
Performing Co-Membership Attacks Against
Deep Generative Models

Kin Sum Liu 1 Chaowei Xiao 2 Bo Li 3 Jie Gao 1

1 Stony Brook University 2 University of Michigan, Ann Arbor 3 UIUC
kiliu@cs.stonybrook.edu, xiaocw@umich.edu, lbo@illinois.edu, jgao@cs.stonybrook.edu

Abstract—In this paper we propose a new membership attack
method called co-membership attacks against deep generative
models including Variational Autoencoders (VAEs) and Gener-
ative Adversarial Networks (GANs). Specifically, membership
attack aims to check whether a given instance x was used
in the training data or not. A co-membership attack checks
whether the given bundle of n instances were in the training,
with the prior knowledge that the bundle was either entirely
used in the training or none at all. Successful membership
attacks can compromise the privacy of training data when
the generative model is published. Our main idea is to cast
membership inference of target data x as the optimization of
another neural network (called the attacker network) to search
for the latent encoding to reproduce x. The final reconstruction
error is used directly to conclude whether x was in the training
data or not. We conduct extensive experiments on a variety
of datasets and generative models showing that: our attacker
network outperforms prior membership attacks; co-membership
attacks can be substantially more powerful than single attacks;
and VAEs are more susceptible to membership attacks compared
to GANs.

Index Terms—Privacy, Deep Generative Model, Unsupervised
Learning, Adversarial Machine Learning

I. INTRODUCTION

Deep generative models have been widely studied recently
as an effective method to abstract and approximate a data
distribution. Two of the most commonly used ones are Vari-
ational Autoencoders (VAEs) [1] and Generative Adversarial
Networks (GANs) [2]. VAEs consist of a pair of networks,
the encoder and the decoder, and explicitly maximize the
variational lower bound with respect to the joint generative
and inference models. GANs take a game theoretic approach
and try to achieve a good balance between two strategic agents,
the generator and discriminator networks. These generative
models have been applied on complicated real-world data, with
a variety of applications: in graphics, geometric modeling, and
even for designing cryptographic primitives [3].

A successful machine learning model captures information
from the training dataset. At the same time, an adversary
may gain knowledge about the training dataset by interacting
with the model. This information leakage is formulated by the
membership inference problem [4], [5]: given a model and a
data point, determine whether the data point was in the training
dataset of the model. This can be considered as an attack to the
privacy of the training data. A successful membership attack
to a machine learning model means that the privacy of the

training data was not sufficiently protected when the trained
model is released.

In current literature, most membership attacks were de-
signed for classifiers. Fredrikson et al. [6] proposed to infer
sensitive features of input data by actively probing the outputs.
Later, a more robust inversion attack was developed [7], in
which attackers can recover part of the training set, such as
human faces. Shokri et al. [8] tried to predict whether a data
point belongs to the training set by querying the model to
predict the class label of the data point. More recently, a
GANs-based attack has been proposed to attack collaborative
deep learning [9] for a distributed machine learning system, in
which users collaboratively train a model by sharing gradients
of their locally trained models through a parameter server.
Given the fact that Google has proposed federated learning
based on distributed machine learning [10] and already de-
ployed it on mobile devices, such a GAN-based attack raises
severe privacy threats.

However, despite the wide application of generative models,
so far not much has been done on analyzing the privacy vul-
nerabilities of such models. Unlike discriminative models such
as classifiers, generative models do not provide the interactive
mode of issuing queries. Thus, membership attacks against
generative models require different strategies. Hayes et al. [11]
considered attacks of GANs and offered rankings for the target
data based on the probability that the instance is in the training
set, but they require the knowledge of the discriminator and
cannot launch attacks on individual instances.

Contributions. In this article, we propose a new member-
ship attack called the co-membership attack and new attack
methods against generative models. We consider both single
membership attacks and co-membership attacks. In a single
membership attack, we are given a single instance x and ask
whether x was used in the training. In a co-membership attack
(co-attack), we are given n instances with the knowledge that
either all n instances were used in training or none was used.
The co-membership attack model happens in many real world
scenarios, as an user often contributes multiple data points to
a training task – for example, multiple pictures uploaded from
a smart phone, or multi-day data from a smart meter device.

We propose a new attack method. Given a generative model
G with a target x (or n targets in a co-attack), we optimize
another neural network A to produce an input to the generative
network such that the generated output nearly matches x (or

Adversary A

z
G✓

�(G✓(z),x)

Target Instance x

G✓(z)

small) YES

big) NO

refine

N
on

-t
ra

in
in

g
T
ra

in
in

g

Attack

Results
Target

Images

Fig. 1: Membership Attack (Gθ,x): Answer whether the target image x was used in the training data of Gθ . The left side shows the attacker
framework which uses the attacker loss ∆(Gθ(z),x) to determine membership.

reproduces each of the n targets). If we are able to reproduce
elements in the training data but unable to reproduce samples
not in the training data, a membership attack is successful.
Notice that this is completely unsupervised and the attacker
network A starts with random values. Trying to recover the
input to a GAN in order to match a given output was also
studied in DefenseGAN [12], in which the input variable z
to GANs is taken as trainable variables and gradient descent
is used to minimize the difference of the generated data and
target data x. Compared to this technique of directly searching
in latent space, our method works well with co-membership
attacks, as knowledge from multiple target instances could be
extracted and shared through the attacker network A while
the method in DefenseGAN cannot share information across
different target instances.

We evaluated our new attack methods for both VAEs
and GANs on a variety of data sets (MNIST, CelebA, and
ChestX-ray8) with a suite of settings (different number of
training data, different architectures, training iterations, etc).
Our observations are:

• Co-membership attacks are more powerful than single
attacks: co-membership attacks are necessary to achieve
success when generative models are trained with large
datasets.

• Our neural network based attacker is more powerful
than other optimization methods using gradient descent
directly in the latent space.

• VAEs are more susceptible to membership attacks com-
pared to GANs in general.

In addition, we also discuss the success of membership
attack with a few other quality measures for generative models.

Generalization is arguably the most important objective for
a machine learning model, in which the model produces
useful results not only on the training data but also on data
that the model has not seen. For supervised learning, the
generalization error is the difference between classification
error on the training set and error on the underlying joint
probability distribution. For generative models, there has not
been a standard measure of generalization. With a similar
intuition, we measure the generalization gap by the difference
of the reconstruction error by the membership attacker on the
training data and on the test data. Lastly, diversity describes
whether the generator can produce different samples [13]. We
use a measure called dispersion to evaluate the diversity qual-
itatively. We show that empirically, dispersion, generalization
error, and success rate of membership attack are all closely
correlated.

II. MEMBERSHIP ATTACKS AGAINST DEEP GENERATIVE
MODELS

In this section, we introduce an efficient and unsupervised
membership attack against different deep generative models,
and show that the generative models can indeed reveal the
information about the training data.

Attacking GANs. Let x be a data instance with dimension
d. µreal is the distribution from which x is sampled from.
So x ∼ µreal. The objective of a GAN [2] is to learn the
distribution µreal; practically GANs can be used to generate
new samples {x1,x2, . . .} to approximate the distribution.
To achieve the goal, GANs consist of two components, the
generator (Gθ) and the discriminator (Dφ). Gθ produces a
sample and Dφ tries to distinguish whether the sample is

from the output distribution of generator µGθ , where θ and
φ are neural network parameters. To generate a new data
point x, generator Gθ takes a random k-dimensional vector
z and returns x = Gθ(z). The discriminator Dφ is a function
Rd → [0, 1]. The output of Dφ(x) is interpreted as the
probability for the data x to be drawn from µreal. The objective
of a GAN is

min
θ

max
φ

Ex∼µreal [logDφ(x)] + Ex∼µGθ [log(1−Dφ(x))].

In Wasserstein GAN (WGANs) [14], the measuring function
is the identity function instead of the log function in which
the resultant objective is

min
θ

max
φ

Ex∼µreal [Dφ(x)]− Ex∼µGθ [Dφ(x)].

In the paper and our implementation, the Lipschitz constraint
on the critic is implemented with weight clipping. Empirically,
WGANs are observed to behave better than the vanilla coun-
terpart so we use WGANs in our experiment.

To perform a membership attack against the generator Gθ
of a trained GAN for a given target instance x, we propose
to introduce an attacker A to synthesize a seed for Gθ so
as to generate an instance close to x. The pipeline of the
membership attack is shown in Figure 1. Specifically, the
attacker is a neural network Aγ , parameterized by γ, which
takes x as input and maps from Rd → Rk. Here k is the input
dimension of the generator. The objective of the attacker is
to minimize a distance (reconstruction loss for the attacker)
between the data point x and the generated data Gθ(Aγ(x)):

min
γ

∆(x, Gθ(Aγ(x))). (1)

The result of the optimization problem 1 is used directly
to determine the membership of x. Intuitively, smaller recon-
struction error indicates that x is more likely to be from the
training data. Note that the parameter γ of the attacker network
A is randomly initialized for a new attack so it does not require
any pre-training before performing this attack.

L2-distance is taken as our distance function ∆(·, ·)
throughout the paper. We would like to remark that our
proposed attack method is not specific to L2-distance. For
different datasets, other application oriented metrics might be
used.

Attacking VAEs. VAEs [15] are good at changing or exploring
variations on existing data in a desired, specific direction.
VAEs consist of a pair of connected networks, an encoder
and a decoder. The encoder qφ takes input data and outputs
two vectors: a vector of means µ, and a vector of standard
deviations σ. With re-parameterization, z = µ+σε is obtained
by sampling ε ∼ N (0, 1). The decoder gθ takes z and
generates a data point gθ(z). The entire network is trained
with the objective

min
θ,φ
−Eqφ(z |x)[log(p(x |gθ(z)))] + KL(qφ(z |x) ‖ p(z)),

where KL(p||q) is the KL-divergence of distributions p, q.

Similarly when conducting membership attack against
VAEs, we search for a particular z that can reproduce the
target image when z is fed to the decoder gθ. The objective
of the attacker is again:

min
γ

∆(x, gθ(Aγ(x))). (2)

In both optimization objectives 1 and 2, the attacker network
is trying to invert the generator. The generator takes a seed z
and outputs x, and the attacker takes x and looks for z. In
VAE, if the compact representation of the encoder has the
same dimension as the seed, this implies that the attacker Aγ
is very similar to the encoder.

Single Attack v.s. Co-Attack. The attack framework intro-
duced is able to launch membership attacks against a single
target by optimizing an instance of attacker network Aγ . This
is called a single attack. If the attacker has more information
about several target instances (for example, the target instances
are known to be either all from training or non-training data),
we can optimize one single γ on multiple attack instances at
the same time instead of initializing a new γ for each target
instance. The information of multiple instances will be fused
together to guide an attacker network Aγ . This is termed as
a co-attack with strength n if n target instances are handled
together with the prior knowledge that they have the same
membership status. The new attacker loss is defined as the
average of the reconstruction loss for the n instances. So the
objective of such co-attacker is:

min
γ

1

n

n∑
i

∆(xi, G(Aγ(xi))).

Without modeling the attacker as a neural network, such
a co-attack will be difficult. We observe that in the experi-
ments, the proposed co-attack is significantly more successful
across models and datasets when n increases. This shows the
efficiency of co-attackers to leverage such information.

White-box v.s. Black-box. Since our attacker computes the
minimum reconstruction error in Equation 1 to determine the
membership label of an instance, it requires the gradient for
optimization. If the internal structure (weights and architecture
for back-propagation) of the generator (decoder) G is exposed
(i.e., in a white box attack), we can compute an analytical gra-
dient of the distance w.r.t. γ. Otherwise, we need to use finite-
difference to approximate the gradient: l′(γ)i = l(γ+ei)−l(γ)

ei
where l(γ) = ∆(x, G(Aγ(x))). Then the optimization of the
attacker requires more black-box accesses to the generator
(decoder). In this work, we focus on the white-box setting
to explore what a powerful adversary can do based on the
Kerckhoffs’s principle [16] to better motivate defense methods.
But note that the (both white-box and black-box) adversary
has no information about the composition of training data,
assumption of the underlying distribution and details of the
training process.

TABLE I: Evaluation of membership attack on the MNIST (trained with 60,000 images) , CelebA (trained with 500 contributors and 25
images each) , ChestX-ray8 (trained with 100 contributors and 10 images each) measured by AUC of ROC

MNIST CelebA ChestX-ray8

Attack method co-attack WGANs VAEs WGANs VAEs Residual-WGANs VAEs

Nearest Neighbor - 0.52 0.57 0.48 0.49 0.53 0.49

Direct Projection - 0.57 0.55 0.52 0.50 0.50 0.53

Single Attack - 0.45 0.53 0.53 0.58 0.85 0.68

Co-membership Attack

2 0.47 0.58 0.52 0.56 0.88 0.74
4 0.46 0.63 0.57 0.70 0.95 0.79
8 0.56 0.81 0.61 0.69 0.96 0.76
16 0.60 0.70 0.71 0.79 - -
32 0.68 0.82 - - - -
64 0.92 0.94 - - - -

III. EXPERIMENTAL RESULTS

A. Evaluation of Membership Attack

In this sub-section, we evaluate the effectiveness of the
proposed (co)-membership attackers and show that some pop-
ular datasets with common network architecture and training
methods are susceptible to such attackers. It exposes the
unexpected privacy risk of publishing generative models even
when they were trained with large datasets.

Comparison study. We tested the membership attacks on
three datasets, MNIST [17], CelebA and ChestX-ray8 [18]. All
three datasets are trained by using only the image feature x.
After the generative models are trained on the private training
data, only the generative component is exposed to the attacker.
To test the effectiveness of the attackers, we create an eval-
uation dataset by mixing training and non-training data (with
their membership labels hidden from the attackers). Therefore,
if an attacker is able to differentiate training and non-training
instances among the evaluation dataset, the membership labels
are recovered and privacy is leaked. For example, the exper-
iment on MNIST uses 60,000 images as training and 10,000
as non-training data. For an attack instance, the adversary is
randomly assigned only with a target image. It is stressed
that the proposed attacker does not require any prior image
from the training data or assumption about the underlying
distribution. Then the attacker (reconstruction) loss on each
instance is recorded. If the loss is smaller than a threshold,
this target image is declared to be from the training dataset
by the attacker. The ROC curve of such binary classifier is
reported in Table I by varying the discriminating threshold.

For references, we compare two other unsupervised methods
with ours. One is a naive baseline method, named Nearest
Neighbor, in which we simply compare the given target
instance x with the nearest neighbor in a set of generated data
(60000 images for MNIST, 20000 for CelebA and 1000 for
ChestX-ray8). The minimum L2-distance is considered as the
attacker loss for this baseline attacker. The second compared
baseline is called Direct Projection (as in DefenseGAN [12]),
in which we take the noise z as trainable variable and use
gradient descent to adjust the noise directly using the new
objective minz ∆(x, Gθ(z)). This direct method is not able to

launch a co-attack since it is not possible to share information
across different instances.

To create the evaluation dataset of MNIST, 512 images are
randomly sampled from training and non-training data. Both
baseline methods and the single attack treat each image as
independent attack instances. While for co-attacks of strength
n the training (also non-training) images are partitioned into
512/n groups. Each group of n images is considered as a
single attack instance and co-membership attacks are launched
against each instance.
Collaborative Machine Learning. For CelebA and ChestX-
ray8, each image has an identity attribute which indicates the
owner of that image. Each person may contribute multiple
images to the dataset. This can be formulated in a collaborative
learning setting: an aggregator initiates the learning process of
a generative model by requesting users to contribute multiple
images. Each user may choose to participate in the training
or not. User’s involvement (membership label) is private in-
formation which the attacker is trying to recover by accessing
the trained model and the n images (co-attack strength = n)
of that user. For CelebA, 500 celebrities with at least 25 face
images are randomly selected as contributors for the training
data and for ChestX-ray8, 100 random patients with at least
10 scans contribute to the training data. Membership attacks
are launched against 64 evaluation users sampled from the
contributors and non-contributors. Therefore, the maximum
co-membership strength is 20 and 10 for CelebA and ChestX-
ray8 respectively. Table I reflects this constraint.

B. Implementation Details

TABLE II: Network architecture used for MNIST

WGANs / VAEs

Generator/Decoder Discriminator/Encoder

FC 1024 Conv [4×4], stride=2, 64
FC 7× 7× 128 Conv [4×4], stride=2, 128
Trans. Conv [4×4], stride=2,64 FC 1024
Trans. Conv [4×4], stride=2,1

The network architecture used in MNIST experiments can
be found in Table II. All experiments in CelebA use the
network architecture in DCGAN [19]. The ChestX-ray8 uses

Fig. 2: Visualization of generated results on ChestX-ray8

DCGAN for VAEs and DCGAN-like network with residual
blocks for GANs. For the hidden layers in the neural networks,
the activation function is ReLU and batch normalization is
applied except the output layer of the generator/decoder. The
last layer of the discriminator is a fully connected layer that
maps the previous layer to a single value and then applies a
sigmoid function. For the encoder, re-parameterization trick is
used and the last layer outputs the mean and standard deviation
of the Gaussian distribution for sampling. L2 regularization
is applied to weights and biases of all hidden layers. Adam
Optimizer is used with learning rate 0.001 for the generator
and 0.0001 for the discriminator.

The model architecture of the attacker is relatively straight-
forward. The attacker network contains two fully connected
hidden layers with 100 units and the final layer outputs the
latent representation z. Similar to the previous models, ReLu
is chosen to be the non-linear activation function. We run
the attacker optimization (gradient descent) step for 1000
iterations and report the final L2-distance between the target
and generated image as the reconstruction loss of the attacker.
Since computing the (minimum) reconstruction loss in Eqn 1
is a non-convex problem, to reduce the effect of initialization
we run the attack against the same instance for four times and
take the minimum among the losses.

For the deep learning framework and hardware, TensorFlow
is used to implement the deep neural networks. The training
is done on an Nvidia Tesla K40c GPU.

C. Attack Results

Our co-attacker outperforms nearest neighbor and direct
projection across all three datasets and for both VAEs and
GANs. The AUC of our method is able to reach around
75% to 95%. The result shows the success of co-membership
attack against deep generative models trained on popular
datasets. To investigate the two factors behind the scene,
namely training data size and co-membership information,

we aim to understand when a membership attack succeeds.
Then we report experimental results related to co-membership
information.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te

#train=100, auc=0.94
#train=200, auc=0.90
#train=400, auc=0.79
#train=800, auc=0.74
#train=1600, auc=0.58
#train=3200, auc=0.51

Fig. 3: ROC curve for single membership attacker against WGANs
trained on MNIST with varying training data size.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

strength=1, auc=0.45
strength=2, auc=0.47
strength=4, auc=0.46
strength=8, auc=0.56
strength=16, auc=0.60
strength=32, auc=0.68
strength=64, auc=0.92
strength=128, auc=0.94

Fig. 4: ROC curve for co-membership attacker against WGANs
trained on full MNIST with varying co-membership strength.

Single membership attack. From Figure 3, we observe that
the ROC curve for the GANs trained with different training
data size varies significantly. If the training dataset consists
of only hundreds of images, the attacker can easily find a
good latent representation for the generator to reproduce any
target image from the training data. It suggests an overfitting
scenario. This results in high attacker effectiveness for the
simple binary classifier. However, when the training dataset
size increases to thousands (orange and yellow curves), this
difference vanishes gradually. Thus, the ROC curves are very
close to the diagonal. Therefore, a single attacker may not
have enough information to attack generative models trained
with moderately sized dataset.

Co-membership attack. While the generative models are safe
against single attacks when trained on a large data set, Figure 4
shows that a privacy leakage exists if the attacker has the
auxiliary co-membership information and utilizes the proposed
co-membership attacker to fuse information together. The
AUC of a co-membership attacker can even exceed 90% for
a model trained using the full-sized (60,000 images) MNIST
dataset.

0 10000 20000 30000 40000 50000 60000
size of training data

20

40

60

80

st
re

ng
th

 o
f c

o-
m

em
be

rs
hi

p
at

ta
ck

Fig. 5: Relationship between minimum co-membership strength and
training data size for an effective attacker (AUC>0.75)

Figure 5 shows the relationship between the size of train-
ing data and the effectiveness of co-membership attacker on
MNIST. Empirically, the figure suggests that 1000n training
data points are needed for the model to be robust against co-
attacks of strength n.

We also qualitatively visualize the generated results on
ChestX-ray8 data in Figure 2. The first two rows show the
generated and original images when the original (target) ones
are actually contained in the training data. It is clear that
the generated instances visually look similar with the original
ones which indicates high attack/inference success rate. On
the contrary, the lower two rows show similar instances while
the original images are not in the training data. The results
show that this time the generated instances are more random
and far from the original ones.

D. Relationship between Membership Attack and Model Gen-
eralization

Membership attacks for classifiers (supervised learning)
were shown to be closely related to the generalization capa-
bility of the model [5]. As for generative models, there has
not been an explicit discussion of how to relate model gen-
eralization with membership attacks. By providing a measure
of generalization that is easy to compute, one can monitor
the training process of a generative model and at the same
time understand the privacy risk concerned with publishing
the trained model.

Intuitively, we want a generalizing model to have similar
training and non-training (testing) reconstruction loss – the
attacker is equally able to reproduce a target image from
training or non-training data. Note that this generalization
condition is only a necessary condition for distribution learn-
ing. A generator that is able to produce every element in the
data distribution µreal (i.e., the generator ‘covers’ all samples
with non-zero measures in µreal) cannot guarantee that it is
generating the samples according to the distribution µreal.

Now, we make this intuition precise by measuring the
generalization gap of a generative model Gθ by the difference
between the expected attacker loss on the training data (the
finite samples) X and non-training data (testing data not used
by the training procedure) µreal − X which comes from the
same underlying data distribution µreal:

Ex∼µreal−X min
γ

∆(x, Gθ(Aγ(x)))︸ ︷︷ ︸
attacker loss on non-training images

−

Ex∼X min
γ

∆(x, Gθ(Aγ(x)))︸ ︷︷ ︸
attacker loss on training images

(3)

Generalization Gap. In supervised learning, we should ob-
serve that for a given hypothesis class of classifiers, the
generalization gap decreases when the number of training data
increases. With the proposed measure of generalization for
generative model, we find a similar pattern in Figure 6a. For
WGANs model trained on MNIST data and stopped after 2000
training steps, the generalization gap diminishes when we use
thousands of training data. We also plot the success rate of the
single membership attacks. The success rate of membership
attacks and generalization gap are strongly correlated.
Early Stopping. On the other hand, the learning curve in
Figure 6b depicts how the training and testing errors behave
when the number of training steps increases. For deep learn-
ing, the curve provides an early stopping scheme to prevent
overfitting. As for the case of generative model, the training
error also decreases steadily while the testing error increases
again after some steps. This shows that generative model is
easily overfitting (over-trained) when the dataset is small.

102 103

Size of training data

1

2

3

4

5
L2

-d
ist

an
ce

Attack on training data
Attack on testing data
Attacker AUC

0.5

0.6

0.7

0.8

0.9

1.0

(a) Generalization gap and membership attack result. The two attacker
losses (with vertical bars showing one standard deviation) approach
each other with more training data. Meanwhile, the success (AUC)
of the membership attack is diminishing.

0 500 1000 1500 2000 2500 3000
Training steps

2.5

3.0

3.5

4.0

4.5

L2
-d

ist
an

ce

Early stopping at step 301

Attack on training data
Attack on testing data

(b) Learning curve for WGANs trained with 800 images. Model is
over-trained after hundreds of training steps.

Fig. 6: Generalization of WGANs on MNIST. The y-axis shows
attacker loss in Eqn 1. The blue curve and red curve show the average
attacker loss for training data and non-training data respectively.

E. Diversity

Dispersion. A desirable property of a generative model is
the capability of generating versatile samples. This is termed
diversity in the literature. The evaluation of diversity, however,
has not reached a consensus in the community. In particular,
an obvious failing mode to avoid is that the GANs memorize
the training data and simply report the training samples. There
has been a number of proposed methods to test whether this is
the case. For example, one test checks each generated image
whether it is similar to any in the training data. Another test
considers taking two random seeds s1, s2 and checks if the
interpolation λs1 + (1− λ)s2 for λ ∈ [0, 1] generates realistic
outputs. Actually, no measure of diversity is explicitly defined.
In a recent work [13], the authors have proposed to use a
birthday paradox test: if the GANs have simply memorized
the n training sample and randomly output one each time,
then with roughly

√
n samples in the output there is a good

chance that two of them are the same. It is then suggested
in [13] to visually examine the images to identify duplicates.

20 40 60 80 100
k

0

5

10

15

20

25

L2
-d

ist
an

ce

#train=8
#train=80
#train=800
test

Fig. 7: k-dispersion of 3000 generated images from WGANs trained
with different data sizes = {8, 80, 800}. ‘test’ refers to the unknown
ground truth data distribution which is represented by 10,000 images
from the non-training portion of the image dataset as a proxy.

Here we use a geometric measure of diversity, called dis-
persion, which seeks for a subset of k images in the generated
output set XG that are far away from each other feature-wisely.

disp(k;XG) = max
x1,...,xk∈XG

min
i,j∈[k]

∆(xi,xj)

If the output images are concentrated around a small number
of ` samples, then the dispersion will dramatically drop when
k goes beyond `. In Figure 7, we can observe such patterns in
training GANs for MNIST dataset. For GANs trained with 8
and 80 images, they are not able to generate diversified images
so that their dispersion is significantly lower than that of the
testing (non-training) dataset which consists of 10,000 images
in MNIST.

Connection with Generalization. When a model generalizes,
the dispersion of the generated data is similar to the dispersion
of the ground truth data distribution. In Section III-D, the
generalization gap becomes smaller when we have more
training data. So one can produce diversified data that are
not seen in the training data. Data dispersion serves as an
evidence for such diversification. When a generative model is
successful, it should interpolate or even extrapolate beyond the
original training data which results in a larger data dispersion.

In Figure 8, we visualize dispersion by embedding the
generated images and the training data on a two-dimensional
map using t-SNE [20]. The red dots are the training data,
the number of which is the only changing variable in the
subfigures. The green dots show the 3000 generated images
sampled from the GANs after training. The black dots repre-
sent 3000 samples from the real distribution. When there are
only a small number of training images, the generated samples
heavily concentrate around the training data which produces
a small dispersion. Once the number of training data is 800,
the dispersion of the generated data and original data becomes
similar.

(a) Training data size = 8 (b) Training data size = 80 (c) Training data size = 800

Fig. 8: t-SNE visualization of training images (in red), generated images (in green) and images from real distribution (in black) for WGANs
trained with different sizes of training data.

10 20 30 40 50
k

14

16

18

20

22

24

26

28

30

L2
-d

ist
an

ce

#train=100
#rand train=100
#train=200
#rand train=200
#train=400
#rand train=400
#train=800
#rand train=800
test

(a) Dispersion with Adversarial Sampling

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

#train=100, auc=0.98
#train=200, auc=0.90
#train=400, auc=0.81
#train=800, auc=0.80
#rand train=100, auc=0.97
#rand train=200, auc=0.88
#rand train=400, auc=0.70
#rand train=800, auc=0.56

(b) Membership Attack with Adversarial Sampling

Fig. 9: Adversarial sampling versus random sampling for diversity
and generalization. For adversarial sampling, dispersion is enhanced
while membership privacy risk is increased.

F. Diversity versus Model Generalization

It is interesting to ask whether diversity and generalization
capabilities are the same. And it is tempting to conclude that
a model with good diversity has good generalization. In this
sub-section, we point out that these two measures (goals) are
not always aligned. One could carefully choose training data
so that diversity is enhanced yet generalization is hurt – i.e.,
membership attacks are more likely to be successful.

For example, when we take a batch of data that have not

been used in the training process, {xi}bi=1, and assign a rank-
ing to them by the decreasing order of the attacker loss (Eqn 1)
with respect to the current generator. We include the data point
ranked highest (the one that is the least reproducible) in X′.
Then we modify the current GANs by training on all data in
the current batch and repeat the above procedure. Eventually,
we have a subset X′ that is the hardest one to reproduce in
the process.

After the above procedure has completed, a subset of data
points X′ ⊂ X is collected from the original training dataset
X. Now we train a new GANs from scratch using data in X′.
In comparison, we also train a separate GANs using a set Y
with |Y | = |X′ |, randomly selected from X as the control
group. We denote X′ to be obtained by adversarial sampling
and Y as random sampling.

Hereafter, we compare the dispersion and rate of success
of membership attacks on GANs trained with adversarial
sampling and uniform random sampling. The dispersion of
generated data using the subset X′ is even higher than the
dispersion of the original training data (Figure 9a). But in
terms of membership attack, GANs trained by adversarial
samples are much worse (Figure 9b). One way to understand
this result is that the adversarial samples might have paid too
much attention on extreme cases while random sampling is a
better unbiased representation of µreal.

IV. CONCLUSION

To explore the privacy vulnerabilities of generative models,
we propose co-membership attacks and compared with single
membership attacks on several datasets. We show that different
generative models are possible to leak sensitive membership
information under various attack scenarios. We hope this
work will encourage further privacy protection mechanisms
for generative models.

ACKNOWLEDGMENT

This work is partially supported through NSF DMS-
1737812, NSF CNS-1618391, NSF CCF-1535900, DARPA
FA8650-18-2-7882, and Wechat Graduate student fellowship.

REFERENCES

[1] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[2] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
NIPS, 2014, pp. 2672–2680.

[3] M. Abadi and D. G. Andersen, “Learning to protect communications
with adversarial neural cryptography,” arXiv preprint arXiv:1610.06918,
2016.

[4] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” Oct. 2016.

[5] S. Yeom, M. Fredrikson, and S. Jha, “The unintended consequences of
overfitting: Training data inference attacks,” Sep. 2017.

[6] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart,
“Privacy in pharmacogenetics: An end-to-end case study of personalized
warfarin dosing.” in USENIX Security Symposium, 2014.

[7] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015.

[8] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Security and
Privacy (SP), 2017 IEEE Symposium on. IEEE, 2017, pp. 3–18.

[9] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan:
Information leakage from collaborative deep learning,” CCS, 2017.

[10] B. McMahan and D. Ramage, “Federated learning: Collaborative ma-
chine learning without centralized training data,” Technical report,
Google, Tech. Rep., 2017.

[11] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “Logan: Evalu-
ating privacy leakage of generative models using generative adversarial
networks,” arXiv preprint arXiv:1705.07663, 2017.

[12] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-GAN: pro-
tecting classifiers against adversarial attacks using generative models,”
in Proceedings of the Sixth International Conference on Learning
Representations (ICLR), 2018.

[13] S. Arora, A. Risteski, and Y. Zhang, “Do GANs learn the distribution?
some theory and empirics,” in Proceedings of the Sixth International
Conference on Learning Representations, April 2018.

[14] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

[15] D. P. Kingma and M. Welling, “Auto-Encoding variational bayes,” ICLR
2014, Dec. 2013.

[16] C. E. Shannon, “Communication theory of secrecy systems,” Bell Labs
Technical Journal, vol. 28, no. 4, pp. 656–715, 1949.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[18] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers,
“Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on
weakly-supervised classification and localization of common thorax
diseases,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 2097–2106.

[19] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[20] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.
Learn. Res., vol. 9, no. Nov, pp. 2579–2605, 2008.

	Introduction
	Membership Attacks Against Deep Generative Models
	Experimental Results
	Evaluation of Membership Attack
	Implementation Details
	Attack Results
	Relationship between Membership Attack and Model Generalization
	Diversity
	Diversity versus Model Generalization

	Conclusion
	References

