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ABSTRACT
Large pristine samples of red clump stars are highly sought after given that they are
standard candles and give precise distances even at large distances. However, it is
difficult to cleanly select red clumps stars because they can have the same Teff and log
g as red giant branch stars. Recently, it was shown that the asteroseismic parameters,
∆P and ∆ν, which are used to accurately select red clump stars, can be derived from
spectra using the change in the surface carbon to nitrogen ratio ([C/N]) caused by
mixing during the red giant branch. This change in [C/N] can also impact the spectral
energy distribution. In this study, we predict the ∆P, ∆ν, Teff and log g using 2MASS,
AllWISE, Gaia, and Pan-STARRS data in order to select a clean sample of red clump
stars. We achieve a contamination rate of ∼20%, equivalent to what is achieved when
selecting from Teff and log g derived from low resolution spectra. Finally, we present
two red clump samples. One sample has a contamination rate of ∼ 20% and ∼ 405,000
red clump stars. The other has a contamination of ∼ 33% and ∼ 2.6 million red clump
stars which includes ∼ 75,000 stars at distances > 10 kpc. For |b|>30 degrees we find
∼ 15,000 stars with contamination rate of ∼ 9%. The scientific potential of this catalog
for studying the structure and formation history of the Galaxy is vast given that it
includes millions of precise distances to stars in the inner bulge and distant halo where
astrometric distances are imprecise.
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1 INTRODUCTION

Distances are one of the most important and yet hardest
measurements to make in astronomy. Distances to stars are
especially important for studying the formation and the
chemodynamical evolution of the Galaxy. The Gaia mission
aims to provide parallax measurements for billions of stars in
order to produce a 3D map of the Galaxy (Gaia Collabora-
tion et al. 2016). However, the Gaia mission will be plagued
by large uncertainties in the distant Galaxy. Through sim-
ple uncertainty propagation, the uncertainty on distance de-
rived from parallax scales as distance squared1. However,
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$2 = σ$d2 where d is the distance, $

is the parallax and d = 1/$

standard candles, such as red clump (RC) stars, where the
distance is derived using the distance modulus have uncer-
tainties that are linear with distance2. With high precision
photometry, RC stars can provide distances with uncertain-
ties < 6% at distances up to ∼ 10 kpc (Bovy et al. 2014;
Hawkins et al. 2017; Ting et al. 2018a). Therefore, standard
candles can provide more precise distances for objects in the
distant Galaxy than parallaxes and are an excellent comple-
ment to the Gaia catalog.

In this context, RC stars are low mass stars (<2.5 M�)
that have undergone the helium flash to ignite helium burn-
ing in their cores. The electron-degenerate cores prior to he-

2 σd =
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)2
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m = σm ln (10)10(m−M+5)/5 = σm ln (10)d

where m is apparent magnitude, M is the absolute magnitude
and d = 10(m−M+5)/5
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lium ignition causes RC stars to have roughly the same core
mass. Therefore, the luminosity of RC stars is only weakly
dependent on mass and metallicity (Girardi 2016, and refer-
ences therein). Beginning in the late 1990s, the nearly con-
stant luminosity of RC stars has been used to determine
distances, making RC stars a commonly used standard can-
dle. Selecting from color-magnitude diagrams, Stanek et al.
(1997) used RC stars to constrain the the shape and orienta-
tion of the Galactic bar. Stanek et al. (1998) used a similar
technique to determine the distance to M31 using RC stars.
However, there are many sciences cases when a more pristine
sample of RC stars is desired which can be difficult to select.
Bovy et al. (2014) achieved a contamination rate of ∼ 10%
using effective temperature (Teff) and surface gravity (log g)
from the high-resolution spectra of the Apache Point Obser-
vatory Galactic Evolution Experiment (APOGEE) survey
(Majewski et al. 2017). This contamination is from red gi-
ant branch (RGB) stars which have inert helium cores with
a hydrogen burning shell but can have similar Teff and log
g as RC stars (Iben 1968).

Asteroseismology has proven to be the most accurate
method for selecting RC stars (Montalbán et al. 2010; Bed-
ding et al. 2011; Mosser et al. 2011, 2012; Stello et al. 2013;
Mosser et al. 2014; Pinsonneault et al. 2014; Vrard et al.
2016; Elsworth et al. 2017). The average large frequency
spacing (∆ν) goes as the square root of the mean stellar
density (Chaplin & Miglio 2013). As such, it has been shown
that the distribution of ∆ν values for RGB and RC stars are
distinct (Miglio et al. 2009; Mosser et al. 2010). RC stars
are more constrained in this space with ∆ν < 5 µHz. While,
RGB stars can have ∆ν > 20 µHz. Furthermore, evolved
stars have been shown to have coupling between the gravity
waves in the dense radiative core (g-modes) and the acous-
tic waves in the envelope, p-modes (Beck et al. 2011). RC
stars have a lower core density than RGB stars which causes
stronger coupling between g- and p-modes. Therefore, RC
and RGB clearly separate in the period spacing (∆P) of
these mixed modes with RC stars typically having ∆P > 200
s and RGB stars having ∆P <100 s (Bedding et al. 2011;
Mosser et al. 2011; Stello et al. 2013; Mosser et al. 2014).
However, ∆P is a difficult measurement and has only been
measured for a fraction of the Kepler and CoRoT samples
(Girardi 2016).

Recently, Hawkins et al. (2018) showed the ∆P and the
∆ν spacing can be inferred from a stellar spectrum. It has
long been thought that the carbon to nitrogen ratio, [C/N],
would be different in RC stars relative to RGB stars because
of mixing that occurs along the upper RGB phase (Martell
et al. 2008; Masseron & Gilmore 2015; Masseron & Hawkins
2017; Masseron et al. 2017). Hawkins et al. (2018) showed
the carbon and nitrogen bands in spectra from the APOGEE
survey can be used to infer the ∆P and ∆ν and therefore,
used to select RC stars. Building off of this work, Ting et al.
(2018a) presented a catalog of ∼ 100,000 RC stars from the
APOGEE and LAMOST catalogs. However, > 70% of that
sample is within 3 kpc of the Sun where Gaia gives more pre-
cise distances (Ting et al. 2018a). This represents one of the
largest limitations to recent spectroscopic surveys. Spectra
require more flux than photometry and therefore high reso-
lution (R = λ/∆λ ∼ 22,500) and high signal-to-noise (S/N)
data can only be achieved for nearby bright stars as. For ex-
ample, the magnitude limit of the APOGEE survey is H=

13.8 mag (Majewski et al. 2017). Given that the RC abso-
lute magnitude in the H-band is -1.46 mag (Hawkins et al.
2017) the APOGEE survey is limited to RC stars within 12
kpc, assuming not extiction. In the case of the LAMOST
survey, which has much lower resolution (R ∼ 1800), the
magnitude limit is r=18.5 mag which corresponds to a RC
distance of ∼40 kpc given the RC absolute magnitude in
the r-band of 0.55 mag (Ruiz-Dern et al. 2018). However,
these observation require long exposure times (5400 s) and
therefore are number limited. Photometric surveys are able
to achieve fainter magnitudes for much greater number of
stars. For example, the RC catalog derived using LAMOST
spectra has ∼ 2,000 RC stars with distances >10 kpc (Ting
et al. 2018a) while we find ∼ 75,000 RC stars with distances
>10 kpc using photometric surveys.

In this work we aim to make use of the vast amount
of available photometry to obtain the largest and most dis-
tant sample of RC stars yet. In Section 2 we describe the
photometric selection we use to create the spectral energy
distribution (SED). In Section 3, we describe the method we
develop to infer the Teff , log g, ∆P and ∆ν from the SEDs
using a neural network based method and how we use those
parameters to select a sample of RC stars. In Section 4, we
present the catalog of RC stars. In Section 5, we demonstrate
the interpretability of the neural network and try to confirm
the physical mechanism used for the inference. Finally, we
summarize the results in Section 6.

2 DATA

It is reasonable to assume that if the information to ac-
curately select RC stars is in the spectra, then the same
information is the SED just with a much weaker signal. In
Figure 1, we show the theoretical differences in magnitudes
between an RGB and RC star. These values are calculated
using PYPHOT3 and the synthetic spectra shown in the up-
per panel of Figure 1. The spectra are synthesized in 1D lo-
cal thermodynamic equilibrium (LTE) using ATLAS12 and
SYNTHE maintained by R.Kurucz (Kurucz 1970; Kurucz
& Avrett 1981; Kurucz 1993, 2005, 2013, 2017, and refer-
ences therein). We use a resolution of R∼ 300,000 and the
line list provided by R. Kurucz4. Both spectra are calcu-
lated at Teff = 4875 K, log g = 2.32 dex and Z =0.004.
The RGB spectra has [C/N] = 0 while the RC spectra has
[C/N] = -0.79. These Teff , log g and [C/N] values are the
theoretical values of a RC star with mass of 1.00 M� and
Z = 0.004 (Lagarde et al. 2012). The change in the [C/N]
ratio is caused by an increase in the nitrogen abundance as
well as a decrease in the carbon abundance. In addition to
this change, the CNO cycle causes a slight decrease in the
oxygen abundance. This decrease in the oxygen abundance
will decrease the abundance of CO molecules which releases
carbon atoms. Combined with the increase in nitrogen, this
leads to an increase in the abundance of CN molecules (Ting
et al. 2018b). Therefore, specific photometric bands will ex-
perience higher magnitudes due to more absorption from CN
molecules. Additionally, the magnitude for other bands will

3 https://mfouesneau.github.io/docs/pyphot
4 http://kurucz.harvard.edu
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Figure 1. In the top panel we compare the synthetic spectra of an RGB and RC star. Specifically, we show two CN molecular bands

which impact the y and J photometry (top left) and a CO band which impacts the W2 photometry (top right). In the top left panel we

also show a zoomed-in spectrum. Both stars are synthesized with Teff = 4875 K, log g = 2.32 dex and Z=0.004. The RGB star has [C/N]
= 0 while the RC star has [C/N]=-0.79. The increase in the N abundance causes more absorption in the CN bands which increase the

magnitudes for the z, y and J passbands. On the other hand, the decrease in C causes less absorption by CO molecules which decreases

the W2 magnitude. In the middle panel, we show the impacts of a change in [C/N] of -0.79 on each photometric passbands used in this
work. These values are calculated using the synthetic spectra shown above. In the lower panel we show how the change in magnitudes

shown in the middle panel relate to the typical uncertainty in that passband. Most bands have the [C/N] signal on the order of the

uncertainties making it marginally detectable.

increase due to less absorption from CO molecules. The de-
crease in oxygen is a much smaller effect and is not taken
into account in Figure 1. Therefore, our estimations in the
change of magnitudes between RGB and RC stars are likely
slightly underestimated. As shown in the lower panel of Fig-
ure 1, the difference in magnitude is typically on the order
of the uncertainties (0.002, 0.010, 0.010, 0.008, 0.007, 0.009,
0.011, 0.012, 0.026, 0.027, 0.026, 0.026, 0.026 mag for G, BP,
RP, g, r, i, z, y, J, H, K, W1 and W2, respectively). This
makes it challenging to pick up this signal. Therefore, we
use a neural network which is flexible and sensitive enough
to detect the photometric signal of a [C/N] change in RC
stars. We confirm the network harnesses this information to
perform the inference in Section 5.2.

In order to train the network and evaluate the method
we require a set of data with known spectroscopic and as-
teroseismic parameters. We describe the data set we use to

train and validate the network in Section 2.1. The validation
set is used to evaluate the accuracy of the neural network.
It is comprised of data with known spectroscopic and aster-
oseismic parameters that were never exposed to the network
for the training. Therefore, it can be used determine the net-
works precision on the data we wish in infer parameters for.
This set is also described in Section 2.1. In Section 2.2 we
describe the photometric data that for which we infer Teff ,
log g, ∆P and ∆ν in order to select RC stars.

2.1 Training and Validation Data

The accuracy of neural networks highly depends on the
size of the training set. Specifically, neural networks typi-
cally outperform other machine learning algorithms when
the training data set is large. Therefore, we choose to use
the large catalog of spectroscopically derived ∆P and ∆ν pa-

MNRAS 000, 1–18 (2020)
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rameters from Ting et al. (2018a) rather than smaller cat-
alogs of asteroseismically derived parameters. The catalog
from Ting et al. (2018a) is derived using a data-driven neu-
ral network which finds a mapping between the normalized
spectral fluxes to the asteroseismic parameters ∆P and ∆ν.
It then infers on LAMOST DR3 (Xiang et al. 2017) spectra
that are within a 3D convex hull5 of Teff , log g and [Fe/H]
values that are within the parameter range of the training
set used (see Figure 3 in Ting et al. 2018a). For our training
set we include only high quality ∆P and ∆ν measurements
from this catalog, requiring the spectra to have signal-to-
noise per pixel S/Npix >75 pixel−1. With this quality cut,
the training sample has a contamination rate of ∼3% (Ting
et al. 2018a). We train the ∆P and ∆ν network on a subset
of 30,000 stars from this sample. The rest serves as a vali-
dation set. We include data with S/Npix < 75 pixel−1 in the
validation set of 100,000 of stars to determine the accuracy
of the inference on lower S/N data. Since the LAMOST sam-
ple has a magnitude limit that corresponds to a RC distance
that is greater than that given by the AllWISE magnitude
limit, this test sample spans the entire distance range of our
data set for inference. Therefore, the validation sample is
representative of our final sample.

In addition to this training set we require another train-
ing set to determine photometric Teff and log g outside of
the convex hull in order to separate the dwarf stars from the
giant stars in the data. We adopt the Teff and log g values
from the LAMOST DR3 stellar catalog as our training and
validation sets for these separate networks (see Section 3.2).
Here, we require the training set of 200,000 to have LAM-
OST g-band S/N > 50. Again, our validation set of 900,000
stars does not have a S/N cut in order to cover the same
magnitude range as our final sample.

With both training sets we perform a sky crossmatch
with Gaia DR2. We then use the provided Gaia DR2 cross-
matches (Marrese et al. 2019) to obtain the photometry from
AllWISE, 2MASS, and Pan-STARRS1.

2.2 SEDs & Parallaxes for Inference

For the inference, we only require photometry and paral-
lax. Therefore, our sample is much larger than spectroscopic
samples given that spectra require longer exposures because
of the need for more flux than imaging. We can also take
advantage of the hundreds of millions of stars that already
have photometry that spans from the near-UV to the mid-
infrared from large surveys.

In this work we make use of data from Gaia DR2 (Gaia
Collaboration et al. 2018), Pan-STARRS1 (Chambers et al.
2016), 2MASS (Skrutskie et al. 2006) and AllWISE (Wright
et al. 2010; Mainzer et al. 2011) photometric catalogs, along
with Gaia DR2 parallaxes. We include all the pass bands
from Gaia (G, BP, RP), Pan-STARRS (g,r,i,z,y) and 2MASS
(J, H, K). We use only the two bluest AllWISE bands, W1
and W2. The two other bands, W3 and W4, are shallower,
have lower spatial resolution and do not contain much ad-
ditional information about the SED of RC stars. We also

5 The convex hull is the smallest polygon that contains all of the

data. For more information on convex hulls see Ting et al. (2016)

make use of the provided Gaia DR2 crossmatches with Pan-
STARRS1, 2MASS, and AllWISE which take into account
the motions of the targets and the varying epochs of the
different surveys (Marrese et al. 2019).

We perform multiple quality cuts to ensure we only use
accurate photometry and parallaxes:

(i) 1.0+0.015(BP− RP)2 <phot bp rp excess factor<
1.3 + 0.060(BP− RP)2 (Arenou et al. 2018; Evans et al.
2018)

(ii) RUWE (renormalized unit weight error) <1.4 (Linde-
gren 2018)

(iii) “A” quality photometry from 2MASS and AllWISE
(iv) (σG

6 −0.0018)/G < 0.0002 to remove nearby stars
that are near saturation in Gaia DR2

We do not apply a quality cut to the Pan-STARRS
(PS1) catalog because the Image Processing Pipeline (IPP)
(Magnier et al. 2016) achieves relative photometric calibra-
tion better than 1% for much of the sky (Schlafly et al.
2012).

Since neural networks perform poorly on data that is
dissimilar from what it has been trained on −i.e., the net-
work is not portable and cannot extrapolate, we create a
convex hull in the photometric and parallax space based on
the validation set and do not infer on any data that does
not fall within that convex hull. To create the convex hull
we randomly select 10,000 stars from our training set and
use the BP, g, K, W1 and W2 bands along with the par-
allax. As the convex hull algorithm can only handle up to
6 dimensions we choose a subset of the photometric bands
to use. Bp, g, K, W1 and W2 are selected because we want
to span the entire wavelength range while also prioritizing
bands important for the ∆P inference (see Figure 1) and
infrared bands that will be least impacted by extinction. Al-
though, we find that changes in the band selection has an
insignificant impact on the final red clump sample.

3 METHOD

From synthetic photometry, we know that the signal of the
evolved [C/N] ratio that we hope to use to infer the ∆P
is much smaller than the effects of Teff and extinction on
the photometry. It is also on the order of the noise in the
photometry (see Figure 1). Given these constraints and ac-
cess to a large training set, we find a neural network with
probabilistic inference to be an effective tool to infer the pa-
rameters from the photometry. In this work, we infer the
∆P, ∆ν, Teff , and log g of stars from 13 photometric bands
and Gaia DR2 parallaxes using Mixture Density Networks
(MDNs; Bishop 1994). We use 6 separate networks, 2 each
for Teff and log g for all stars and for just giant stars and
2 for ∆P and ∆ν of giant stars. We defer the simultaneous
inference of multiple parameters with a single MDN which
will better account for covariances to a future study.

6 σG =
√(σI

I

)2
+ σ2

ZP where σI
I

is the mean G band error over
the flux and σZP is the zero-point error which for Gaia DR2 is

0.0018 mag
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3.1 Mixture Density Network

A MDN is a neural network where the outputs parametrize
a Gaussian mixture model (GMM):

p(θ|x) = Σnj=1$j(x)N (µj(x), σj(x)) (1)

where one can choose the number of components (n). Unlike
a typical GMM, the weights ($(x)), and widths (σ(x)) along
with the means (µ(x)) of each component are a function
of the input parameters (x) which in our case is the 13-
band SED plus parallax. In other words, given an SED and
parallax (x), we expect the output parameter (θ), in this case
Teff , log g, ∆P, or ∆ν, can span a distribution, and we try to
model that distribution using the training data, essentially
doing a conditional density estimation of the training set.
Having estimated such density during the training, when
the network is exposed to new input data for the inference,
we can then read off the probability density of the output
parameter (Teff , log g, ∆P, or ∆ν). Thus the outputs of
our networks ($(x),σ(x), and µ(x)) parameterize a GMM
which acts as a probability distribution function (PDF) and
we use the negative log likelihood as the loss function. In
other words, we train the network to maximize the sum of
the log likelihoods of the output PDFs given the training
data. This method differs from Ting et al. (2018a) in that
we are essentially doing a density estimation of the training
set with a neural network while Ting et al. (2018a) performs
non-linear regression with their neural network.

The advantage of using a MDN over a standard neural
network is that the GMM output is probabilistic instead of
single best-estimate and therefore gives as the ability to es-
timate uncertainties for our inferred parameters. However,
these uncertainty estimates assumes there is no uncertainty
in the input parameters (SED and parallax). Hence, we do
not perform any input uncertainty propagation. In practice,
we can also integrate the input parameter uncertainties to
get the full posterior. For the purpose of this study, in which
we are more focused on classifying RC stars, our reported
uncertainties do not impact the classification and therefore
we do not calculate the full posterior. Therefore, our un-
certainties are a reflection of the training set density dis-
tribution. However, since the training set density distribu-
tion has noise, the uncertainty estimate does capture some
of the input noise (see Section 5.1). An additional benefit
to the MDN is that we can use a two-component GMM
output for the ∆P network in order to encapsulate the bi-
modality of the posterior distribution of ∆P. Otherwise we
use a one-component network for the Teff , log g, and ∆ν
inference. When we use a one component model, the mean
(µ(x)) and width (σ(x)) maps directly to the inferred values
and uncertainty. However for the ∆P network when we use
two-component, the inferred value is the weighted mean of
the means (Σ2

j=1ωj(x)µj(x)) and the adopted uncertainty is
the weighted mean of the widths (Σ2

j=1ωj(x)σj(x)) Besides
the number of components of the output GMMs, each of
the MDNs use the same architecture. We use four fully con-
nected layers with 32, 24, 16 and 8 nodes to map from the
14 input parameters (SED + parallax) to the 3× n outputs
that parametrize the GMM (ω(x),σ(x) and µ(x)). We apply

a sigmoid activation function7 to each node to capture the
non-linear mapping from the inputs to the outputs.

3.2 Inferring Teff and log g and Selecting Giant
Stars

We first infer the log g and Teff of all of the stars in the
sample in order to select the giant stars. To do this, we
train two MDNs using a random sample of 200,000 stars
from the LAMOST DR3 catalog which pass the quality cuts
(see Section 2.1). Both of these networks have one mixture
component as the output so the inferred value is the mean
of the Gaussian and the uncertainty is the width. We show
a comparison of the derived values with the LAMOST re-
sults for 900,000 validation stars in Figure 2. In order to
quantitatively describe the accuracy and precision of the in-
ferred parameters, we report the bias (〈LAMOST− µ(x)〉),
the standard deviation (〈(LAMOST−µ(x))2〉) and the typ-
ical uncertainty (〈σ(x)〉). However, as we noted in Section
3.1, the uncertainty estimate does not fully take into account
the uncertainty on the input data. Therefore, it is likely that
our uncertainties are underestimated, especially given that
the network is trained on higher S/N data. The standard de-
viation from external validation is a more accurate estimate
of the precision. Nonetheless, as we will see, the standard de-
viation is typically on the order of the uncertainty estimate
〈σ(x)〉 ≈ 〈(LAMOST − µ(x))2〉. This shows that, since the
training input is noisy, the adopted uncertainty does capture
some of the input uncertainty. The bias for photometric Teff

values is -8 K with a standard deviation of 224 K. The typ-
ical uncertainty on Teff is 200 K which is reasonable given
that the typical uncertainty for Teff in the LAMOST catalog
is 168 K. We also find a bias for photometric log g values
of -0.02 dex with a standard deviation of 0.27 dex. The typ-
ical log g uncertainty is 0.23 dex which is again consistent
with the typical uncertainty for log g in the LAMOST cat-
alog is 0.24 dex. The lack of bias in the Teff and log g is
expected given that we are using a data-driven method and
the parameters are tied to the scale of the training set. After
inferring on all of the data that passes the quality cuts (see
Section 2.2), we select stars with inferred log g < 3.5 dex
and 2500 K < Teff <5500 K as giant stars (see Figure 2).

Once the giant sample is created we refine the Teff and
log g inference by using a network trained on the spectro-
scopic parameters of just giant stars. This network is trained
on a subset of 200,000 giants stars selected using the method
described above. We use the initial photometrically inferred
parameters to make the giant selection for the training set
to ensure our training set will be similar to the one we will
use for the inference, which will only have photometrically
inferred parameters. Again, we use one mixture component
as the output so the inferred value is the mean of the Gaus-
sian and the uncertainty is the width. The red contours in
Figure 2, demonstrate how the inference has been refined.
These new photometric Teff values have a bias of 31 K with a
standard deviation of 153 K. The typical Teff uncertainty is
97 K. The bias of photometric log g values is 0.03 dex with

7 The choice in activation function is rather arbitrary here given

the low-dimensionality of the inputs (14) and outputs (3×n where

n is 1 or 2)
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Figure 2. Comparing the stellar parameters (Teff and log g) we derive from the photometry compared to the spectroscopically derived

values from LAMOST using the validation set which was not used to train the network. The top panels show directly how the inferred

values compare to the spectroscopic values for the entire validation set. The results from the first Teff and log g networks which all
of the data go through are shown in the beige to blue density plot. The bias and standard deviation for this inference are shown in

black. In the red to yellow contours we show our refined inference which uses networks trained on only spectroscopic giant stars and
applied to photometrically selected giant stars. The inference improves when we retrain the network with a smaller parameter range. We

show the statistics for this inference in red. In the bottom panel, we show the LAMOST Kiel diagram (Teff -log g “Hertzsprung-Russell”

diagram) for the validation sample (left) and the inferred photometric Kiel diagram (right). The main sequence and giant branch are
preserved in the photometric diagram. Therefore we can confidently select giant stars using our inferred Teff and log g. The red box in

the photometric Kiel diagram (right) shows the selection of giant stars which we determine Teff and log g using the refined networks.

a standard deviation of 0.32 dex. The typical uncertainty
is 0.22 dex. The typical uncertainties for Teff and log g re-
ported here (97 K and 0.22 dex) are smaller than the typical
uncertainty in the LAMOST catalog (168 K and 0.24 dex).
As explained, this is likely because our uncertainties are un-
derestimated by not taking into account the uncertainty on
the input data. In addition, the training set has higher S/N
than the validation set. The external validation gives us a
more robust estimate of the precision of the inference.

3.3 Inferring Asteroseismic Parameters and
Selecting Red Clump Stars

We make the selection of RC stars using inferred log g, Teff ,
∆ν and ∆P. For each of these parameters we train another
MDN. For ∆ν and ∆P, we train on a subset of 30,000 stars
from the sample presented in Ting et al. (2018a). For the

∆ν the network also has one mixture component as the out-
put and we infer using the same method as Teff and log g.
The distribution of ∆P is bi-modal (see Figure 3). Using two
mixture components helps the network to learn to reproduce
this bi-modality, especially when the input is noisy and the
posterior is likely bimodal. Therefore, the output of the ∆P
network is a two component Gaussian mixture model. We
define the inferred ∆P to be the weighted mean of the means
of the two components and the uncertainty is the weighted
mean of the widths of the two components. As we are trying
to infer the ∆P based on the signal of a change [C/N] in the
photometry, which is roughly on the order of the uncertainty
(see Figure 1), we know that the network will not be perfect.
However, the inference result is encouraging (see Figure 3).
The bias for the photometric ∆ν is only 0.01 µHz with a
standard deviation of 1.64 µHz. The typical uncertainty is
1.51 µHz. For ∆P, the bias is -4 s with a standard deviation
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Figure 3. The asteroseismic parameters (∆P and ∆ν) we derive for giant stars compared to the spectroscopically derived values from

LAMOST spectra (Ting et al. 2018a). The red points in the top panels compare our derived photometric values with asteroseismc

parameters from Vrard et al. (2016). The ∆P is the most effective parameter for selecting RC stars since they have ∆P values more than
100s larger than RGB ∆P values. From the bottom left panel, we can see that RC stars have ∆ν . 5 µHz and ∆P & 200s. While, RGB

stars have ∆ν& 5 µHz and ∆P . 100s. From the top right panel, we can see we are effective at picking up all of the RC stars as there

are few false negatives. However, we do suffer from contamination with false positives. Combining the ∆P with Teff , log g and ∆ν can
help limit this contamination. On the bottom left we show the asteroseismic parameters (∆P and ∆ν) derived from LAMOST spectra

in Ting et al. (2018a). On the bottom right we show the derived asteroseismic parameters from photometry. We can pick out the RC
with ∆P > 200 s from the photometrically inferred asteroseismic parameters.

of 80 s. The typical uncertainty is 37 s. Although this uncer-
tainty is not negligible, it is much smaller than the expected
difference in ∆P between RGB and RC stars (∼ 200 s). We
also compare our photometrically derived values to astero-
seismically derived values from Vrard et al. (2016). We find
a bias of 0.27 µHz and a standard deviation of 1.28 µHz for
∆ν and a bias of 6 s and standard deviation 61 s for ∆P. It
is interesting to note that the biases are slightly higher for
the asteroseismic comparison while the standard deviations
are slightly smaller. The bias is likely higher because it is
compounding with the spectroscopically derived bias. The
standard deviation likely shrinks because the asteroseismic
sample is more nearby and therefore has less noisy photom-
etry, which improves the performance of the network.

To find the ideal RC selection criteria, we have to bal-
ance completeness with the contamination. In general, we
want to maximize the completeness while minimizing the
contamination. However, there may be science cases where

one may wish to sacrifice completeness for a more pristine
sample or vice versa. In this work, we quantify completeness
by the true positive rate, which is defined as the percentage
of true spectroscopic RC stars in the validation sample that
are successfully identified as RC stars (1-false negative rate,
see Figure 3). We quantify the contamination rate as the per-
centage of stars which are selected as RC stars that are not
true RC stars (false positive rate, see Figure 3). We expect
the contamination rate and true positive percentage to be a
function of Teff and log g along with ∆ν and ∆P because
the density of true RC versus RGB stars varies as a func-
tion of Teff and log g. Therefore, we decide to bin the data
in Teff , log g, ∆ν and ∆P in order to find the ideal selection
criteria. Using our validation set, we bin the data using the
photometrically inferred parameters and calculate the con-
tamination and true positive rate within each bin. Although
this is done in four dimensions (Teff , log g, ∆ν and ∆P), we
show flattened two dimensional examples in Figure 4. It is
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Figure 4. The true positive percentage (upper panels) and the contamination rate (lower panels) as a function of the photometrically

derived Teff and log g for both of our recommended samples. These are evaluated using the spectroscopic sample for which we know the

“ground truth”. The black text shows the percentage of true spectroscopic RC stars in each sample that are in the adjacent four bins.
We define the contamination rate to be the number of false positives divided by the total number of the stars selected per box. The true

positive percentage is defined as the number of stars successfully identified as RC divided by the number of true RC stars in the selected

box. The panels on the left correspond to our stringent one selection which is ∆P >265 s, ∆ν < 5.25 µHz and Teff >4700 K. The panels
on the right correspond to a more lenient selection of ∆P >225 s and ∆ν < 5.5 µHz. When we soften our selection criteria the true

positive percentage increases. However, so does the contamination rate. Integrating over all of the bins, the tier 1 (stringent) selection
leads to an overall contamination rate of ∼ 20% and overall true positive percentage of ∼ 25%. While the tier 2 (lenient) selection leads

to an overall contamination rate of ∼ 33% and overall true positive percentage of ∼ 94%.

interesting to note that the contamination rate for the tier
2 (lenient) sample (top right panel) may be artificially low
at the lowest Teff and log g values. This is likely because
the tip of the red giant branch stars that are located there
would have a [C/N] most similar to the RC values. However,
the fraction of stars in the region is limited. We bin each pa-
rameter into 20 bins so that in total we have 160,000 bins.
This results in bin sizes of roughly 50K for Teff , 0.10 dex for
log g, 1 µHz for ∆ν and 20 s for ∆P. It is important to note
that we bin using the photometrically derived parameters so
that the results are applicable to our final sample which do
not always have spectroscopically derived values. We include
bins with a low contamination while also having a significant
percentage of the true RC stars. Further information about
the final sample can be found in Section 4.

3.4 Deriving Distances

Once we have the RC sample, we infer the heliocentric dis-
tances using the AllWISE W1 band similar to Ting & Rix
(2019). First, we perform an extinction correction by find-
ing a linear relationship between the photometric Teff and
the G−W1 color for less extincted stars. We then use this
along with AG/AW1=16 (Hawkins et al. 2017) to find the
extinction in the W1 magnitude and correct for it. Next,
we again use the less extincted stars with Gaia parallax un-
certainties < 5% to derive a linear relationship between the
inferred Teff and the intrinsic MW1. In order for our absolute
W1 magnitudes to be consistent with the calibrated abso-
lute W1 magnitude for RC stars (MW1 =-1.68±0.02 mag)
from Hawkins et al. (2017), which is consistent with Ruiz-
Dern et al. (2018), we use a parallax offset of 0.04 mas.
This parallax offset is roughly consistent with those found
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Figure 5. The receiver operating characteristic (ROC) curve of
the selection method compared to other methods. The ideal clas-

sification method gives 100% completion with no contamination.

Therefore, the closer the ROC curves gets to the top left corner
of the plot, the more effective the classification method. The lines

are calculated by cumulatively summing bins in the order of low-
est contamination rate (see Figure 4). The result for our method

where we bin in all four photometrically derived parameters (Teff ,

log g, ∆ν, and ∆P) and select from them is shown in yellow. The
result of only selecting in the photometric Teff and log g space

is shown in green. The results of making the same selection but

using LAMOST spectroscopically (R∼ 1800) derived Teffand log
g is shown in blue. This shows our method can obtain a lower

contamination rate than the other two standard methods.

using other methods (Lindegren et al. 2018; Schönrich et al.
2019). If we do not include the parallax offset we find an
absolute W1 magnitude of -1.99 mag. Finally, we derive the
distance using the distance modulus with the inferred MW1

and the extinction corrected W1 magnitudes. In principal,
a Bayesian approach would be more appropriate for deter-
mining the distances (e.g., Hawkins et al. 2017; Anders et al.
2019). However, the main focus of this work is to derive a
clean sample of RC stars and we will refine the distances in
future work. Comparing to Gaia parallaxes with uncertain-
ties <5% and assuming the Gaia distance as ground truth,
we find our distances have uncertainties∼ 9%. This is consis-
tent with reported theoretical precision estimates given the
intrinsic dispersion in the absolute magnitude of RC stars
(Bovy et al. 2014; Hawkins et al. 2017).

4 THE RED CLUMP SAMPLE

Having inferred four parameters (Teff , log g, ∆ν and ∆P) for
each giant stars in our sample, we must now determine how
we will use these parameters to determine our RC sample.
Different selection criteria will result in varying complete-
ness and contamination rates, given that we know the true

positive percentage and contamination rate vary as a func-
tion of Teff , log g, ∆ν and ∆P (see Figure 4). Ideally, we
would like to find a selection that maximizes completeness
while minimizing contamination. In this work, we prioritize
a low contamination over a complete sample. However, dif-
ferent science cases may require different selection criteria.
Various selections can make retracing the selection function
more difficult. Therefore, along with the recommended sam-
ples, we provide all of the inferred parameters for the entire
giants catalog and encourage the reader to choose their own
selection criteria.

To choose which bins from Figure 4 we will use in the fi-
nal selection, we perform a cumulative summation sorted by
the contamination rate. The results of the cumulative sum-
mation are shown in Figure 5. Our method is able to achieve
a lower contamination rate than when selecting just using
spectroscopically (at low resolution, R∼2,000) or photomet-
rically Teff and log g. We note that we do not include using
[C/N] information from spectra in our comparison. Using
the [C/N] from spectra would result in a lower contamina-
tion rate for the spectroscopic sample (Hawkins et al. 2018;
Ting et al. 2018a). However, in Figure 5, we are comparing
to more “classical” methods which are still frequently used
today (e.g., Wegg et al. 2019; Chan & Bovy 2019). It is also
important to note that completeness is evaluated based on
the same sample which is confined by the spectroscopic sam-
ple to brighter magnitudes. Therefore, a given completeness
fraction corresponds to a much greater number of stars for
the photometric sample than the spectroscopic sample given
that the photometric sample contains much more data. How-
ever, these results are also slightly idealized. The selection
method used to create Figure 5 selects parameter bins in
order of the lowest contamination rate rather than selecting
adjacent bins as we do for our final selection.

For ease of selection and to better model the selec-
tion function in the future, for our recommended catalogs
we choose to only use adjacent bins with simple parameter
boundaries. We provide two RC samples with different con-
tamination rates and true positive percentages. Again, we
provide the inferred parameters for all of the giant stars and
encourage the readers to make their own selection. However,
we will mark the stars in our two RC samples as “tier 1” and
“tier 2” in the catalog. For our smaller, less contaminated
sample (tier 1), we achieve a contamination rate of ∼20 %
(see Section 4.1 for how these contamination rates are calcu-
late) and a true positive percentage of ∼25% which results
in a final sample of ∼ 405,000 RC stars. These results are
achieved by selecting giant stars with Teff > 4700 K, ∆ν
<5.25 µHz, and ∆P > 265 s. We also select a larger sam-
ple (tier 2) (∼ 2.6 million RC stars) with a contamination
rate of ∼33% and a true positive percentage of ∼ 94%. This
sample is chosen by selecting giant stars with ∆ν <5.5 µHz,
and ∆P > 225 s. Therefore, The “tier 1” sample is subset of
the “tier 2” sample. As such, everything labeled as “tier 1”
in the catalog is also included in the “tier 2” sample.

4.1 Contamination Rate

In order to accurately evaluate the contamination rate and
completeness of our final sample we need to determine how
the contamination and completeness of our validation set
behaves as a function of extinction and uncertainty in the
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Table 1. The cuts, contamination rate, true positive percentage and total number of stars for each of our provided samples

Selection ∆P cut ∆ν cut Teff cut Contamination Completeness # of Stars

Tier 1 >265 s <5.25 µHz > 4700 K 20% 25% 405,000

Tier 2 >225 s <5.5 µHz None 33% 94% 2.6 million

|b|>30 degrees >265 s <5.25 µHz >4700 K 9% 12% 15,000

Description of the final provided samples of RC stars. We also provide the inferred Teff , log g, ∆ν and ∆P in the final catalog in order

for the reader to be able to choose their own selection criteria for their science case.

Table 2. Photometrically derived Teff , log g, ∆P and ∆ν for all giant stars along with distances for selected RC stars.

Gaia Source ID RA DEC Teff log g ∆P ∆ν Selection d

(deg) (deg) (K) (dex) (s) (µHz) (kpc)

4130510288119401088 252.313 -19.93 5021±119 2.68±0.39 185±40 7.65±2.95

4114024073354437376 255.807 -22.352 4574±89 2.64±0.16 247±44 4.9±1.08 tier 2 4.72

4109961240517001856 261.658 -25.704 3741± 31 2.49±0.2 185± 42 0.13±0.05
4114024550075584768 255.861 -22.332 4948 ± 120 2.28 ±0.64 185 ± 53 7.12 ±10.15

4114024623110255232 255.855 -22.32 4102 ± 93 1.69 ± 0.24 255 ± 34 2.6 ± 0.12 tier 2 2.94
4114027539372846848 255.743 -22.316 4956 ± 119 2.99 ± 0.72 274 ± 37 10.71 ± 3.1

4114027917328986240 255.807 -22.281 5037 ± 134 3.23 ± 0.18 103 ± 29 12.57 ± 1.75

4126036886406973952 255.633 -22.265 4035 ± 84 2.45 ± 0.29 229 ± 33 2.11 ± 0.16 tier 2 4.13
6734964158462988160 277.756 -33.984 4920 ± 144 2.39 ± 0.58 315 ± 26 4.59 ± 1.15 tier 1 7.86

6734962754045102848 277.679 -34.036 4849 ± 223 2.86 ± 0.05 76 ± 4 9.59 ± 2.82

... ... ... ... ... ... ... ... ...

A sample of the provided catalog with Teff , log g, ∆P and ∆ν for all giant stars along with uncertainties. For a cautionary note about

the uncertainties, see Section 5.1. We also give the “tier 1” and “tier 2” RC selection as described in Section 4. The “tier 1” is a less
contaminated subset of the “tier 2” sample. However, we only label it as “tier 1” in the catalog for simplicity. We provide distance

estimates for stars selected as RC.

SED. Therefore, we can account for differences between our
final samples distribution in these parameters compared to
our validation set.

In Figure 6, we show the contamination rate as a func-
tion of Galactic latitude (b) and the fractional Gaia G band
magnitude uncertainty ((σG − 0.0018)/G). We evaluate the
fractional G band uncertainty as (σG − 0.0018)/G because
we want to subtract off the contribution of the uncertainty in
the zero-point which converts the measured flux to a mag-
nitude using the Vega magnitude system. This conversion
accounts for the majority of the uncertainty for a large frac-
tion of the data (see bottom right panel of Figure 6), so that
we have a more dynamic range of uncertainties with which
to evaluate the contamination. We also test calculating the
contamination rate as a function of just σG and the results
are similar to σG− 0.0018)/G. In the top right panel of Fig-
ure 6, we show the extinction (AV ) as a function of Galactic
latitude for the RC sample. We calculate the extinction (AV )
using the Python package DUSTMAPS (Green 2018) and the
map provided by Green et al. (2019). Ideally, we would cal-
culate the contamination as a function of AV . However, For
accurate estimates of AV , we require accurate distances to
our objects. Given that we do not have accurate distance for
the RGB stars in our validation sample, we cannot calculate
AV for these stars and therefore cannot calculate the con-
tamination rate as a function of AV . However, because the
extinction is highly correlated to the Galactic latitude (see
Figure 6), we can use the Galactic latitude as a proxy for ex-
tinction. This correlation is expected given that in the disk,
at |b| <10 degrees, there are high levels of dust, which causes
extinction. However, at |b| > 10 degrees, we are looking out

of the plane of the Galaxy, where dust density and therefore
extinction is much lower. As extinction can greatly impact
the shape of an SED, we expect it to negatively impact our
ability to infer the Teff , log g, ∆ν and ∆P. Therefore, we ex-
pect higher contamination rates at lower Galactic latitude.
We also expect our inference of the ∆P to be highly sensitive
to the error of the input SED given that the signal of an RC
star is on the order of the typical uncertainty (see Figure
1). Evaluating the contamination rates with our validation
sample, in Figure 6 we show that indeed the contamination
rate steeply increases with larger G band uncertainties and
lower Galactic latitude.

Given that our data has a slightly different distribution
of Galactic latitudes and G band errors than our valida-
tion sample, the contamination rate and completeness for a
given sample may be different than that calculated by the
validation sample. To account for this, we calculate our final
sample contamination rate by integrating the contamination
rate as a function of Galactic latitude and fractional G band
uncertainty multiplied by the normalized number density of
our final sample. This leads to a contamination rate of ∼
20% for the “tier 1” sample and ∼ 35% for the “tier 2” sam-
ple. This is an increase of ∼ 3-5% compared to the validation
sample. However, as shown in Figure 6, a cut in either the
fractional G band magnitude errors or Galactic latitude can
lead to much lower contamination rates. For example, ap-
plying a cut of |b| >30 degrees to the “tier 2” sample leads
to a sample of 15,000 stars with an integrated contamination
rate of ∼ 9%.
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Figure 6. The contamination rate as a function of the fractional Gaia G band magnitude uncertainty ((σG − 0.0018)/G), and the

Galactic latitude (b). In the top left plot, we show the distribution of our “tier 1” sample in G band fractional uncertainty and Galactic
latitude in grey with the contamination rate in the colored boxes. In the top right plot we show the extinction (AV ) as a function of

Galactic latitude. This shows that extinction correlates with Galactic latitude and we can therefore use Galactic latitude as a proxy for

extinction when evaluating the contamination rate. In the bottom two plots, we show the 1D versions of the top left plot. For these plots,
the left y-axis shows the contamination rate at x. The right y-axis shows the cumulative contamination rate for all data >x for Galactic

latitude and <x for the fractional G band uncertainty. These values are calculated by summing the contamination rate multiplied by the

normalized number density of the “tier 1” sample. The lines are colored by the value of the normalized number density at that point.

4.2 Galactic Distribution of Red Clump Sample

Figure 7 shows the reverse cumulative distribution of the de-
rived heliocentric distances for the “complete” sample (“tier
2”). For comparison, we show the LAMOST and APOGEE
spectroscopic RC samples from Ting et al. (2018a) in black.
Even though the LAMOST sample is the largest and most
distant sample of spectroscopically derived RC stars, our
photometrically derived sample is significantly larger even
at large distances. Therefore, our sample provides more pre-
cise distances where they matter, e.g., in the distant Galaxy
where there are many open questions about its structure and
where the distances are most difficult to derive. For com-
parison, we also derive uncertainties for distances derived
using Gaia DR2 parallaxes. For this we use the equation1

σd = σ$d
2, where σ$ is the individual reported Gaia DR2

parallax uncertainty. In Figure 7, we color our distribution
of stars by the ratio of the Gaia distance uncertainties to
the typical uncertainty for RC stars (∼ 9%) at the given

distance. The dark blue dashed lines indicate where dis-
tances measured using RC stars become more precise than
distances provided by Gaia DR2 parallaxes. In total, our
sample contains over 1.8 million stars with distances more
precise than the distance given by Gaia DR2 parallaxes (see
Figure 7).

We show the Galactic distribution of the sample of ∼
2.6 million RC stars in Figure 8. Our sample reaches farther
into the Galactic halo and Galactic center than previous
pristine RC samples (Bovy et al. 2014; Ting et al. 2018a; Wu
et al. 2019) with our most distant RC star at a heliocentric
distance of ∼ 20 kpc. This maximum distance is consistent
with the W1 limiting magnitude (W1 = 17.1 mag) and the
absolute magnitude of RC stars in W1 (MW1 = -1.68 mag)
which corresponds to a distance of 30.06 kpc. As shown in
Figure 8, extinction prevents us from observing the Galactic
center. Assuming an AV =30 mag at the Galactic center,
in order to observe a RC star at that distance (8.3 kpc) we
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Figure 7. Cumulative distribution of distances for our sample of
2.6 million RC stars. We show the corresponding RC W1 magni-

tude on the top x-axis for reference. Our sample is colored by the

ratio of Gaia DR2 distance uncertainty to the distance uncertain-
ties of RC stars. We also show the spectroscopic LAMOST and

APOGEE RC samples from Ting et al. (2018a) in black for com-

parison. The red dashed line corresponds to the RC distance for
the APOGEE magnitude limit (H=14 mag). The yellow dashed

lines show where the Gaia DR2 uncertainties become larger than

the RC distance uncertainties. Our RC distances are more precise
at distance > 3 kpc. The Gaia uncertainties degrade faster be-

cause they scale as distance squared rather while the RC distance

uncertainties are linear with distance. The black error bars show
the typical RC distance uncertainty for distances of 5, 10 and 18

kpc.

would need to use the infrared. A RC star at that distance
and level of extinction is just on the edge of the magnitude
limit of the 2MASS survey for the K band (K=14.3 mag).
The only bands in which RC stars at the Galactic center
are observable in current large surveys are the K, W1 and
W1 bands. However, given the typical uncertainties and CN
information content, these bands would not be sufficient to
effectively select RC stars (see Figure 1). Future infrared
photometric surveys (e.g., WFIRST) may provide sufficient
depth and precision to select an RC sample in the Galactic
center.

5 INTERPRETING THE NETWORKS

When using neural networks, it is often useful to understand
what information is harnessed by the neural network to make
the inference. This can be especially important when there
might be confounding variables that the network could be

using to make the inference instead of the desired physical
mechanism. After all, neural networks aim to understand
the correlations between variables. Domain knowledge is re-
quired to determine if the established correlation agrees with
our understanding of the causal structure. In this section, we
describe our attempts of trying to open the “black box” and
determine what correlations the network uses to infer the
parameters.

5.1 Interpreting the Reported Uncertainties

One of the advantages to using a Mixture Density Network
is that the inferred parameters also have uncertainties as-
sociated with them. The uncertainties are determined from
the widths (σ(x)) of the output GMMs (see Section 3.1).
Although the network is not exposed to the input uncer-
tainties, we find that the uncertainties on the inferred pa-
rameters correlate with the input uncertainties.

In the top panels of Figure 9, we show how the uncer-
tainty on the inferred Teff and log g relate to the uncer-
tainties on the input parameters, which we suspect to be
essential for the respective inference. The correlation shown
in Figure 9 suggests that the network is able to recognize a
noisy SED and assign it a larger width of the GMM. Given
that noise acts as a non-physical perturbation to the input,
it is possible that the network detects these non-physical
perturbations and during the training, learns it is unable to
infer the parameter as accurately for SEDs with large per-
turbations as those with only small perturbations.

In the lower panels of Figure 9, we show the break down
of these trends into different parameter bins. The lower left
panels shows that giant stars with Teff < 4700 K have higher
Teff uncertainties for a given G and W2 uncertainty. This
is likely because cooler stars are more luminous and due to
the brightness limit of the surveys, luminous stars are often
not observed when they are close to the Sun. As a conse-
quence, cooler stars are statistically further way from their
hotter counterparts. This leads to both a larger fractional
uncertainty in photometry as well as parallax, which could
explain why cooler stars have slightly larger uncertainties in
their temperature estimates. Similarly, giants that are more
evolved (lower log g) are preferentially missed when they are
very close by; as a consequence, they are biased toward larger
distances. Therefore, they typically have a larger fractional
uncertainty in parallax which causes are larger uncertainty
in log g.

5.2 Parameter Importance for the ∆P Inference

We started this work with the conjecture that the network
will pick up the difference in the [C/N] ratios between RC
stars and red giant branch stars from the photometry and
would use that information to determine the inferred ∆P
value. Indeed, the results shown in Figure 5 demonstrate
that we are more effective at picking RC stars using the
∆P compared to just from the photometrically derived Teff

and log g. This indicates that the network is using more
information than Teff and log g to infer the ∆P and therefore
select RC stars.

In order to better understand the extra information the
network is using to infer ∆P, we calculate the empirical
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Figure 8. Galactic distribution of our sample of 2.6 million RC stars. On the left is the density of stars in Galactic coordinates, X and
Y with |Z| < 3 kpc and on the right are the Galactic coordinates X and Z. The Galactic center is located at (0,0,0) in both plots, and

the Sun is located at (8.3,0,0) kpc. The missing section of the disk is due to the Pan-STARRS footprint; Pan-STARRS does not reach

declinations < −30◦. High levels of extinction prevent current photometric surveys from observing RC stars in bands bluer than the K
band at the Galactic center. This observational effect could explain why we do not see the Galactic bar in the X-Y plane.

derivative of the inferred ∆P with respect to each of the
photometric bands. This is done by adding and subtracting
0.001 mag to the selected band for each SED in our testing
set and re-inferring the ∆P. Therefore, we have an empirical
derivative calculated for giant stars with a range of Teff and
log g values, including both RC and RGB stars. We repeat
this process with the Teff and log g networks so that we have
derivatives of ∆P, Teff , and log g with respect to each band.
In Figure 10, we show how the median derivatives of Teff ,
log g and ∆P with respect to the H-band vary with Teff and
log g. This is done by calculating the median of the valida-
tion data set for 100 (10×10) Teff and log g bins. We choose
to show the H-band because we know it has CN molecular
lines (Hawkins et al. 2018) and therefore would be sensitive
to any change in the [C/N] ratio (see Figure 1).

We expect the network to have learned that if a star is
outside the typical RC Teff and log g parameter range, then
it is likely not a RC star and it assigns that star a small
and relatively constant ∆P (∆P ≈ 80s), i.e., the derivative
of ∆P would be small. However, if the star is in the RC
Teff and log g range, then the network must determine if
the SED is consistent with the expected change in [C/N] in
order to infer the value of the ∆P to assign. We expect that
if the ∆P network is using this information it should cause
the derivative in the RC region to be large in order to be
sensitive to the change in [C/N]. From Figure 10, it is clear
that the derivative of ∆P with respect to the H-band has
a local maximum near the RC region. Another important
thing to note is that the variation of the derivative of ∆P
as a function of Teff and log g is not similar to the variation
showed for the derivatives of Teff and log g. For example,

both the derivatives Teff and log g show local minima in the
RC region. Additionally, the surfaces of constant derivative
make up very different forms in the Teff and log g space.
This gives further evidence that the ∆P inference is based
on more than simply the Teff and log g.

In addition to the derivatives, we calculate synthetic
photometry to compare to the empirical results. If the net-
work is using [C/N] information to infer ∆P, we expect the
derivative of the ∆P to be correlated with the change in
magnitude caused by a difference in [C/N] abundance. In
Figure 11, we show how the relative strength of the deriva-
tive of ∆P relates to the calculated change in magnitude due
to a change in [C/N] of -0.77 dex for each photometric band.
The adopted change in [C/N] is motivated by models from
Lagarde et al. (2012) and corresponds to an RC star with
Teff 4̄604 K and log g = 2.62 dex. The derivatives shown are
calculated by taking the median of the derivatives of ∆P,
Teff , and log g with respect to each band for stars with 4100
K < Teff < 5100 K and 2.3 dex< log g <2.7 dex, the Teff

and log g of RC stars. We define the relative strength of the
derivative of ∆P as the ratio of the derivative of ∆P with
respect to the magnitude to the derivative of Teff and log g
with respect to the magnitude. We know that the ∆P infer-
ence is modulated by the Teff and log g of the star because
the inference of Teff , log g and ∆P are weakly correlated. In
addition, the empirical gradients for Teff , log g, and ∆P are
each derived from separate networks, as such the correlation
can manifest itself in the gradients. However, for these pur-
poses, we are only interested in the sensitivity of the ∆P
inference to each band irrespective of a change in Teff and
log g. We take the absolute values of the derivative of ∆P
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can be described as G-W2. For log g it is the parallax ($; see Section 5.1). The top plots show the 1σ (dark blue) and 2σ (light blue)
intervals while the bottom plots show the median trend in different parameter ranges. The log g uncertainties are larger for stars with

log g <2.5 dex likely because they are typically more luminous than higher log g giants and therefore have larger fractional parallax

uncertainties for a given parallax uncertainty. Similarly, stars with Teff <4700 K likely have higher Teff uncertainties because they are
at the tip of the RGB and are brighter. Therefore, they are typically farther, leading to higher fractional uncertainties to the magnitude

and the parallax.

divided by the derivative of Teff and log g in order to show
which bands are most important for the ∆P inference be-
yond their impact on the inferred Teff and log g. From Figure
11, it is clear that the relative strength of the derivative of
the ∆P is correlated with the [C/N] information content in
the selected photometric band. This indicates that the ∆P
inference is at least partially based on the change in [C/N]
in the parameter range.

We also calculate the expected change in magnitude due
to a change in [C/N] as a function of Teff and log g using
synthetic photoemtry. To do this we first calculate the theo-
retical change in [C/H], and [N/H] as a star transitions from
RGB to RC using models from Lagarde et al. (2012). We cal-
culate these changes for stars with a variety of initial masses
(0.85, 1.0, 1.5 or 2.0 M�) and metallicities (Z= 0.002, 0.004
or 0.014) which correspond to a variety of Teff and log g dur-
ing the RC phase. Therefore, we have the change in [C/N] as
a function of Teff and log g for RC stars. We use these val-
ues to synthesize a grid of stellar spectra (see Section 2.2),

with RGB and RC [C/N] values. We then calculate the cor-
responding magnitudes for each photometric band (G, BP,
RP, g, r, i, z, y, J, H, K, W1 and W2) using PYPHOT8 We
calculate the expected difference in magnitude between in
RGB and RC stars as a function of Teff and log g for each
photometric band.

As shown in Figure 10, the derivative of ∆P with respect
to the H-band is not constant over the RC region. This is
expected given that the change in [C/N] is also not constant
for all RC stars. The Teff log g and [C/N] ratio of a RC star
are a function of its initial mass and metallicity. The mass
and metallicity of a star impact the depth of the convective
zone during the RGB phase and therefore the amount of
CN mixing. As shown in the lower panel of Figure 12, lower
metallicity stars have a larger change in [C/N]. This effect
is especially large for lower mass stars while stars with mass

8 https://mfouesneau.github.io/docs/pyphot
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log g and how it correlates with the derivatives. In the left and middle plot we see the Teff and log g derivatives are smallest in the RC
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Teff and log g is consistent with what is expected for a change in [C/N] due to mixing (See Figure 13), demonstrating that the network

is learning the [C/N] ratio of RC stars.

of 2 M� have almost no trend in [C/N] with metallicity.
The cumulative effect of this is shown in the upper panel of
Figure 12, where the change in [C/N] is shown as a func-
tion of Teff and log g. To expand on this further, we convert
the change in [C/N] into a change in magnitude for selected
bands using synthetic spectra. In Figure 13, we show how
the theoretical changes in magnitude relate to the empiri-
cal derivatives of ∆P with respect to the selected band as
a function of Teff and log g. The shape of the contours are
highly correlated. This provide further evidence that the ∆P
network is learning these small differences in magnitude be-
tween RGB and RC stars caused by the change in [C/N] and
using this to infer the ∆P.

To summarize, we have found that the inferred out-
put uncertainties are correlated with the input uncertainties
which suggests the network can identify noisy data. In addi-
tion, the effectiveness of the selection when using the inferred
∆P compared to using just Teff and log g indicates that the
∆P inference is derived from more than a correlation with
Teff and log g. Furthermore, we calculated empirical deriva-
tives of the ∆P with respect to each photometric band and
found that they correlate with the expected difference in
magnitude due to a change in [C/N]. In total, our investiga-
tion of the trained network suggests that the ∆P inference

uses the [C/N] information imprinted on the SED and there-
fore can be used to effectively select RC stars.

6 SUMMARY

RC stars are standard candles proven to provide more accu-
rate distance measurements than end-of-mission Gaia par-
allaxes at distances > 3 kpc (Ting et al. 2018a). However,
identifying large pristine samples of RC stars has historically
been difficult. Red giant branch stars can have the same Teff

and log g making it easy to mistake them as RC stars, espe-
cially when the Teff and log g estimates have larger uncer-
tainties, e.g., from low-resolution spectra or SED. The as-
teroseismic parameters ∆P and ∆ν clearly separate helium
core-burning RC stars from inert core red giant branch stars.
These parameters have only been derived for ∼2,000 giant
stars given the difficulty of the measurement and the amount
of time required for light curve observations. Furthermore,
the asteroseismic sample is restricted to the Solar neighbour-
hood due to the magnitude limit. Recently, Hawkins et al.
(2018) and Ting et al. (2018a) demonstrated that the ∆P
and ∆ν can be derived from single-epoch stellar spectra.
Specifically, RC stars can be selected from the difference in
the carbon to nitrogen ratio due to mixing that occurs at
the top of the red giant branch.
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Figure 11. How the strength of the derivative of ∆P with respect
to each magnitude relates to the absolute expected change in the

magnitude due to the CN mixing between an RGB and RC star.

Specifically, on the y-axis, we plot the absolute value of the ratio
of the derivative of ∆P with respect to the magnitude to the

derivative of Teff and log g with respect to the magnitude. Here

we assume the Teff and log g are the same for both stars (Teff =
4604 K and log g = 2.62 dex) but the RGB stars has a [C/N] =0

while the RC stars has [C/N] = -0.77 dex. The derivatives shown
correspond to the median empirical derivative found for stars in

the RC region (4100 K < Teff < 5100 K and 2.3 dex< log g

<2.7 dex). The bands with derivatives of ∆P that are relatively
larger than the derivatives of Teff and log g generally also have

CN molecular lines within them and therefore are more impacted

by change in [C/N]. This indicates that the inference of ∆P, and
hence our RC selection, is likely aided by the imprint of a change

in [C/N] on the SED.

Given that the information to effectively select RC stars
are in the spectra, we expect the same information to be in
the SED. However, from synthetic photometry, we find that
this signal is on the order of the uncertainty in the photom-
etry. Combined with the systematics that limit SED mod-
eling, we resort to using data-driven models and inference
with probabilistic neural networks to sort out the RC signal
in the photometry. Specifically, we choose to use a Mixture
Density Network which provide a probabilistic output rather
than a single best-estimate. This allows us to provide uncer-
tainty estimates for our inferred parameters.

We selected RC stars from the ∼ 200 million stars which
have photometry from 2MASS, AllWISE, Gaia, and Pan-
STARRS. We derive the Teff , log g, ∆ν, and ∆P of these
stars from 13 bands of photometry and parallax using a mix-
ture density network. Comparing to external validation sam-
ples, we achieve accuracies to the level of 153 K, 0.32 dex,
80s, and 1.64 µHz for Teff , log g, ∆ν and ∆P, respectively.
We achieve a contamination rate of ∼20% for a sample of
405,000 RC stars (“tier 1”). This is similar to the contam-
ination rate found when selecting RC stars using Teff and
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Figure 12. In the upper panel we show how the expected differ-
ence in [C/N] changes as a function of Teff and log g. The models

used are from Lagarde et al. (2012). These differences are a re-
sult of stars with different initial masses and metallicities have

different changes in [C/N] and different Teff and log g during the
core helium-burning phase. In the upper panel we show lines of

constant mass in solid red lines and lines of constant metallicity
in dashed red lines. As the mass of the star increases, so does the
log g. The Teff decreases with increasing metallicity. In general,

the change in [C/N] becomes larger with decreasing metallicity.

At the low mass end, this effect is very strong while at the high
mass end there is almost no trend in [C/N] with metallicity. This

is because the mass and metallicity both impact the depth of the
convective zone during the RGB phase and therefore the amount
of mixing that occurs.
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Figure 13. Showing the derivative of ∆P with respect to the H, W1, Rp and z band as a function of Teff and log g. The counts of

stars are shown in hexagonal bins with darker bins corresponding to higher counts. The red dashed contours show the theoretical change

in magnitude between a RC and RGB star due to the expected change in [C/N] for the selected band as a function of Teff and log g.
The theoretical change in magnitude contours are correlated with the empirical derivatives of ∆P, indicating that the inference of ∆P is

based on the change in [C/N] between the RGB and RC.

log g derived from low-resolution spectra. We also present a
catalog of 2.6 million RC stars with a contamination rate of
∼33% (“tier 2”). We find that extinction and the input errors
impact the contamination rate. We can obtain a contamina-
tion rate of ∼ 9% for 15,000 stars with |b| >30 degrees.
We derive distances with uncertainties of ∼9% for our sam-
ple and show the Galactic distributions. Our sample reaches
deep into the Galactic bulge and halo with the most distant
stars at a distance of ∼ 20 kpc. Therefore, this sample has
vast scientific potential for Galactic studies.

We also attempt to interpret the neural networks. We
find they are consistent with our expectations from stellar
evolution models and synthetic spectral models. Our study is
an example showing that combining domain knowledge with
the power of inference of machine learning can be a useful
combination. This can be used to avoid machine learning
algorithms from blindly exploiting unphysical correlations
in the data which can cause unknowingly biased results. By
calculating empirical derivatives of the ∆P and comparing
them with model expectations in the change in [C/N], in-
cluding the effects of mass and metallicity, we conclude that

our network harnesses the difference in the [C/N] ratio to
determine the ∆P, along with the Teff and log g.

Increased precision photometric data will help to reduce
the contamination. Specifically, WFIRST, Euclid and the
Rubin Observatory should all provide improved photometry,
especially in the infrared where 2MASS and AllWISE are
currently on the order or 0.025 mag uncertainties which is
larger than the expected magnitude change in these bands.
In addition, these surveys will provide deeper magnitude
limits and therefore will allow us to expand our sample to
more distant RC stars. This will especially be useful in the
Galactic center where extinction currently prevents us from
seeing. Last, a larger and less contaminated training set will
also improve the results. It would be ideal if we could train
out network on asteroseismically derived parameters rather
than spectroscopically derived. However, the asteroseismic
sample is currently too small. Larger asteroseismic catalogs
with derived ∆P and ∆ν values, e.g. with Plato and TESS,
are needed to improve the training.
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