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Abstract—To provide intelligent and personalized services on
smart devices, machine learning techniques have been widely
used to learn from data, identify patterns, and make automated
decisions. Machine learning processes typically require a large
amount of representative data that are often collected through
crowdsourcing from end users. However, user data could be
sensitive in nature, and learning machine learning models on
these data may expose sensitive information of users, violat-
ing their privacy. Moreover, to meet the increasing demand
of personalized services, these learned models should capture
their individual characteristics. This paper proposes a privacy-
preserving approach for learning effective personalized models on
distributed user data while guaranteeing the differential privacy
of user data. Practical issues in a distributed learning system such
as user heterogeneity are considered in the proposed approach.
Moreover, the convergence property and privacy guarantee of
the proposed approach are rigorously analyzed. Experiments
on realistic mobile sensing data demonstrate that the proposed
approach is robust to high user heterogeneity and offer a trade-
off between accuracy and privacy.

I. INTRODUCTION

MART devices equipped with sensing, communications,
computing, and/or control capabilities, such as smart-
phones, wearable devices, and in-vehicle sensing devices, are
becoming extremely popular nowadays. These devices gener-
ate, collect, store and analyze an unprecedented amount of data
as they interact with the physical world, which can provide
intelligent and personalized services to people. For instance,
smart watches can record their users’ physical activities and
mental conditions for health monitoring at any time, and smart
insoles can track the body temperature, motion and heart rate
of their users to help them stay injury-free and run better.
For these smart devices to provide intelligent services,
machine learning techniques need to be applied to learn
powerful predictive models on the collected data. A common
practice to learn predictive models from these crowdsourced
data is to first collect data from all devices in a cloud server
and then train a global model. However, it may be risky
to store the privacy-sensitive data in a cloud server which
may not be fully trustworthy. Moreover, as the data volume
increases, the cost and latency of uploading all the raw data
to a distant cloud server increase as well. On the other hand,
a device may choose to learn a local model on its own data
without sharing data with other devices. Such local models
often perform poorly due to the limited training data size.
Hence, how to benefit from data sharing without violating user
privacy in learning predictive models from distributed data is a
challenge. Federated learning [1] has been proposed recently

as a promising approach to solve the challenge. In federated
learning, all devices update the global model downloaded from
the cloud server with their own data and only send the updates
back to the server for aggregation. By sharing only the learned
updates rather than the raw data, federated learning both
achieves high communication efficiency and reduces privacy
risks while obtaining effective predictive models.

Although promising, there remain issues in applying fed-
erated learning to the real world. First, the model obtained
through federated learning is a shared model that extracts
the common knowledge of all participants without capturing
personal inclinations [2]. For instance, when learning the
sentiment of users on their personal messages, since the same
word from different users may convey different sentiments
due to various personal opinions and language using habits, a
single global model cannot capture such differences. However,
since people with close relationships are likely to have similar
habits, it will be beneficial to allow the learning tasks of all
users to learn from each other based on their relationships.
Also known as multi-task learning, this kind of method allows
personalized models to be learned, which could both benefit
from the collective data and keep personal characteristics. Sec-
ond, in a federated learning system with lots of participants,
the device heterogeneity has a large impact on the training
efficiency. The network condition, data size and computation
capability of different devices are various, leading to the
delay, dropout or poor quality of the updates. Third, federated
learning does not provide a rigorous privacy guarantee for
participants. The server in federated learning is assumed to
be fully trusted to coordinate the training. However, the server
can easily violate the privacy of participants by observing their
updates as shown in recent attacks [3], [4].

To address the aforementioned issues, we propose a novel
federated learning scheme that provides an effective personal-
ized model for each participant under the device heterogeneity
while guaranteeing differential privacy of their data. In our
proposed scheme, the personalized model of a participant is
learned based on not only its own local data but also the shared
updates computed from other participants’ data. We provide
differential privacy guarantee for shared updates by adding
certain amounts of noises before releasing them. At the heart
of our scheme is a new iterative algorithm that solves the
multi-task learning optimization problem in a distributed and
privacy-preserving way. The iterative algorithm can learn op-
timal personalized models and the relationship between them
simultaneously. Since the algorithm is an iterative process and
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would consume the privacy budget at each iteration, we further
use moments accountant to characterize the end-to-end privacy
loss after multiple iterations.

The rest of the paper is organized as follows: We describe
the problem setting in Section II and develop distributed
solution to achieve personalized federated learning with dif-
ferential privacy guarantee in Section III. Next, we analyze
the privacy guarantee of the proposed solution in Section IV.
Then, we provide the convergence rate the proposed solution
in Section V. In Section VI, we evaluate our scheme through
numerical experiments. Finally, related literature is reviewed
in Section VII, and conclusions are made in Section VIII.

II. PROBLEM SETTING

We consider a federated learning system as shown in
Figure 1. In the system, a group of smart devices (a.k.a., users
or participants) will sense the physical world continuously and
store the collected data in their local databases. Each device
has some embedded computing capabilities capable of training
a local model. A cloud server will coordinate the collaboration
among devices to improve their models from others’ data. Let

Cloud Server

5. Aggregate local updates

Device 1

Device 2 Device m

2. Update local model
3. Perturb local update

Figure 1: The overall diagram of our system.

m denote the total number of devices in the system, each
needing to learn a personalized model. Each device ¢ has a
local training dataset A; = (X;,y:), where the i-th column
of the matrix X; denotes a feature vector x! € R?, and the
i-th element of the vector y; denotes the corresponding label
y! that takes continuous value for regression problems and
categorical value for classification problems. Let n; be the
total number of training samples in device t’s database, and
therefore X; € R¥>™ . We assume that the feature vector
|xi[2 < 1 which can be enforced through normalization.
Denote by w; € R? the model parameters of device ¢ and by
W = [wy,..., W] € R¥™ the collective model parameters
of all users. We use n := ZtT:1 n: to denote the total number
of all data points and represent the overall feature data matrix
as X := diag(Xy, -+, X,,) € R™?*"_ Then the personalized

federated learning can be formulated as the following multi-
task learning problem [5]:

mln P(W,Q) ZZ& wixhyh) + A r(WQ W7
t=1 i=1
st. x>0, tr(2) =1, (1)

where 2 € R™*™ is the task covariance matrix that models
the relationship between different tasks, A > 0 is the regular-
ization parameter, and /;(-) is the convex loss function corre-
sponding to device t’s learning task. In the above optimization
problem, the first term of the objective function measures the
empirical loss of all training samples, and the second term
measures the learning task relationship between devices. Note
that P(W, ) is jointly convex with respect to W and
under our assumptions as proved in [6].

III. PRIVATE-PRESERVING DISTRIBUTED FRAMEWORK

In this section, we propose a distributed framework to solve
problem (1) with rigorous privacy guarantee. We first describe
the attack model and design goals and then propose a privacy-
preserving algorithm to solve the problem.

A. Attack Model and Design Goals

We assume the information sent through the network is
well-protected during the transmission and the cloud server
is “honest-but-curious”. By observing the received updates, it
is possible for the server to recover the training data using
reconstruction attack [3] or infer whether a sample is in the
training dataset with membership inference attack [4]. The
goal of our design is to ensure that the server cannot learn
much additional information of user samples from the received
messages under any auxiliary information and attack. We
design our privacy-preserving algorithm in the framework of
differential privacy (DP) [7]. A differentially private algorithm
provides a strong guarantee that the presence of an individual
record in the dataset will not significantly change the output
of the algorithm. Specifically, we use the notion of (e, d)-
DP, which is suitable for the iterative algorithm due to its
composability property.

In this paper, we achieve (e, §)-DP for each user using the
Gaussian mechanism [7], which provides privacy guarantee
through adding Gaussian noise to the uploaded local update.
The size of noise is calibrated by the update’s sensitivity which
captures how much a single individual’s data changes the value
of this update in the worst case. Given any function f : R4l —
R with Lo-sensitivity sy, the Gaussian mechanism on f is
M(A) := f(A)+N(0,s30%), where N'(0, s30%) is a normal
distribution with mean O and standard varlance spo. It has
been proved in [7] that the Gaussian mechanism M achieves

(6,6)-DP if o > /2log (1.25/5) /e with € € (0,1).

B. Privacy-Preserving Algorithm

Although it is hard to optimize all the unknown variables
of problem (1) simultaneously, since the objective is separable
with respect to W and €2, problem (1) can be solved by
an alternating optimization procedure [6]. Specifically, we
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alternatively update W with fixed €2 and then update 2 with
fixed W at each iteration until convergence. In what follows,
we present the details of these two steps.

1) Optimize 2 with Fixed W: When W is fixed, the
corresponding subproblem becomes minimizing the following:

ms%n P(Q) = A tr(WQ'WT)

2
st. Q>=0,tr(Q) =1,
which has an analytical solution 2* [6], i.e.,
T 1/2
QF = —(W W) . 3)
w((WTW)172)

We can see that 2* can be computed from the latest W
without requiring any user data, so this step can be preformed
efficiently at the cloud server side.

2) Optimize W with Fixed €2: When € is fixed, the
subproblem becomes:

: — T i i — iy T
r%nP(W) .—ZZEt(Wt Xy, Yy ) AT (WQTWH). (4)

t=1 i=1

Since the overall dataset {A;};—1,. .., is distributed across
devices, a distributed and parallel algorithm without requiring
expensive raw data transfer is highly desirable.

Towards that goal, we use the block dual coordinate descent
considering the fact that the dual of P(W) has a better
separability property. By taking the conjugate dual of P(W),
we obtain the following dual problem:

mo n

; 1
minD(a) = Y3 6(~a) + 5Xalh  ©)
t=1 i=1
where o« € R" is a column vector of all dual variables
with the (Zt;:ll n, + 4)-th element o corresponding to the
training sample (x},y;), ¢; is the conjugate function of ¢,
ie., {;(—a) = max,{—av — {(v)}, and Q := Q ® L xq €
R™dxmd We assume that £; is convex and differentiable with
|6 (2)] < 1 for all z.

Due to the convexity of problem (4), we have P(W*) =
D(a*), and hence the optimal primal variables can be derived
from the optimal dual variables as

1 ~

w(a) = 2)\ﬂon, (6)
where w(a) € R™ is a column vector formed by concate-
nating m blocks of primal variables, with the ¢-th block vector
w; () being the primal variables of device t.

In the following, we develop an iterative search algorithm
to solve the dual problem (5). Specifically, given the current
solution @ and w, we define the following sub-problem for
device ¢ at each iteration:

nt
IAIILHQE(Aat;Wuat) = Z@‘(—ai — Aa})
! i=1

P XAa b XAl ()

where ; € R™ is the ¢-th block vector of « representing
the dual variables of device ¢, £2; € R4%d refers to the t-th
diagonal block of €2, and 5 > 0 is the correction parameter.
Note that in the traditional block dual coordinate descent,
each local update minimizes the global objective based on
all updated coordinates. However, in our approach, each local
update minimizes the local objective based on the previous
values of local coordinates, which can be executed in parallel
and decrease the training efficiency. To compensate for such
differences, the correction parameter 5 needs to be chosen
carefully to ensure the sum of the local objectives of all devices
approximately equal to the global objective D.

Algorithm 1 Privacy-Preserving Algorithm

Input: Datasets {A;,t = 1,...,m}, aggregation parameter
& € (0,1], and correction parameter 3.
Initialize: o <— 0, w < 0, and © <« (1/m)I
1: for h=1to H do
22 for k=1to K do
for all devices t = 1,--- ,m in parallel do
Aay < argminy,, Gl (Aay;wy, o)
ap — o + EAay;
Aat = Aat + bt;
Auy X Aay + py;
return Au, to the server;
end for B
10: update w < w + %QAu in the server;
11: send the updated block w; back to device ¢;
12. end for

13:  update 2

D R AN A

(WTW)3
tr(WTW)2)
send the block £2; back to device t;
14: end for

with the most recent W and

Algorithm 1 outlines our privacy-preserving algorithm using
Gaussian mechanism. Our algorithm contains two parts: (i)
update W (line 2-12); and (ii) update €2 (line 13). In part
(1), each device first solves its own local subproblem (7) and
uploads its local parameter update Au; to the server. Then
the server aggregates Au, and updates the global parameters
‘W, which are sent back to the corresponding device. In part
(ii), the server updates €2 using the most recent W and sends
the block result €2; to the corresponding device. This process
iterates multiple rounds until convergence. The noise vectors
b; and p; in line 6 and line 7 are drawn independently from the
Gaussian distributions A(0, s?07) and N(0, s303) and used
to achieve (e1,01)-DP and (e2.02)-DP, respectively. Here, s;
and so refer to the Lo-sensitivities of Aay; and Au;, whose
values are given in Corollary 1 and Corollary 2, respectively.
Due to the limited space, all the proofs of corollaries, lemmas
and theorems in this paper are included in supplement.

Corollary 1. If (* is convex and differentiable with |(*'(z)| <
1 for all z, the Ly-sensitivity of argmin, G2 (Aay; wy, o)
is at most ﬁ(S)\ + ).
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Corollary 2. When Acay is known, the Lo-sensitivity of Auy
is at most 2&|| At ||

IV. PRIVACY ANALYSIS

For a mechanism that achieves (e, §)-DP, the corresponding
privacy loss will be bounded by e with probability at least
1 — 6. The composability property of differential privacy
enables us to account the privacy loss at each access to the
training data and accumulate this cost for the whole training
process. Recently, some advanced composition theorems ([7]—
[11]) have been proposed to achieve tighter analysis of the
privacy loss for multiple iterations.

Assume that each iteration of Algorithm 1 is (e,0)-
differentially private, by the composability property Algorithm
1 is (Ke, K§)-differential private after K iterations. While
by the strong composition theorem presented in [8] and [9],
Algorithm 1 will be (ey/K log1/d, K¢)-differential private.
And this can be further tightened by combining with the
privacy amplification theorem proposed in [10] which makes
the composed mechanism to be (O(qe), O(qd))-differentially
private if the training data at each iteration is a random
sample from the dataset with sampling probability ¢. Recently,
a stronger method known as moments accountant has been
proposed in [11], which saves a y/log 1/ factor of the e part
and Kq factor of the § part. In the following, we analyze the
privacy loss of our algorithm using the moments accountant.

However, the application of moments accountant in our
scenario is not straightforward. Due to the device variability,
some devices will run more local iterations and thus use more
data. This is analogous to the data sampling, i.e. powerful
devices have higher probability. Similarly, some devices will
not upload any data to the server because of the node dropping,
and this can be mapped to the sampling process of dataset, i.e.
devices with poor network connections have lower probability.
According to the amplification theorem we mentioned before,
the privacy loss can be tightened if we leverage these existing
system uncertainties caused by device heterogeneity. Using
q to denote the sampling probability of data due to device
variability, we first account the privacy loss incurred at each
global iteration in Lemma 1.

Lemma 1 (Privacy Loss at Each Iteration). Assume s; and ss
are the sensitivities of Aay and Auy respectively, §; = do =
0 €(0,1), and €1, €2 € (0,1). Given the sampling probability
of data q, Algorithm 1 is (\/q?€? + €2,8)-DP for device t at
each global iteration if

1.25 / 1.25

01 Z - 02 =
€1 €2

Now, we account the privacy loss of the whole algorithm
given the sampling probability of dataset p caused by node
dropping. We give the conclusion in Lemma 2 in terms of a
privacy guarantee for Algorithm 1, which helps us to allocate
the Gaussian noise directly.

Lemma 2 (Overall Privacy Loss). There exist constants c¢1 and
co so that given the sampling probability of dataset p and the

number of global iteration K, for any ¢ < c1p*K, Algorithm
1 is (e, 0)-differential private for any § > 0 if we choose

C2p\/(q2 +7r2)Klog (1/0)

2 2
o2 > C2p\/(q i TT Klog (1/9) )
€

o1 >

)

~—| N |[~~—

where the parameter r refers to the ratio of privacy budgets
at step 6 and step 7, i.e. € =re; with r > 0.

V. CONVERGENCE ANALYSIS

Since problem (1) is jointly convex with respect to W and
2, the alternating optimization is guaranteed to converge to
the optimal solution. Since it is easy to optimize €2, we focus
on the convergence of updating W in the rest of this section.
Following the discussion of the device heterogeneity, we first
introduce an approximation parameter to quantify the quality
of each update.

Definition 1 (Quality of Update). At each iteration k, we
define the quality measurement of the solution calculated by
device t to its subproblem as:

k_ G (Dafiwi of) — G (Aajs wi, o)

o — . ®

G/ (0;wf, af) — G/ (Aaj; wf, af)

where 0F € [0,1] and Ao is the exact minimizer of
GP(Aak;wk ak). 08 = 0 refers that the update is the exact
solution, and 0F = 1 indicates that the update of model t
makes no progress at iteration k.

To provide convergence guarantees, we assume that a device
will not drop all the time, and that the update at each iteration
will be better than the previous one on average in the following
sense.

Assumption 1. Let 7), = (a¥,a*~! ... al) be a vector of

previous dual variables until iteration k, the expectation of
0F under previous values is OF = E(0F|I). We assume that
POF = 1) < pmax With 0 < puax < 1 and E(0F|T;, 0F <
1) < Omax With 0 < Opax < 1.

Based on Assumption 1, we derive the following theorem
which characterizes the convergence of our privacy-preserving
algorithm with respect to L-Lipschitz loss functions.

Theorem 1. Assume the loss function {y is L-Lipschitz. Under
Assumption 1 when

1 2mL?* > n?
K EKQ + ’7(1_5)(1_9) max (]., M)-‘,
2 AmL?Y  n?
%Z“+&1®u@(kﬂm _ﬂ’

(D(a’) — D(a”)) )
mL2Y n?/2An2 |/’
it holds that E(D(&) — D(a*)) < eg at the averaged
iterate & = K%KO Zf:Ko+1 o, Here, © := ppas + (1 —
pmaz)ema:v

ko > max (O, {(1 —&)(1-0)log
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VI. EVALUATION

We evaluate our algorithm on the HAR dataset (Human
Activity Recognition Using Smartphones Data Set) [12]. It
is collected by monitoring six different activities of 30 indi-
viduals, using the accelerometer and gyroscope embedded in
their mobile phones. The dataset includes 10299 instances in
total with 561 features, and 210-306 instances per individual.
All data is normalized locally by lo-normalization. For each
participant, we use 75% of their data for training and 25% for
testing. We use the hinge loss ¢(u) = max(0,1 — yu) as the
loss function. It is L-Lipschitz, and its dual is £*(—a) = —ay
with ay € [0, 1]. We use the Stochastic Dual Coordinate As-
cent (SDCA) as the local solver which selects one coordinate
to update randomly at each iteration [13]. For each experiment,
we use grid search to choose the best regularization parameter
A and the best ratio r of privacy budgets at step 6 and step 7.
The maximum global iteration number is 2000 by default.

A. System performance

We evaluate our system performance in the heterogeneous
scenario considering device variability and node dropping,
in which both private and non-private cases are studied. In
the non-private case, no noises are added on the updates in
Algorithm 1. In the private case, Gaussian noises are added
as shown in Algorithm 1 to achieve (e, d)-DP where € = 8
and § = 1073, Since we use SDCA as the local solver which
samples the data point with probability 1/n; at each iteration,
the sampling probability of data ¢ = njze,/n; where njpe, is
the local iteration number of device ¢. The sampling proba-
bility of dataset p = 1 — P(6F = 1). Thus, in each scenario,
we can calculate the privacy budget and the size of noise per
iteration by Lemma 1 and Lemma 2. In the heterogeneous
scenario, all devices have to upload their updates in a fixed
global clock cycle at each time and device will drop with
certain probability P(6F = 1). More precisely, we simulate
the device variability via varying the local iteration numbers
of devices. We use 7 € [0, 1] to measure the device variability
level. The local iteration numbers of devices are uniformly
distributed between (1 — 7)Nmin and nmin Where npi, is the
minimum number of local data points across devices.

From Figure 2, we can see that our algorithm converges in
the heterogeneous scenario where the device variability level
7 = 0.5 and the node dropping probability P(0F = 1) = 0.2.
Note that the estimated time is the overall running time
approximately calculated by the total iteration number of the
slowest device. In the private case, we calculate the average
privacy budget per global iteration € = 0.23. Due to the
randomness introduced by the Gaussian noise, the non-private
algorithm outperforms the private algorithm. In what follows,
we are going to estimate the trade-off between privacy and
system performance in terms of test error rate.

B. Trade-off between privacy and performance

Since the device heterogeneity and the privacy guarantee in-
fluence the system performance simultaneously, we first study
the impact of device heterogeneity on the system performance,

0.2
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Figure 2: System performance in the heterogeneous scenario
considering device variability (7 = 0.5) and node dropping
(P(0F =1) =0.2).

based on which we calculate the trade-off between privacy and
system performance. In Figure 3(a), we show the impact of
device variability on the system performance. We change the
distribution of local iteration numbers via varying the device
variability level in the range of [0, 1]. Here, we do not consider
the node dropping. We test the error rate in both non-private
and private case with the same privacy setting in Figure 2. The
result shows that as the level of device variability increases,
the system performance decreases in the non-private case but
does not change much in the private case. Due to the device
variance, the local iteration numbers of some devices is smaller
than n,,;;, which means the the sampling probability of data
G = Niter/n+ on these devices decrease. By Theorem 2, the
size of noises is reduced. However, since the device variability
will degrade the system performance at the same time, the
impact of device variability becomes negligible.

In Figure 3(b), we show the impact of node dropping on the
system performance. We vary the node dropping probability
from O to 1 and test the error rate for the non-private and
private case. Here, we do not consider the device variability
and we use the same privacy setting in Figure 2 for the
private case. The result shows that our system is robust for
frequent node dropping. When the node dropping probability
is 1, devices will drop all the time and hence the algorithm
will not converge. In the non-private case, as the node drop-
ping probability increases, the system performance decreases
significantly. However, in the private case, we can see that
the error rate first decreases and then increases. There exists
an optimal node dropping probability that minimizes the error
rate. The randomness introduced by the node dropping both
reduces the size of Gaussian noises and increases the error rate.
And when P(0%¥ = 1) < 0.2, its effect on the size Gaussian
noise is greater than its effect on the error rate so that the error
rate decreases. Hence, properly increasing the node dropping
probability can help us to achieve better system performance.
According to the impact of device heterogeneity on the system
performance, we finally calculate the trade-off between the
privacy and error rate.

Since the device variability does not have much influence
on the privacy and error rate, we set 7 = 0. We set the initial
node dropping probability as P(6F = 1) = 0.1 and e vary
from 0.01 to 100 with 6 = 10~2. For each ¢, we search the
optimal node dropping probability and then update the node
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Figure 3: Impact of device heterogeneity and noises on models’ accuracy

dropping probability as the optimal probability if the optimal
probability is greater than 0.1. The result shows that the error
rate varies from about 0.3 to 0.15 when e € (0.01, 1) and the
error rate is less than 0.15 when e is greater than 1.

VII. RELATED WORK

Most of the work in federated learning focuses the consen-
sus problems [1], [2] with the goal of learning one global
model distributedly. In contrast, we tackle the case where
the goal is to learn multiple personalized models collabo-
ratively based on relationships among all participants. The
relationship among participants can either be learned from the
data or be determined from some prior knowledge like the
real relationship between devices. recent studies investigate
the privacy issue of collaborative learning of personalized
models. For example, differentially private multi-task learning
is proposed in [14], but they did not consider their learning in
a federated setting. Private and personalized learning scheme
with a fully decentralized architecture has been proposed in
[15], but the architecture with central servers will be more
efficient especially for applications that are large-scale and
require high system agility and also they did not consider the
device heterogeneity. In this paper, we make our distributed
personalized learning process to be differentially private and
provide rigorous analysis on privacy loss and convergence rate.

VIII. CONCLUSION

In this paper, we have studied the problem of learning
personalized classifiers collaboratively in a privacy-preserving
manner. We have considered privacy in the (e, §)-differential
privacy model and provided a privacy-preserving algorithms
for the personalized federated learning. We bound the privacy
loss by exploiting the existing system uncertainty caused by
the device heterogeneity. The proposed approach is robust to
device heterogeneity and the perturbation of noises. We have
verified the effectiveness of our proposed approach on real
mobile sensing data.
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