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ABSTRACT

CALSBEEK, R., and V. CAREAU. Survival of the Fastest: The Multivariate Optimization of Performance Phenotypes.Med. Sci. Sports

Exerc., Vol. 51, No. 2, pp. 330–337, 2019. Introduction: Trade-offs are widespread in biological systems. Any investment in one trait must

necessarily limit the investment in other traits. Still, many studies of physiological performance produce positive correlations between

traits that are expected to trade-off with one another. Here we investigate why predicted trade-offs may often go unmeasured in studies of

human athletes. Methods: Triathletes compete in consecutive swimming, cycling, and running events as a single competition, events

whose physical demands may be especially prone to generating performance trade-offs. Performance variation in these three events

interacts to explain overall variation in athletic performance. Results: We show that individual variation in athletic performance can mask

trade-offs among disciplines, giving the impression that high-performance triathletes are athletic generalists. Covariance in race per-

formance across the three disciplines was positive in the most elite athletes but became increasingly negative as race times increased.

Conclusions: These performance trade-offs among the disciplines preclude the realization of a generalist athlete except in the most elite

triathletes, a result similar to the ‘‘big houses, big cars’’ phenomenon in life history evolution. This distinction between trait combinations

that are favored for optimal performance versus constrained by trade-offs was only apparent when accounting for individual level

variation in athletic performance. Our results provide further evidence that meaningful trade-offs may be missed if individual variation in

quality is disregarded. Key Words: SPECIALIST, GENERALIST, PERFORMANCE, QUALITY, TRIATHLON

I
n 2005, American cyclist George Hincapie won stage 15
of the Tour de France. His victory came at the end of a
race over six mountain passes, finishing on the summit

of Pla d_Adet in the French Pyrennes. The win on Pla d_Adet
was especially surprising given that Hincapie was previ-
ously known as a powerful sprinter who excelled in flat
races over a single day, not a mountain specialist in a stage
race. Allegations (1) of Hincapie_s use of performance-
enhancing drugs notwithstanding, the apparent absence of a
performance trade-off runs counter to the idea (2) that allo-
cation to one athletic discipline (e.g., sprinting) should detract
from allocation to another discipline (e.g., climbing).

Despite evidence for the near ubiquity of trade-offs (3–5)
and the important role they play in shaping life history

evolution (6), trade-offs remain notoriously difficult to
demonstrate in some circumstances (7). Previous studies of
human athletes, for example, have provided mixed results in
the study of performance trade-offs. Although morphological
and physiological traits are subject to functional constraints
that intuitively suggest trade-offs, numerous studies of human
athletes have reported positive correlations among perfor-
mance variables (8,9). This counterintuitive result has been
explained as the result of interindividual variation in ‘‘quality’’
that may mask trade-offs within individuals. The importance
of individual variation in quality remains contentious in hu-
man studies (10,11). Quality differences may be intrinsic
(some athletes are morphologically better suited to some ath-
letic events than others) or extrinsic (some athletes train harder
or more efficiently than others), the latter source of variation
being of prime interest in performance studies (11).

Another challenge in studying trade-offs in human athletes
is the lack of a clear and quantitative measure of performance
to discriminate among athletic performances of different types.
For example, although decathletes compete in multiple events
with different morphological and physiological demands, events
are scored separately and on different scales before being
combined into an overall score (11). Scoring is a historically
variable process in the decathlon, and moreover, events scored
by distance (e.g., throwing) versus time (e.g., running) are
weighted differently (e.g., positive vs negative power func-
tions which alter the detection probability for trade-offs). This
lack of consistent performance metric across disciplines may
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affect the comparison of performance variation among athletes
with different specialties.

Human triathletes provide a unique opportunity to overcome
several of the aforementioned challenges. Triathletes compete
in consecutive swimming, cycling, and running races that are
performed one after another as a single athletic event. Tri-
athlons vary in total distance, and ‘‘Iron’’ distance triathlons
are among the longest triathlons. In an iron distance triathlon,
athletes swim 3.8 km, cycle 180 km, and run 42.2 km. Optimal
performance in each discipline requires a unique set of mor-
phological attributes and skill sets and differences in training
regime. These alternative demands lead to a wide range of
athletic abilities and specialties in triathletes, which should lead
to the expression of performance trade-offs among disciplines.
Each event time is added to the next, and overall race-time
provides a graded evaluation of race performance. Race times
therefore provide an unbiased estimate of performance that is
scalable across the disciplines. Individual variation in ‘‘quality’’
may be particularly high in a data set of Ironman race times
because each race includes professionals and amateurs from
various age categories. Options for at least partially accounting
for variation due to differences in quality include 1) grouping
triathletes in increments of finishing race time (e.g., bins of
progressively faster athletes within a race) and 2) using mixed
models to analyze the among- and within-athlete correlations
for cases in which athletes have multiple event records.

Here we test (a) whether such performance trade-offs are
detectable in measures of Ironman triathlete performance,
and if so, (b) whether performance trade-offs lead to generalist
or specialist strategies in triathletes in general.

METHODS

Data description. We acquired data from the publicly
available Ironmani triathlon database at www.ironman.com.
We compiled race results from 86 total Ironmani triathlon
events at 32 different venues held around the world during
years 2013–2016 (see Table, Supplemental Digital Content 1,
Descriptive statistics for raw data, http://links.lww.com/MSS/
B397). We recorded demographic data for athletes, including
sex, country of origin, and age category (here age category re-
fers only to amateur athletes, and all professional triathletes are
pooled irrespective of age).We also collected data for altitude at
each race venue and elevation gain on the bicycle portion of
the race. We included time spent swimming, cycling, and
running and total race time, including the few minutes spent
transitioning between events. We removed observations with
a total race time greater than 17 h (most organized Iron dis-
tance events allow 17 h for an official race finish). We also
removed any athlete_s records with missing data for sex, athlete
identity, time spent swimming, cycling, running, or total racing.
We also removed obvious outliers for swimming, cycling, and
running time. We removed observations from age categories that
included G500 observations (F60–64, F65–69, F70–74,M60–64,
M65–69, M70–74, M75–79, M80–84, and M80+). Finally, we
removed observations from less popular races in which fewer

than 200 athletes competed (this occurred only in females, in
20 out of 86 races). This yielded a total of 149,291 observa-
tions on 110,134 athletes (27,269 and 122,022 observations
on 20,166 women and 89,990 men, respectively; see Figure,
Supplemental Digital Content 2, The frequency distribution of
repeated measures, http://links.lww.com/MSS/B398).

We accounted for individual variation in ‘‘quality’’ in
several ways: first, we created performance category ‘‘bins’’
for athletes separated by quantiles (i.e., 10 decile bins of
equal numbers of athletes) for males and females in each
race. Bins were used to create separate pools for analyses of
variance–covariance matrices and for multivariate mixed
models (see below). We also separated athletes in bins of
finishing time (in 1-h increments). There were too few ob-
servations G10 h for females, so we pooled these observa-
tions into the 10- to 11-h time bin. We created different
subsets of the data by progressively adding variation in final
race time by these 1-h increments (e.g., finish times G9 h,
G10 h, G11 h, etc.). Presumably, variation in quality will be
lowest in the G9-h bin and will progressively increase as we
introduce longer time into the data (e.g., the entire data set is
included in the G17 h). Therefore, we expected that this
would generate positive correlations where trade-offs are
otherwise expected (akin to the ‘‘big houses big cars’’ sce-
nario made by van Noordwijk and de Jong (12,13) in which
although most individuals who purchase an expensive house
are precluded from purchasing an expensive car, some in-
dividuals acquire a resource surplus sufficient to allocate
across multiple aspects of their life history, thereby masking
the allocation trade-off ).

Multivariate mixed models. We estimated the among-
individual correlation (rind) and the residual correlation (re)
between swimming, cycling, and running performance by
fitting multivariate mixed models using ASReml-R (14). We
fit a separate model for each subset of the data according to
final time category bins (see above). All traits were stan-
dardized (mean = 0, variance = 1) within each subset of the
data. Division, altitude, and elevation gain were fitted as
fixed effects in each model. Each multivariate model in-
cluded two fully unstructured correlation matrices: one for
the random effect of individual identity to model all among-
individual variances and correlations (rind) and one for the
residuals to model all within-individual variances and cor-
relations (re). We used nadiv (15) to calculate the approxi-
mate 95% confidence intervals (CI) of all rind and re using
profile likelihoods. Estimates whose 95% CI did not overlap
with 0 were considered to significantly differ from zero.

The rind indicates consistent association between indi-
vidual mean values for different traits over the time span
within which the measures were taken. The rind is influenced
by two main sources of among-individual covariance be-
tween traits: genetic and permanent environmental effects,
both of which are likely to occur in the data. Indeed, the data
set includes athletes from various countries showing large
differences in environmental, cultural, and socioeconomic fac-
tors that may generate consistent among-individual differences in
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performance. If one or more environmental factors consistently
affect performance in more than one discipline, this would
cause correlations at the among-individual level. Genetic
correlations can also contribute to consistent covariation among
traits through pleiotropy and linkage disequilibrium (16). If one
or more genes affect performance in swimming, cycling, and
running, this would cause correlations at the among-individual
level (17,18).

The re indicates whether an athlete_s change in perfor-
mance in one discipline between time period t and t + 1 is
correlated with its change in another discipline over the
same period. One source of covariance at the residual level

comes from correlated measurement error (19). However,
given the precision of timing measurements in Ironmani
competitions, we consider correlated measurement error to
be a negligible source of covariance. An re can also arise
from combined, reversible changes between traits occurring
within an athlete due to correlated phenotypic plasticity (20–22).
This would occur if, for example, athletes change their
swimming, running, and cycling performance as a function of
an unidentified covariate (e.g., training regime, temperature,
and nutritional status during the race). Moreover, an athlete
that performs better than his or her own average early in the
race may compromise their performance later in the race. For

FIGURE 1—Slower athletes experience trade-offs. Correlations T SE between swimming and cycling performance (A–B), swimming and running
performance (C–D), and running and cycling performance (E–F) in 112,442 athletes that participated in 86 Ironmani competitions throughout the
world during 2013 to 2016. Correlations were estimated at the among-individual level (left panels) and the within-individual level (right panels),
separately for males (blue triangles) and females (red dots) according to finish time bin (in 1-h increments).
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example, larger workloads on the bicycle may compromise
subsequent running performance (23), which would generate
a negative re.

Performance gradient analysis. We applied a classic
Lande and Arnold (24) style of statistical analyses to generate
‘‘performance gradients’’ (25,26) to measure the influence of
swimming, cycling, running, and their interactions on overall
race performance. All analyses were conducted separately
for each sex and for each decile bin of each race. We used
final race rank as a measure of ‘‘overall performance,’’
standardizing each athlete_s rank relative to the mean of their

finish time bin. Swimming, cycling, and running times were
standardized to mean = 0 and SD = 1. We then performed
multiple regressions using these standardized variables to ex-
tract linear performance gradients on each underlying perfor-
mance metric. We ran separate multiple regression models
using the data included in each bin, generating 86 and 56 es-
timates for each time bins in men and women, respectively.
Because for this study we were explicitly interested in the
nature of how performance trade-offs shape the nature of
multitrait optimization, we also report the covariance matrices
for each performance decile to illustrate covariation among

FIGURE 2—Variation in quality can generate positive correlations where trade-offs are expected. Correlations T SE between swimming and cycling
performance (A–B), swimming and running performance (C–D), and running and cycling performance (E–F) in 112,442 athletes that participated in
86 Ironmani competitions throughout the world during 2013 to 2016. Correlations were estimated at the among-individual level (left panels) and the
within-individual level (right panels), separately for males (blue triangles) and females (red dots) according to finish time. This figure shows that
progressively adding variation in ‘‘quality’’ into the data set generates positive correlations among traits expected to show trade-offs.
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pairwise trait combinations. Negative trait covariances indicate
performance trade-offs across disciplines.

Finally, we fitted multivariate mixedmodels using ASReml-R
(14) to test whether the among- and within-individual corre-
lation matrices for swimming, cycling, and running times
were different in the 0–10 and 10–20 decile bins. We used a
log-likelihood ratio test to compare a full model allowing
correlation matrices to differ versus a reduced model in which
the among- or within-individual correlation matrices were
constrained to be equal in the 0–10 and 10–20 decile bins.
This test asks whether constraining trait correlations to remain
the same across the top two decile bins produces a better fit
than a model that relaxes this constraint.

As a complementary approach to the analysis of linear
performance gradients and trait covariances, we also estimated
correlational (multivariate) performance gradients (25). Cor-
relational performance gradients are measured statistically as
the pairwise interaction between traits in a full factorial model
that also includes linear and quadratic terms. Standard mul-
tivariate regression underestimates the correlational perfor-
mance gradients (and their standard errors) by a half, as is
the case for estimates of the strength of natural selection
(27). Thus, all coefficients and standard errors were doubled
for presentation. The total variance explained by correlational
performance models was small relative to the linear perfor-
mance gradients but for completeness we provide these results
as an appendix.

RESULTS

Among- and within-individual correlations. Multi-
variate mixed models revealed multiple trade-offs at the
among- and within-individual individual levels in the different
time bins (Fig. 1). Moreover, the patterns were similar in male
and female triathletes. Overall, there was no trade-off between
swimming versus cycling performance at both the among- and
within-individual levels (Fig. 1A and B). Except for women
in the 10- to 11-h time bin (Fig. 1A), all rind were either
nonsignificantly different from 0 or positive. The re values
were positive and significant in shorter time bins and became
progressively closer to 0 in longer time bins (Fig. 1B). By
contrast, there were clear trade-offs between swimming ver-
sus running (Fig. 1C and D) and running versus cycling
performance (Fig. 1E and F). For both pairs of traits, there
was no trade-off in the fastest time bin, but the rind became
progressively more negative and significant in longer time
bins in both men and women (Fig. 1C and E). Interestingly,
the same pattern occurred at the within-individual level, as the
re was close to 0 in the fastest time bins but became pro-
gressively more negative in longer time bins (Fig. 1D and F).
The negative rind indicates that athletes that are consistently
faster than average in cycling tend to consistently perform
slower than average in running. The negative re indicates that
an athlete performing faster than its average during cycling on
a given competition will tend to perform slower than its
average during running of that same competition.

Results were strikingly different when analyses were based
on subsets of the data that progressively added variation in
final finish time (i.e., G9 h, G10 h, G11 h, and so forth instead
of mutually exclusive bins like G9 h, 9–10 h, 10–11 h, and so
forth). Indeed, although the G9- and G10-h bins yielded similar
results, both the rind and the re became progressively positive
as more variation in final race time is included in the analyses
(Fig. 2). Finally, the analysis conducted separately within each
division yielded positive correlations in all cases (see Figure,
Supplemental Digital Content 3, Lack of apparent trade-offs
within divisions, http://links.lww.com/MSS/B399), suggesting that

FIGURE 3—Linear performance gradients T SE for swimming (A),
cycling (B), and running performance (C), separately for men and
women in each time bin.
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there is enough variation within division to mask potentially
important trade-offs.

Performance gradients and trait covariance. Although
performance gradients were positive for all events and for all
performance deciles, the magnitude of these gradients varied
with athletic ‘‘quality’’ (Fig. 3). Linear performance gradients
were weakest in the slowest athletic deciles and grew pro-
gressively stronger in faster deciles across all three disciplines
(Table 1). Similarly, covariance structure varied among per-
formance deciles (Table 2). The fastest athletes tended to have
weakly positive covariance between performance measures,
but these covariances became strongly negative as athletic
‘‘quality’’ declined. Results were similar for males and fe-
males and across the three pairwise combinations of athletic
discipline. Correlational performance gradients were largely
consistent with the patterns of trait covariance (see Figure,
Supplemental Digital Content 4, Correlational performance
gradients, http://links.lww.com/MSS/B400). In particular, both
males and females in the 9- to 10-h finish time bins had the
largest positive correlational performance gradients for
swimming–cycling and for swimming–running. Nearly all of the
correlational performance gradients were significant for male
athletes that finished in the 9- and 10-h time bins and the
number of significant gradients declines in subsequent bins
(see Table, Supplemental Digital Content 1, Descriptive statistics
for raw data, http://links.lww.com/MSS/B397). Patterns were

qualitatively similar in females, although fewer total correla-
tional performance gradients were statistically significant.

DISCUSSION

We have shown that athletic performances across the three
disciplines of triathlon tend to be positively correlated in elite
athletes and that these positive correlations break down with
increasing race times. Performance correlations closely mirrored
the patterns revealed in trait covariances: high-performance
values improve finishing race rank across all three disciplines
but only among the fastest athletes in the data set. Together
these results suggest that generalist athletes are favored in
Ironman triathlon but that allocation-based trade-offs preclude
the generalist strategy in all but the fastest athletes.

There are several possible ways, both intrinsic and extrinsic,
in which individual variation in ‘‘quality’’ couldmask trade-offs
experienced by triathletes (11). Functional trade-offs related
to ‘‘intrinsic’’ differences in morphology may generate trade-
offs if, for example, the broad shoulders and increased body
mass favored in elite swimmers compromises aerodynamic effi-
ciency on the bicycle. We find poor support for this hypothesis,
however, because the correlations between swimming and
cycling performance remain positive over a larger range of
finishing times (Fig. 1B) compared with other pairwise per-
formance correlations. Allocation based trade-offs are an

TABLE 1. Average linear performance gradients (A) for swimming, cycling, and running performance, separately for men and women in each time bin.

Decile

Men Women

A

95% CI

A

95% CI

Lower Upper Lower Upper

(A) Swimming
0–10 0.272 0.263 0.281 0.291 0.280 0.302
10–20 0.214 0.207 0.221 0.214 0.204 0.224
20–30 0.174 0.169 0.179 0.170 0.161 0.179
30–40 0.143 0.139 0.147 0.145 0.139 0.151
40–50 0.116 0.113 0.120 0.118 0.112 0.123
50–60 0.098 0.095 0.101 0.096 0.092 0.101
60–70 0.082 0.079 0.085 0.082 0.079 0.086
70–80 0.065 0.063 0.067 0.067 0.065 0.070
80–90 0.049 0.047 0.051 0.053 0.050 0.055
90–100 0.030 0.029 0.032 0.036 0.033 0.038

(B) Cycling
0–10 0.334 0.325 0.343 0.326 0.312 0.339
10–20 0.252 0.246 0.259 0.238 0.225 0.252
20–30 0.202 0.195 0.209 0.188 0.179 0.198
30–40 0.165 0.160 0.170 0.162 0.155 0.169
40–50 0.134 0.131 0.138 0.137 0.130 0.143
50–60 0.114 0.111 0.118 0.113 0.107 0.118
60–70 0.095 0.092 0.098 0.092 0.088 0.096
70–80 0.075 0.073 0.077 0.077 0.074 0.080
80–90 0.057 0.055 0.059 0.059 0.056 0.062
90–100 0.033 0.032 0.035 0.040 0.037 0.042

(C) Running
0–10 0.137 0.130 0.144 0.139 0.129 0.148
10–20 0.130 0.125 0.134 0.127 0.121 0.134
20–30 0.102 0.098 0.106 0.099 0.094 0.104
30–40 0.079 0.076 0.082 0.079 0.075 0.082
40–50 0.063 0.061 0.065 0.066 0.063 0.070
50–60 0.051 0.049 0.052 0.053 0.051 0.056
60–70 0.041 0.039 0.043 0.042 0.040 0.044
70–80 0.031 0.030 0.033 0.034 0.032 0.036
80–90 0.023 0.022 0.024 0.027 0.026 0.029
90–100 0.015 0.014 0.016 0.019 0.018 0.021

The average gradient and 95% CI were calculated based on gradients estimated within each decile time bin for each race.
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alternative and more likely ‘‘extrinsic’’ explanation. We sug-
gest that training status of the fastest athletes allows them to
perform at a high level in one discipline (e.g., cycling) and
retain sufficient energetic resources to also perform well in
subsequent disciplines (e.g., running). By contrast, less-trained
athletes may readily over tax themselves in one discipline to
the detriment of subsequent disciplines. This may explain why
we see stronger trade-offs associated up with the running
discipline, which occurs last and at the point of greatest fa-
tigue. By contrast, cycling is involved in weaker trade-offs,
perhaps because the bicycle itself provides both aerodynamic
and mechanical advantages that can compensate for some of
variation in quality, especially among the slowest athletes
(also see below for a discussion on the negative within-
individual correlations). This is consistent with the view that
variation in resource acquisition can lead to changes in life
history trade-offs (the so-called big houses, big cars argument
(12,13) in which some individuals acquire a resource surplus
that is sufficient to mask allocation trade-offs).

The observation that individual variation in quality affects
the ability to detect performance trade-offs is not new. Pre-
vious studies of Olympic decathletes have suggested that
controlling for ‘‘quality’’ reveals the expected negative corre-
lations among throwing, jumping, and running performance
(8,9). Although the idea is simple and intuitive, how to properly
control for ‘‘quality’’ is a subject of debate (11). Most recently,
Careau andWilson (10) showed that trade-offs can be detected
in decathletes and heptathletes—without the need to control for
quality—by considering all repeated measures in a multivariate
mixed model analysis. Their analyses, however, were restricted

to a subset of athletes that were themselves drawn from a
highly select subpopulation (elite generalist athletes). By con-
trast, the Ironman data set analyzed here includes athletes with
much wider range of age, athletic capacities, motivation, and
total time spent training. This interesting property of the data
set allowed us to progressively add slower and slower athletes
(in 1-h finish time bins) to estimate the effect of variation in
quality on performance correlations. As expected, doing so
generated positive among-individual correlations (Fig. 2).
This analysis illustrates that individual variation in athletic
performance can mask trade-offs and failure to consider the
effect this has on data structure might lead to the erroneous
conclusion that all triathletes are generalists. However, one must
be aware that culling data according to overall performance score
(here final time) introduces other problems, largely surrounding
statistical distributions of data (11,28), and more work is needed
to better understand how to analyze performance data.

The importance of individual variation in quality also helps
explain the result that the covariance structure of the data only
reveals high-performance across all three disciplines in the
fastest athletes. Slower athletes may not be favored to perform
at maximal levels in all three events if allocation trade-offs
impose too great a cost in overall performance. For example,
excessive exertion while cycling is known to have a dramatic
and negative effect on energy reserves left for the run (23).
Interestingly, athletes with finish time above 12 h show neg-
ative within-individual correlation between cycling and run-
ning performance (Fig. 1F), supporting the presence of strong
allocation trade-off. By contrast, fast athletes finishing in less
than 12 h do not show such a negative within-individual

TABLE 2. Variance–covariance matrices at the among- and within-individual levels for performance traits in males and females for decile bins of race performance.

Among-Individual Variance–Covariance Matrix Within-Individual Variance–Covariance Matrix

Men Women Men Women

Bin Swimming Cycling Running Swimming Cycling Running Swimming Cycling Running Swimming Cycling Running

0–10 Swimming 0.746 0.071 j0.055 0.832 j0.013 j0.091 0.118 0.041 0.027 0.108 0.049 0.040
0–10 Cycling 0.071 0.513 0.019 j0.013 0.514 j0.032 0.041 0.243 0.069 0.049 0.279 0.117
0–10 Running j0.055 0.019 0.456 j0.091 j0.032 0.409 0.027 0.069 0.394 0.040 0.117 0.422
10–20 Swimming 0.884 j0.003 j0.375 0.909 j0.064 j0.347 0.117 0.006 j0.033 0.075 0.029 j0.003
10–20 Cycling j0.003 0.725 j0.482 j0.064 0.755 j0.488 0.006 0.281 j0.093 0.029 0.250 j0.057
10–20 Running j0.375 j0.482 0.668 j0.347 j0.488 0.730 j0.033 j0.093 0.331 j0.003 j0.057 0.286
20–30 Swimming 0.878 0.000 j0.418 0.934 j0.025 j0.392 0.122 0.014 j0.046 0.065 0.009 j0.020
20–30 Cycling 0.000 0.816 j0.614 j0.025 0.827 j0.626 0.014 0.191 j0.110 0.009 0.186 j0.098
20–30 Running j0.418 j0.614 0.784 j0.392 j0.626 0.834 j0.046 j0.110 0.224 j0.020 j0.098 0.205
30–40 Swimming 0.854 0.051 j0.429 0.963 0.033 j0.436 0.145 j0.011 j0.039 0.066 0.003 j0.029
30–40 Cycling 0.051 0.789 j0.653 0.033 0.888 j0.727 j0.011 0.218 j0.136 0.003 0.128 j0.065
30–40 Running j0.429 j0.653 0.819 j0.436 j0.727 0.902 j0.039 j0.136 0.193 j0.029 j0.065 0.136
40–50 Swimming 0.887 0.046 j0.428 0.982 j0.006 j0.435 0.113 0.008 j0.050 0.046 0.009 j0.023
40–50 Cycling 0.046 0.806 j0.663 j0.006 0.907 j0.719 0.008 0.201 j0.140 0.009 0.114 j0.086
40–50 Running j0.428 j0.663 0.819 j0.435 j0.719 0.898 j0.050 j0.140 0.194 j0.023 j0.086 0.141
50–60 Swimming 0.906 0.099 j0.465 0.934 0.063 j0.473 0.098 0.002 j0.035 0.068 0.003 j0.023
50–60 Cycling 0.099 0.818 j0.688 0.063 0.911 j0.744 0.002 0.182 j0.131 0.003 0.120 j0.077
50–60 Running j0.465 j0.688 0.840 j0.473 j0.744 0.918 j0.035 j0.131 0.170 j0.023 j0.077 0.118
60–70 Swimming 0.861 0.078 j0.427 0.920 0.037 j0.423 0.140 0.020 j0.062 0.087 j0.002 j0.034
60–70 Cycling 0.078 0.783 j0.666 0.037 0.904 j0.758 0.020 0.214 j0.150 j0.002 0.123 j0.064
60–70 Running j0.427 j0.666 0.813 j0.423 j0.758 0.927 j0.062 j0.150 0.196 j0.034 j0.064 0.103
70–80 Swimming 0.886 0.092 j0.427 0.935 0.068 j0.442 0.121 0.017 j0.049 0.062 j0.014 j0.015
70–80 Cycling 0.092 0.782 j0.652 0.068 0.958 j0.795 0.017 0.216 j0.152 j0.014 0.070 j0.027
70–80 Running j0.427 j0.652 0.802 j0.442 j0.795 0.971 j0.049 j0.152 0.204 j0.015 j0.027 0.073
80–90 Swimming 0.868 0.125 j0.429 0.927 0.087 j0.440 0.133 0.004 j0.044 0.081 j0.015 j0.014
80–90 Cycling 0.125 0.776 j0.631 0.087 0.751 j0.611 0.004 0.225 j0.120 j0.015 0.264 j0.163
80–90 Running j0.429 j0.631 0.815 j0.440 j0.611 0.832 j0.044 j0.120 0.193 j0.014 j0.163 0.199
90–100 Swimming 0.822 0.075 j0.321 0.937 j0.032 j0.368 0.188 0.042 j0.031 0.093 0.009 j0.012
90–100 Cycling 0.075 0.640 j0.397 j0.032 0.755 j0.492 0.042 0.364 j0.096 0.009 0.267 j0.108
90–100 Running j0.321 j0.397 0.719 j0.368 j0.492 0.802 j0.031 j0.096 0.285 j0.012 j0.108 0.225
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correlation (Fig. 1F). Indeed, elite triathletes experience relatively
small reduction in running efficiency after cycling (29) likely
owing to superior physiological condition that leave addi-
tional resources for the run. If this difference does indeed
arise due to difference in physiological status, then plasticity
in performance that arises through enhanced physical condi-
tion may underlie the generalist triathlete phenotype.

Differences in performance across multiple enviornments (or
over time) involves multiple traits subject to optimization (30).
Changing competitive context (e.g., water vs land) may further
obfuscate trade-offs (31–33). We suggest that a fuller under-
standing of the importance of specialization should include a
mixed perspective based on the individual variation in quality,

the strength and form of performance gradients, and the genetic
constraints (34) that ultimately shape trait correlations.
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