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Abstract
Probe-based speed data provide great value to agencies; especially, in areas which are not feasibly covered by traffic sensors. 
However, as with sensors, probe data are not without nuance and issues like latency prevent alignment between calculated 
metrics by data source. In recent years, there has been a strong impetus on using data-driven decision making. Data-driven 
insights have become critical for smart mobility. To support data-driven decision making, Federal Highway Administra-
tion has procured probe data feeds and provides free access to state and local agencies as National Performance Measures 
Research dataset (NPRMDS). In addition to the NPRMDS, several state agencies subscribe to a paid probe data provider 
for obtaining real-time streams of high-resolution probe data. These datasets are used to generate nationwide urban mobility 
reports as well as reports focusing on certain jurisdiction. These mobility reports are integrated in several Transportation 
System Management and Operations (TSMO) plans which are often used to drive several resource allocation projects. This 
paper examines accuracy of methodology used to derive two frequently used performance measures in the mobility reports; 
namely, number of congested hours and number of congestion events. An improve methodology is then proposed to find 
accurate estimates for number of congested hours and number of congested incidents.

Keywords  Probe data · Sensor data · Congestion detection · Number of congested events · Congested hour · Fixed-speed 
threshold · Change point detection

Introduction

In recent years, there has been a strong impetus on using 
data-driven decision making. Data-driven insights have 
become critical for smart mobility. Map-21, the Moving 
Ahead for Progress in the 21st Century Act (P.L. 112–141), 
asks state departments of transportation (DOTs) and agen-
cies to monitor and report mobility performance measures. 
To support data-driven decision making, in 2013, Federal 
Highway Administration has procured probe data feeds and 
provides free access to state and local agencies as National 
Performance Measures Research dataset (NPRMDS). INRIX 

is the current provider of NPMRDS data records. The data-
base contains billions of records that fully cover the whole 
National Highway System (NHS) which includes all US 
interstates and highways. The hope is that all project deci-
sions might be improved through use of probe-based data as 
opposed to only relying on infrastructure mounted sensors.

However, there are some critical points that state DOTs 
and transportation agencies should consider when using a 
probe data stream, such as INRIX. Some advantages and 
limitations of INRIX are as follows:

•	 In terms of geographic coverage, INRIX has been evalu-
ated for interstates and noninterstates and has been shown 
to be reliable for almost all times of day on interstates.

•	 INRIX is more reliable during the day than at night, espe-
cially during peak hours.

•	 Regarding incident detection, INRIX is reliable for 
detecting merely congestion, especially recurring conges-
tion. Generally, there are two types of congestion, recur-
ring and nonrecurring. Recurring congestion is regarded 
as the congestion caused by the routine traffic in a nor-
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mal environment which is somehow expected, whereas 
nonrecurring congestion is unexpected and is most 
likely caused by an incident. Nonrecurring congestion 
may emerge as a result of a variety of factors like lane 
blocking crashes or disabled vehicles, work zone, lane 
closures, adverse weather conditions, etc. When INRIX 
detects congestion, it gets all the information related to 
the congestion, such as the duration of the congestion.

•	 There is almost always a time delay (latency) for INRIX 
congestion detection.

The Regional Integrated Transportation Information 
System (RITIS), provides use of NPMRDS data including 
travel time per mile (reliability), delay, duration of conges-
tion, number of congested events, congested hour, congested 
mile, congestion intensity, speed drop, etc. Therefore, further 
reliance on this emerging source of data requires assurance 
that the data represent what is actually being experienced on 
the roadway. The goal of this paper is to compare the preci-
sion of performance measure methodologies between probe 
and sensor-based sources.

The number of congested events is a performance meas-
ure, which explains how reliable probe-sourced data are in 
detecting congestion (recurring and non-recurring). This 
performance measure is actually the number of congested 
events reflected within the probe data. On the other hand, 
the congested hours of a segment reflect the summation of 
hours vehicle speeds are below a defined speed threshold. 
A state-wide analysis reveals both the location and mag-
nitude of congestion with the information aggregated by 
year, month, day of week (DOW) and time of day (TOD). 
Congested hour calculations require comparing each min-
ute of measured speed data, for all state-wide segments, to 
the congestion threshold. If the probe-sourced speed data 
are both “real time”, as opposed to historical and below the 
fixed-congestion threshold, that 1 min of time is considered 
as “congested”. Summation of these congested minutes 
(reported in units of hours) is defined as the total number 
of congested hours.

Literature Review

A literature review shows that congested hour and number 
of congested events are two essential performance metrics 
which allow transportation planners and policy makers to 
more effectively allocate resources to address and improve 
network. Regarding costs of congestion, some organiza-
tions and agencies only consider costs of recurring conges-
tion, while others include non-recurring costs in addition 
to recurring.

Recurring congestion is very common in the U.S. 
with travellers expecting and planning for some delay; 

particularly, during peak hours. Many commuters modify 
their schedules or assign additional time to allow for these 
typical traffic delays. In contrast, non-recurring, unexpected 
delays, can have severe impacts on motorist’s safety and 
mobility. Motorists want to be confident that a trip that takes 
30 min today will also take 30 min tomorrow and so travel 
time reliability calculates the extent of this unexpected delay. 
Reliability is formally defined as the consistency or depend-
ability in travel times, as measured from day to day or across 
different time periods of the day.

Delay is also important to many users of transportation 
systems, from passenger vehicle and truck drivers, transit 
riders, freight shippers, pedestrians, etc. Reliability is valu-
able for personal and business travellers as it allows them 
to use their time better. Additionally, it is a priceless ser-
vice that can be afforded on privately-financed or privately-
operated routes. That is why transportation planners should 
consider delay, congested hour, number of congested events 
and travel time reliability as essential performance measures 
because they are so vital for transportation system users.

Transportation agencies and regional planning organiza-
tions increasingly utilize travel time performance as reliabil-
ity and variability measure (Nam et al. 2005). In 2003, Bell 
and Lida defined travel time reliability as the probability of 
on-time arrival (Bell and Iida 2003). Lei Lin and his col-
leagues compared travel times calculated from connected 
vehicles to those from road sensors (Lin et al. 2018, 2019). 
In addition, Lomax et al. in the same year introduced travel 
time reliability as a variability of travel time that commuters 
experience and as a consistency of a specific mode during 
a certain period of time (Lomax et al. 2003a, b). Addition-
ally, Lomax recommended a focus on duration, extent and 
intensity of a congestion and reliability measures in addition 
to travel time alone in order to assess transportation system 
performance. Adapting different methods to measure traffic 
congestion intensity helps to rank and prioritize congested 
segments and in providing a more comprehensive spatial 
and temporal understanding of congestion duration, extent 
and severity.

In this study, we attempt to evaluate the reliability of 
probe-sourced data (INRIX) using two performance meas-
ures; congested hour and the number of congested events. 
The study will introduce a new method for detecting traffic 
congestion and reductions in speed.

Wide Area Probe Data

State Departments of Transportation (DOT) and many trans-
portation agencies use infrastructure sensors to collect com-
paratively accurate real-time traffic-related information such 
as occupancy, traffic speed for each lane and vehicle class. 
The cost to deploy and maintain these infrastructure-based 
sensors can be high. The other major limitation for fixed 
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sensors is their geographical scalability; many units must 
be installed on the roadsides to adequately determine and 
measure the traffic situation in any particular area (Young 
2007). The access to power and communications leans 
towards major freeways, interstates and critical urban areas 
rather than an even distribution a state. The lack of sufficient 
coverage on highways and arterials generate the desire for 
DOTs to consider augmenting existing traffic data collection 
with probe-based services for wider coverage under limited 
budgets.

Advancements in telecommunication and wireless tech-
nologies have facilitated new ways to collect traffic data, 
process the information and analyse the data. Probe-based 
technologies can be used to collect traffic-related informa-
tion from millions of mobile devices, GPS-enabled vehicles 
and other sources. Probe-based methods of measuring travel 
time and speed data can easily be scaled across large net-
works without need for deploying additional infrastructure 
(Young 2007). This can allow state agencies to cost-effec-
tively use a single uniform source of data for monitoring 
traffic across most roadways (FHWA 2013). INRIX, HERE 
and TomTom are some of the established third-party provid-
ers of such probes.

Various studies have been carried out to compare the reli-
ability and accuracy of probe data with sensor data from 
radar sensors, loop detectors, etc. (Adu-Gyamfi et al. 2017; 
Coifman 2002; FDOT 2012; Feng et al. 2010; Haghani et al. 
2009; Kim and Coifman 2014; Lindveld et al. 2000). Many 
of these studies evaluated probe performance using travel 
time reliability measures, such as the 90th or 95th percen-
tile of travel time, standard deviation, percentage of varia-
tion, buffer time index (BTI), planning time index (PTI), 
travel time index (TTI), frequency of congestion, failure rate 
(with respect to average), on-time arrival, misery index, con-
gestion detection latency, count of congestion, congestion 
duration, reliability curve, hourly traffic volume, congested 
hours, etc. (Aliari and Haghani 2012; Araghi et al. 2015; 
Belzowski et al. 2014; Cookson and Pishue 2016; Day et al. 
2015; FHWA 2017; Gong and Fan 2017; Lomax et al. 2003a, 
b; Mcleod et al. 2012; MoDOT 2017; Peniati 2004; Pu 2012; 
Remias et al. 2013; Schrank et al. 2012, 2015; Sekuła et al. 
2017; Turner 2013; Venkatanarayana 2017; WSDOT, 2013, 
2014; Zheng et al. 2018). An overview of these studies and 
the performance measures used to evaluate the reliability of 
probe data is provided in Table 1.

Fixed Threshold

Traffic congestion has become one of the most expensive 
problems in the world, especially in large cities and metro-
politan areas. Effectively addressing congestion requires the 
ability to use real-time traffic data towards improved timely 
decision making. Traffic flow parameter-based detection 

methods have been widely accepted since they can be imple-
mented automatically and are not affected by weather condi-
tions. Many congestion detection methods based on the traf-
fic flow parameters have been studied. Dudek, Messer and 
Nuckles developed the California method in 1974, which has 
been widely accepted and applied in traffic congestion and 
incident detection. The California algorithm is mostly used 
as a basis of comparison between congestion and incident 
detection methods (Dudek et al. 1974). McMaster’s incident 
detection method was developed by Persaud in 1990. Many 
other methods were also developed in the following years 
and all are convenient to be used in practice. The difficult 
task is to define the threshold values of these methods which 
are often subjective according to experience (Persaud et al. 
1990).

When these same subjective threshold values are used 
in performance measures, such as the number of congested 
events and congested hours, this can lead to erroneous deci-
sions. The number of congested events is a performance 
measure that explains how reliable probe data are in detect-
ing congestion (recurring and non-recurring) compared to 
a benchmark dataset (sensors). Average number of hours 
when the vehicle speeds are less than 90 percent of free-flow 
speed (FFS) is considered as congested hour. For instance, 
when the FFS is 60 mph, congested hour is computed as the 
average number of hours when vehicle speeds are less than 
54 mph. This performance measure is typically computed 
only for weekdays from 6 am to 10 pm.

Data

The sources of data utilized in this work are explained in 
this section.

Probe‑Sourced Data

With the help of today’s technologies, e.g., connected vehi-
cles and smartphones, probe data can leverage both historic 
and real-time data to report on transportation network opera-
tions. This study used both historical and real-time traffic 
data collected through the INRIX TMC monitoring plat-
form. For each of TMC segment, speed, average length of 
segments and corresponding date and time of traverse, are 
provided each minute.

Infrastructure‑Mounted Sensors

The benchmark data utilized in this study were provided 
by Wavetronix sensors which uses radar technologies for 
collecting traffic-related data. Although admittedly sensors 
might have some inherent errors, Wavetronix Smart Sen-
sors have been commonly used for comparison purposes in 
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various studies (Chakraborty et al. 2018; Lu et al. 2014; Pod-
dar et al. 2018; Sharifi et al. 2011). Each Wavetronix sensor 
unit consists of a side-fire radar and hard-wired power for 
real-time processing of traffic data, such as speed, volume, 
etc. Wavetronix sensors provide high-resolution traffic data 
every 20 s.

In this paper, speed is the only traffic parameter which 
is utilized from Wavetronix sensors and INRIX segments. 
Table 2 indicates the statistics of the probe and sensor 
data that were utilized in this paper. Also, Fig. 1 shows 

speed distribution for INRIX and Wavetronix over 5 routes 
across Iowa in 2017.

Five different routes with 64 sensor–segment pairs 
were chosen in the state of Iowa over the year 2017. Fig-
ure 2 shows the segments and sensors for all five routes 
across Iowa. Moreover, Table 3 shows the number of seg-
ment–sensor pairs in each considered route. The speed 
limit of each route varies from 45 to 70 mph and it is 
considered in our analysis.

Table 1   Overview of the studies and the performance measures used to evaluate reliability of probe-sourced data

Study Source of probe data used Performance measures

Pu (2012) Not mentioned 95th percentile travel time, standard deviation, coefficient of variation, 
percent variation, skew statistic buffer index (w.r.t. average), buffer index 
(w.r.t. median), planning time index, frequency of congestion, failure rate 
(w.r.t. average), failure rate (w.r.t. median), travel time index

Lomax et al. (2003a, b) Not mentioned Travel time window, percent variation, variability index, displaying vari-
ation, buffer time, buffer time index, planning time index, travel rate 
envelope, on-time arrival, misery index

Turner (2013) INRIX Annual hours of delay per mile, hours of target delay per mile, Travel Time 
Index, Planning Time Index, top N congested segments

Uno et al. (2009) Not mentioned Average travel time, covariance of travel time, level of service (LOS)
Rakha et al. (2010) Not mentioned Travel time coefficient of variation
Day et al. (2015), Remias et al. (2013) INRIX Congestion hours, distance-weighted congestion hours, congestion index, 

speed profile, speed deficit, travel time deficit, congestion cost, top N 
bottlenecks

MoDOT (2017) Not mentioned Average travel time per 10 miles, additional travel time needed for on-time 
arrival (80% of time), annual congestion costs

FHWA (2017) NPMRDS Congested hours, planning time index, travel time index
Schrank et al. (2012, 2015) INRIX Travel speed, travel delay, annual person delay, annual delay per auto 

commuter, total peak period travel time, travel time index, planning time 
index, number of rush hours, percent of daily and peak travel in congested 
conditions, percent of congested travel

WSDOT (2013, 2014) Not mentioned Lane-miles congested, total and cost of delay, travel time index
Sharma et al. (2017) INRIX Congestion detection latency, count of congestion, congestion durations, 

buffer time index, reliability curve
Hu et al. (2015) INRIX Delay saving, buffer index, 95th percentile travel time
Cookson and Pishue (2016) INRIX INRIX travel time index, wasted time in congestion
Aliari and Haghani (2012) INRIX Travel time, average speed
Gong and Fan (2017) INRIX Travel time reliability, planning time index, frequency of congestion
Sekuła et al. (2017) INRIX Hourly traffic volume
Venkatanarayana (2017) INRIX, NPMRDS Traffic delay, planning time index, travel time index, AASHTO reliability 

indexes (RI80, for all days and weekdays), congested hours and congested 
miles

Table 2   Descriptive statistics of 
probe and sensor data used in 
this study

Parameters Min Max Mean Standard deviation

INRIX speed (mph) 2 92.6 61.3 5.8111 
INRIX speed < 45 mph (mph) 2 44.9 30.7191 9.0671 
INRIX segment length (mile) 0.0127 4.3673 1.5707 0.8636 
Wavetronix speed (mph) 1 98.2 65.8 9.2543 
Wavetronix speed < 45 mph (mph) 1 44.9 25.0162 11.1052 
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Fig. 1   Distribution of speed for INRIX and Wavetronix over 5 routes across Iowa in 2017
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Data Stream and Pre‑processing

In real-world scenarios, since most raw datasets are incom-
plete, highly susceptible to noise and inconsistent due to sen-
sor failures, measurement technique errors or data volume, 
data pre-processing plays a key role in detecting and correct-
ing corrupt and erroneous traffic-related data. Since storing 
and analyzing huge amounts of INRIX and Wavetronix data 
need proper infrastructure and computational power to man-
age the large volume of data, a high-performance computing 

cluster should be utilized for data processing. A Hadoop 
Distributed File System (HDFS) was utilized for data storage 
and the map reducing was utilized for processing.

Preliminary Analysis

In the following section, a very traditional and common 
method of congestion detection is examined which utilizes 
a fixed-threshold speed and demonstrates how unreliable and 
erroneous the process can be. After that, an improved traffic 
congestion identification method is proposed and the number 
of congested events and congested hours are computed as 
performance measures.

In the preliminary stage, an analysis of a specific num-
ber of sensor–segment pairs in the state of Iowa was con-
ducted and the results compared for different scenarios. 
For this purpose, ten sensor–segment pairs were chosen in 
the Des Moines metropolitan area. Performance measures 
were calculated for the entire year of 2016. The data were 
limited to the period of 5 am to 10 pm because the reliabil-
ity of the Wavetronix sensors (benchmark data) is lower 

1

2

3
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5

Fig. 2   Location of sensors and segments on 5 different routes in Iowa

Table 3   Number of sensors and segments on 5 different routes in 
Iowa

Route Corridor Number of 
segment–sensor 
pairs

1 I-29 8
2 I-29/80 12
3 I-380 16
4 I-235 15
5 I-35/80 13

Table 4   Reliability of probe data in detecting congestion events using fixed threshold method

INRIX

Detect congestion No congestion detected

Wavetronix Detect congestion True positive: 343 False negative: 202
Recurring Non-recurring Recurring Non-recurring
304 39 190 12

No congestion detected False positive: 81 True negative: –
Recurring Non-recurring Recurring Non-recurring
70 11
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during the low volume late night hours. Also, the mini-
mum duration for congestion was set to be greater than 
or equal to 15 min. Table 4 shows the reliability of probe 
data in detecting congested events. The fixed-threshold 
congestion detection method which utilized in this study is 
thoroughly explained in our previous paper (Ahsani et al. 
2019). To have a brief explanation, the threshold speed 
in traditional congestion detection method is computed 
by subtracting twice the interquartile range from median 
speed for each 15-min period for each weekday from 
8-week history. All the speeds below this threshold and 
45 mph simultaneously are considered as non-recurring 
congestion while speeds above the computed threshold, 
but below 45 mph are considered as recurring congestion.

The first performance measure computed for this analy-
sis is the number of congested events, as shown in Table 4. 
True positive (TP) represents a similar congested event 
which is detected by both Wavetronix sensor and INRIX 
segment; false negative (FN) means a congested event was 
detected by Wavetronix, but not INRIX; false positive (FP) 
denotes a congested event was detected by INRIX but not 
Wavetronix; and true negative (TN) represents a congested 
event which is detected by neither Wavetronix nor INRIX. 
It should be noted that there is no value for TN in the table 
below since we do not know the true number of congested 
events (not detected by either) which is why Wavetronix 
sensors are considered the benchmark for this analysis.

Table 4 shows that the number of congested events 
detected by both datasets was 343. There were 202 events 
not detected by INRIX or 37% of events missed. FP are the 
other way around an additional false alert that an opera-
tor would spend time on that did not actually occur. R 
and NR represent recurring and non-recurring congestion, 
respectively.

Table 4 shows a large discrepancy in the number of con-
gested events detected by both the Wavetronix and INRIX. 
The measures do not imply there is a problem in the struc-
ture of the congestion detection algorithm but instead rep-
resent errors in the congestion detection method. Thus, 
it is imperative to come up with a solution to this issue 
which will be discussed further in this paper.

The second performance measure computed for this 
analysis is congested hours which is calculated using a 
fixed-threshold speed of 45 mph. Figure  3 compares 
congested hours for INRIX against Wavetronix sensors 
(benchmarked dataset) for two different routes in Iowa 
under three different scenarios; daily, weekly and monthly. 
As shown in the figure, no pattern can be recognized in the 
diagrams for either routes 1 or 2. In an ideal diagram, all 
points would be plotted close to a 45 degree line, which 
is not the case and suggests a less than ideal agreement.

Methodological Flaws

Figure 4 shows a sample daily speed profile at the same 
location for INRIX and Wavetronix data. Point A shows a 
drop in speed which is detected by both INRIX (blue) and 
Wavetronix (orange). The latency (delay) between INRIX 
and Wavetronix can also be seen at point A with the INRIX 
data detecting the slowdown after the Wavetronix. A major 
problem contributing to the discrepancy in the number of 
congested events is latency.

Point B shows a speed drop in both time series, but they 
occurred above the 45 mph threshold line. In other words, 
both datasets detect a considerable speed drop, but are not 
identified as “congested” since they are above the prede-
fined threshold (45 mph). At point C, part of the INRIX time 
series goes above the 45 mph threshold line indicating that it 
was uncongested for that period. Similarly, point D indicates 
a small drop (still greater than 15 min) labelled as congested 
for Wavetronix, but not for INRIX. These example contra-
dictions compelled us to consider the detection algorithm 
and identify alternatives to use a fixed-speed threshold for 
performance calculations.

According to the research conducted by Adu-Gyamfi 
et al. (2017), it is recommended to consider 12 min as the 
maximum allowable latency (delay) time between sensor 
and segment reported traffic speeds. In our analysis, we 
examined the distribution of both detection and recovery 
latencies. Figure 5 shows that expanding the maximum 
allowable latency to 16 min yields a much higher agreement 
between Wavetronix and INRIX datasets. The detection 
latency is defined by subtracting Wavetronix detection time 
from INRIX detection time. For instance, if a congestion is 
detected at 4:00 PM and 4:06 PM by Wavetronix and INRIX, 
respectively, the detection latency would be + 6 min imply-
ing 6 min of delay in congestion detection using INRIX. The 
same happens for recovery latency. It should be noted that 
negative latency means INRIX is detected or recovered a 
congestion earlier than Wavetronix which occurs very rare.

Based on the methodological concerns shown, it was con-
cluded that an alternative method to capture big changes 
in speed profile (slope) should be considered and that this 
should be free of any fixed threshold. To capture the maxi-
mum number of speed drops, a change point detection algo-
rithm was considered.

Methodology

Change Point Detection Algorithm

Time-series analysis is used widely in fields, such as 
medicine, aerospace, finance, business, entertainment and 
transportation. Time-series data are sequences of temporal 
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measurements that describe the behaviour of systems. These 
behaviours can vary over time due to external circumstances 
and/or internal systematic changes (Montanez et al. 2015). 
Change point detection (CPD) is a method of finding sud-
den changes in the data when a property of the time series 
changes (Kawahara et al. 2012). Change point detection is 
similar in concept to segmentation, edge detection, event 
detection and anomaly detection all of which are commonly 
used in industry. Change point detection is also used to 
model and predict events like medical condition, climate 
change, speech recognition, image analysis and human activ-
ity and preferences. Generally, a change point detection 
algorithm has two parts which are the search method and 
cost function. The search method solves the change point 
detection problem with a known or unknown number of seg-
ments. The cost function measures the goodness-of-fit for 
the sub-signal to a specific model. In this analysis, a bottom-
up segmentation method performed better than other search 
methods including dynamic programming, pruned exact 

linear time (PELT), binary segmentation and window-based 
change point detection. For the cost function, a kernelized 
mean change outperformed other functions including least 
absolute deviation, least squared deviation, Gaussian process 
change, linear model change, autoregressive model change 
and Mahalanobis-type metric.

Bottom‑up Change Point Detection

A bottom-up change point detection is a sequential approach 
used to perform fast signal segmentation. It is a generous 
procedure contrary to binary segmentation. It starts with 
many change points and successively deletes the less signifi-
cant ones. As the first step, the signal is divided in numerous 
segments along a regular grid. Then, adjacent segments are 
successively merged according to their similarities. The ben-
efits of a bottom-up segmentation includes low complexity 
(of the order of O(nlogn), where n is the number of sam-
ples), the ability to extend any single change point detection 

Fig. 3   Day-wise, week-wise and month-wise congested hours for INRIX vs Wavetronix computed using a fixed-threshold method for Route 1 
(upper) and Route 2 (lower) in Iowa
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method to multiple change points and; finally, the ability to 
perform in any number of regimes whether already known 
or not.

Kernelized Mean Change

In this method, we assumed a positive semi-definite ker-
nel k(⋅, ⋅) ∶ Rd × Rd

↦ R and its associated feature map 
Φ ∶ Rd

↦ H (where H is an appropriate Hilbert space), this 
cost function is able to detect changes in the mean of the 
embedded signal {Φ(yt)}t (Arlot et al. 2012; Arthur et al. 
2020). Formally, for a signal {yt}t on an interval I,

where 
−
� is the empirical mean of the embedded segment 

{Φ(yt)}t ∈ I. Also, kernel is the radial basis function (rbf):

where ||⋅|| is the Euclidean norm and γ > 0 is the so-called 
bandwidth parameter. It is determined based on the median 
heuristics. In other words, it is equal to the inverse of median 
of all pairwise distances.

Figure 6 shows a sample time series with two drops; one 
is sharp and the other one is smooth. The proposed method 

(1)c(yI) =
∑

t∈I
||Φ(yt)−

−
� ||2

H

(2)k(x, y) = exp
(
−�||x − y||2

)
.

is applied on the time series and successfully detected both 
drops.

Final Results

Based on the analysis of the same number of segment–sensor 
pairs over the same period of time, Table 5 indicates signifi-
cant improvements in calculating the number of congested 
events. It clearly shows that almost all of congestion are 
detected by both datasets and the number of missing conges-
tion and false detected congestion by INRIX has decreased 
significantly. Additionally, Fig. 7 shows updated daily con-
gested hour computations by the change point detection 
method. As can be seen, it has significantly improved and 
is very close to the ideal situation which is a 45∘ line. Using 
the proposed method, calculated congested hour by INRIX 
is very close to the benchmark congested hour calculated by 
Wavetronix dataset.

The change point detection algorithm delivered a higher 
accuracy and significantly improved congestion detection 
compared to the traditional fixed-threshold method. As it 
only applied to a limited number of sensor–segment pairs 
on one specific route, it was decided to develop and test 
this method on different routes with an increased number 
of locations.

A

B

C

D

Fig. 4   Speed time series of INRIX (blue) and Wavetronix (orange)
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Fig. 5   Distribution of a detection latency and b recovery latency

Fig. 6   Change point detec-
tion method with bottom-up 
segmentation as search method 
and kernelized mean change as 
cost function. Two speed drops 
are detected in red

Table 5   Reliability of probe data in detecting congestion events using change point detection method

INRIX

Detect congestion No congestion detected

Wavetronix Detect congestion True positive: 794 False negative: 19
Recurring Non-recurring Recurring Non-recurring
732 62 17 2

No congestion detected False positive: 16 True negative: –
Recurring Non-recurring Recurring Non-recurring
15 1
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Table 6 demonstrates the high accuracy using the change 
point detection method in calculating the number of congested 
events and speed drops using probe-sourced and sensor-based 
datasets. Table 6 contains five different routes with 64 sen-
sor–segment pairs which were chosen in the state of Iowa over 
the year 2017.

Regarding congested hour as a second performance meas-
ure, Fig. 8 shows the significant improvement in calculation 
using the change point detection algorithm. Similar to Fig. 7, 
Fig. 8 confirms the robustness of the proposed method in cal-
culating congested hour for different routes in Iowa.

Conclusion and Recommendation

This research evaluated probe-sourced streaming data 
from INRIX, to study its characteristics as a data source 
for calculating traffic performance measures. For this pur-
pose, Wavetronix, a commonly used infrastructure sensor 
data source, was selected as the benchmark. The agree-
ment between data sources was evaluated by two differ-
ent measures; number of congested events and congested 
hours.

For both performance measures, a traditional fixed-
threshold congestion detection method was initially 
used. The lack of efficiency and high number of errors in 
congestion detection by probe data and the lack of over-
laps between probe congested hour data and Wavetronix 
inspired the development of a solution for congestion 
detection. Consequently, a change point detection method 
was utilized and its accuracy was proven by applying the 
new method to five different routes in Iowa. Finally, the 
concurrence of the two sensor systems in terms of conges-
tion or no congestion is very promising in the context of 
NPMRDS. These results are important because the error 
mechanisms are very different in the two systems; hence, 
it is unlikely to get false concurrence. Also, the discrepan-
cies between the two systems should not be taken as errors 
of the INRIX, certainly an INRIX error could trigger one 
of these, but so too a radar error, but also the simple dif-
ference between link speed and point speed can cause a 
discrepancy when neither sensor is in error.

The following recommendations are offered for trans-
portation agencies who are augmenting traditional traffic 
data with probe-based services for wider coverage under 
restricted budgets:

Probe-based speed data provide great value to agencies 
especially in areas not covered by sensors. However, as 
with sensors, probe data are not without error. There-
fore, it is critical that agencies understand these issues 
and continue to examine and consider alternative meth-
ods to remove error prior to calculating and reporting 
performance metrics to the public.
Change point detection appears to address errors 
observed when calculating traffic performance meas-
ures using a fixed-speed congestion threshold. Agencies 
should consider this method when using probe data to 
calculate performance measures.

Fig. 7   Congested hour of INRIX vs Wavetronix computed by change 
point detection method

Table 6   Reliability of probe data in detecting congestion events for 5 
major routes using change point detection method

R  recurring congestion, NR  non-recurring congestion

Route True positive 
(total/R/NR)

False negative 
(total/R/NR)

False posi-
tive (total/R/
NR)

I-29 274/226/48 3/1/2 5/3/2
I-29/80 151/114/37 4/1/3 2/2/0
I-380 96/30/66 0/0/0 1/1/0
I-235 782/559/223 5/3/2 13/11/2
I-35/80 515/395/120 3/1/2 18/7/11
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Fig. 8   Congested hour of INRIX vs Wavetronix for 5 major routes computed by change point detection method
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Future Work

The great potential of probe data encourages deeper 
exploration into the characteristics of this data source, to 
build models that encourage traffic experts to trust probe-
based reports without need for cross-checking or further 
validation. Also, the methodology will be extended to dif-
ferentiate between recurring and non-recurring in future 
papers from lab. Also, the reliability measures need to be 
improved.

The authors plan to compute other important perfor-
mance measures including delay and travel time per mile 
(reliability) and check their efficiency and accuracy using 
proposed change point detection method against traditional 
method. Moreover, authors attempt to develop models for 
the potential use in automatically correcting latency meas-
urements from probe data.
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