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ABSTRACT: We report a biocatalytic platform of engineered
cytochrome P450 enzymes to carry out efficient cyclopropene
synthesis via carbene transfer to internal alkynes. Directed
evolution of a serine-ligated P450 variant, P411-C10, yielded a
lineage of engineered P411 enzymes that together accommodate a
variety of internal aromatic alkynes as substrates for
cyclopropenation  with  unprecedented  efficiencies and
stereoselectivities (up to 5760 TTN, and all with >99.9% ee). Using
an internal aliphatic alkyne bearing a propargylic ether group.
different P411 variants can selectively catalyze cyclopropene
formation, carbene insertion info a propargylic C—H bond or [3+2]-
cycloaddition. This tunable reaction selectivity further highlights
the benefit of using genetically-encoded catalysts to address
chemoselectivity challenges.

Cyclopropenes, with endo-cyclic double bonds inside a three-
membered carbocycle, possess high strain energy. which enables
activity in different strain-release transformations for constructing
a myriad of useful molecular scaffolds.! Carbene transfer to
alkynes represents one of the most straightforward approaches to
constructing cyclopropenes.!#!® Small-molecule transition metal
complexes based on rhodium, iridium, cobalt and others have been
shown to catalyze carbene transfer to terminal alkynes to yield
enantio-enriched cyclopropenes.2# However, enantioselective
carbene fransfer to internal alkynes still remains largely
unexplored. Only two systems with chiral gold/silver® or rthodiumS
(co-)catalysts have been reported to take internal aromatic alkynes
for asymmetric cyclopropene  synthesis with  good
stereoselectivities. These systems require precious metal catalysts
in relatively high loading together with complicated ligands and
have not been shown to work with internal aliphatic alkynes. We
wanted to develop an efficient biocatalytic platform that uses earth-
abundant iron to access internal cyclopropenes.

Cytochromes P450 use an iron-heme complex as their catalytic
cofactor in their native oxygenase functions.” Recently, directed
evolution has significantly expanded the catalytic repertoire of
P450 enzymes and other hemeproteins to include non-natural
carbene- and nitrene-transfer reactions, as described by our group
and others.®'° We recently reported an enzymatic platform of
engineered cytochrome P450 enzymes for stereoselective carbene
addition to terminal alkynes to forge cyclopropenes and
bicyclo[1.1.0]butanes (Figure 1).!! We hypothesized that P450
enzymes may achieve even more challenging transformations, such
as carbene ftransfer to internal alkynes for cyclopropene
construction. The major difficulty for internal alkyne
cyclopropenation lies in the severe steric clash between the linear

m-system and the planar heme cofactor, especially if the reaction
involves a concerted carbene-transfer mechanism.!> Recent
mechanistic studies have shown step-wise carbene-transfer
processes or even multiple pathways for the same type of reactions
with different engineered hemeproteins.!3 We reasoned that proper
engineering of the enzyme active site may direct the desired
carbene transfer to proceed through a step-wise pathway. thereby
circumventing the steric issue.
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Figure 1. Enzymatic carbene transfer to alkynes for strained
carbocycle formation.

We initiated investigation of internal aromatic alkyne
cyclopropenation using ethyl diazoacetate (EDA) as the carbene
precursor and 1-phenylbutyne (1a) as the model alkyne substrate.
Screening various hemeprotein variants based on P450s, P411s
(P450 with axial ligating residue mutated to serine),!* cytochromes
¢ and globins in the form of whole Escherichia coli (E. coli) cell
catalysts identified a P411 variant, P411-C10, that formed the
desired internal cyclopropene (Figure 1). P411-C10 belongs to the
family of P411cgr (five amino acid substitutions away). which was
evolved for a carbene C—H insertion reaction.® Surprisingly, the
cyclopropene product synthesized by P411-C10 was determined to
be a single enantiomer, which suggests the enzyme scaffold binds
the alkyne and directs carbene transfer in a well-defined orientation.

For the model reaction with 1a as the alkyne donor, C10 in the
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form of the whole-cell catalyst exhibited modest activity, with 55
total turnovers (TTN). Directed evolution targeting active-site
residues for site-saturation mutagenesis was performed to enhance
the overall catalytic efficiency (Figure 2). Residue 263, located
right above the heme cofactor (in the heme domain), was
previously found to play an important role in controlling carbene
transfer to phenylacetylene using other P411 variants.!! To our
delight, screening the enzyme library made by site-saturation
mutagenesis at residue 263 yielded a tryptophan mutation at this
site that improved TTN over 11 fold. Sequential mutagenesis
targeting sites in the loop regions led to beneficial mutations Q437L,
S72F and L436R and afforded the highly efficient variant WIRF,
with 2680 TTN towards the desired cyclopropene formation.

P411 C10-WIRF’s scope of internal alkynes bearing different
aromatic rings or carbon chains was then evaluated. For the alkyne

substrates tested (1b to 1I), only cyclopropenes 2c, 2d, 2i and 2j
were synthesized efficiently, and most of the other alkynes with
substitutions on the aromatic ring showed poor to moderate
reactivities. Thinking that the evolved WIRF variant may have
acquired some specificity for the non-substituted aromatic ring or
for electron-rich alkynes, we decided to use a less reactive alkyne
substrate (compared to 1a), 1b, with an electron-deficient para-
chloro substitution, to further evolve the enzyme (Figure 2). A site-
saturation library targeting residue 332 afforded mutation S332G,
which boosted the total turnover by almost 5 fold. We reasoned that
the glycine substitution might help make space in the active site to
accommodate substrates with substitutions on the aromatic ring.
Mutagenesis of residues close to 332 was investigated, and two
additional beneficial mutations, G74A and E70K, yielded the final
WIRF GAK variant with 2320 TTN for substrate 1b.
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Figure 2. Directed evolution of P411-C10 for internal cyclopropene synthesis. Reaction conditions: 10 mM alkyne, 10 mM EDA, E. coli
harboring P411-C10 variants (ODgye = 15 to 60), D-glucose (25 mM), M9-N buffer/EtOH (19:1), anaerobic, 6 h. Product formation was
quantified by gas chromatography (GC) and TTNs were determined based on P411 protein concentration. The heme-domain structure of
P411-E10 variant (pdb: SUCW) was used to guide site-saturation mutagenesis; mutation sites are highlighted. See SI for details.

‘We revisited the substrate scope of this biocatalytic platform
using the whole lineage of cyclopropene-forming enzyme variants
(from C10 to WIRF and then to WIRF GAK) (Figure 3). The
WIRF variant turned out to be efficient for non-substituted or
ortho-substituted aromatic alkynes (1a, 1c and 1d), catalyzing the
desired cyclopropene synthesis with 1200 to 2670 total turnovers,
while variants from later in the evolution showed impaired activity
with these substrates. Although we did not specifically evolve the
enzyme for activity on meta-substituted aromatic alkynes, variant
WIRF G exhibited improved efficiency for a mefa-methoxyl
alkyne substrate (1f), compared to WIRF. For aromatic alkynes
bearing para-substitutions or di-substitutions (1b and 1g to 11), the
final variant WIRF _GAK catalyzes the desired transformations
with unprecedentedly high efficiency compared to all previously
reported systems for cyclopropene formation. For instance, an
electronically-withdrawing trifluoromethyl-substituted alkyne (1g)

was well-accepted by the enzymatic system. It is worth noting that
all of the internal cyclopropenes produced enzymatically were
determined to be single enantiomers (>99.9% ee for all), which
further supports our hypothesis that the engineered enzymes
impose a specific binding orientation of the alkyne substrate in the
protein active site, allowing for efficient carbene addition to triple
bonds with perfect stereocontrol.
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Figure 3. Substrate scope of intermal aromatic alkynes for
cyclopropene formation. Reactions were performed in
quadruplicate under the following conditions: 10 mM alkyne, 10
mM EDA, E. coli harboring P411-C10 variants (ODggo = 10 to 20),
D-glucose (25 mM), M9-N buffer/EtOH (19:1). anaerobic, 16 h.
Product formation was quantified by gas chromatography (GC) and
TTNs were determined based on protein concentration. See SI for
details.

To further demonstrate the utility of this highly stereoselective
enzymatic platform, we carried out large-scale preparation of
internal cyclopropenes (Figure 4). With a simple modification of
the reaction conditions using the diazo reagent in excess (2.4
equivalents added in three portions), we obtained high isolated
yields of the desired cyclopropene products at mmol scale (90% for
2d with variant WIRF, and 87% for 2g with variant WIRF GAK).
Interestingly. the enzyme turnovers of the large-scale reactions are
typically higher than those obtained with analytical-scale ones,
indicating that the evolved enzymes in whole cells might still retain
(partial) activity after the reactions and the turnovers were limited
by consumption of the diazo substrate.

Numerous transformations have been developed to furnish
diverse molecular structures from versatile cyclopropane building
blocks.!- 2267 Here, we also derivatized the enzymatically-
synthesized cyclopropenes by hydrogenation and ester reduction to
afford an all-cis cyclopropane product (Figure 4). which is
otherwise difficult to prepare due to the cis-stereochemistry of the
three substituents on the cyclopropane ring.

Compared to internal aromatic alkynes described above, internal
aliphatic alkynes are ftypically more challenging targets for
enantioselective cyclopropene formation in terms of reactivity and
selectivity. As the aryl groups on aromatic alkynes can provide a
stabilizing effect through the conjugated system in the carbene
transfer process, purely aliphatic alkynes without additional
intramolecular effects may suffer from a higher energy barrier for
carbene transfer. Additionally, alkyl groups at the two ends of the
triple bond are less easy to distinguish than the alkyl and aryl
groups on aromatic alkynes. Until now, no systems have been
reported for enantioselective cyclopropene synthesis with internal
aliphatic alkynes. However, we believed that enzymes can
accomplish this, as the enzyme active site is a chiral environment
that can recognize minor steric differences for chiral induction.'6

Testing the evolved enzymes for a cyclopropenation reaction
with internal aliphatic alkyne 1m was not fiuitful, as only trace
activity was observed. However, with the parent enzyme P411-C10
we observed the desired cyclopropene product 2m (Figure 5) with
modest activity (43 TTN). This might be because the whole enzyme
lineage was evolved for a set of structurally different aromatic
alkynes. Further screening of variants in the C10 family identified
a triple mutant of C10, C10 VLC, which catalyzed the formation
of internal cyclopropene 2m with improved activity (64 TTN) and
perfect stereocontrol (>99% ee). We anticipate that further
evolution will lead to more efficient enzymes for internal aliphatic
cyclopropene construction, as we have demonstrated for aromatic

alkynes.

E. coli (ODggo = 15) harboring E ",_("”' Et
P411-C10 WIRF

M3-N buffer : EtOH [20:1 wiv)

1d, 1 mmol 08mmel =2 anzerobic, room temp., 24 h
every2h 2d, 210 mg

1450 TTN, 80% yield

2= Me E. coli (ODggq = 15) harboring —1__/.::: Et
P411-C10 WIRF_GAK A
+ EDA _\
FaC M-N buffer : EIOH (20:1 wiv) the
1g, 1 mmol 0.6 mmol x 3 anaerobic, room temp., 24 h F4C
every 20 2g, 246 mg
2470 TTN, 87% yield
~OEl
1) Hz, PdIC, PhMe 2) LiAlH,, THF
2 * F Me _—
>88% yiekd 4% yield
H H

Figure 4. Preparative-scale synthesis of internal cyclopropenes
and further derivatization. See SI for details.
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Figure 5. Cyclopropenation of internal aliphatic alkynes and
chemoselectivity study with substrate 1n. Reactions were
performed in quadruplicate under the following conditions: 10 mM
alkyne, 10 mM EDA, E. coli harboring P411 variants (ODggo = 15
to 20), D-glucose (25 mM), M9-N buffer/EtOH (19:1), anaerobic,
16 h. C10_VLC: C10 T327V Q437L S332C; C11: C10 G74T
S118ML162F L4011 Q437L; L8: C10 A87P A264S E267D T327P
S332A Q437L; C10_PVV: C10 Q437P T327V A87V. See SI for
details.
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As the parent P411-C10 enzyme was initially engineered for a
carbene C—H insertion reaction, we took a deeper look at the
chemoselectivity between cyclopropenation and C-H insertion.!?
Internal alkyne substrate 1n, bearing a propargylic ether group, was
found to mainly undergo a carbene insertion reaction into the
propargylic C—H bond with high enantioselectivity with catalyst
P411cyr; a cyclopropene product was also detected as a minor
product (see SI for details). However, P411-C10 reversed the
chemoselectivity to favor the cyclopropene 2n as the major
product; and a third product observed in low proportion in this latter
reaction was confirmed to be a furan derivative, 2n-2, which may
be generated through a [3+2]-cycloaddition.!’:!7 After intensive
screening of variants in the families of P411cgr and P411-C10, we
discovered two related variants, P411-C11 and P411-L8, which
could catalyze the C—H insertion reaction and the cyclopropenation
reaction with even higher activity and selectivity (compared to
P411cyr and P411-C10, respectively), as shown in Figure 5. And
a C10 triple mutant, C10 PVV, was found to flip the
chemoselectivity to favor formation of the furan product. These
variants are closely related, differing by only a few amino acid
substitutions, but gave very different chemoselectivities without
any specific enzyme evolution. These results, together with our
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