving from left to right, implementation techniques move further from pure DNA nanotechnology and toward the complexity of regulatory
networks in living organisms. Relevant categories to differentiate between techniques include in vitro or in vivo operation, any required protein
enzymes, and the kinds of reactions that actually implement the computation.

a high-level manner, making them easier to understand and less
prone to errors.

In the context of biomolecular device design, DSLs can be
used to specify a model at a high level of abstraction, e.g,, by
specifying that two nucleic acid components bind via certain
interaction domains. One can then compile that high-level
model description into a lower-level one, e.g, an ordinary
differential equation (ODE) model of the kinetics associated
with a particular high-level structural design. This is analogous to
the way that a traditional compiler compiles a program written in
a high-level language, such as Java, into an executable program in
a lower-level language, such as machine code. The specialized
nature of the DSL means that models can be specified more
concisely and may also allow for models to be constructed in a
modular fashion from reusable building blocks.

The key advantage of using the DSL approach in this context
is that the compilation process that transforms the high-level
model into the lower-level one is formally defined by a set of
rules, known as the semantics of the language, that fully specify
the results of applying this transformation to an arbitrary input
model. Thus, the formalized semantics of the DSL encapsulates
model assumptions and makes them explicit in a clear and
mathematically precise way. This helps to reduce errors in the
model construction process and can provide additional sanity
checks on the correctness of the model. The DSL, with its
precisely defined semantics, can also serve as a common
interchange format between researchers working in a particular
area. Finally, once a model has been formally defined, it can be
converted into alternative formats for other purposes, such as
computer-aided verification of certain model properties. This
review will highlight these points in the context of the existing
literature on the development and use of DSLs and associated
software tools for programming nucleic acid systems.

The specific thesis of this review is that DSLs can aid
researchers in navigating the continuum of experimental
implementation techniques for computational nucleic acid
devices that has emerged in the past several decades. These
range from in vitro techniques powered solely by DNA
interactions to synthetic gene circuits implemented using
RNA regulators in cells or cell extracts and are summarized in
Table 1. We focus on these fields because they all use nucleic
interactions to compute and, yet, have seen varying levels of
penetration of DSL-based design tools. By exploiting approaches
from computer science of compiling high-level languages into
lower-level ones, we show that these different approaches may
be modeled individually using DSL techniques but can find a
unified implementation by compiling them into lower-level
modeling languages. Figure 1 lists the languages discussed in this
review, organized by the style of the language, the abstraction
level(s) at which each operates, and the target application
domain(s). These domains include DNA strand displacement,
in vitro enzyme-driven DNA circuits, and general-purpose
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Figure 1. Summary of domain specific programming languages for
computational nucleic acid devices mentioned in this review. Blue
means the system is primarily applicable to toehold-mediated strand
displacement; green means the system is primarily applicable to in vitro
enzyme-driven DNA circuits, and red means a general-purpose
modeling tool. On the x-axis, languages are organized by the level(s)
of abstraction in the design process that they target, arranged from more
concrete on the left to more abstract on the right. On the y-axis,
languages are arranged by type, including process calculi (languages
developed in the study of concurrent programming), abstract CRNS,
visual programming languages, and systems that accept other types of
input. Abbreviations: stoch 7. = stochastic 7-calculus; behav. spec. =
behavioral specification.

modeling languages. We also discuss the potential for future
application of DSLs in RNA synthetic biology.

B LANGUAGES AND TOOLS FOR DNA STRAND
DISPLACEMENT

Broadly speaking, the field of DNA nanotechnology uses DNA
as an engineering material to construct nanoscale structures.
The sequence-specific nature of nucleic acid chemistry makes
nucleic acids ideal engineering materials because their
nucleotide sequences determine their structures and functions.
Thus, modifying nucleotide sequences allows molecular
interactions to be rationally designed. In this section, we survey
previous work on languages and design tools for dynamic DNA
nanotechnology, focusing on one of the most successful
mechanisms for implementing dynamic DNA computational

https://dx.doi.org/10.1021/acssynbio.0c00050
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Figure 3. Visual DSD online tool example.” Left-hand side shows the DSD code required to define a two-input AND logic gate using DNA strand
displacement. Right-hand side shows a graphical visualization of the resulting CRN. Screenshot from https://classicdsd.azurewebsites.net/.

devices: DNA strand displacement.> We note that other
approaches to DNA-based molecular computation exist, such
as DNAzymes" which, while they can be used in conjunction
with strand displacement circuits,” have not yet been the target
of DSL development efforts.

DNA strand displacement is a form of competitive hybrid-
ization in which an invader strand displaces an incumbent strand
that was initially bound to its Watson—Crick complement, by
first binding to a short overhanging single-stranded region
known as a toehold,® and then initiating a branch migration in
which the invader and incumbent strands compete to bind to the
complementary strand, as outlined in Figure 2. Strand
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displacement reactions have been demonstrated within,” and
on the surface of,” cells, suggesting potential future applications
in biomedical diagnostics and therapeutics.

It has been shown’ that any abstract chemical reaction
network (CRN) can be implemented using a cascade of DNA
strand displacement reactions, and a number of different
encoding schemes have been proposed to achieve this.'"~"*
Abstract CRNs are known to be computationally universal
(Turing-complete) up to an arbitrarily small error bound " and
can thus specify a rich class of behaviors. They thus offer a high-
level programming language for DNA strand displacement
systems, as outlined below.

https://dx.doi.org/10.1021/acssynbio.0c00050
ACS Synth. Biol. 2020, 9, 1499-1513
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Figure 4. Logic programming for specification and modeling of toehold-mediated strand displacement reactions. (a) Logic program containing
predicates that encode binding, unbinding, and displacement reactions as well as the initial conditions of a “Join” gate that functions as an AND logic
gate on two input signals. (b) Graphical representation of the resulting chemical reaction containing all species reachable from the initial conditions via
reactions specified by the user-supplied predicates. Bold outlines indicate species present in the initial conditions. Reprinted with permission from ref

28, Copyright 2019, American Chemical Society.

Strand displacement is a tempting target for DSLs because the
kinds of structures involved significantly constrain the possible
interactions. As such, a significant number of DSL-based design
tools have been developed. If we assume that nucleotide
sequences are assigned such that interaction between non-
complementary sequence “domains” is minimal, we can model
at the more abstract domain level (Figure 2(a)). In particular, a
strand displacement process can be modeled with reasonable
accuracy as a two-step process in which the binding of the
invader to the complex is nucleated in the toehold region,
leading to displacement across the long domain (Figure 2(b))."*
The derived reversible “toehold exchange” process can be
modeled by a similar three-step process of binding, migration,
and subsequent unbinding of a secondary toehold that is not
displaced by the invader. The domain abstraction for modeling
of nucleic acid nanodevices stems from early work by Hagiya and
coworkers, where they used the same idea but referred to
domains as “abstract bases”. That work produced a simulator
called VNA (Virtual Nucleic Acid)'® and applied it to a range ( of
systems, including whiplash PCR'® and DNA tile assembly.

The first DSL specifically for modeling DNA strand
displacement reaction systems was the DSD language, published
by Phillips and Cardelli in 2009."* An implementation of this
system was made available online as the Visual DSD software
package.” The DSD language is based on a process calculus and
consists of a collection of species whose structures are expressed
using an ASCII syntax (Figure 3). The set of structures that
could be modeled in the early DSD releases was restricted to a
limited class of multistranded DNA heteropolymer structures

1502

that nevertheless exhibits rich behavior. The core of the DSD
compiler is a collection of semantic rules that embodies
fundamental assumptions about the domain abstraction and
about the dynamic behavior of DNA strand displacement
systems. This enables the input structural model to be
automatically converted into a kinetic model in the form of a
CRN, using rules encoded formally within the compiler itself.
This early work was extended with multiple different semantic
interpretations that enable a given system to be modeled at
different levels of abstraction simply by changing a setting in the
DSD compiler, in addition to the first formal modeling of
unintended “leak” reactions.'” Subsequent extensions provided
additional simulation and analysis capabilities.”* >

The DSD input language itself has been generalized to allow
structures expressed as strand graphs to be used as the basis of
the reaction enumeration algorithm,24 building on related work
on graph-based formalisms for DNA structures and inter-
actions.”””° This approach enables arbitrary structures to be
represented, but also includes some that may not be physically
plausible for geometric reasons. Thus, there is a need for
geometric constraints being included in the semantics of the
language, and work is underway in this direction in the context of
localized reaction systems.”” This is a reminder that abstractions
must be re-evaluated where appropriate, for example, if the
underlying assumptions of the modeler change. More recently,
we have refounded the entire DSD language and semantics on a
logic programming system (Logic DSD) so that users can define
the rules used to compile structural models into kinetic models
as part of the program itself,”* as shown in Figure 4. This enables

https://dx.doi.org/10.1021/acssynbio.0c00050
ACS Synth. Biol. 2020, 9, 1499-1513
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# Translate formal reactions with two reactants and two products.

# Lakin et al. (2012)

# Define a global short toehold domain

global toehold = short();

"Abstractions for DNA circuit design."

[Fig. 5]

# Define domains and structure of signal species

class formal(s) "2 £ f" | oo
where { t = toehold; £ = long()

Yi

# Define fuel complexes for bimolecular reactions

class bimol_fuels(r, p) =

[ "ati+btk+chtc+dhtd+ t¥ dh* t* ch* t* b* t* a* tx"

<)Y o) ) ) ) ) )

F"CC-+ -+ -+ (

"ati" | " ", "t chtdht" |
where {

a =r[0].f;

b =r[1].f;

c = p[0].f; ch = long();

d = p[1].f; dh = long();

i = long(); k = long();

t = toehold };

) '"I

# Module *rxn* applies the fuel production to every bimolecular reaction

module rxn(r)
where fuels

if len(r.reactants)

sum(map (infty, fuels))

!= 2 or len(r.products)

!= 2 then

abort('Reaction type not implemented')

else

bimol_fuels(r.reactants, r.products);

# Module *main* applies *rxn* to the crn

module main(crn)
where crn

= sum(map(rxn, crn))
irrev_reactions(crn);

Figure 5. An example of a translation scheme definition in Nuskell. The “formal "class defines a signal species for every formal species, here consisting
of three unpaired domains: a history domain, a global short domain, and a unique long domain. The “main” module translates a CRN into a set of fuel
complexes: the CRN is converted to irreversible reactions, every reaction is translated into a set of fuel complexes, and the sum over all sets is returned
by the main function. Reprinted with permission from ref 29, Copyright 2017, Springer.

arange of devices from across the continuum of implementation
strategies to be implemented within a single modeling language,
as we discuss below.

One of the most complete and integrated systems for DNA
strand displacement circuit design is the Nuskell compiler and
related toolkit, developed by the Winfree group.29 This brings
together a number of tools to provide an integrated system for
specification, verification, and compilation of molecular
programs. The desired behavior is specified as an abstract
CRN which can then be translated into a DNA strand
displacement implementation using a (user-definable) trans-
lation scheme. Figure 5 gives example Nuskell code for one such
encoding, specifically the “three-domain” encoding.'”"” Nuskell
makes use of the Peppercorn reaction enumerator * to compute
the sets of possible reactions in the associated dynamic model.
Importantly, the correctness of the encodings can be formally
verified using pathway decomposition31 and/or bisimulation.>*
Thus, the Nuskell system provides one of the most integrated
systems for the creation of DNA-based molecular programs that
are correct by construction. The Peppercorn reaction
enumerator has also been used in KinDA,** a tool for
sequence-level analysis of the thermodynamics and kinetics of
DNA strand displacement systems that can automatically detect
deviations from the domain-level abstraction. This is an
important direction for future research, as understanding the
limits of the domain-level abstraction is a pressing concern for
designers of nucleic acid circuits.

Another highly integrated toolkit is the DyNAMIC Work-
bench,** which provides a wide range of design tools in a web-
based format. The DyNAMiC Workbench uses the port-based,
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“nodal” design abstraction, as shown in Figure 6, to provide a
high-level specification framework for intended circuit behavior.
This abstraction was developed by Yin et al. to specify
programmed hairpin assembly pathways.”> The nodal abstrac-
tion is used more generally within the DyNAMiC Workbench
system, which provides a number of premade nodal species
definitions for different experimental frameworks and interfaces
to external reaction enumeration and thermodynamic modeling
systems. Once a high-level design has been specified using drag-
and-drop visual interface, the corresponding components can be
specified at the “segment” level (similar to the “domain”
abstraction) and designed in terms of specific sequences and
base-pairs. Thermodynamic modeling and reaction enumera-
tion are available via integration with external tools.””*® This
produces a powerful graphical interface for system specification
and design.

The Piperine system was developed to compile abstract CRNs
into nucleotide sequences suitable for experimental implemen-
tation, using the “four-domain” encoding of CRNs into DNA
strand displacement reaction networks.” In particular, this
system was used to design and build an enzyme-free “rock-
paper-scissors” chemical oscillator using just DNA.”” The
pipeline of the Piperine system is summarized in Figure 7: the
input CRN (specified via a simple textual notation) is fed
through various translation passes to produce a specification for
the strand displacement signal strands and gate complexes.
Nucleotide sequences for the toeholds and signals are then
designed using pre-existing sequence design algorithms, to
ensure toehold binding energies are balanced and signal strands
have minimal secondary structure when free in solution. The

https://dx.doi.org/10.1021/acssynbio.0c00050
ACS Synth. Biol. 2020, 9, 1499-1513
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Figure 6. Visual language and interface of the DyNAMiC Workbench system,* illustrating the design of hairpin assembly reactions.>® (a) Nodal
design interface. Systems are composed by dragging and dropping nodes from the palette on the left (inset 1) and then connecting nodes in the center
panel (inset 2). The right panel shows a preview of the molecular implementation (inset 3). (b) Segment-level design interface. The center panel shows
secondary structure view of each complex in the system (inset 4). The lower panel lists sequences and composition of strands in the system (inset 5).
The right panel shows the name and sequence of each distinct segment in the system (inset 6). (c) Multisubjective sequence design interface. Similar to
the segment-level design interface, different panels show complexes, strands, and segments. The secondary structure view also highlights unintended
interactions and shows bases flagged for modification by the analysis. (d) Reaction enumerator interface. Rectangular nodes represent complexes,
joined by circular nodes representing reactions between intermediates. Reprinted with permission from ref 34, Copyright 2015, The Royal Society.

output from the tool is a ranked list of candidate sequence
designs. Piperine is less flexible than other tools such as Nuskell,
as it is specialized to the four-domain translation, but the
advantage is that it provides a simple interface to a tightly
integrated design system. Other highly specialized compilers
have enabled similarly impressive experimental results in DNA
strand displacement design. One example is the “seesaw gate”
motif,*® which has been used to implement large-scale digital
logic circuits®” and neural networks.*”*" The development of a
seesaw gate compiler enabled the development of large-scale
DNA logic circuits by compiling a high-level logic circuit
representation into executable code in a number of output
languages for simulations.*” It also enabled model-guided design
of seesaw circuits with unpurified components.**

DNA strand displacement systems are typically designed in a
modular fashion, which tends to be reflected in the structure of
design systems such as Nuskell and DSD. Individual modules
can be defined to represent different kinds of strand displace-
ment gate, which can be used to implement even higher-level
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abstractions that compile to the DSD language. Examples
include the seesaw gate motif discussed above, as well as systems
designed using techniques from control theory™** and the
implementation of high-level CRNSs to obtain behaviors such as
simple distributed algorithms.”> Modularity is important
because it enables models to be defined in a scalable manner
that encourages code reuse. It also reduces the opportunities to
introduce errors into models.

Furthermore, once a strand displacement system has been
formalized in a design language, computer-aided verification can
be applied to check system correctness. In previous work, such
analyses have included state-space analysis via probabilistic
model checking® and via satisfiability modulo theories (SMT)
solving,** two powerful verification techniques from computer
science. There also exist powerful techniques for proving
correctness or equivalence of CRN models, including those of
TMSD circuits, based on techniques including network
morphisms,”’ pathway decomposition,”’ bisimulation,*” and
other approaches that exploit modularity.** While the details of

https://dx.doi.org/10.1021/acssynbio.0c00050
ACS Synth. Biol. 2020, 9, 1499-1513
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Figure 7. Overview of the Piperine sequence design pipeline. Mauve boxes show example input and output text files for each stage of the compilation
pipeline in an example run of the software, and blue boxes illustrate internal data structures. Bold statements describe operations performed on data;
standard-case statements explain the contents of that data, and sawtooth breaks in text bubbles indicate that a portion of that data or text is hidden for
display purposes. Reprinted with permission from ref 37, Copyright 2017, AAAS.
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occurring. Reprinted with permission from ref 57, Copyright 2014, Elsevier.

these approaches are beyond the scope of this review, we note higher-level modeling approaches outlined above to enable
that creating a model of the system under study in a formal more realistic multiscale modeling and design, as exemplified by
language is a necessary precursor to all of these analyses. the Nuskell* and Piperine®” systems.

While we have focused in particular on tools specifically for

designing DNA strand displacement systems, we note that a B LANGUAGES AND TOOLS FOR IN VITRO

range of general-purpose tools exists for prediction and design of ENZYME-DRIVEN DNA CIRCUITS

nucleic acid nanostructures for DNA strand displacement. A

prime example is NUPACK,*® which actually includes its own Another prominent area of current research in nucleic acid

DSL for specifying nucleic acid design tasks.*” Tools for base- computing is in vitro enzyme-driven DNA circuits. These are

level or coarse gra]ned su’nulatlon Of nuclelc ac1ds’ such as circuits in Wthh DNA strands provide the template for a circuit

Multistrand®® and 0xDNA,*"** have already been used to gain that is executed in vitro by protein enzymes, including, but not

insight into strand displacement reaction kinetics."* A fruitful limited to, DNA or RNA polymerases. These enzymes drive

future research direction will be to combine these tools with the circuits via the synthesis and degradation of nucleic acids,
1505 https://dx.doi.org/10.1021/acssynbio.0c00050
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drawing on ubiquitous and versatile fuel sources, such as dNTPs,
that can be present in relative abundance. Furthermore, the fact
that circuit components are also being degraded greatly
simplifies the implementation of dynamical systems such as
oscillators. These systems require more distinct classes of
biomolecular components than DNA strand displacement
systems but fewer than the RNA synthetic gene circuits
discussed below.

In the genelet approach to in vitro enzyme-driven DNA
circuits developed in the Winfree lab,”*** regulation takes the
form of RNA-triggered strand displacement reactions that either
activate or deactivate promoter sites on double-stranded DNA
templates. The genelet approach relies on RNA synthesis and
RNA hybridization interactions, which are less predictable than
the corresponding DNA processes. However, the basic
principles of execution of these circuits can be well described
using the same DNA domain abstractions as are used in DNA
strand displacement design, possibly with additional modeling
required to capture the enzymatic processes. As such, in vitro
enzyme-driven DNA circuits have seen a moderate uptake of
DSL-based modeling tools. The recently reported primer
exchange reaction framework®® and other similar approaches™®
are also highly amenable to modeling using DSLs. In this review,
however, we focus on DSLs applied to another framework: the
PEN toolbox developed in the Rondelez lab.’

Briefly, the PEN toolbox (also known as “DNA toolbox”)
approach to in vitro enyzme-driven circuits gets its name because
it uses three different protein enzymes: a polymerase, an
exonuclease and a nickase. The basic abstraction and reactions
are shown in Figure 8. Single-stranded DNA templates are
activated by the binding of a partially complementary input
strand. This triggers extension of that strand and then the
nickase nicks the extended strand, producing two shorter strands
that can then unbind from the template. The exonuclease
degrades (nontemplate) single strands that are free in solution,
thereby pulling strand concentrations down. Templates can also
be inhibited by the binding of a strand midway along the
template strand, which inhibits binding of inputs but does not
trigger extension of the inhibiting strand. Experimentally, the
PEN toolbox approach has been used to implement robust
molecular oscillators,”® bistable switches,”” and predator—prey
systems.”’ Simulation results have also shown that the PEN
toolbox can implement trainable neural networks based on a
winner-take-all approach.®!

Importantly for modeling purposes, the fundamental building
blocks of PEN toolbox systems (activation and inhibition of
templates that catalytically generate an output, with ongoing
degradation of signals) are almost identical to the models of gene
regulatory networks studied in systems and synthetic biology.
This abstraction provides the basis for the ecosystem of
computational design tools that has grown up around the
PEN toolbox system. In this case, the design language is the
language of regulatory networks expressed as graphs, with nodes
representing signals, and with edges representing activation or
inhibition of signals by other signals. The Rondelez group has
reported computer-assisted tools for the rational design of PEN
toolbox circuits, in particular, the DACCAD visual program-
ming tool for the design and simulation of PEN toolbox
networks,®*> shown in Figure 9. The DACCAD system enables
models of networks to be specified very concisely as the
underlying dynamics of the PEN toolbox system is abstracted
out. In addition, in one of the few attempts to build behavioral
specification into a design tool, the ERNe system uses
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Figure 9. DACCAD visual input interface, including the display panel
(1), data panel (2), parameters area (3), graph of the system with
selected nodes displayed in blue (4), and menus (5—8). Reprinted with
permission from ref 62, Copyright 2014, The Royal Society.

evolutionary algorithms to search for PEN toolbox networks
with specified dynamic behaviors.”> This work highlights the
utility of a powerful and well-defined abstraction as the basis of a
practical and useful DSL and modeling system.

Extensions to the DSD system for strand displacement
modeling have also been used to model PEN toolbox circuits.
Initially this work was based on ad hoc manual addition of
chemical reactions that do not involve strand displacement to
the compiled model," which demonstrated some of the
difficulty involved in trying to push a DSL beyond the limits
of its internalized abstractions. More recent work on logic
programming-based modeling in DSD has enabled enzyme-
driven circuits such as the PEN toolbox to be modeled directly
by programming predicates that formally specify the semantics
of those enzyme reactions.

B LANGUAGES AND TOOLS FOR RNA SYNTHETIC
BIOLOGY

Synthetic biology, which includes the design and construction of
synthetic gene regulatory networks,”® is a field that offers
considerable scope for the application of DSLs. Again, this is
because the operating mechanisms of synthetic gene circuits
enable meaningful and useful abstractions to be made. In
synthetic biology, the programmed network structure can be
broken down into discrete biological parts (such as promoters,
terminators, ribosome binding sites, protein coding regions, and
transcription factors) whose interactions with effectors can be
abstracted and captured in a formal semantics. Here, however,
we focus on RNA synthetic biology,*® a fast-growing subfield of
synthetic biology in which the regulatory function is
implemented via RNA interactions. For a treatment of design
tools for synthetic biology more broadly construed, we refer the
reader to a thorough review by Appleton et al.”’

Our primary interest in this review is on rational design of
RNA regulatory motifs in synthetic biology. Examples include
the development of toehold switches, which activate translation
via strand displacement reactions initiated by a trans-acting
RNA,**** and small transcription-activating RNAs (STARs),
which activate transcription via a similar mechanism.*” Other

https://dx.doi.org/10.1021/acssynbio.0c00050
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Figure 10. Computational design—test—build cycle in the context of RNA synthetic biology. The relatively predictable nature of RNA folding
simplifies the design process and enables rapid design iterations. Reprinted with permission from ref 66, Copyright 2015, Elsevier.

approaches to implementing RNA regulation include repurpos-
ing naturally occurring regulatory motifs such as antisense
transcriptional attenuators.’”” Some of the earliest work in
computer-aided design of RNA-based computing devices, albeit
carried out in vitro, was Penchovsky’s design and implementa-
tion of ribozyme-based logic gates.”'

Early work in RNA engineering used thermodynamic models
to predict the conformations, and hence switching behavior, of
RNA-based “riboregulator” switches, and to select the best
sequences to build multi—ingut RNA logic gates, including YES,
NOT, and AND gates.n’7 This work was encapsulated into
RiboMaker, a web-based tool for riboregulator design.74 A
similar approach had previously enabled the computational
design of synthetic ribosome binding sites.”> Another design
tool has been created for designing toehold switches, which uses
machine learnin§ to estimate the relative importance of various
design criteria.”® Rational design principles have also been
applied to STARs to enhance their fold activation,”” and
NUPACK modeling has been used to design new STAR
activation sequences.”” RNA feedback loops have also been
constructed using model-based design.”” However, these
approaches did not use DSLs specifically and, to date, the use
of DSLs with formal semantics to construct system models in
RNA synthetic biology has been limited.

Nevertheless, RNA synthetic biology remains a promising
application domain for biodesign automation techniques
developed for other computational nucleic acid devices (Figure
10). Despite the fact that RNA hybridization is more
promsicuous than DNA hybridization, and that RNA molecules
also undergo additional forms of binding such as kissing loop
interactions, the interactions between RNA molecules are still
arguably more “designable” than interactions involving protein
effectors. However, it must be noted that recent work on de novo
protein design has produced impressive results.”” RNA
interactions may still be represented, and reasoned about, via a
domain-based abstraction, even if RNA hybridization is less
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specific than DNA hybridization. It is also possible to model the
other forms of RNA interaction, such as kissing loop
interactions. Principles of modularity are also still of great
importance in RNA design and engineering, in part due to the
cotranscriptional nature of RNA folding which may often favor
the formation of localized structural motifs over distal ones.
Computational modeling tools such as CoFold”" have been
developed to address this issue, and RNA structural motifs have
been used in the design of modular RNA nanostructures.”
Furthermore, the engineering of the transcriptional effectors
discussed above relied on a modularity principle.”’

To demonstrate the potential for DSL-based models in RNA
synthetic biology, we recently used the Logic DSD system™® to
model toehold switch-based “ribocomputing” circuits,** as
shown in Figure 11. In that work, the same logic programming
rules originally developed to implement toehold-mediated
strand displacement reactions in DNA strand displacement
circuits were used to encode strand displacement-based control
systems in RNA toehold switches. With the inclusion of
additional rules to encode extension and cotranscriptional
folding of RNAs, similar approaches could be used to model
STARs,* thereby broadening the applicability of DSL-based
modeling in RNA synthetic biology. Yet more semantic rules
could be used to accommodate other forms of RNA binding
exploited in RNA synthetic biology, such as kissing loo
interactions and aptamer-driven riboswitches and ribozymes,”
as discussed above. The relative promiscuity of RNA hybrid-
ization could also be modeled by specifying a nonzero “degree of
complementarity” between nominally noninteracting pairs of
domains. Therefore, existing principles of domain-based design
may be readily extended to RNA structures in RNA synthetic
biology, which highlights the potential for further application of
DSLs in this field.

Finally, a notable recent development in RNA synthetic
biology is the creation of strand-displacement switches for
controlling the DNA-binding activity of CRISPR/Cas systems,

https://dx.doi.org/10.1021/acssynbio.0c00050
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Figure 11. Logic programming for specification and modeling of RNA-based “ribocomputing” reactions, as reported in ref 64. This model uses the
same underlying DSL and semantics as in Figure 4. (a) Inferred chemical reaction network and species for the ribocomputing AND logic gate. (b)
Logic program fragment encoding reporter expression and initial conditions for the ribocomputing AND logic gate. Reprinted with permission from ref

28, Copyright 2019, American Chemical Society.

based on programmable control of guide RNA structure.** ™"’

We anticipate that design tools focused on CRISPR engineering
will be a particularly promising area for future application of
DSLs in RNA synthetic biology, given the wide potential
applicability of CRISPR-based frameworks.

B DSLS FOR GENERAL-PURPOSE MODELING

In addition to application-specific DSLs, a range of DSLs exist
for general-purpose modeling of (bio)chemical systems. While
these languages are not explicitly focused on nucleic acid-based
systems, their generality means that they may be used either (i)
as low-level compilation targets for more specialized DSLs or
(ii) as high-level specification languages to express the desire
behavior of an engineered nucleic acid system. Thus, we briefly
mention several here.

Petri nets®® offer a general-purpose modeling framework
equivalent to abstract CRNs, and have been used for several
decades as a formalism for distributed computing research. For
example, the abstract CRN shown below defines a consensus
algorithm that converts all individuals of the abstract species X
and Y into whichever species was initially present in the
majority:z‘}”89

k
X+Y—>B+B
k
B+X->X+X

k
B+Y—->Y+Y

Many DSLs for computational nucleic acid devices accept an
abstract CRN as their input language, e.g., the Piperine system.””
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Recent work has developed convenient DSLs for programming
the high-level behavior of abstract CRINs themselves, such as the
CRN++ language.()0 CRN++ is an imperative programming
language, complete with arithmetic operations and control flow
constructs such as loops and conditionals. CRN++ programs are
compiled directly into an abstract CRN, and an example of a
CRN++ program and corresponding simulation output is
presented in Figure 12. Another recently produced tool,
Kaemika,”' enables the modular specification of abstract
CRNs, with a rigorously defined formal semantics. Kaemika
also includes support for programming of microfluidic protocols
so that entire reaction protocols can be simulated, and is
available as a mobile app for multiple platforms. Other recent
approaches to program abstract CRNs have included exhaustive
search of limited subsets of the CRN space using SMT solving”*
and targeted search using a user-supplied “sketch”, which is
simply a CRN containing “gaps” that the solver tries to fill in.””
As our ability to experimentally realize these devices improves,
such programming languages and tools that enable us to map
high-level behaviors directly onto implementable biomolecular
primitives will become indispensible. Other general-purpose
languages include the stochastic z-calculus,” a process calculus
developed by theoretical computer scientists to model
concurrent computation.

While not explicitly focused on nucleic acids, the tools
described in this section nevertheless play a critical role in the
landscape of DSLs and modeling tools for computational nucleic
acid devices. Interestingly, general-purpose languages find use
both at the high level, as abstract specification languages,”” and
at the low level, as general-purpose compilation targets.”’

https://dx.doi.org/10.1021/acssynbio.0c00050
ACS Synth. Biol. 2020, 9, 1499-1513
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1 ern={
2 conc[f,1], conc[one, 1], conc[i,f0], 120!
3 step[{
4 cmpli,one], 100
5 mul[f, i, fnext],
6 sub[i,one,inext] 80}
7 '
8 step[{ 60
9 fGT[{

10 Id [inext,i], 407

11 Id [ fnext , f] 20

12

13 ]

14 } 0 100 200 300 400 500

(a) CRN++ code.

(b) Simulation results for f0 = 5; value
of f is shown (green line).

Figure 12. Example CRN++ program and corresponding simulation for calculating the factorial of 5. Reprinted with permission from ref 90, Copyright

2020, Springer.

Table 2. Summary of Pros and Cons of DSLs for Computational Nucleic Acid Devices Mentioned in This Review”

DSL
Classic DSD'*

pros

frameworks

Logic DSD** highly flexible, can handle arbitrary structures

Nuskell*” special-purpose language for CRN translations, correctness
verification tools

DyNAMiC Workbench™  visual input system, high-level “nodal” abstraction

Piperine’” integrated pipeline from CRN to sequences, thermodynamic
modeling

DACCAD® visual input language, abstracts details of PEN toolbox
networks

ERNe®? high-level design via evolutionary search, input is a behavioral

specification

“TMSD = toehold-mediated strand displacement.

visualization tools, analysis options, good fit for many TMSD

cons

no integration with sequence design tools, limited set of structures by
default

must implement new rules manually, performance hit due to flexibility
nonpseudoknotted structures only

must interface to external modeling and simulation tools

only implements “4-domain” CRN translation scheme, no interaction
with external tools

no integration with sequence design tools

no integration with lower-level design tools

Table 3. Summary of Pros and Cons of General-Purpose DSLs Mentioned in This Review

DSL
abstract CRNs/Petri nets®®

: 94
stochastic 7-calculus

pros

Kappa™ scalability, strong theoretical underpinnings
CRN++" imperative programming interface, familiar control flow primitives
Kaemika®' modular CRN composition, formal semantics, protocol simulation

simple graphical syntax, studied extensively, general-purpose

scalability, studied extensively, verification techniques

cons

limited scalability and modularity, no structural information about species
no structural information about species

specialized for combinatorial protein interactions

resulting CRNs may be hard to implement in practice

no links to chemical implementation frameworks

However, modeling nucleic acid reaction systems using such
tools is cumbersome because the languages do not exploit the
underlying structure of nucleic acid strands from which many of
the reaction rules inevitably follow. This highlights a niche for
DSLs at medium levels of abstraction that are geared specifically
for modeling computational nucleic acid devices such as those
reviewed above.

B CONCLUSIONS

We have reviewed research on the application of DSLs to the
challenge of modeling and designing biological and biomolec-
ular systems. We have covered a broad range of application
domains, from toehold-mediated DNA strand displacement
circuits and enzyme-driven in vitro DNA circuits to RNA-
mediated synthetic gene circuits in synthetic biology and
general-purpose modeling tools. Pros and cons for the field-
specific DSLs discussed in this review are summarized in Table
2; those for the general-purpose languages are summarized in
Table 3.

Beyond the areas covered explicitly by this review, we note
that related fields of research are also beginning to benefit from
the use of DSLs and associated tools for modeling and design.
One example is systems biology, where the Kappa language was
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specifically designed to concisely capture “the combinatorics of
the interaction between proteins™” in systems biology models.
Kappa models can concisely represent and model changes in
state (e.g, phosphorylation) at particular sites on a protein via
formally specified, user-provided rewrite rules.”® Another
example is the design of DNA nanostructures, where widely
used software such as caDNAno”” has revolutionized the design
of DNA origami nanostructures.”® A third example is micro-
fluidics, which has benefited from language-based approaches to
device specification and automated layout design.”” Thus, there
are broad possibilities for applying DSL techniques in a wide
range of application areas, typically wherever the task at hand is
to design elements from a class of target objects whose structures
and/or behaviors can be described formally. As DSLs proliferate
into new areas of research, there will be additional opportunities
for standardizing DSLs for new subareas, following the example
of standardized representation languages in synthetic biology
such as the Synthetic Biology Open Language (SBOL).'"
These standardized languages can then be used as model
interchange formats as well as compilation targets for higher-
level design tools. Formalizing languages as standards is not an
easy task, however, as the standard will only be a success with
broad support from the research community.

https://dx.doi.org/10.1021/acssynbio.0c00050
ACS Synth. Biol. 2020, 9, 1499-1513
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A key challenge to drive broader adoption of DSLs by
researchers will be to identify and define abstractions that are
specific enough to provide practical productivity gains without
being so restrictive that they stifle creativity or are rapidly
rendered obsolete by experimental advances. While computa-
tional tools have enabled recent impressive experimental work,
e.g, the Piperine compiler discussed above®” and compilers built
specifically for seesaw gate circuits,”” a major challenge remains
to understand how computational tools can gain broader
adoption within the scientific community. In addition, much
experimental work seems to rely on ad-hoc use of individual
tools, such as NUPACK™ for sequence design. It would be an
interesting sociological study to determine the user needs from
DSL-based tools and the attitude to such systems, particularly
among experimental researchers in dynamic DNA nano-
technology. One possible explanation for the limited penetration
of high-level tools into standard experimental practice is their
limited integration with low-level sequence design tools. This is
one feature shared by the custom-built tools used by
experimentalists outlined above.*”** In addition, the rapid
pace of advances in experimental nucleic acid computing means
that a tool will be of limited use if its underlying abstraction is too
restrictive. Recent work on reaction enumerators using an
underlyin§ graph-based representation of nucleic acid struc-
tures”*** provides an abstraction that should be flexible
enough to handle most future needs. Another possible issue is
the fragmentation of the tool landscape, with interoperability
between tools a major barrier to integrating the tools that already
exist to create flexible yet powerful pipelines. The adoption of a
common host or scripting language for a larger number of tools
could ease this burden, as could the wider adoption of
standardized data interchange formats. Finally, we anticipate
that the demand for tool support in DNA computing in
particular would pick up if the field were to find industrial
applications to match those already found by synthetic biology.
Recent use of DNA circuits as a mechanism to orchestrate
nanoscale processes, including in responsive materials design'®"
and patterning, 102 may shed light on the possible path of future
developments that could lead to new avenues of practical
application and thus drive demand for specialized design tools
and DSLs.

As discussed above, lowering the barrier of entry to use and
also create DSLs and interface them with other existing tools is
likely to greatly expand the uptake of DSLs for the design of
computational nucleic acid devices. As such, an important
research goal will be to reduce the amount of programming
effort and specialized knowledge required to implement such
languages. In the field of programming language semantics,
substantial effort has been put into developing tools for rapid
specification and prototyping of DSLs. A number of powerful
language prototyping tools have been developed that could
simplify the practical implementation of DSL language
definitions, such as Ott.'*®> Other potential approaches include
hosting interpreters for DSLs of interest within general-purpose
programming languages. For example, the Racket system for
language-based programming'®* provides advanced facilities for
defining new languages within a functional host language,
allowing DSL authors to take advantage of the host language’s
powerful compiler-writing facilities. This approach can also
enable deep integration between the DSL and library routines
available in the host language for common operations such as
data analysis and plotting. This could provide a solution to
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current fragmentation of the tooling landscape for dynamic
DNA nanotechnology, in particular.

Taking a broader view, where before a modeler might write a
program to model a particular instance of an experimental
system, the author of a DSL instead defines, via the formal
semantics of their language, an entire class of programs that
model an entire class of experimental systems. The ability to
make this leap depends primarily on whether a suitable formal
representation of the behavior of the underlying systems can be
made, but when it can, the benefits of working at the language
level rather than the individual program level are substantial. In
particular, it becomes possible to reason not just about the
behavior of a particular system but rather about all systems that
fall under the abstraction. It also enables the development of
general-purpose model generation and compilation tools for
automation of the design process. Thus, the application of DSLs
for biomolecular systems can be seen as the logical next step in
the computerization of biological modeling. In the future,
instead of writing new programs to aid our research, we may
increasingly write new languages.
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