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ABSTRACT: We report a biocatalytic platform of engineered 
cytochrome P450 enzymes to carry out efficient cyclopropene 
synthesis via carbene transfer to internal alkynes. Directed 
evolution of a serine-ligated P450 variant, P411-C10, yielded a 
lineage of engineered P411 enzymes that together accommodate a 
variety of internal aromatic alkynes as substrates for 
cyclopropenation  with  unprecedented  efficiencies  and 
stereoselectivities (up to 5760 TTN, and all with >99.9% ee). Using 
an internal aliphatic alkyne bearing a propargylic ether group, 
different P411 variants can  selectively catalyze cyclopropene 
formation, carbene insertion into a propargylic C‒H bond or [3+2]-
cycloaddition. This tunable reaction selectivity further highlights 
the benefit of using genetically-encoded catalysts to address 
chemoselectivity challenges.

Cyclopropenes, with endo-cyclic double bonds inside a three-
membered carbocycle, possess high strain energy, which enables 
activity in different strain-release transformations for constructing 
a myriad of useful molecular scaffolds.1 Carbene transfer to 
alkynes represents one of the most straightforward approaches to 
constructing cyclopropenes.1a,1b Small-molecule transition metal 
complexes based on rhodium, iridium, cobalt and others have been 
shown to catalyze carbene transfer to terminal alkynes to yield 
enantio-enriched cyclopropenes.2‒4 However, enantioselective 
carbene transfer to internal alkynes still remains largely 
unexplored. Only two systems with chiral gold/silver5 or rhodium6 
(co-)catalysts have been reported to take internal aromatic alkynes 
for  asymmetric  cyclopropene  synthesis  with  good 
stereoselectivities. These systems require precious metal catalysts 
in relatively high loading together with complicated ligands and 
have not been shown to work with internal aliphatic alkynes. We 
wanted to develop an efficient biocatalytic platform that uses earth-
abundant iron to access internal cyclopropenes.

Cytochromes P450 use an iron-heme complex as their catalytic 
cofactor in their native oxygenase functions.7 Recently, directed 
evolution has significantly expanded the catalytic repertoire of 
P450 enzymes and other hemeproteins to include non-natural 
carbene- and nitrene-transfer reactions, as described by our group 
and others.8‒10 We recently reported an enzymatic platform of 
engineered cytochrome P450 enzymes for stereoselective carbene 
addition to terminal alkynes to forge cyclopropenes and 
bicyclo[1.1.0]butanes (Figure 1).11 We hypothesized that P450 
enzymes may achieve even more challenging transformations, such 
as carbene transfer to internal alkynes for cyclopropene 
construction.  The  major  difficulty  for  internal  alkyne 
cyclopropenation lies in the severe steric clash between the linear 

π-system and the planar heme cofactor, especially if the reaction 
involves a concerted carbene-transfer mechanism.12 Recent 
mechanistic studies have shown step-wise carbene-transfer 
processes or even multiple pathways for the same type of reactions 
with different engineered hemeproteins.13 We reasoned that proper 
engineering of the enzyme active site may direct the desired 
carbene transfer to proceed through a step-wise pathway, thereby 
circumventing the steric issue.

Figure 1. Enzymatic carbene transfer to alkynes for strained 
carbocycle formation.

We initiated investigation of internal aromatic alkyne 
cyclopropenation using ethyl diazoacetate (EDA) as the carbene 
precursor and 1-phenylbutyne (1a) as the model alkyne substrate. 
Screening various hemeprotein variants based on P450s, P411s 
(P450 with axial ligating residue mutated to serine),14 cytochromes 
c and globins in the form of whole Escherichia coli (E. coli) cell 
catalysts identified a P411 variant, P411-C10, that formed the 
desired internal cyclopropene (Figure 1). P411-C10 belongs to the 
family of P411CHF (five amino acid substitutions away), which was 
evolved for a carbene C‒H insertion reaction.15 Surprisingly, the 
cyclopropene product synthesized by P411-C10 was determined to 
be a single enantiomer, which suggests the enzyme scaffold  binds 
the alkyne and directs carbene transfer in a well-defined orientation.

For the model reaction with 1a as the alkyne donor, C10 in the 
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form of the whole-cell catalyst exhibited modest activity, with 55 
total turnovers (TTN). Directed evolution targeting active-site 
residues for site-saturation mutagenesis was performed to enhance 
the overall catalytic efficiency (Figure 2). Residue 263, located 
right above the heme cofactor (in the heme domain), was 
previously found to play an important role in controlling carbene 
transfer to phenylacetylene using other P411 variants.11 To our 
delight, screening the enzyme library made by site-saturation 
mutagenesis at residue 263 yielded a tryptophan mutation at this 
site that improved TTN over 11 fold. Sequential mutagenesis 
targeting sites in the loop regions led to beneficial mutations Q437I, 
S72F and L436R and afforded the highly efficient variant WIRF, 
with 2680 TTN towards the desired cyclopropene formation.

P411 C10-WIRF’s scope of internal alkynes bearing different 
aromatic rings or carbon chains was then evaluated. For the alkyne 

substrates tested (1b to 1l), only cyclopropenes 2c, 2d, 2i and 2j 
were synthesized efficiently, and most of the other alkynes with 
substitutions on the aromatic ring showed poor to moderate 
reactivities. Thinking that the evolved WIRF variant may have 
acquired some specificity for the non-substituted aromatic ring or 
for electron-rich alkynes, we decided to use a less reactive alkyne 
substrate (compared to 1a), 1b, with an electron-deficient para-
chloro substitution, to further evolve the enzyme (Figure 2). A site-
saturation library targeting residue 332 afforded mutation S332G, 
which boosted the total turnover by almost 5 fold. We reasoned that 
the glycine substitution might help make space in the active site to 
accommodate substrates with substitutions on the aromatic ring. 
Mutagenesis of residues close to 332 was investigated, and two 
additional beneficial mutations, G74A and E70K, yielded the final 
WIRF_GAK variant with 2320 TTN for substrate 1b.

Figure 2. Directed evolution of P411-C10 for internal cyclopropene synthesis. Reaction conditions: 10 mM alkyne, 10 mM EDA, E. coli 
harboring P411-C10 variants (OD600 = 15 to 60), D-glucose (25 mM), M9-N buffer/EtOH (19:1), anaerobic, 6 h. Product formation was 
quantified by gas chromatography (GC) and TTNs were determined based on P411 protein concentration. The heme-domain structure of 
P411-E10 variant (pdb: 5UCW) was used to guide site-saturation mutagenesis; mutation sites are highlighted. See SI for details.

We revisited the substrate scope of this biocatalytic platform 
using the whole lineage of cyclopropene-forming enzyme variants 
(from C10 to WIRF and then to WIRF_GAK) (Figure 3). The 
WIRF variant turned out to be efficient for non-substituted or 
ortho-substituted aromatic alkynes (1a, 1c and 1d), catalyzing the 
desired cyclopropene synthesis with 1200 to 2670 total turnovers, 
while variants from later in the evolution showed impaired activity 
with these substrates. Although we did not specifically evolve the 
enzyme for activity on meta-substituted aromatic alkynes, variant 
WIRF_G exhibited improved efficiency for a meta-methoxyl 
alkyne substrate (1f), compared to WIRF. For aromatic alkynes 
bearing para-substitutions or di-substitutions (1b and 1g to 1l), the 
final variant WIRF_GAK catalyzes the desired transformations 
with unprecedentedly high efficiency compared to all previously 
reported systems for cyclopropene formation. For instance, an 
electronically-withdrawing trifluoromethyl-substituted alkyne (1g) 

was well-accepted by the enzymatic system. It is worth noting that 
all of the internal cyclopropenes produced enzymatically were 
determined to be single enantiomers (>99.9% ee for all), which 
further supports our hypothesis that the engineered enzymes 
impose a specific binding orientation of the alkyne substrate in the 
protein active site, allowing for efficient carbene addition to triple 
bonds with perfect stereocontrol.
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Figure 3. Substrate scope of internal aromatic alkynes for 
cyclopropene formation. Reactions were performed in 
quadruplicate under the following conditions: 10 mM alkyne, 10 
mM EDA, E. coli harboring P411-C10 variants (OD600 = 10 to 20), 
D-glucose (25 mM), M9-N buffer/EtOH (19:1), anaerobic, 16 h. 
Product formation was quantified by gas chromatography (GC) and 
TTNs were determined based on protein concentration. See SI for 
details.

To further demonstrate the utility of this highly stereoselective 
enzymatic platform, we carried out large-scale preparation of 
internal cyclopropenes (Figure 4). With a simple modification of 
the reaction conditions using the diazo reagent in excess (2.4 
equivalents added in three portions), we obtained high isolated 
yields of the desired cyclopropene products at mmol scale (90% for 
2d with variant WIRF, and 87% for 2g with variant WIRF_GAK). 
Interestingly, the enzyme turnovers of the large-scale reactions are 
typically higher than those obtained with analytical-scale ones, 
indicating that the evolved enzymes in whole cells might still retain 
(partial) activity after the reactions and the turnovers were limited 
by consumption of the diazo substrate. 

Figure 4. Preparative-scale synthesis of internal cyclopropenes 
and further derivatization. See SI for details.

Numerous transformations have been developed to furnish 
diverse molecular structures from versatile cyclopropane building 
blocks.1,2b,2c,6,7 Here, we also derivatized the enzymatically-
synthesized cyclopropenes by hydrogenation and ester reduction to 
afford an all-cis cyclopropane product (Figure 4), which is 
otherwise difficult to prepare due to the cis-stereochemistry of the 
three substituents on the cyclopropane ring.

Compared to internal aromatic alkynes described above, internal 
aliphatic alkynes are typically more challenging targets for 
enantioselective cyclopropene formation in terms of reactivity and 
selectivity. As the aryl groups on aromatic alkynes can provide a 
stabilizing effect through the conjugated system in the carbene 
transfer process, purely aliphatic alkynes without additional 
intramolecular effects may suffer from a higher energy barrier for 
carbene transfer. Additionally, alkyl groups at the two ends of the 
triple bond are less easy to distinguish than the alkyl and aryl 
groups on aromatic alkynes. Until now, no systems have been 
reported for enantioselective cyclopropene synthesis with internal 
aliphatic alkynes. However, we believed that enzymes can 
accomplish this, as the enzyme active site is a chiral environment 
that can recognize minor steric differences for chiral induction.16

Testing the evolved enzymes for a cyclopropenation reaction 
with internal aliphatic alkyne 1m was not fruitful, as only trace 
activity was observed. However, with the parent enzyme P411-C10 
we observed the desired cyclopropene product 2m (Figure 5) with 
modest activity (43 TTN). This might be because the whole enzyme 
lineage was evolved for a set of structurally different aromatic 
alkynes. Further screening of variants in the C10 family identified 
a triple mutant of C10, C10_VLC, which catalyzed the formation 
of internal cyclopropene 2m with improved activity (64 TTN) and 
perfect stereocontrol (>99% ee). We anticipate that further 
evolution will lead to more efficient enzymes for internal aliphatic 
cyclopropene construction, as we have demonstrated for aromatic 
alkynes.

Figure 5. Cyclopropenation of internal aliphatic alkynes and 
chemoselectivity study with substrate 1n. Reactions were 
performed in quadruplicate under the following conditions: 10 mM 
alkyne, 10 mM EDA, E. coli harboring P411 variants (OD600 = 15 
to 20), D-glucose (25 mM), M9-N buffer/EtOH (19:1), anaerobic, 
16 h. C10_VLC: C10 T327V Q437L S332C; C11: C10 G74T 
S118M L162F L401I Q437L; L8: C10 A87P A264S E267D T327P 
S332A Q437L; C10_PVV: C10 Q437P T327V A87V. See SI for 
details.
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As the parent P411-C10 enzyme was initially engineered for a 
carbene C‒H insertion reaction, we took a deeper look at the 
chemoselectivity between cyclopropenation and C‒H insertion.15 
Internal alkyne substrate 1n, bearing a propargylic ether group, was 
found to mainly undergo a carbene insertion reaction into the 
propargylic C‒H bond with high enantioselectivity with catalyst 
P411CHF; a cyclopropene product was also detected as a minor 
product (see SI for details). However, P411-C10 reversed the 
chemoselectivity to favor the cyclopropene 2n as the major 
product; and a third product observed in low proportion in this latter 
reaction was confirmed to be a furan derivative, 2n-2, which may 
be generated through a [3+2]-cycloaddition.11,17 After intensive 
screening of variants in the families of P411CHF and P411-C10, we 
discovered two related variants, P411-C11 and P411-L8, which 
could catalyze the C‒H insertion reaction and the cyclopropenation 
reaction with even higher activity and selectivity (compared to 
P411CHF and P411-C10, respectively), as shown in Figure 5. And 
a C10 triple mutant, C10_PVV, was found to flip the 
chemoselectivity to favor formation of the furan product. These 
variants are closely related, differing by only a few amino acid 
substitutions, but gave very different chemoselectivities without 
any specific enzyme evolution. These results, together with our 

previous demonstration of enzyme-controlled reaction selectivity 
between C‒H insertion and cyclopropanation,18 highlight how 
enzyme catalysis can solve chemoselectivity problems in synthetic 
methodology.

In conclusion, we have developed a versatile biocatalytic 
platform based on engineered cytochrome P411 enzymes that 
offers access to an array of structurally diverse internal 
cyclopropenes through carbene transfer to internal alkynes. This 
biocatalytic system was evolved rapidly to take internal aromatic 
alkynes as substrates and furnish the desired cyclopropenes with 
unprecedentedly high stereoselectivities (>99.9% ee for all). This 
enzymatic platform is also readily scalable for the production of 
cyclopropenes in preparative quantities, with even higher 
efficiencies compared to the analytical-scale reactions. 
Enantioselective cyclopropenation of internal aliphatic alkynes was 
also shown to be possible. The versatility and tunability of these 
biocatalysts has been demonstrated, with chemoselectivity that can 
be switched among cyclopropenation, carbene C‒H insertion and 
[3+2] cycloaddition. Ongoing studies with this family of P411-C10 
variants will help to define the catalytic potential of C10 as a highly 
promiscuous carbene transferase for non-native transformations.
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