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ABSTRACT

Over 8 million users rely on the Tor network each day to protect
their anonymity online. Unfortunately, Tor has been shown to be
vulnerable to the website fingerprinting attack, which allows an
attacker to deduce the website a user is visiting based on patterns in
their traffic. The state-of-the-art attacks leverage deep learning to
achieve high classification accuracy using raw packet information.
Work thus far, however, has examined only one type of media deliv-
ered over the Tor network: web pages, and mostly just home pages
of sites. In this work, we instead investigate the fingerprintability
of video content served over Tor. We collected a large new dataset
of network traces for 50 YouTube videos of similar length. Our
preliminary experiments utilizing a convolutional neural network
model proposed in prior works has yielded promising classification
results, achieving up to 55% accuracy. This shows the potential
to unmask the individual videos that users are viewing over Tor,
creating further privacy challenges to consider when defending
against website fingerprinting attacks.
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1 INTRODUCTION

Tor is a widely used anonymity system with over 8 million users
each day [8]. Tor protects users’ privacy by passing user traffic via
encrypted circuits flowing through three nodes: entry, middle, and
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Figure 1: Video fingerprinting attack model.

exit (see Figure 1). The design of Tor circuits hinders an attacker
from associating the client’s identity with the websites she visits,
as no single point along the circuit is able to know both the client’s
identity and traffic’s destination. Tor is, however, vulnerable to
a class of traffic analysis attack known as website fingerprinting
(WF) [4, 9-11, 13, 16]. A WF attack enables a local passive eaves-
dropper to deduce the website that a Tor client visits. The attacker
collects encrypted network traffic flowing between the client and
the entry node, where the eavesdropping could occur at the vic-
tim’s ISP, her compromised home router, or over her home WiFi
connection. Then the attacker extracts different features from the
traffic such as traffic transmission time, bursts of traffic, and other
packet statistics. The attacker can train a a machine learning (ML)
or deep learning (DL) classifier on these features so it will reliably
recognize sites of interest. Recent research shows that DL-based
classifiers that operate on raw packet information achieve the best
results, with less than 2% error in a closed-world setting [4, 16].

Prior work in WF, however, examines only the loading of a web
page, and most datasets for Tor use only the home page of each
site of interest. Web pages are not the only type of content that
Internet users commonly consume. Video streaming in particular
has grown tremendously. Sandvine reports that video streaming is
responsible for 57% of global downstream traffic, with 15% and 11%
claimed by Netflix and YouTube, respectively [14]. Further, even
though Tor is slower than regular browsing, it is often fast enough
for video streaming, even in high definition. WF attacks on Tor, as
currently tested, would only reveal that a user is visiting a video
hosting site, such as YouTube. With video fingerprinting, however,
the attacker could learn more specifically what the user is watching
when they visit YouTube, making it potentially much more privacy
invasive. Videos are available on numerous controversial topics,
such as politics, race, religion, conspiracy theories, sexual orienta-
tion, and much more. As such, it is interesting to investigate how
resistant Tor is to the fingerprinting of video content. To evaluate
this, we collected a new Tor video traffic dataset and perform video
fingerprinting (VF) experiments in this study.

Several prior works [5, 7, 12, 15] have examined the fingerprint-
ability of video streams under typical browsing conditions (HTTPS).
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To the best of our knowledge, however, we are the first to study
video stream identification when protected by a privacy-enhancing
technology such as Tor.

In this preliminary work, we explore the performance of con-
ventional WF attacks when applied to the VF domain. For this, we
focus on the most recent WF attacks which leverage DL models to
classify using the raw packet sequence of traffic instances. For our
experiments, we examine data representations that contain only
packet direction information (as seen in [3, 13, 16]) and represen-
tations that include additional packet timing (as seen in [4, 11]).
We have performed several experiments in which length of the
feature vector (eg. packet sequence length) is varied. In our experi-
ments, we achieve up to 54% (direction only) and 55% (direction and
timing) when tested against a closed-world dataset containing 50
different videos. While these results are less than those reported for
website fingerprinting, we note that they are for models and data
representations that are not tailored to the VF problem. Further,
even at these accuracy levels, they represent a potential privacy
threat to Tor users that is not being considered in the discussion of
developing WF defenses.

2 EXPERIMENTAL SETTING
2.1 Data Collection
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Figure 2: CDF of the number of packets in each instance of
the dataset.

To perform our evaluation, we needed to collect a new dataset,
as prior Tor fingerprinting works have exclusively examined web
page traffic. For our new dataset, we collected traffic generated
by loading popular music videos from the video sharing behe-
moth youtube.com. We selected YouTube for our study due to
its online popularity, which makes it a likely target for attack-
ers. To perform our video-over-Tor traffic crawl, we modified the
tor-browser-crawler [1] to take YouTube video IDs in place of
website URLs. We use Selenium [2] and the YouTube Web API to
detect when a video has finished playing, ending the video capture
instance.

A distinctive challenge in regards to fingerprinting YouTube
videos is the presence of video advertisements. For any monetized
video, YouTube may play non-skippable advertisements of up to 20
seconds in length or skippable advertisements of up to 3 minutes
in length. These advertisements may appear at the start, end, or
during playback of a video. To best emulate real user behavior,
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Table 1: Closed world dataset

Total
32000

#of Instances
640

#of Videos
50

we simulate a user clicking the skip advertisement button when it
becomes available for applicable advertisements.

We collected approximately 50,000 total instances for 50 popular
music videos using version 8.0.2 of the Tor Browser Bundle. We
sampled our video list using trending videos from YouTube’s Music
category during the month of June. We restricted our video list
to only videos that are approximately 3 minutes in length so that
the videos were not trivially distinguishable by their load times
alone. We allow YouTube to automatically select the best resolution
for the stream during playback as this default is likely to be the
behavior that most users choose.

Due to regional restrictions, many video loading attempts were
blocked. To address this issue, we filtered out captures containing
fewer than 3000 packets. We used manual inspection of blocked
video traces and the trace length CDF graph (see Figure 2) to select
this threshold. After filtering, we reduced the number of instances
per class to the smallest instance count for any class. As stated in
Table 1, we found this number to be 640 instances.

2.2 Data Representation

We used two data representations in our experiments. The first data
representation, which is adopted in most DL-based WF attacks [3, 4,
13, 16], represent traces as a sequence of packet directions as a 1-D
vector in which +1 and -1 denote the outgoing and incoming packets,
respectively. The size of each packet is ignored, as Tor transmits
data in fixed-length cells, making this information is uninteresting.
Our second data representation captures both direction and timing
information, following the work of Rahman et al. [11]. In particular,
they propose a new data representation called Tik-Tok, in which
each packet in the trace is represented by its direction (+1, -1)
multiplied by its timestamp.

2.3 Model Selection

For the preliminary investigation, we adopted the convolutional
neural network model used in the Deep Fingerprinting (DF) at-
tack [16] as our base, and we have tuned this model for VF. The
basic DF model contains four blocks, each of which contains two
convolutional layers with batch normalization, a max pooling layer,
and a drop-out layer. For our tuned model, we added one additional
block. We use the same dropout rate for the blocks as the original
model (0.1) to reduce overfitting. We set the dropout rate for each
of the two fully-connected layers to 0.7, and we adopt rectified
linear unit (ReLU) as the activation function for all convolutional
and FC layers. In total, our tuned model has 13 layers when the
classification layer is included.

3 EVALUATION

We ran five trials for both the direction and Tik-Tok data represen-
tations, in which we varied the length of the traces when fed into
the classifier. The results of these experiments are shown in Table 2.
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Table 2: Closed-World: Attack accuracy with different length
of features.

Length of Traffic Information
Features Direction [16] | Tik-Tok [11]
5000 28.60 34.10
10000 47.80 47.90
20000 52.20 52.60
30000 53.70 54.10
40000 54.30 54.70

In all of our experiments, we see slightly better accuracy with the
Tik-Tok data representation. We achieve our highest accuracy when
using a 40,000-length input vector. This is not surprising, since 99%
of traces have packet sequence lengths below this threshold, so
there is no information loss for most traces. We notice, however, that
the accuracy gain over 20,000 and 30,000 length vectors is relatively
minimal, despite capturing the full length of only approximately
75% of traces at 20,000 packets. This may indicate that either the
later portions of a trace are less valuable for classification, or it may
be that classification of larger traces performs poorly, so reducing
the information available in their traces makes little difference in
the overall accuracy.

All things considered, the performance of the DF model on our
VF dataset is interesting, but likely inadequate for attacks in a
realistic setting. This is most likely due to the differences between
typical WF traffic and VF traffic. In a standard WF scenario, the
tested webpages are mostly static within a single dataset. This
favors fingerprintability, as the traffic patterns contained by a page
are more easily identifiable. On the other hand, video streaming
traffic is dynamic due to the use of Dynamic Adaptive Streaming
over HTTP (DASH) [6]. The DASH protocol works by dividing a
video into small time segments. These time segments are served
to the client with variable encoding bitrates based on the available
bandwidth on the connection at the time of sending. This results in
some trace samples for the same video that have many more packets
than others. Because the DF attack does not perform any additional
data processing on the raw packet sequences, this variance causes
a major issue, as it results in sequences that appear significantly
different within the same class. This type of behavior does not
occur in the WF domain, as repeated visits to the same site reliably
result in similar length packet sequences. It is thus unlikely that
our current representation of the data will be adequate for the VF
attack domain.

4 CONCLUSION & FUTURE WORK

In this work, we investigated the fingerprintability of video traffic
protected by Tor. We collected a large dataset of traffic traces from
50 YouTube videos using the Tor Browser Bundle, YouTube API,
and Selenium. In our experiments, we considered two types of data
representation: packet direction only and Tik-Tok (direction and
time). We adopted the Deep Fingerprinting attack, which performs
very well against web pages, and tuned it for our dataset. Despite
not addressing the significant differences between video data and
web pages, we still manage to get nearly 55% accuracy. This shows
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the potential for stronger attacks to more seriously unmask users’
video viewing habits despite the use of Tor.

In future investigations, we will develop different processing
techniques to normalize the appearance of video traffic captured
at different bitrates, as well as different deep learning models to
handle this data more effectively. If those attempts to improve
the attack prove successful, we will need to capture an additional
dataset to evaluate the performance of VF in the more realistic open-
world setting. We note that our dataset uses videos with a limited
range of viewing lengths. Because significantly longer and shorter
videos are easily removed from contention as candidate classes,
large portions of the open world could be culled in practice, which
is an interesting feature of the VF problem. Furthermore, it will
be interesting to determine the effectiveness of existing padding
defenses for WF in the VF domain. We note that video length is
a very distinguishing characteristic that is hard to hide without
paying large bandwidth overheads for padding, so we expect that
this will be a major problem for these defenses to contend with.
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