
POSTER: Video Fingerprinting in Tor

Mohammad Saidur Rahman
Center for Cybersecurity

Rochester Institute of Technology

saidur.rahman@mail.rit.edu

Nate Mathews
Center for Cybersecurity

Rochester Institute of Technology

nate.mathews@mail.rit.edu

Matthew Wright
Center for Cybersecurity

Rochester Institute of Technology

matthew.wright@rit.edu

ABSTRACT

Over 8 million users rely on the Tor network each day to protect

their anonymity online. Unfortunately, Tor has been shown to be

vulnerable to the website fingerprinting attack, which allows an

attacker to deduce the website a user is visiting based on patterns in

their traffic. The state-of-the-art attacks leverage deep learning to

achieve high classification accuracy using raw packet information.

Work thus far, however, has examined only one type of media deliv-

ered over the Tor network: web pages, and mostly just home pages

of sites. In this work, we instead investigate the fingerprintability

of video content served over Tor. We collected a large new dataset

of network traces for 50 YouTube videos of similar length. Our

preliminary experiments utilizing a convolutional neural network

model proposed in prior works has yielded promising classification

results, achieving up to 55% accuracy. This shows the potential

to unmask the individual videos that users are viewing over Tor,

creating further privacy challenges to consider when defending

against website fingerprinting attacks.
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1 INTRODUCTION

Tor is a widely used anonymity system with over 8 million users

each day [8]. Tor protects users’ privacy by passing user traffic via

encrypted circuits flowing through three nodes: entry, middle, and
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Figure 1: Video fingerprinting attack model.

exit (see Figure 1). The design of Tor circuits hinders an attacker

from associating the client’s identity with the websites she visits,

as no single point along the circuit is able to know both the client’s

identity and traffic’s destination. Tor is, however, vulnerable to

a class of traffic analysis attack known as website fingerprinting

(WF) [4, 9ś11, 13, 16]. A WF attack enables a local passive eaves-

dropper to deduce the website that a Tor client visits. The attacker

collects encrypted network traffic flowing between the client and

the entry node, where the eavesdropping could occur at the vic-

tim’s ISP, her compromised home router, or over her home WiFi

connection. Then the attacker extracts different features from the

traffic such as traffic transmission time, bursts of traffic, and other

packet statistics. The attacker can train a a machine learning (ML)

or deep learning (DL) classifier on these features so it will reliably

recognize sites of interest. Recent research shows that DL-based

classifiers that operate on raw packet information achieve the best

results, with less than 2% error in a closed-world setting [4, 16].

Prior work in WF, however, examines only the loading of a web

page, and most datasets for Tor use only the home page of each

site of interest. Web pages are not the only type of content that

Internet users commonly consume. Video streaming in particular

has grown tremendously. Sandvine reports that video streaming is

responsible for 57% of global downstream traffic, with 15% and 11%

claimed by Netflix and YouTube, respectively [14]. Further, even

though Tor is slower than regular browsing, it is often fast enough

for video streaming, even in high definition. WF attacks on Tor, as

currently tested, would only reveal that a user is visiting a video

hosting site, such as YouTube. With video fingerprinting, however,

the attacker could learn more specifically what the user is watching

when they visit YouTube, making it potentially much more privacy

invasive. Videos are available on numerous controversial topics,

such as politics, race, religion, conspiracy theories, sexual orienta-

tion, and much more. As such, it is interesting to investigate how

resistant Tor is to the fingerprinting of video content. To evaluate

this, we collected a new Tor video traffic dataset and perform video

fingerprinting (VF) experiments in this study.

Several prior works [5, 7, 12, 15] have examined the fingerprint-

ability of video streams under typical browsing conditions (HTTPS).
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Table 2: Closed-World: Attack accuracywith different length

of features.

Length of Traffic Information

Features Direction [16] Tik-Tok [11]

5000 28.60 34.10

10000 47.80 47.90

20000 52.20 52.60

30000 53.70 54.10

40000 54.30 54.70

In all of our experiments, we see slightly better accuracy with the

Tik-Tok data representation. We achieve our highest accuracy when

using a 40,000-length input vector. This is not surprising, since 99%

of traces have packet sequence lengths below this threshold, so

there is no information loss formost traces.We notice, however, that

the accuracy gain over 20,000 and 30,000 length vectors is relatively

minimal, despite capturing the full length of only approximately

75% of traces at 20,000 packets. This may indicate that either the

later portions of a trace are less valuable for classification, or it may

be that classification of larger traces performs poorly, so reducing

the information available in their traces makes little difference in

the overall accuracy.

All things considered, the performance of the DF model on our

VF dataset is interesting, but likely inadequate for attacks in a

realistic setting. This is most likely due to the differences between

typical WF traffic and VF traffic. In a standard WF scenario, the

tested webpages are mostly static within a single dataset. This

favors fingerprintability, as the traffic patterns contained by a page

are more easily identifiable. On the other hand, video streaming

traffic is dynamic due to the use of Dynamic Adaptive Streaming

over HTTP (DASH) [6]. The DASH protocol works by dividing a

video into small time segments. These time segments are served

to the client with variable encoding bitrates based on the available

bandwidth on the connection at the time of sending. This results in

some trace samples for the same video that have manymore packets

than others. Because the DF attack does not perform any additional

data processing on the raw packet sequences, this variance causes

a major issue, as it results in sequences that appear significantly

different within the same class. This type of behavior does not

occur in the WF domain, as repeated visits to the same site reliably

result in similar length packet sequences. It is thus unlikely that

our current representation of the data will be adequate for the VF

attack domain.

4 CONCLUSION & FUTUREWORK

In this work, we investigated the fingerprintability of video traffic

protected by Tor. We collected a large dataset of traffic traces from

50 YouTube videos using the Tor Browser Bundle, YouTube API,

and Selenium. In our experiments, we considered two types of data

representation: packet direction only and Tik-Tok (direction and

time). We adopted the Deep Fingerprinting attack, which performs

very well against web pages, and tuned it for our dataset. Despite

not addressing the significant differences between video data and

web pages, we still manage to get nearly 55% accuracy. This shows

the potential for stronger attacks to more seriously unmask users’

video viewing habits despite the use of Tor.

In future investigations, we will develop different processing

techniques to normalize the appearance of video traffic captured

at different bitrates, as well as different deep learning models to

handle this data more effectively. If those attempts to improve

the attack prove successful, we will need to capture an additional

dataset to evaluate the performance of VF in the more realistic open-

world setting. We note that our dataset uses videos with a limited

range of viewing lengths. Because significantly longer and shorter

videos are easily removed from contention as candidate classes,

large portions of the open world could be culled in practice, which

is an interesting feature of the VF problem. Furthermore, it will

be interesting to determine the effectiveness of existing padding

defenses for WF in the VF domain. We note that video length is

a very distinguishing characteristic that is hard to hide without

paying large bandwidth overheads for padding, so we expect that

this will be a major problem for these defenses to contend with.
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