
Targeted Poisoning Attacks on Social Recommender
Systems

Rui Hu∗, Yuanxiong Guo†, Miao Pan‡, Yanmin Gong∗
∗Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249
†Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, TX 78249

‡Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204
Email: rui.hu@my.utsa.edu, yuanxiong.guo@utsa.edu, mpan2@uh.edu, yanmin.gong@utsa.edu

Abstract—With the popularity of online social networks, social
recommendations that rely on ones social connections to make
personalized recommendations have become possible. This intro-
duces vulnerabilities for an adversarial party to compromise the
recommendations for users by utilizing their social connections.
In this paper, we propose the targeted poisoning attack on
the factorization-based social recommender system in which the
attacker aims to promote an item to a group of target users by
injecting fake ratings and social connections. We formulate the
optimal poisoning attack as a bi-level program and develop an
efficient algorithm to find the optimal attacking strategy. We then
evaluate the proposed attacking strategy on real-world dataset
and demonstrate that the social recommender system is sensitive
to the targeted poisoning attack. We find that users in the social
recommender system can be attacked even if they do not have
direct social connections with the attacker.

I. INTRODUCTION

The recommender system has become an imperative com-
ponent of modern information and e-commerce applications,
which is widely deployed by websites (e.g. Netflix, Spotify,
Amazon and Youtube) to recommend relevant items (e.g.,
movies, musics, products and video) to users. The recom-
mender system aims to locate the data that is most relevant to
a user by utilizing the user’s historical behavior to predict the
user’s possible future likes and interests. With the popularity
of social networks, recommender systems can take advantage
of rich social relationships to further improve the effectiveness
of recommendations [1]–[4]. The intuition is that in our real
life people tend to adopt behaviors exhibited by those they are
interacting with (i.e. the people they have relationships with).
For example, we always ask our friends for recommendations
of movies, music or restaurants. The recommender systems
integrated with social networks (known as social recommender
systems) seek to improve the performance of recommendations
for a user by learning from the preference of the user’s friends.
In a social recommender system, each user’ preference has
direct or indirect influences on the preferences of other users
in the social network.

However, recommender systems are susceptible to a risk
of being maliciously attacked as they become increasingly
popular in the industry. One common attack is poisoning attack
in which attackers inject fake data into a recommender system
such that the system makes recommendations as attackers’
desire. For example, the unscrupulous producers may try to

influence recommender systems in such a way that their items
are recommended to users more often. This can be done by
creating Sybil or fake accounts [5] and then manipulating
these fake accounts to give the promoted item high rating
scores. Meanwhile, these attackers will give well-crafted rating
scores to a set of other items to improve the promotion.
In a social recommender system, the attacker can take a
variety of actions to mislead the system. It is well-known
that online social networks are vulnerable to Sybil attacks,
in which the attackers generate a number of fake accounts
to perform malicious activities such as cyberbullying, dis-
trupting democratic election and influencing financial markets.
These attackers leverage the social influence among users to
propagate information they create to mislead the behavior of
victims. In social recommender systems, a user’s preference
is directly influenced by the preferences of his/her friends.
Therefore, from the perspective of the attacker in a social
recommender system, it can leverage the social influence of
the social network to strengthen its attack. For example, the
attacker can become friends with normal users by sending
friend requests through the fake accounts, and then these
normal users’ preferences will be directly influenced by the
fake ratings injected by the attacker.

Poisoning attacks have been studied for several specific
recommender systems [6]–[10]. For example, [6] and [7] stud-
ied the poisoning attacks on a nearest-neighbor-based recom-
mender system, [8] proposed poisoning attacks on association-
rule-based recommender systems, and the poisoning attacks
on graph-based recommender systems and factorization-based
recommender systems are studied in [9] and [10], respectively.
These attacks aim to maximally degrade the performance
of the whole systems (also known as availability attack)
or promote/demote a specific item to all users (also known
as integrity attack) via injecting fake ratings. However, the
poisoning attacks on social recommender systems have not
been studied yet. Since the attacker in a social recommender
system can generate the fake social relationships in addition to
ratings, existing poisoning attacks that only inject fake ratings
are not optimized in a social recommender, and more studies
are needed for understanding poisoning attacks against social
recommender systems.

In the paper, we study the poisoning attack on social
recommender systems. Instead of performing the availability

978-1-7281-0962-6/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on August 11,2020 at 20:42:31 UTC from IEEE Xplore. Restrictions apply.

and integrity attacks, we propose the targeted poisoning attack
which aims to promote an item to a group of target users. Our
design is mainly focused on the commonly-used factorization-
based social recommendation. Our main contributions are as
follows:

• We provide the first systematic study on targeted poison-
ing attacks to social recommender systems. Two types of
attack actions are considered for the attacker: injecting
fake ratings and generating fake relationships with normal
users.

• We formulate the optimal poisoning attack as a bi-level
program and then develop an efficient solution algorithm
to find the optimal attack strategy, in which fake ratings
and fake relationships are alternatively computed based
on projected gradient descent.

• We evaluate our targeted poisoning attacks on real-
world dataset and demonstrate that the factorization-based
social recommender system is sensitive to our targeted
poisoning attacks. The attacker can successfully influence
the recommendations for the target users by generating
fake relationships.

The rest of the paper is organized as follows: We first
describe the preliminaries of the factorization-based social
recommender system in Section II. Then, we describe our
targeted poisoning attack model in Section III and formulate
the poisoning attack as a bi-level optimization problem. Next,
we propose an efficient solution algorithm to obtain the
optimal attack strategy in Section IV. Finally, we evaluate our
attack on real-world dataset in Section V and make conclusion
in Section VI.

II. PRELIMINARIES

Let U = {u1, u2, · · · , um} be the set of m users and
E = {(ui, uf)|i, f ∈ [m]} be the set of edges that represent
the social relationships between pairs of users in a social
recommender system. We use E ∈ Rm×m to denote the weight
matrix of edges, where each row ei = {(eif)|f ∈ [m]}
represents the edge weight vector of user ui. Specifically,
an edge weight eif ∈ {0, 1} represents the weight of edge
(ui, uf), where eif = 1 indicates that ui and uf are friends
and eif = 0 indicates that ui and uf are not friends. Here,
we consider bi-directional relationships so that eif = efi. Let
V = {v1, v2, · · · , vn} be a set of n items and R be the user-
item rating score matrix. Each entry rij in R for i ∈ [m] and
j ∈ [n] denotes the rating score that the user ui gave to the
item vj and is, without loss of generality, assumed to be in the
set of integers {0, 1, . . . , rmax}, where rmax is the maximum
rating score and rij = 0 indicates that user ui did not rate item
vj . Since in real world applications each user only rates a very
small portion of the items, the matrix R usually contains many
zero entries and is extremely sparse.

Given a user-item rating matrix R, the goal of recommender
systems is to recommend each user N items that the user
did not rate before via analyzing R. As one of the most
popular methods in recommender systems, factorization-based

recommendation algorithms [11] aim to reduce the data di-
mension while preserving the major information content via
approximating the rating matrix R by a multiplication of
two low-rank matrices, i.e. R ≈ XTY, where X ∈ Rl×m
and Y ∈ Rl×n are the latent user and item matrices with
l � min(m,n), respectively. Here, the column vectors xi of
X and yj of Y represent the latent feature vectors of user ui
and item vj , respectively.

Considering that users’ preferences could be influenced by
their friends, the following factorization-based social recom-
mendation model has been proposed in [12]:

min
X,Y

m∑
i=1

n∑
j=1

Iij(rij − xTi yj)
2+

β
m∑
i=1

∑
f∈Fi

gif‖xi − xf‖2F + λ1‖X‖2F + λ2‖Y‖2F , (1)

where Iij is the indicator function that is equal to 1 if the
user ui rated the item vj and 0 otherwise, Fi is the set of
indexes of user ui’s friends, i.e., Fi = {f |eif = 1}, gif
indicates the similarity score between users ui and uf to
be specified later, ‖ · ‖2F denotes the Frobenius norm, and
β, λ1, λ2 > 0 are regularization parameters. Intuitively, if two
users have common behaviors, their preferences are similar.
The cosine similarity function is used to define the similarity
score between two users’ rating behaviors, i.e.,

gif =
rir

T
f

‖ri‖2‖rf‖2
, (2)

where the row vector ri := [rij |j ∈ [n]] denotes the rating
vector of user ui. From the above definition, the similarity
score gif is within the range [0, 1], and a larger gif means the
two users ui and uf are more similar.

For Problem (1), the optimal solution can be found by using
gradient descent in latent user and item matrices X and Y.
We use U = [ui|i ∈ [m]] to denote the optimal user feature
matrix and V = [vj |j ∈ [n]] to denote the optimal item feature
matrix. The recommender system uses U and V to make
predictions for zero entries in the original user-item matrix R
by computing R̂ = UTV and then recommends N unrated
items with the highest predicted rating scores for each user.

III. TARGETED POISONING ATTACK

A. Attack Model

Attacker’s goal: In the targeted poisoning attack, the at-
tacker aims to promote an item vt to a set of target users K
by injecting fake ratings and edges. Assume the recommender
system recommends a list of items Ak to the target user
uk ∈ K, consisting of N unrated items that have the largest
predicted rating scores. If the item vt ∈ Ak, the attacker has
successfully attacked the target user uk. Therefore, to attack
the target user uk, the attacker’s goal is to maximize the hit
probability Pr(vt ∈ Ak). Since it is hard to directly model

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on August 11,2020 at 20:42:31 UTC from IEEE Xplore. Restrictions apply.

the hit probability, similar to [9], we use the Wilcoxon-Mann-
Whitney loss [13] to approximate it, which is defined as

Lk(r̂k) =
∑

{j|vj∈Ak}

1

1 + exp(−(r̂kj − r̂kt))
, (3)

where r̂k := uTkV is the predicted rating score vector for
the target user uk. A smaller attack loss indicates a larger hit
probability. Accordingly, to attack all users in K, the overall
loss function of the attacker is L =

∑
{k|uk∈K} Lk(u

T
kV).

Attacker’s background knowledge: We consider the
white-box setting where the attacker has a high level of
knowledge about the recommender system. Specifically, we
assume that (i) the attacker knows the algorithm used by the
recommender system; and (ii) the user rating scores and social
relationships are public and can be crawled and collected by
the attacker.

Attacker’s actions: The attacker is assumed to control a set
of malicious accounts/nodes in the system. The attacker can
create fake ratings on selected items through these malicious
nodes. The attacker can also become friends with the target
users in order to affect their recommendation results. Given
the limited budget of creating friendships with normal users,
we assume that each malicious node can have friendships with
at most ne users. Furthermore, to avoid simple malicious node
detection methods based on the number of ratings, we assume
that each malicious node can rate at most nr items.

B. Attack as an Optimization Problem

Assume the attacker controls a set of ms malicious nodes
S = {us|s ∈ [ms]}. Let rs = {(rsj)|j ∈ V} be the rating
score vector of a malicious node us, where rsj represents the
rating score that the malicious node us gives to the item vj . Let
es = {(esi)|i ∈ U} be the edge weight vector of a malicious
node us, where esi represents the edge weight between the
malicious node us and the user ui. Then, the attacker’s goal
is to find the optimal rating score vector {rs|s ∈ [ms]} and
edge weight vector {es|s ∈ [ms]} for all malicious nodes to
minimize the total attack loss. The targeted poisoning attack
can be formulated as the following bi-level program [14]:

min
{rs∈Pr,es∈Pe,∀s∈[ms]}

L =
∑

{k|uk∈K}

Lk(uTkV), (4)

where uk and V are obtained by solving the following
optimization problem:

min
X,Y

m∑
i=1

n∑
j=1

Iij(rij − xTi yj)
2 +

ms∑
s=1

n∑
j=1

Isj(rsj − xTs yj)
2+

β
m∑
i=1

(∑
f∈Fu

i

gif‖xi − xf‖2F +
∑
s∈Fs

i

gis‖xi − xs‖2F
)
+

β

ms∑
s=1

(∑
f∈Fu

s

gsf‖xs − xf‖2F +
∑
s′∈Fs

s

gss′‖xs − xs′‖2F
)

+ λ1‖X‖2F + λ2‖Y‖2F . (5)

Here, Fui := {f |eif = 1, uf ∈ U} is the set of indexes
of normal users that have friendship with user ui, Fsi :=
{s|eis = 1, us ∈ S} is the set of indexes of malicious
users that have friendship with user ui, Pr = {rsj ∈
{0, 1, · · · , rmax}, ‖rs‖0 ≤ nr} is the feasible region of rating
score vector rs, and Pe = {esi = eis ∈ {0, 1}, ‖es‖0 ≤ ne}
is the feasible region of edge weight vector es.

IV. COMPUTING OPTIMAL ATTACK STRATEGIES

A. Solution Framework

Solving the bi-level optimization problem above is highly
challenging because of the discrete variables rs and es. For
bi-level optimization problems with continuous variables, ap-
proximate solutions can be found by gradient descent methods
based on the KKT conditions of the lower level problem
[10], [15], [16]. However, such methods cannot be directly
applied to our case. Inspired by [9], [17], we propose a
framework to approximately solve our problem. First of all,
instead of optimizing the fake data (i.e. the rating scores
and edge weights) of all malicious nodes simultaneously, we
optimize their fake data sequentially. In particular, given the
original rating scores and edge weights, as well as the fake
rating scores and edge weights added so far, we find the
rating scores and edge weights for the next malicious node to
minimize the attacker’s loss. Furthermore, for each malicious
node, we propose an alternative optimization approach to find
the optimal rating scores and edge weights. Specifically, we
alternatively generate fake rating scores rs with fixed fake
edge weights and then generate fake edge weights es with
fixed fake rating scores until convergence. The details of our
framework are given in Algorithm 1. In what follows, we
present how to generate fake rating scores and edge weights.

Algorithm 1 Our Targeted Poisoning Attacks
Input: Rating matrix R, social edge weights E, item to be

promoted vt, target users K, malicious nodes S , maximum
iteration number H , parameters ne, nr, rmax.

1: for s = 1 to ms do
2: rs ← 0, es ← 0;
3: //Alternatively update edge weights and rating scores.
4: for h = 1 to H do
5: rs ← FRGenerator(R,E, rs, es, nr);
6: es ← FEGenerator(R,E, rs, es, ne);
7: end for
8: //Inject the rating scores and edge weights of malicious

node us to the system.
9: R← R ∪ rs, E← E ∪ es;

10: end for
11: return {rs, es|s ∈ [ms]}

B. Fake Rating Generator

In this section, we describe the details of generating fake
rating scores. With fixed fake edge weights {es : s ∈ [ms]},

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on August 11,2020 at 20:42:31 UTC from IEEE Xplore. Restrictions apply.

the attacker’s objective becomes

min
{rs∈Pr:s∈[ms]}

L =
∑

{k|uk∈K}

Lk(uTkV). (6)

Since the fake rating scores are discrete variables, gradient
descent based algorithms cannot be used to find the optimal
solution. Therefore, we propose an approximation technique to
optimize the fake rating scores. Specifically, we relax the fake
rating scores as continuous variables, find the optimal solution
that minimizes the total attack loss in (6), and then transform
the solution to discrete rating scores. The core part of this
approximation technique is the projected gradient descent,
which updates rs in its feasible region based on the gradient.
Specifically, at iteration t, we update rs as follows,

rs
(t) = ProjPr

(
rs

(t−1) − ατ∇rsL
)
, (7)

where ProjPr
is the projection operator onto the feasible region

of Pr and ατ is the step size. To project rs into its feasible
region, we first update rs using the gradient descent and
choose nr items that have the largest rating scores as the
candidate items to be rated. Then we truncate the rating scores
of candidate items to the level of [0, rmax] and set the rating
scores of non-candidate items to zero. By discretizing these
rating scores, we finally obtain the rating scores. The details
are given in Algorithm 2.

In the following, we describe the computing process of
the gradient ∇rsL in (7). Indeed, assuming that L does not
depend directly on rs, but only through r̂k, we can compute
the gradient of L w.r.t the element of rs using the chain rule
as:

∇rsjL = (∇rsj r̂k)(∇r̂kLk)(∇Lk
L). (8)

The last two terms in the above equation are straightforward
to compute as

(∇r̂kj
Lk)(∇Lk

L) =

er̂kt−r̂kj

(1 + er̂kt−r̂kj)2
, if j ∈ {j|vj ∈ Ak, j 6= t}∑

{j′|vj′∈Ak}

−er̂kj−r̂kj′

(1 + er̂kj−r̂kj′)2
, if {j|vj /∈ Ak, j = t}

0, if j ∈ {j|vj ∈ Ak, j = t} ∪ {j|vj /∈ Ak, j 6= t}

.

(9)

The first gradient term is much harder to evaluate because
r̂k is computed from the optimal solution to Problem (5).
Inspired by [10], [15], we exploit the Karush-Kuhn-Tucker
(KKT) conditions of (5) to approximately compute ∇rsj r̂k.
The underlying trick is to replace Problem (5) with its KKT
conditions and require such conditions remain valid while
updating rs. Specifically, the optimal solution of Problem (5)
satisfies following KKT conditions:

λ1ui =
n∑
j=1

Iij(rij − uTi vj)vj + 2β
∑
f∈Fu

i

gif (uf − ui)

+ 2β
∑
s∈Fs

i

gis(us − ui), ∀i ∈ [m], (10)

and

λ2vj =
m∑
i=1

Iij(rij − uTi vj)ui+

ms∑
s=1

Isj(rsj − uTs vj)us, ∀j ∈ [n]. (11)

Subsequently, uk and vj can be expressed as functions of the
fake ratings rsj . Given that r̂k = uTkV, differentiating again
using the chain rule, one yields:

∇rsj r̂k = (∇rsjuk)TV + uTk (∇rsjV). (12)

Solving ∇rsjuk based on (10), we obtain

∇rsjuk =(n∑
j=1

Ikjvjv
T
j + 2β

(∑
f∈Fu

k

gkf +
∑
s∈Fs

k

gks
)
1l + λ11l

)−1
eks(∇rsjgks)(us − uk). (13)

Here, eks is the weight of edge (uk, us), 1l is a l-dimensional
identity matrix and ∇rsjgks is the gradient of similarity
function gks w.r.t rsj . According to (2), we have that

∇rsjgks =
rkj

‖rk‖2‖rs‖2
− rkr

T
s rsj

‖rk‖2‖rs‖32
. (14)

Then, based on (11) we obtain the solution of ∇rsjV, where
each column is

∇rsjvj = Isj(

m∑
i=1

Iijuiu
T
i + usu

T
s + λ21l)

−1us. (15)

Combining with (8)-(9) and (12)-(15), we can finally obtain
the gradient of the total attack loss w.r.t the rating score vector
∇rsL.

Algorithm 2 Fake Rating Generator (FRGenerator)
Input: Rating matrix R, social edge weights E, fake rating

scores rs, fake edge weights es, number of fake ratings
nr, step size ατ , maximum iteration number T .

1: r
(0)
s ← rs

2: for t = 1 to T do
3: Solve Problem (5) to get the optimal U and V;
4: Compute the gradient ∇rsL;
5: r

(t)
s ← r

(t−1)
s − ατ∇rsL;

6: end for
7: Select nr items with largest rating scores as candidate

items;
8: Update rs by truncating the rating scores of candidate

items to the level of [0, rmax] and setting the rating scores
of non-candidate items as zero;

9: Discretize rs;
10: return rs

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on August 11,2020 at 20:42:31 UTC from IEEE Xplore. Restrictions apply.

C. Fake Edge Generator

In this section, we show how to generate the edge weight
vector of a malicious node. With fixed fake rating scores, the
attacker’s objective is

min
{es∈Pe:s∈[ms]}

L =
∑

{k|uk∈K}

Lk(uTkV). (16)

To solve Problem (16), we approximately optimize the discrete
variables es based on the projected gradient descent. Specifi-
cally, we relax the fake edge weights as continuous variables,
find the optimal solution that minimizes the total attack loss
in Problem (16), and then discretize them to obtain the final
edge weights. In particular, at iteration t, we update the edge
weight vector es by the projected gradient descent:

es
(t) = ProjPe

(
es

(t−1) − ατ∇es
L
)
, (17)

where ProjPe
is the projection operator onto the feasible region

of Pe and ατ is the step size. To project the fake edge weights
into its feasible region, we first update es using the gradient
descent and choose ne edges with largest weights as the
candidate edges to be added. Then, we truncate the weight
of candidate edges to the range of [0, 1], set the weight of
non-candidate edges as zero, and then approximate the edge
weights to the nearest integers. The details of generating fake
edge weights are given in Algorithm 3. In what follows, we
describe the computation of the required gradient ∇es

L.
We still exploit the KKT conditions of Problem (5) to

compute the gradient. Specifically, assuming that L does not
depend directly on es but only through r̂k, we compute the
gradient of L w.r.t the element of es using the chain rule as:

∇esiL = (∇esi r̂k)(∇r̂kLk)(∇Lk
L). (18)

The solution of the last two gradient term is given in (9), so
we mainly show the computation of the first gradient term.
From (10) and (11), we can see that ui depends on esi but vj
does not depend on esi. Therefore, differentiating again with
the chain rule, one yields:

∇esi r̂k = (∇esiuk)TV. (19)

According to (10), we have

∇esiuk =(n∑
j=1

Ikjvjv
T
j + 2β

(∑
f∈Fu

k

gkf +
∑
s∈Fs

k

gks
)
1l + λ11l

)−1
gks(us − uk). (20)

Finally, using (18)-(20), we can obtain the gradient of the total
attack loss w.r.t the fake edge weights ∇esL.

V. EVALUATION

A. Experimental Setup

Dataset. We use the publicly available FilmTrust dataset
[18] to evaluate the performance of our attack. FilmTrust is
a movie sharing and rating website. The FilmTrust dataset
contains 35,494 ratings applied to 2,071 items by 1,642 users

Algorithm 3 Fake Edge Generator (FEGenerator)
Input: Rating matrix R, social edge weights E, fake rating

scores rs, fake edge weights es, number of fake edges ne,
step size ατ , maximum iteration number T .

1: e
(0)
s ← es

2: for t = 1 to T do
3: Solve Problem (5) to get the optimal U and V;
4: Compute the gradient ∇es

L;
5: e

(t)
s ← e

(t−1)
s − ατ∇es

L;
6: end for
7: Select ne edges with the largest weight as candidate edges;
8: Update es by truncating the weights of candidate edges to

the level of [0, 1] and setting the weights of non-candidate
edges as zero;

9: Discretize es;
10: return es

and 1,309 social links. To avoid the “cold-start” problem,
we consider users having at least 1 rating record. The orig-
inal rating score in FilmTrust dataset is within the range
{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}, which is scaled to the new range
{1, 2, . . . , 8} in simulations.

Evaluation Metrics. To evaluate the performance of our
attacks, we calculate the Attack Success Rate (ASR). Specifi-
cally, a target user is successfully attacked if the recommender
system recommends the promoted item to him/her, and ASR
is the ratio of the successful attacks. Larger ASR corresponds
to better attacking effect.

For the recommender system in our experiments, we ran-
domly split the rating data into training (60%), validation
(20%), and test (20%) sets. We use the 5-fold cross validation
to tune the hyperparameters β, λ1 and λ2, and then train a
social recommender system and compute predicted ratings for
all users. In addition, the maximum rating score rmax = 8. We
set the size of recommendation list N = 10 and the number
of malicious nodes |S| = 1 for all experiments.

B. Attack Performance

We first simulate our poisoning attack to promote an item to
only one target user, and then simulate our attack to promote
an item to a small group of target users.

Attack on a single target user. In this attack, attacker’s goal
is to promote the item vt to the target user uk. In order to show
the performance of this attack, we perform 300 independent
targeted poisoning attacks with different choices of target users
and promoted items. In this experiment, we randomly choose
three users from the normal users as the target users. For
each target user, we promote 100 popular items (i.e. items
that have the largest predicted rating scores for the target user)
independently to him/her. Then, we calculate the ASR of these
attacks. Here, we set the maximum number of fake edges ne
as 1. The result in Fig. 1 shows the ASR of our attack w.r.t.
the number of fake ratings. The ASR increases as the number
of fake ratings increases. As the original recommender system
will recommend 10 items that have the largest predicted rating

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on August 11,2020 at 20:42:31 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30 35 40
Number of Fake Ratings

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

At
ta
ck
 S
uc
ce
ss
 R
at
e
(A
SR

)
FilmTrust

Fig. 1. Poisoning attack on a single target user.

0 2 4 6 8 10 12 14
Number of Fake Edges

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

At
ta
ck
 S
uc
ce
ss
 R
at
e
(A
SR

)

FilmTrust

Fig. 2. Poisoning attack on a group of target users.

scores to each target user, the ASR is 0.1 when there has no
fake rating. Note that for each attack we choose the optimal
number of fake ratings using cross-validation since the optimal
number of fake ratings for different target users and promoted
items are different. Thus, the ASR in Fig. 1 stops increasing
when the number of fake ratings is large enough.

Attack on a group of target users. In this experiment, the
attacker aims to promote an item to a group of target users
connecting with each other. In the experiment, we select a
small group of users by extracting the ego-network of a user
from the original social network. Specifically, we extract the
ego-network of the user 508 (denoted by group 1) and the
user 187 (denoted by group 2), who have the largest number
of friends. Group 1 contains 66 users and its network density is
0.083, while group 2 contains 51 users and its network density
is 0.130. We preform the targeted poisoning attack on these
two groups independently. Specifically, for the attack on each
group, we randomly select an item that has not been rated by
target users to promote. Here, we set the maximum number
of fake ratings nr as 1. The results in Fig.2 show the ASR
of our attacks w.r.t. the number of fake edges. As the number
of fake edges increases, the ASR increases at first and stops
increasing when the number of fake edges is large enough.
Moreover, according to the ASR of group 2, we can see that
the number of victims is greater than the number of fake edges
when the number of fake edges is less than 10. It shows that

a set of users that are not connected with the malicious node
are indirectly attacked.

VI. CONCLUSION

In this work, we have proposed the targeted poisoning attack
on the social recommender system which aims to promote an
item to a set of target users. We have formulated the attack as
a bi-level program and developed an approximation algorithm
to solve it efficiently. Through evaluations on the real-world
dataset, we have demonstrated that the social recommender
system is sensitive to the targeted poisoning attacks. Moreover,
we find that the attacker can successfully attack some target
users even though the attacker has no direct relationships with
them.

ACKNOWLEDGMENT

The work of R. Hu and Y. Gong is supported by the U.S.
National Science Foundation under grant CNS-1850523. The
work of M. Pan is supported in part by the U.S. National Sci-
ence Foundation under grants US CNS-1350230 (CAREER),
CNS-1646607, CNS-1702850, and CNS-1801925.

REFERENCES

[1] H. Ma, H. Yang, M. R. Lyu, and I. King, “Sorec: social recommendation
using probabilistic matrix factorization,” in ACM CIKM, 2008.

[2] M. Jamali and M. Ester, “A matrix factorization technique with trust
propagation for recommendation in social networks,” in ACM RecSys,
2010, pp. 135–142.

[3] G. Guo, J. Zhang, and N. Yorke-Smith, “Trustsvd: collaborative filtering
with both the explicit and implicit influence of user trust and of item
ratings,” in AAAI, 2015.

[4] B. Yang, Y. Lei, J. Liu, and W. Li, “Social collaborative filtering by
trust,” IEEE transactions on pattern analysis and machine intelligence,
vol. 39, no. 8, pp. 1633–1647, 2017.

[5] J. R. Douceur, “The sybil attack,” in International workshop on peer-
to-peer systems, 2002, pp. 251–260.

[6] S. K. Lam and J. Riedl, “Shilling recommender systems for fun and
profit,” in WWW, 2004, pp. 393–402.

[7] B. Mobasher, R. Burke, R. Bhaumik, and C. Williams, “Toward trustwor-
thy recommender systems: An analysis of attack models and algorithm
robustness,” ACM Transactions on Internet Technology, vol. 7, no. 4,
p. 23, 2007.

[8] G. Yang, N. Z. Gong, and Y. Cai, “Fake co-visitation injection attacks
to recommender systems.” in NDSS, 2017.

[9] M. Fang, G. Yang, N. Z. Gong, and J. Liu, “Poisoning attacks to graph-
based recommender systems,” in ACM ACSAC, 2018, pp. 381–392.

[10] B. Li, Y. Wang, A. Singh, and Y. Vorobeychik, “Data poisoning attacks
on factorization-based collaborative filtering,” in NeurIPS, 2016.

[11] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, no. 8, pp. 30–37, 2009.

[12] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King, “Recommender systems
with social regularization,” in ACM WSDM, 2011, pp. 287–296.

[13] L. Backstrom and J. Leskovec, “Supervised random walks: predicting
and recommending links in social networks,” in ACM WSDM, 2011.

[14] Z. Huang, M. Pan, and Y. Gong, “Robust truth discovery against data
poisoning in mobile crowdsensing,” in IEEE GLOBECOM, 2019.

[15] M. Zhao, B. An, Y. Yu, S. Liu, and S. J. Pan, “Data poisoning attacks
on multi-task relationship learning,” in AAAI, 2018.

[16] M. Sun, J. Tang, H. Li, B. Li, C. Xiao, Y. Chen, and D. Song, “Data
poisoning attack against unsupervised node embedding methods,” arXiv
preprint arXiv:1810.12881, 2018.

[17] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on
neural networks for graph data,” in ACM SIGKDD, 2018.

[18] G. Guo, J. Zhang, and N. Yorke-Smith, “A novel bayesian similarity
measure for recommender systems,” in IJCAI, 2013, pp. 2619–2625.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on August 11,2020 at 20:42:31 UTC from IEEE Xplore. Restrictions apply.

