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ABSTRACT

The website fingerprinting attack allows a low-resource attacker to
compromise the privacy guarantees provided by privacy enhancing
tools such as Tor. In response, researchers have proposed defenses
aimed at confusing the classification tools used by attackers. As
new, more powerful attacks are frequently developed, raw attack
accuracy has proven inadequate as the sole metric used to eval-
uate these defenses. In response, two security metrics have been
proposed that allow for evaluating defenses based on hand-crafted
features often used in attacks. Recent state-of-the-art attacks, how-
ever, use deep learning models capable of automatically learning
abstract feature representations, and thus the proposed metrics fall
short once again. In this study we examine two security metrics
and (1) show how these methods can be extended to evaluate deep
learning-based website fingerprinting attacks, and (2) compare the
security metrics and identify their shortcomings.
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1 INTRODUCTION

With over 8 million users [11], the Tor anonymity system [6] is
frequently chosen by privacy-conscious users to improve their pri-
vacy while minimizing usability sacrifices. Tor allows these users
to conceal their location and browsing behaviors from both on-
line tracking by web servers and local eavesdroppers. Tor is not
impervious to traffic analysis attacks, however. One such attack
is Website Fingerprinting (WF) [1, 8, 12-17], which allows a pas-
sive local eavesdropper to deduce information about Tor-protected
traffic using traffic metadata. In a WF attack, the adversary’s goal
is to determine what website a Tor user has visited in a brows-
ing session. An eavesdropper positions themselves somewhere on
the link between the client and guard to perform the attack (see
Figure 1).The attacker can train a machine learning classifier to
distinguish between the traffic patterns of different sites of interest,
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Figure 1: WF threat model.
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and the most potent WF attacks use Deep Learning (DL) to achieve
98%+ accuracy [2, 15].

Several defenses have been proposed [3, 4, 7, 9, 18] in recent
years to mitigate the threat of WF. These defenses change the traf-
fic patterns produced when accessing sites by adding fake packets
(padding) or delaying real packets. It can be difficult to accurately
assess the true effectiveness of defenses that do not come with secu-
rity guarantees. Evaluations are limited to testing against whatever
attacks happen to be state-of-the-art at the time the defense is devel-
oped. In response, two security metrics were recently introduced—
Bayes error estimate [5] and WeDFE [10]—that claim to provide a
more objective measure of a defense than just attack accuracy.

In this study, we examine these metrics in more detail. Most
importantly, we show how these two techniques can be extended
to analyze DL-based WF attacks. Additionally, our results reveal
some limitations of these metrics, indicating that further work is
needed to determine the true effectiveness of WF defenses.

2 SECURITY METRICS FOR WF

Until recently, researchers evaluated the efficacy of their defense
proposals by testing their simulated traffic against the state-of-the-
art attacks. Consequently, defenses need to be re-evaluated when-
ever new attack techniques or features became available. This also
limits defense evaluation to an all-or-nothing approach, where near
hits and misses are discounted. Two recent works have proposed
techniques to address this issue:

Bayes Error Estimation. Proposed by Cherubin [5], this metric
is based on an estimation of an attacker’s Bayes error rate. The
Bayes error rate represents the lowest possible prediction error
of a classifier for the target data. Simply put, if two traffic traces
from two different websites have all the same features as used
by any classifier to distinguish between sites, then even a perfect
classifier can only guess between them. This technique expresses
security in terms of R*—the Bayes error lower-bound estimate—
and (e,p)-privacy—how close a defense is to ideal (¢) for a given
feature representation (¢).

Information Leakage. Li et al. [10] proposed a technique called
WEeFDE to estimate the amount of information leaked (in Shannon
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Table 1: Metric results for ML and DL feature experiments.

Info. Leakage Bayes Error Top-1 Accuracy | Top-2 Accuracy
Bits % of Max | 1-R* (e,¢)-privacy | RF DF RF DF
Undefended 6.49 98.9% 90.9% 0.09 96.3% - 97.9% -
ML WTF-PAD 6.54 99.6% 47.8% 0.52 62.5% - 75.3% -
Walkie-Talkie | 6.37 97.1% 45.9% 0.54 9.03% - 89.5% -
Tamaraw 3.20 48.8% 28.5% 0.73 12.5% - 21.4% -
Undefended 6.54 99.6% 97.9% 0.02 96.2% 97.1% 97.6% 98.2%
DL WTF-PAD 6.48 97.8% 83.4% 0.17 81.2% 85.9% 88.5% 91.9%
Walkie-Talkie | 6.42 98.9% 72.7% 0.27 31.6% 43.8% 78.7% 98.1%
Tamaraw 3.57 54.4% 20.3% 0.80 6.5% 7.6% 12.0% 13.2%
bits) by a defense. The WeFDE technique estimates information )
CNN model architecture
leakage by finding the mutual information between the distribution
of sites and the information contained in the fingerprints of those Raw Input
sites. An advantage of WeFDE is that features can be analyzed
individually. Convolutional layers WeFDE
analysis

2.1 Extending to DL

These security metrics are designed to analyze handcrafted features
developed for early ML-based WF attacks. The domain, however,
has recently moved to more powerful DL-based attacks that directly
utilize raw traffic information. To evaluate DL attacks using these
security metrics, we need to make some adjustments.

In this study we specifically examine the Deep Fingerprinting
(DF) attack. The DF attack utilizes a convolutional neural network
model (CNN) that can automatically learn robust feature repre-
sentations from raw data. This ability is often accredited to the
convolutional layers used in the early layers of the model. The
outputs of convolutional layers can be thought of as the DL model’s
internal feature representation.

To apply the existing WF metrics to this CNN model, the learned
feature representations must first be extracted. We do this by train-
ing the CNN model on a training dataset so that the convolutional
filters have been learned. We then remove the classification and
fully-connected layers from the model such that the the trained
model returns the outputs of the last convolutional layer (see Fig-
ure 2).

3 EVALUATION

For the following experiments, we use the large datasets collected
by Sirinam et al. [15]. In particular, we use their dataset containing
95 sites with 1,000 instances each for both undefended Tor and for
Tor with simulated WTF-PAD [9] and Tamaraw [4] defenses. For
our Walkie-Talkie (W-T) [18] evaluations, we use Sirinam’s W-T
dataset, which includes 900 instances each.

We run two sets of experiments between which we vary the
feature representation for our data (ML or DL features). In our
first set of experiments, we process data into hand-crafted features
(representing ¢) using a feature set derived from the features of
CUMUL [12] and k-FP [8]. In our second set of experiments, we
instead use the DL representation of the data provided by the DF
attack model [15].
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Figure 2: Process for performing metrics analysis on CNN-
based DL models.

We use these experiments to compare the results of accuracy-
based evaluations with that of the WeFDE and Bayes error tech-
niques. For the accuracy evaluations, we examine feature perfor-
mance for both the DF model and a Random Forest (RF) classifier.

3.1 Results

The results from our experiments are summarized in Table 1. The
DL features achieve approximately a 20% improvement over ML
features when used with the same RF classifier for the WTF-PAD
traffic and a 23% improvement for Walkie-Talkie. As expected, the
DF attack outperforms the RF classifier in nearly all settings, except
for Tamaraw. This is likely due to the 5000-packet cutoff for trace
length that we used for all DL experiments, removing the useful
total trace length feature, since Tamaraw’s high rate of dummy
packets leads to very long traces.

WeFDE. When we compare the individual feature leakages to
the total feature leakage, as illustrated in Figure 3, we find a sur-
prising mismatch of results. While overall information leakage for
undefended, WTF-PAD, and W-T reach near the maximum possible
leakage, the individual leakage measurements show noticeably dif-
ferent leakage patterns. When examining the individual leakages,
we see that the undefended dataset leaks on average 1.75+0.50 bits
per feature value with a maximum leakage of 2.80 bits. On the other
hand, the average leakage for the W-T and WTF-PAD datasets are
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Figure 3: Individual leakage values for DF feature outputs.

0.80+0.29 and 1.01+0.45 bits, respectively, with lower maximum
leakages of 1.63 and 1.92 bits. This result, particularly in the case
of W-T, is much more in-line with our expectations given W-T’s
maximum attacker accuracy of 50%. This would seem to indicate
that WeFDE’s overall leakage estimates are too high and show little
of the differences between defenses.

Bayes Error. The Bayes error results better correlate with the top-
1 and top-2 accuracies. We notice, however, that the error bounds
estimates often under-represent the threat, such as in the case of
the ML feature representation for the WTF-PAD and Undefended
datasets, which are both significantly lower than the actual Top-1
accuracies. It is interesting to see that Bayes error also identifies
the DL-feature representation of W-T as a potentially weak defense,
with an € of 0.27 and a maximum attacker accuracy similar to that
of the RF classifier’s top-2 accuracy.

4 CONCLUSION

In this study, we examined two security metrics for evaluating WF
defenses and demonstrated a method for extracting feature repre-
sentations from DL-based WF attacks for use in further analysis.
We found that the features learned by DL models are often more
robust than their handcrafted alternatives and that these DL fea-
tures produce better metric estimates when used to estimate Bayes
error lower-bounds. However, we noticed that the WeFDE tech-
nique tends towards overestimation of information leakage, and
the Bayes error estimation technique occasionally under represents
attacker accuracy when ML features are used. These limitations
demonstrate a need for additional metrics to more comprehensively
evaluate WF defense strategies.
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