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Abstract

Both energy-efficiency and real-time performance are critical requirements in many embedded systems

applications such as self-driving car, robotic system, disaster response, and security/safety control.

These systems entail a myriad of real-time tasks, where each task itself is a parallel task that can

utilize multiple computing units at the same time. Driven by the increasing demand for parallel tasks,

multi-core embedded processors are inevitably evolving to many-core. Existing work on real-time

parallel tasks mostly focused on real-time scheduling without addressing energy consumption. In

this paper, we address hard real-time scheduling of parallel tasks while minimizing their CPU energy

consumption on multicore embedded systems. Each task is represented as a directed acyclic graph

(DAG) with nodes indicating different threads of execution and edges indicating their dependencies.

Our technique is to determine the execution speeds of the nodes of the DAGs to minimize the overall

energy consumption while meeting all task deadlines. It incorporates a frequency optimization engine

and the dynamic voltage and frequency scaling (DVFS) scheme into the classical real-time scheduling

policies (both federated and global) and makes them energy-aware. The contributions of this paper

thus include the first energy-aware online federated scheduling and also the first energy-aware

global scheduling of DAGs. Evaluation using synthetic workload through simulation shows that

our energy-aware real-time scheduling policies can achieve up to 68% energy-saving compared to

classical (energy-unaware) policies. We have also performed a proof of concept system evaluation

using physical hardware demonstrating the energy efficiency through our proposed approach.
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1 Introduction

Energy-efficiency is an important requirement in embedded systems (e.g., mobile phones,

tablets, cars, robots, and computerized numerical controls) as they rely on limited or

unreliable sources of energy such as batteries or energy harvesters. Embedded systems are

used in all aspects of human life and industries and are now being sparked by billions of
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Figure 1 Energy consumption of the autonomy system in a self-driving car (Ford Fusion)[51].

devices through the evolution of Internet of Things. Energy consumption by these billions

of devices can be significant. It is projected that computers and cell phones will consume

14% of worldwide power by 2020 [1]. A recent study using the Ford Fusion autonomy system

has revealed that 41% energy is consumed by the computing platform of a self-driving car

(Figure 1) [51, 66, 29]. It is estimated that up to 80% of the total energy consumption of

an embedded system is due to software-related activities [50]. In such systems, a processor

consumes a significant share of their power consumption. For example, in spacecraft, the

RAD750 processor draws almost 33%-50% share of the power consumption [2]. Real-time

performance is another critical requirement in many embedded systems applications such as

self-driving car, advanced robotic system, disaster response, and surveillance systems. Many

involve mission critical applications that require a predictable real-time system behavior but

battery re-charging during the mission may not be possible.

With the evolution of various computation-intensive systems (e.g., cloud computing,

self-driving car), today’s real-time systems evolve in the form of many parallel tasks. For

example, a self-driving car [39] entails a myriad of real-time tasks such as motion planning,

sensor fusion, computer vision, and decision making system that exhibit intra-task parallelism,

where each task itself can utilize multiple computing units simultaneously. For example, the

decision making system collects massive amounts of data from various types of sensors and

processes them in parallel. Driven by the increasing demand for parallel tasks, multicore

embedded processors are inevitably evolving to many-core (e.g., Intel’s 48-core SCC chip

[3], TILERA’s 100-core TILE-Gx100 [7], 248-core PC205 of picoChip [5]). Multicore offers

opportunities for energy minimization. For example, the energy consumption of executing a

certain workload equally distributed in two cores is significantly less than that of executing

it in one core at double speed [55]. As the energy-related benefits resulting from Moore’s

law are leveling off, software-level techniques need to be exploited to reduce the power

consumption on multicores. While real-time scheduling for parallel tasks on multicores has

been widely studied recently, existing work mostly focused on scheduling without addressing

energy consumption [13, 14, 61, 28, 63, 62, 12, 44, 43, 19, 38, 8, 40, 53].

In this paper, we address hard real-time scheduling of parallel tasks while minimizing their

CPU energy consumption on multicore embedded systems. We consider periodic parallel tasks

with deadlines, where each task is represented by a directed acyclic graph (DAG). In a DAG,

the nodes stand for different threads of execution while the edges represent their dependencies.

DAG is the most general model of deterministic parallel tasks [62]. Although our proposed

techniques can be applied to any multicore platform for reduced energy consumption, we

focus on embedded systems as their energy efficiency is of more general need. Energy-aware

real-time scheduling is challenging in general due to the complicated (nonlinear) relationship

between frequency, energy consumption, and execution time of a task.
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Although much work exists on energy-aware real-time scheduling on multiprocessor

[56, 55, 52, 18, 37, 22, 20, 60, 10, 72, 21, 24, 46, 47, 42, 65, 68], it has considered only

sequential task models. There is a recent study on energy-aware parallel real-time scheduling

that considered overly simplified federated scheduling of DAGs where at any time only one

task can run and the number of cores cannot be pre-fixed as an input [34, 17]. It adopted

a table-driven scheduling where the entire schedule (up to the hyper-period which is of

exponential size in task periods) needs to be created in-advance. In contrast, we consider

scheduling many recurrent tasks exploiting both intra- and inter-task parallelism on a finite

set of cores. We adopt online scheduling so that tasks can be scheduled as they arrive. We

consider both global and federated scheduling. For global scheduling, we consider both

dynamic priority and fixed priority scheduling.

In this paper, we focus on minimizing CPU energy consumption by means of dynamic

voltage and frequency scaling (DVFS). DVFS is a commonly-used power-management tech-

nique where the clock frequency of a processor is decreased to allow a reduction in the

supply voltage. This reduces power consumption, which leads to reduction in the energy

required for a computation. Many AMD and Intel processors support per-core DVFS for

flexible power control (e.g., AMD family 10h processors, Intel Haswell processors) [31]. Our

approach is to regulate the frequencies across the cores and across different execution parts

of the same task for minimizing overall energy consumption. It incorporates an optimization

engine and DVFS into the traditional real-time scheduling policies (e.g., earliest deadline first,

deadline monotonic, and federated scheduling) and makes them energy-aware. Specifically,

once the optimal execution speeds of the nodes of all DAGs are determined, we adopt these

classical real-time scheduling policies. Note that these classical policies are online, highly

efficient in real-time performance, but are not energy-aware. In our approach, when the

processor frequencies are adjusted based on the nodes’ speed assignments, the adopted

real-time scheduling policy leads to energy minimization.

Specifically, we make the following new contributions.

For federated scheduling, the objective becomes to assign a certain number of cores to

each task and execution speeds to different nodes so that overall energy consumption

is minimized. We first formulate this as a constrained non-linear optimization problem

whose solution becomes challenging due to the discrete nature of solution space. We

propose a continuous convexification approach through a new core allocation scheme in

federated scheduling while retaining its theoretical real-time performance bound. This

is the first energy-aware federated scheduling of multiple tasks which does not rely on

infinite number of cores or table-driven scheduling.

We formulate energy-aware real-time global scheduling of DAGs as a convex optimization

problem for both dynamic and fixed priority. The objective is to determine the execution

speeds of the DAG nodes to minimize overall energy consumption while meeting all

deadlines. An optimal solution is achieved in polynomial time. Upon adjusting the

processor frequencies online, the overall energy consumption is minimized under classical

real-time scheduling policies. This is the first energy-aware global scheduling of DAGs.

We have evaluated our energy-aware real-time scheduling policies using synthetic workloads

through simulations. The results show that our approach can achieve up to 68% energy-

saving compared to classical (energy-unaware) policies. We have also performed a proof

of concept system evaluation using multiple ODROID XU-4 boards [54] demonstrating

the energy efficiency through our proposed approach.

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3

describes our parallel tasks, multicore, and energy consumption model and some background.

Section 4 presents our energy-aware federated scheduling. Section 5 presents our energy-aware

ECRTS 2020
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global scheduling. Section 6 presents simulation results. Section 7 presents the proof of

concept system evaluation. Section 8 concludes our paper with future research directions.

2 Related Work

While the works proposed in [56, 55, 52, 18, 37, 22, 20, 60, 10, 72, 21, 24, 46, 47, 42, 65, 68]

studied energy-aware real-time scheduling on multiprocessor, they considered sequential tasks.

A detailed review of these works can be found in a recent survey in [11]. While a parallel

task can execute on multiple cores simultaneously, a sequential task can execute only on one

core at a time. Therefore, parallel tasks scheduling is significantly different from sequential

tasks. Parallel scheduling of DAGs is highly challenging as the dependencies among the

nodes need to be considered while these are absent in sequential tasks.

Existing work on parallel real-time scheduling concentrates mostly on scheduling policies

or analysis and has not focused on energy-consumption [13, 14, 61, 28, 63, 62, 12, 44, 43, 19,

38, 8, 40, 53, 67, 16]. Energy-aware scheduling of parallel tasks on multicore was studied

in [45] for a very simplified model where a task has a fixed number of parallel threads, and

the tasks are not recurrent or real-time [45]. The energy benefit of multicore scheduling was

studied in [58, 41, 71, 32, 58] by running parallel threads. Energy-aware gang scheduling was

studied in [57]. Gang scheduling involves a very special form of parallelism where all parallel

threads of the same task use processors in the same window (i.e., they start and stop using

the processors at the exact same time). A slack stealing based scheduling was studied in

[74, 75] for energy minimization of an application consisting of inter-dependent sequential

tasks. While those dependencies among the tasks were represented by a DAG, the model

consists of a single DAG and does not consider recurrent tasks. A similar model was studied

in [70, 69] for non-real-time power aware cluster computing. We consider energy-aware

real-time scheduling of multiple/many recurrent DAGs.

An energy-efficient clustering of parallel tasks was studied in [33, 15]. It is only suitable

for clustered multicore platform where all tasks assigned to the same cluster of cores have to

run at the same speed (as all cores in the same cluster run at the same speed). Recently, a

simplified model of energy-aware federated real-time scheduling of DAGs was studied where

at any time only one task can run and the number of cores cannot be pre-fixed as an

input [34, 17]. It adopted a table-driven scheduling, where the entire schedule (up to

the hyper-period which is of exponential size in task periods) is created in-advance. In

contrast, this paper (1) considers scheduling multiple/many recurrent DAGs exploiting both

intra- and inter-task parallelism on a given finite set of cores; (2) adopts online scheduling so

that tasks can be scheduled as they arrive; (3) considers both global and federated scheduling

with guaranteed performance bounds of the algorithms; (4) considers both dynamic priority

and fixed priority under global scheduling.

3 System Model and Background

3.1 Parallel Task Model

We consider a task set τ = {τ1, τ2, · · · , τn} of n periodic parallel tasks to be scheduled on a

multicore platform consisting of m cores. Each task τi, 1 ≤ i ≤ n, is represented as a DAG,

where a node is a thread of execution (execution requirement), and the edges between the

nodes indicate the dependencies between the associated threads of execution.

A node in τi is denoted by W j
i , 1 ≤ j ≤ ni, where ni is the total number of nodes in τi.

The worst-case execution requirement (WCER) (i.e. the total number of CPU cycles needed

in the worst-case) of node W j
i is denoted by cj

i . This means that the node has worst-case
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execution time (WCET) of cj
i on a unit-speed processor. Note that the actual execution

requirement (actual number of execution cycles) of a node W j
i can vary in practice due to

many complex factors such as data inputs, hardware features, and execution contexts but

it will never exceed its WCER cj
i . A directed edge from node W j

i to node W k
i , denoted as

W j
i → W k

i , implies that, for each DAG job released by task τi, the execution of W k
i cannot

start until W j
i finishes. W j

i , in this case, is called a parent of W k
i , while W k

i is its child. A

node may have 0 or more parents or children, and can start execution only after all of its

parents have finished execution. A node is ready to be executed as soon as all of its parents

have been executed. A node having no parent is called a source while a node having no child

is a sink. A DAG may have multiple sources or sinks.

W
i

1

W
i

4

W
i

10

W
i

2

W
i

7 W
i

8

W
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W
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Figure 2 A parallel task τi represented as a DAG of 10 nodes: nodes W 1

i , W 2

i , and W 3

i are the

sources while W 9

i and W 10

i are the sinks. Suppose for example c1

i = 4, c2

i = 2, c3

i = 4, c4

i = 5, c5

i = 3,

c6

i = 4, c7

i = 2, c8

i = 4, c9

i = 1, c10

i = 1. Then, Ci = 30. Li = 14, and the W 1

i → W 4

i → W 8

i → W 10

i

(thick red-colored) is a critical path on unit-speed cores.

The WCER (i.e., worst-case work) Ci of task τi is the sum of the WCERs of all nodes

in τi; that is, Ci =
∑ni

j=1 cj
i . Thus, Ci is the WCET of τi if it was executing on a single

processor of speed 1. For task τi, the critical path length, denoted by Li, is the sum of

execution times of the nodes on a critical path. A critical path is a directed path that has

the maximum execution time among all other paths in DAG τi. Thus, Li is the minimum

execution time of τi even when it is assigned an infinite number of unit-speed cores. Figure 2

illustrates a parallel task τi represented as a DAG with ni = 10 nodes.

The period of task τi is denoted by Ti. Every instance of a task is called a job. Each

task τi thus releases an infinite sequence of jobs, with Ti being the time separation between

two consecutive jobs. The (relative) deadline Di of each task τi is considered implicit, i.e.,

Di = Ti. That is, each job of a task must finish before its next job releases. Since Li is the

minimum execution time of task τi even on a machine with an infinite number of cores, the

condition Ti ≥ Li must hold for τi to be schedulable (i.e. to meet its deadline). A task set is

schedulable when all tasks in the set meet their deadlines.

The utilization ui of a task τi, and the total utilization usum(τ) for task set τ of n tasks

are defined as

ui =
Ci

Ti

; usum(τ) =
n

∑

i=1

ui =
n

∑

i=1

Ci

Ti

If the total utilization usum is greater than m, then no algorithm can schedule τ on m

identical unit-speed processor cores.

ECRTS 2020
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3.2 Power/Energy Model

We consider the following widely used energy consumption model of processor [10, 73, 72,

27, 55, 56, 34]. Assuming continuous frequency scheme, let s(t) denote the main frequency

(speed) of a processor at time t. Then its power consumption P (s) can be modeled as:

P (s) = Ps + Pd(s) = β + αsγ , (1)

where Ps denotes the static power consumption which is introduced due to the leakage

current and Pd(s) is the active power consumption. Pd(s) is introduced due to capacitor

charging and discharging during processor activity, and it depends on the processor frequency.

Pd(s) can be represented as αsγ where the constant α > 0 depends on the effective switching

capacitance [55], γ ∈ [2, 3] is a fixed parameter determined by the hardware, and β > 0

represents the leakage power (i.e., the static part of power consumption whenever a processor

remains on or idle). Power consumption is a convex-increasing function of the processor

frequency. It is possible to reduce Pd(s) by reducing the processor frequency through DVFS.

The energy consumption in any given period [t1, t2] can be calculated as E =
∫ t2

t1
P (s) dt,

which is almost close to the actual CPU energy consumption of many known systems.

Specifically, given a fixed amount of workload C to be executed on a speed-s processor, the

total energy consumption is the integral of power over the period of length C/s; i.e.,

E(C, s) = (β + αsγ)(C/s) = βC/s + αCsγ−1 (2)

Figure 3a illustrates how different values of γ and processor speed s may affect the total

energy consumption to complete a certain amount of computation. In most modern processors,

execution at a frequency much lower than the critical frequencies [55] (the highlighted most

energy efficient speed in the figure) is energy inefficient as leakage power becomes the major

“contribution”. This model was shown to be quite realistic [56]. Figure 3b compares the

original power consumption and the power model in Equation (1) as studied in [35].

(a) Energy consumption for executing a job with
109 computation cycles for various γ, where α =
1.76Watts/GHzγ , β = 0.5 Watts.

P
o

w
e
r 

[W
a
tt

s
]

Frequency [GHz]

Experimental Values

Modeled Power Function

(b) Comparison of the power model (Eq. (2))
with experimental results in [35]. Here, α =
1.76Watts/GHz3, γ = 3, and β = 0.5 Watts.

Figure 3 CPU energy consumption model.

While we consider a continuous frequency scaling of the processors, our approach is

applicable to the systems with discrete frequency levels as well. Specifically, any frequency

in our continuous frequency scheme can be rounded up to achieve the discrete frequency

level. In fact, most current processors have quite fine-grained steps to scale frequency. For

example, the ODROID XU board (used in our system experiment) has a frequency range of

0.2 – 1.4GHz for LITTLE cores and 0.2 – 2GHz for big cores, with a scale step of 0.1GHz.

With such fine-grained steps, the energy consumption modeled for continuous frequency

scheme becomes very close to actual scenario for modern discrete frequency processors.
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3.3 Global and Federated Scheduling Overview

We consider preemptive scheduling, where a task with higher priority can preempt an

executing task that has lower priority. Non-preemptive scheduling is less preferred for time

critical systems (partially) because of its poor responsiveness due to blocking and will not

be explored in this paper. We shall develop both federated and global preemptive real-time

scheduling of parallel tasks for energy minimization. Under global scheduling, we shall

consider classical real-time scheduling policies such as Earliest Deadline First (EDF) and

Deadline Monotonic (DM), and make them energy-aware. For federated scheduling, we shall

consider the policy introduced in [44] which is described below.

Federated scheduling was first introduced in [44] as a generalized approach of partitioned

scheduling for parallel tasks which has later been widely used in the literature for real-time

parallel scheduling. In federated scheduling, a task is classified as a high-utilization

task if its utilization ≥1, or as a low-utilization task otherwise. Each high-utilization

task is allocated a dedicated cluster (set) of cores. A multiprocessor scheduling algorithm is

used to schedule all low-utilization tasks (each having utilization <1), each of which is run

sequentially, on a shared cluster composed of the remaining cores. Given a task set τ , the

federated scheduling algorithm works as follows: First, tasks are divided into two disjoint

sets: τhigh contains all high-utilization tasks – tasks with worst-case utilization at least one

(ui ≥ 1), and τlow contains all the remaining low-utilization tasks. Consider a high-utilization

task τi with WCER Ci, worst-case critical-path length Li, and deadline Di ( = Ti). We

assign mi dedicated cores to τi where

mi =

⌈

Ci − Li

Ti − Li

⌉

.

We use mhigh =
∑

τi∈τhigh
mi to denote the total number of cores assigned to high-

utilization tasks τhigh. We assign the remaining cores to all low-utilization tasks τlow, denoted

as mlow = m − mhigh The scheduling algorithm admits the task set τ , if mlow ≥ 2
∑

τi∈τlow
ui.

After a valid core allocation, runtime scheduling proceeds as follows: (i) Any greedy

(work-conserving) parallel scheduler can be used to schedule a high-utilization task τi on its

assigned mi cores. Informally, a greedy scheduler is one that never keeps a core idle if

some node is ready to execute. (ii) Low-utilization tasks are treated and executed as though

they are sequential tasks and any multiprocessor scheduling algorithm (such as partitioned

EDF [48], or various rate-monotonic schedulers [9]) with a utilization bound of at most 1
2

can be used to schedule them on mlow cores.

4 Energy-Aware Federated Scheduling

We first describe our approach for federated scheduling of real-time parallel tasks for min-

imizing their energy consumption on multicore. Since energy consumption of the cores is a

function of their frequencies (speeds), our approach is to regulate the frequencies (speed)

across the cores and across different nodes of the same task for minimizing overall energy

consumption. For federated scheduling, we also have to determine a cluster (set) of cores

on which a task will execute. We design our algorithms considering WCER of the nodes

considering hard real-time systems that need both real-time guarantee and energy efficiency.

Considering WCER, a node is executed at a uniform speed but different nodes can run at

different speeds in our approach. Our approach incorporates an optimization engine and

DVFS into the federated scheduling. Specifically, we first determine a cluster (set) of cores

on which a task will execute and assign execution speeds to different nodes of all tasks. We

ECRTS 2020
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Figure 4 Energy-aware federated scheduling framework.

then incorporate DVFS into each cluster that will adjust the processor frequency during

scheduling according to the assigned speeds of the nodes. Once the execution speeds of the

nodes and the number of cores of all DAGs are determined, and the processor frequencies

are adjusted based on the nodes’ speed assignments, the adopted scheduling policy leads to

energy minimization. Our federated scheduling uses the policy presented in Section 3.3 and

makes it energy-aware. The scheduling is done after assigning the node execution speeds

(i.e. the frequencies at which the cores will run when executing the nodes) and the number

of cores of each high utilization task and for the low-utilization ones. Figure 4 shows our

energy-aware federated scheduling framework.

4.1 Frequency and Core Assignment Formulation

Our objective is to assign cores to each DAG and determine execution speeds for different

nodes of the DAG to minimize overall energy consumption. Such a speed and core assignment

must guarantee that all DAGs remain schedulable when the federated policy is applied

for their scheduling. Hence, we apply existing highly efficient schedulability conditions as

constraints based on processor capacity augmentation analysis [44] for DAGs on multicore.

Considering overall energy consumption as the objective and using existing schedulability

conditions based on processor capacity augmentation analysis, we formulate energy-aware

real-time federated scheduling of DAGs as a constrained non-linear optimization problem.

◮ Definition 1. [44] A scheduling algorithm S with capacity augmentation bound b,

b ≥ 1, can always schedule a task set τ with total utilization of usum on m cores of speed b as

long as τ satisfies two conditions on unit speed cores: (1) usum ≤ m; and (2) Li ≤ Di, ∀τi.

To formulate the problem, we first derive an expression to represent our objective

(overall energy consumption) based on the energy model. By Equation (2), the total energy

consumption for running node W j
i at speed sj

i becomes

E(cj
i , sj

i ) =
(

β + α(sj
i )

γ
)

(cj
i /sj

i ) = βcj
i /sj

i + αcj
i (sj

i )γ−1

Thus total energy consumption by one job of task τi becomes
∑ni

j=1 E(cj
i , sj

i ). To consider

overall energy-consumption, we consider a complete schedule up to the hyper-period, denoted

by H, of the tasks. Thus the overall energy consumption by task set τ is given by

n
∑

i=1

wi

ni
∑

j=1

E(cj
i , sj

i ), where wi =
H

Ti

which becomes our objective (4). The actual energy consumption is also affected by a number

of other issues such as frequency switching, turn on/off overhead (see Section 4.4) that are

not considered in the above objective. As shown before in Figure 3b, this objective can
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still represent a close approximation of the actual energy consumption of CPU. We want to

minimize this objective while ensuring the schedulability under federated scheduling policy.

Now we determine the constraints that must guarantee the schedulability under federated

scheduling. The following remark plays a key role in establishing our constraints.

◮ Remark 2. A scheduler S has a capacity augmentation bound of b if it can schedule

any task set τ on m cores which satisfies the following two conditions [44]:

Condition 1: The total utilization of τ is at most m
b

.

Condition 2: For each task τi ∈ τ the worst-case critical-path length Li (execution

time of τi on an infinite number of cores) is at most 1
b

fraction of its deadline.

The federated scheduling that we consider (described in Section 3.3) has a capacity

augmentation bound of 2 [44]. Using this bound, we have to incorporate the two conditions

of Remark (2) as constraints. When node W j
i of task τi is assigned speed sj

i , where

1 ≤ j ≤ ni, 1 ≤ i ≤ n, the total utilization can be expressed as
∑n

i=1(
∑ni

j=1
c

j

i

s
j

i

)/Ti. Thus,

the above Condition 1 for schedulability is expressed as constraint (5) in our formulation.

Assigning different speeds to different nodes may change a task’s critical path. Let

Φi(si) be the set of nodes on a critical path if the nodes of τi are assigned speeds si =

{s1
i , s2

i , · · · , sj
i , · · · , sni

i }. The critical path length Li(si) under this speed is given by

Li(si) =
∑

W
j

i
∈Φi(si)

cj
i

sj
i

(3)

Hence, Condition 2 for schedulability is expressed as constraint (6) in our formulation.

Since assigning various speeds affects WCET and Li, it affects the number of cores mi

assigned to each high utilization task τi and the total cores mlow assigned to all low utilization

tasks. Hence, in addition to the constraints defined above, we have to maintain the following

constraint for each speed assignment in federated scheduling as given in Section 3.3.

mlow = m − mhigh ≥ 2
∑

τi∈τlow

ui

⇔ mhigh + 2
∑

τi∈τlow

ui ≤ m ⇔
∑

τi∈τhigh

mi + 2
∑

τi∈τlow

ui ≤ m

⇔
∑

τi∈τhigh

⌈

Ci − Li

Ti − Li

⌉

+ 2
∑

τi∈τlow

Ci

Ti

≤ m

⇔
∑

∀τi with
Ci
Ti

≥1

⌈

Ci − Li

Ti − Li

⌉

+ 2
∑

∀τi with
Ci
Ti

<1

Ci

Ti

≤ m
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Considering node W j
i of task τi is assigned speed sj

i , where 1 ≤ j ≤ ni, 1 ≤ i ≤ n, we

write the above condition as constraint (7) in our formulation. Thus our objective is to

determine speeds si = {s1
i , s2

i , · · · , sj
i , · · · , sni

i }, ∀τi to

Minimize

n
∑

i=1

wi

ni
∑

j=1

E(cj
i , sj

i ) (4)

subject to

n
∑

i=1

∑ni

j=1
c

j

i

s
j

i

Ti

≤
m

2
(5)

Li(si) ≤
Ti

2
, ∀τi (6)

∑

∀τi with
∑

ni

j=1

c
j

i

Tis
j

i

≥1











∑ni

j=1
c

j

i

s
j

i

− Li(si)

Ti − Li(si)











+

2 ∗
∑

∀τi with
∑

ni

j=1

c
j

i

Tis
j

i

<1

ni
∑

j=1

cj
i

Tis
j
i

≤ m (7)

It is worth noting that an optimal solution of the above formulation will not select any

speed lower than critical speed as the solution then is non-optimal (a scenario where the

leakage power dominates). As can be seen from Figure 3a, an optimization technique may

choose a node’s speed above the critical speed of the core to meet deadline i.e. to meet

constraints (5), (6), and (7). But it will never choose a speed lower than the critical speed as

it will neither help in meeting deadline nor will help in decreasing energy consumption.

Abstracting away Non-Uniformity. We use the result of speed-up bound (capacity aug-

mentation bound) derived in [44]. We change processor speeds while maintaining the speed-up

bound. While the bound in [44] was derived considering uniform-speed, in using it, as long

as no core violates the speed-up bound it does not matter if the cores are running at different

speeds or not. We can think this in terms of choosing an execution time for each node. In

terms of scheduling it is not important how the execution speed-ups are obtained. Once our

optimization finds the “best” feasible assignment of execution times for each node that satisfy

the bounds of [44], we can use these execution times to do the scheduling upon (logically)

identical multiprocessor platform. Thus, we abstracted away any non-uniformity in speed of

the processors by considering that each node can change its execution time.

4.2 Steps for Solving Frequency and Core Assignment Problem

In the problem formulated in (4)–(7), the objective (4) and constraint (5) are convex. As

we described before, selecting a different speed for a node can change the critical path in a

DAG. That is, whenever we choose a new value of our decision variables (speeds), we have

to run an algorithm to detect a critical path in the DAG. Every change in decision variable

may invoke that algorithm. Thus constraint (6) raises a key challenge as the invocation of

critical path finding algorithm may affect the characteristics of the optimization problem.

Another key challenge in the above problem is that it is not differentiable as Constraint (7) is

non-differentiable. Non-differentiability raises a significant challenge in optimization problem

and restrict the applicability of many efficient approaches for solving. Our techniques to

handle these challenges are described as follows.
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4.2.1 Critical Path Formulation Using Convex Constraints

To address the challenge stemmed from constraint (6), we determine critical path of a DAG

through a topological sorting of the nodes and represent the method through a set of convex

constraints. For this, a DAG has to have a unique source and a unique sink. If a DAG has

multiple sources, a new dummy node with WCER of zero is created as the parent of all

source nodes, and this dummy node is considered as the unique source. Similarly, if a DAG

has multiple sinks, a new dummy node with WCER of zero is created as the child of all sink

nodes, and this dummy node becomes the unique sink. Hence, without loss of generality,

from now onward we consider that each τi is a DAG with one source W 1
i and one sink W ni

i ,

and that W 1
i , W 2

i , · · · , W ni

i is a topological ordering of the nodes of τi.

It is well-known that the shortest path problem for graphs with non-negative edge weights

can be formulated as a linear programming maximization problem (e.g., see Chapter 29 in

Cormen et al. [26]). Therefore, we can reverse the constraints of the shortest path formulation

and use node weights to obtain quantification of the longest path from the source node W 1
i

to any other node W k
i . Thus, based on topological ordering, we can express constraint (6) of

the above formulation for critical path function in terms of convex constraints (8), (9), and

(10) using a new variable d as follows.

di[W
1
i ] =

c1
i

s1
i

, ∀τi (8)

di[W
ℓ
i ] ≥ di[W

k
i ] +

cℓ
i

sℓ
i

, ∀τi, (W k
i → W ℓ

i ) (9)

di[W
ni

i ] ≤
Ti

2
, ∀τi (10)

Constraint (8) fixes the weight of the source node. Constraint (9) enforces that the longest

path from source to node W ℓ
i must be no less than the longest path to any adjacent predecessor

node plus the weight of W ℓ
i . Finally, constraint (10) checks to ensure that the longest path

to the sink node W ni

i (i.e., the critical path) is bounded according to constraint (6).

4.2.2 Handling Non-Differentiability by Refining Core Allocation

Upon expressing constraint (6) of the problem given in (4) – (7) in terms of convex con-

straints (8), (9), and (10), the problem still remains non-differentiable due to constraint (7).

A potential approach to solving the problem is to adopt a penalty based simulated annealing.

Simulated annealing is a global optimization framework that employs stochastic global explor-

ation to escape from local minima and is suitable for problems where gradient information

is not available. A penalty-based approach (such as ℓ1− penalty method [23, 64]) makes it

adoptable to constrained problem. While such a method can achieve global optimality or

high-quality solution under certain theoretical conditions and parameter setups, its running

time can be very very long, making it impractical for real-time task scheduling. Instead, we

propose to formulate a convex optimization problem by modifying the federated scheduling

policy while retaining the theoretical performance bound of the scheduling technique com-

pared to the original one. Therefore, an optimal solution of the proposed convex problem

should be quite close to that of the original problem defined in (4) – (7).

Since non-differentiability exists in constraint (7), we aim to make it continuous and

convex. Its non-differentiability stems from the assignment of integer number of processor

cores to the tasks. Hence, we slightly modify the federated scheduling policy by assigning a

continuous value to each task based on which the task is actually scheduled on an integer
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number of cores (as the number of cores is always integer). This provably retains the

theoretical schedulability performance of the federated scheduling. Instead of assigning

⌈ Ci−Li

Ti−Li
⌉ cores to a high utilization task τi, we assign the value (Ci−Li

Ti−Li
+ 1) to it (in our

optimization) while the task is scheduled on ⌊ Ci−Li

Ti−Li
+ 1⌋ cores. The remaining cores are

assigned to low-utilization tasks. Theorem 3 proves that the federated scheduling retains its

capacity augmentation bound of 2 upon the above modification.

◮ Theorem 3. Assigning the value ( Ci−Li

Ti−Li
+ 1) to each high utilization task τi and scheduling

it on ⌊ Ci−Li

Ti−Li
+ 1⌋ cores, and assigning the remaining cores to all low-utilization tasks does

not change the capacity augmentation bound of 2 of the federated scheduling.

Proof. We consider a task set τ that satisfies Conditions 1 and 2 from Definition 1 for b = 2.

As proved in [44], the capacity augmentation bound is 2 if every high-utilization task gets

at least ⌈ Ci−Li

Ti−Li
⌉ cores and all low-utilizations tasks together get at least 2

∑

τi∈τlow
ui cores.

Hence, it is sufficient to prove that these two conditions hold upon our modification.

Our assigned value to a high utilization task τi,

Ci − Li

Ti − Li

+ 1 >

⌈

Ci − Li

Ti − Li

⌉

.

The actual number of cores on which task τi is scheduled in the modified federated scheduling

is

mi =

⌊

Ci − Li

Ti − Li

+ 1

⌋

≥

⌈

Ci − Li

Ti − Li

⌉

.

Now we have to prove that the total number of cores assigned to low utilization tasks

is at least 2
∑

τi∈τlow
ui. For simplicity let σi = Ti

Li
. Hence, Ti = σiLi, Ci = uiTi = σiuiLi.

Since each task satisfies Condition 2 from Definition 1 for b = 2, Li ≤ Ti

b
⇒ σi ≥ b = 2.

(Note Ti = Di). By the definition of high-utilization task τi, ui ≥ 1. Together with σi ≥ 2,

we can state (ui−1)(σi−2)
σi−1 ≥ 0. Now

Ci − Li

Ti − Li

+ 1 =
σiuiLi − Li

σiLi − Li

+ 1 =
σiui + σi − 2

σi − 1

≤
σiui + σi − 2

σi − 1
+

(ui − 1)(σi − 2)

σi − 1
=

2ui(σi − 1)

σi − 1
= 2ui.

Now total cores assigned to low-utilization tasks,

mlow = m −
∑

τi∈τhigh

(

Ci − Li

Ti − Li

+ 1

)

≥ m −
∑

τi∈τhigh

2ui

≥ 2usum −
∑

τi∈τhigh

2ui = 2
∑

τi∈τlow

ui ◭

The above modification in federated scheduling makes constraint (7) continuous and convex.



A. Saifullah, S. Fahmida, V. P. Modekurthy, N. Fisher, and Z. Guo 2:13

4.3 Energy-Aware Scheduling upon Convex Optimization

By incorporating the results from Sections 4.2.1 and 4.2.2, we can express the new formulation

for determining node speeds as follows.

Minimize

n
∑

i=1

wi

ni
∑

j=1

E(cj
i , sj

i )

subject to

n
∑

i=1

∑ni

j=1
c

j

i

s
j

i

Ti

≤
m

2
;

di[W
1
i ] =

c1
i

s1
i

, ∀τi;

di[W
ℓ
i ] ≥ di[W

k
i ] +

cℓ
i

sℓ
i

, ∀τi, (W k
i → W ℓ

i );

di[W
ni

i ] ≤
Ti

2
, ∀τi;

∑

∀τi with
∑

ni

j=1

c
j

i

Tis
j

i

≥1







∑ni

j=1
c

j

i

s
j

i

− Li(si)

Ti − Li(si)
+ 1







+ 2 ∗
∑

∀τi with
∑

ni

j=1

c
j

i

Tis
j

i

<1

ni
∑

j=1

cj
i

Tis
j
i

≤ m

The objective and all the constraints in the above problem are now convex, making it a

convex optimization problem. Therefore, we can find its optimal solution in polynomial

time through gradient based or Interior Point method using any convex problem solver. In

practice, it is very efficient to use any standard convex optimization tool such as CVX [30],

IPOPT [36], or MATLAB’s fmincon function [4] for an optimal solution.

Note that by solving the above formulation, we jointly determine speed of nodes and the

number of cores for each DAG as well as for all low-utilization tasks. After the core and

speed assignment, every cluster of cores for high-utilization task boils down to scheduling

a single DAG on mi cores. Note that we need to run the above optimization only once.

After determining the running speeds of all nodes, we schedule the tasks on their assigned

cores. Through incorporating DVFS with federated scheduling, the speeds of the cores are

adjusted according to what nodes they are executing. Such speed switching is quite feasible

and common in practice. Modern microprocessors tend to change their DVFS setting rather

frequently in response to rapid changes in the application behavior [59]. Note that at anytime

if a core remains idle, it can be shutdown for energy saving and turned on later when needed.

Low-utilization tasks are treated and executed as if they were sequential tasks. Thus, the

cluster of cores assigned to low-utilization task boils down to multiprocessor scheduling of

sequential tasks. Our speed assignment technique hence considered an entire low-utilization

task as a single node and there was one speed assignment for every low-utilization task. As

we mentioned before, any multiprocessor scheduling algorithm such as partitioned EDF [48],

or various rate-monotonic schedulers [9] with a utilization bound of at most 1
2 can be used

to schedule all the low-utilization tasks on the allocated mlow cores. Since there is much

work on energy-aware real-time scheduling of sequential tasks on multiprocessor, we can also

adopt one of that policy for further reducing energy consumption. One potential approach
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is to adopt the Adaptive DVFS technique proposed in [49] that adaptively determines the

frequency of each task for better performance on both schedulability and energy consumption.

It schedules the tasks with prolonged execution while ensuring that all meet deadlines.

4.4 Other Factors of Energy Consumption

In federated scheduling, there is no preemption across tasks and hence we have not considered

preemption cost. Our proposed solution is optimal only for the formulated problem. Our

formulation has ignored several factors of energy consumption. For example, it has ignored the

time and energy overhead in speed switching as well as the overhead associated with processor

turn on/off. Also, the speed assignment is based on the WCER of the tasks while the actual

execution requirement of a task may vary. Our result provides a strong fundamental basis to

address these issues in the future. In the future, we shall also address energy minimization

considering other key components, i.e., GPU, system bus, and memory/cache.

5 Energy-Aware Global Scheduling

Node speed 

assignment
Scheduler DVFS

Job queueTask set

Figure 5 Energy-aware global scheduling framework.

We now describe our proposed scheduling approach for energy-aware global real-time

scheduling. Here also, our approach is to regulate the frequencies (speed) across the cores and

across different nodes of the same task for minimizing overall energy consumption. Hence,

our approach incorporates an optimization engine and DVFS into the classical real-time

scheduling policies such as EDF and DM and makes them energy-aware. Specifically, once

the execution speeds (and hence the processor frequencies) of the nodes of all DAGs are

determined through optimization, we can adopt an existing global real-time scheduling

policy. Figure 5 shows our energy-aware global scheduling framework. When the processor

frequencies are adjusted based on the nodes’ speed assignments, the adopted scheduling

policy leads to energy minimization. We describe our techniques for global EDF and DM.

5.1 Energy-Aware Global EDF

EDF is a classic and widely adopted dynamic-priority scheduling policy where tasks are

prioritized according to their absolute deadlines. In our approach, the EDF policy is adopted

after assigning the node execution speeds. Once the execution speeds of the nodes of all

DAGs are determined, and the processor frequencies are adjusted accordingly through DVFS,

running EDF policy leads to energy minimization. A node is ready to execute when all its

predecessors have executed. EDF for parallel tasks works as follows: at each time step, the

scheduler first tries to schedule as many ready nodes from all jobs with the earliest deadline

as it can; then it schedules ready nodes from the jobs with the next earliest deadline, and so

on, until either all cores are busy or no nodes are ready.

Formulation. We use the overall energy consumption used in our formulation in Section 4.1

as our objective here also. Similar to that formulation, here also we want to minimize this

objective while ensuring the schedulability under the global EDF scheduling policy. For global
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EDF scheduling of DAG tasks on multicore, the work in [44] derived a capacity augmentation

bound of 2.618. When node W j
i of task τi is assigned speed sj

i , where 1 ≤ j ≤ ni, 1 ≤ i ≤ n,

using a capacity augmentation bound of 2.618, we define Condition 1 and Condition 2 for

schedulability in Remark (2) as Constraints (12) and (13), respectively, in our formulation.

Thus, for global EDF scheduling for energy minimization, we first formulate our problem as

follows. Our objective is to determine speeds si = {s1
i , s2

i , · · · , sj
i , · · · , sni

i }, ∀τi to

Minimize
n

∑

i=1

wi

ni
∑

j=1

E(cj
i , sj

i ) (11)

subject to
n

∑

i=1

∑ni

j=1
c

j

i

s
j

i

Ti

≤
m

2.618
(12)

Li(si) ≤
Ti

2.618
, ∀τi (13)

Convexification. The objective (11) and constraint (12) are convex. By incorporating the

results from Section 4.2.1, constraint (13) can be replaced by three convex constraints using

a new variable d considering W 1
i , W 2

i , · · · , W ni

i as a topological ordering of the nodes of

DAG τi with one source and one sink. Thus, we convert the above problem formulation

as the following convex optimization problem where our objective is to determine speeds

si = {s1
i , s2

i , · · · , sj
i , · · · , sni

i }, ∀τi to

Minimize
n

∑

i=1

wi

ni
∑

j=1

E(cj
i , sj

i ) (14)

subject to

n
∑

i=1

∑ni

j=1
c

j

i

s
j

i

Ti

≤
m

2.618
(15)

di[W
1
i ] =

c1
i

s1
i

, ∀τi (16)

di[W
ℓ
i ] ≥ di[W

k
i ] +

cℓ
i

sℓ
i

, ∀τi, (W k
i → W ℓ

i ) (17)

di[W
ni

i ] ≤
Ti

2.618
, ∀τi (18)

The objective and all the constraints in the above problem are now convex, making it a

convex optimization problem. Therefore, we can find its optimal solution in polynomial

time through any convex problem solver. Note that we need to run the above optimization

only once. After determining the running speeds of all nodes, we execute the tasks based on

EDF scheduling. During execution, a node runs at its assigned speed. Through incorporating

DVFS with EDF scheduling, the speeds of the cores are adjusted according to what nodes

they are executing. Note that at anytime if a core remains idle, it can be shutdown for

energy saving and turned on later when needed.

For the same reasons we explained for the problem in Section 4, the above said solution

is optimal only for the problem formulated in (14)–(18), and is not an optimal solution for

actual energy minimization for a number of issues not addressed in the problem formulation

such as frequency switching overhead, preemption cost in global scheduling, task execution

time uncertainty, and contributions from other components including GPU, system bus, and

memory/cache. As stated before, we shall address these issues in the future.
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5.2 Energy-Aware Global DM

DM is an efficient and widely used fixed-priority scheduling policy for real-time systems

where tasks are assigned priorities according to their (relative) deadlines; the task with the

shortest deadline being assigned the highest priority. Our approach for energy-aware DM

scheduling is similar to that for energy-aware EDF scheduling described above. We first

determine the execution speeds of the nodes. We then incorporate DVFS with DM so that

every node runs at the assigned speed during execution.

For global DM scheduling of DAG tasks on multicore, the work in [44] derived a capacity

augmentation bound of 3.732. Using this bound, we formulate the problem in the same way

as follows considering W 1
i , W 2

i , · · · , W ni

i as a topological ordering of the nodes of DAG τi.

Our objective is to determine speeds si = {s1
i , s2

i , · · · , sj
i , · · · , sni

i }, ∀τi to

Minimize

n
∑

i=1

wi

ni
∑

j=1

E(cj
i , sj

i )

subject to

n
∑

i=1

∑ni

j=1
c

j

i

s
j

i

Ti

≤
m

3.732

di[W
1
i ] =

c1
i

s1
i

, ∀τi

di[W
ℓ
i ] ≥ di[W

k
i ] +

cℓ
i

sℓ
i

, ∀τi, (W k
i → W ℓ

i )

di[W
ni

i ] ≤
Ti

3.732
, ∀τi

The characteristics of the above problem are the same as those of the energy-aware EDF

scheduling. Specifically, this problem is also convex and its optimal solution can be achieved

in polynomial time through any convex problem solver.

6 Evaluation

In this section, we present the evaluation of our energy-minimization policies using synthetic

workloads through simulations. We used a custom-built simulator developed in MATLAB.

We conduct simulation for both federated scheduling and global scheduling.

6.1 Simulation Setup and Evaluation Metrics

We generated DAG task sets using the Erdös-Rènyi method G(ni, p) where ni is the number

of nodes and p is the probability of adding edges between nodes [25]. The value of ni was

chosen randomly from range [5, 10]. If a DAG was disconnected, we added the minimum

number of edges needed to make it connected. Each node’s execution requirement was

randomly chosen from range [5, 10]. We assign harmonic period Ti to a task τi by finding

the smallest value x such that critical path, Li <= 2x and set Ti to be either 2x or 2x+1. Ti

value was chosen randomly to get a fair distribution of high and low utilization tasks in a

task set. Harmonic periods were used to reduce the time needed for collecting the results.

We added tasks to a set until its total utilization was achieved. We show the simulation

results for an average over 900 task sets using 20 cores (m). To compute the node speeds,

we use MATLAB’s fmincon which provides an optimal solution of our convex problem.
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The energy consumption of a task set is computed based on our objective function. We

then compute the ratio of the energy consumption and the hyper-period to get the average

power consumption and use it as our key metric for evaluation. In our proposed approach,

the optimization problem uses a schedulability test as a constraint that guarantees that

a task is always schedulable (assuming no extra system overhead). Thus, evaluation in

terms of schedulability is redundant and is not shown when our approaches are compared

against traditional (energy-unaware) real-time scheduling policies under similar schedulability

conditions. However, under federated scheduling, we compare our approach against an

additional baseline proposed in [17] that trades energy consumption for schedulablity but

cannot pre-set the number of cores as an input. For this particular case, schedulability

becomes a differentiating factor and will be used as a metric for evaluation. Specifically, our

approach always considers schedulable tasks and outperforms the baseline (Section 6.2).

6.2 Results for Energy-Aware Federated Scheduler
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Figure 6 Schedulability under energy-aware federated and existing approach.

We first compare the performance of the energy-aware federated scheduler against the

energy-aware simplified federated scheduling, called intra-DAG merging, proposed in [17].

As discussed before in Section 2, in this intra-DAG merging approach, the limitation on

number of concurrent tasks degrades the schedulability of tasks while our approach ensures

schedulability of any feasible task set. To demonstrate their schedulability difference, we

generate 900 random DAG task sets with utilization between 0.1m and m. We evaluate

the performance under varying number of tasks. Figure 6 shows that intra-DAG merging

performs poorly in schedulability ratio (i.e., the fraction of schedulable cases) compared to our

energy-aware federated scheduler. When the number of tasks reaches 20, the schedulabilty

ratio of the intra-DAG merging approach is 0, while our scheduler can always schedule the

generated task set. Since the performance of Intra-DAG merging is very poor in terms of

schedulability, we do not consider it in comparing energy-consumption.

Figure 7a shows the results for our energy-aware federated scheduler for 900 task sets

under varying total utilization of each set in the range [2, 18]. All other parameters are fixed

as before. We compare the performance with (energy-unaware) federated scheduler. We

considered the speed of tasks running in federated scheduler to be 2.0. The figure shows that

our energy-aware federated scheduler saves up to 62.95% of the power when compared to

federated scheduler. Figure 7b shows the energy performance under varying p. We see that

our energy-aware federated scheduler consistently outperforms federated scheduler and can

achieve up to 57.95% energy saving compared to the latter.
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Figure 7 Performance of Energy-Aware Federated Scheduler.

6.3 Results for Energy-Aware Global Scheduling

We now present the results under global EDF and global DM scheduling.

6.3.1 Energy Savings under Energy-Aware Global EDF

In Figure 8a, we show the average power consumption over a hyper-period for 900 DAG

task sets and vary the total utilization from 2 to 18. For a moderately dense DAG, we set

p = 0.4. We compare our energy-aware global EDF policy with traditional energy-unaware

global EDF (named “EDF” subsequently) scheduling as, to our knowledge, no approach has

yet been proposed for global energy-aware scheduling of parallel tasks for multicore. Under

EDF, all tasks run at the speed-up bound, 2.618, since a speed of 2.618 always ensures

schedulability of a feasible task set. Figure 8a shows that the average power consumption of

our approach increases with an increase in total utilization. This is due to the reduction in

available slack with the increase in total utilization. From this result, we can see that our

energy-aware EDF consumes up to 68.17% less power compared to EDF. Figure 8b shows

the performance under different DAG structures by varying edge probability p uniformly in

range [0.1, 0.9] setting total utilization at 10. Our approach is consistently better than EDF

and can achieve up to 62.4% power saving compared to EDF.
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Figure 8 Performance of Energy-Aware Global EDF.
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6.3.2 Energy Savings under Energy-Aware Global DM

In Figure 9a, we show the average power consumption in our energy-aware DM against

traditional energy-unaware DM (named “DM” subsequently) under varying total utilization.

Here our parameters are chosen similar to the EDF case. We consider the speeds of all task

running under DM to be 3.732 which is the corresponding speed up bound for ensuring

schedulability under DM. As the speed-up bound for DM is higher than EDF, we see

an increase in average power consumption for both energy-aware DM and DM. However,

our energy-aware DM consumes up to 64.10% less power than DM. Figure 9b shows the

performance under different DAG structures by varying p uniformly in range [0.1, 0.9] setting

total utilization at 10. As the figure shows our approach is consistently better than DM

and can achieve up to 62.1% power saving compared to DM. For both schedulers, the DAG

structure does not show observable effect in performance.
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Figure 9 Performance of Energy-Aware Global DM.

7 Proof of Concept

Although many AMD and Intel processors support per-core DVFS, we could not use those

in PC/Laptop for our experiment as we found it quite challenging to accurately measure

the CPU power consumption due to interference from numerous sources such as peripheral

devices and other programs. Hence, we have developed a proof of concept system for our

results using multiple ODROID boards [54] where this issue is less severe.

7.1 Proof of Concept System Setup

ODROID board equips an Exynos5 Octa 5422 SoC consisting of two quad-core clusters – a

“LITTLE” cluster with four ARM Cortex-A7 and a “big” cluster with four ARM Cortex-

A15. We have used Ubuntu 16.04.1 LTS MATE operating system with Linux kernel 4.14.

Cores of a cluster operate at the same frequency and have the same voltage. Since a single

ODROID board does not support per-core DVFS, we created our proof of concept system as

a multiprocessor platform by connecting four boards where we used one core from each board.

Thus our setup uses four cores from four different boards to enable per-core DVFS. Such a

proof of concept platform was made up only to enable per-core DVFS-based experiment.

Figure 10a shows our experimental setup and Figure 10b shows its architecture as a

multi-processor environment. We connected each ODROID board to a central server that

resides on a MacBook Pro via a wired LAN. The central server schedules nodes from all

jobs, based on the proposed energy-aware federated scheduler, on the clients. Each node is
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(a) Experimental Setup.

Server

ODROID XU4

Client

(b) Experimental Architecture.

Figure 10 Experiment Setup and Architecture.

emulated by a C program that is executing an empty for loop for a specified time. Since

our focus is to measure energy consumption, we rely only on an empty for loop to expend

processor cycles which consumes energy similar to a regular instruction execution while

avoiding any cache/memory overheads. The scheduler located at the server maintains the

dependencies among nodes. Thus, a node was executed only when all of its predecessor

nodes had finished execution. Upon receiving a request from the server, the ODROID client

executes the C program as a process on a dedicated core (i.e., without interference from

OS or other programs). In our implementation, we used CPUFREQ-SET program from

CPUFREQUTILS package for setting the frequency of each CPU. The overhead from the

client program and driver is very low and can be included in the context switch cost.

We set the frequency of both the big and LITTLE cluster at 600Mhz by default. Upon

receiving a request from the server, the client changes the frequency of the LITTLE cluster to

the requested value and executes the program for a specified duration. Upon its completion,

the frequency is scaled back to 600Mhz. The choice of 600Mhz stems from the observations

that below 600Mhz the operating system struggles to schedule processes on time. Note that

we do not put the core on the ODROID board that is executing the client to sleep as it

incurs additional time overhead which can affect the schedulability of a task set.

We used ODROID’s smartpower device [6] for measuring power consumption during

our experiments. The smartpower device uses a discrete sampling of voltage and current

to compute the instantaneous power and total energy consumption for the entire board. It

transmits these values over WiFi, which is collected manually for the hyper-period of the

task set. Note that the energy measurement over the hyper-period for one board includes the

total energy consumed by context switches, OS interferences, and peripheral chips/devices

connected to the ODROID board. Since we use four ODROID boards, the number of

peripheral devices and their static energy consumption scales accordingly.

7.2 Implementation and Experimental Methodology

We generated 4 DAG task sets using the approach described in Section 6.1. The worst-case

execution time of each node was chosen randomly from [27s, 54s, 81s, 108s, 135s], which

corresponds to [2, 4, 6, 8, 10] × 109 empty for loop iterations on 0.7Ghz . The task sets for

experiments had total utilization of 0.3m, 0.4m, 0.5m and .6m (m = 4). The value of p was

fixed at 0.6. All other parameters were kept the same as simulation. The speed of each

node in a task was calculated using MATLAB’s fmincon. Here also we evaluate in terms of

average power consumption which is the average power in Watts consumed by the platform

during the execution of one task set up to its hyper-period. We measured the total energy

consumed over the hyper-period and used it to compute the average power.
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7.3 Proof of Concept Results
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Figure 11 Performance of energy-aware federated scheduling.

Figure 11 shows that the average power consumption of the energy-aware federated

scheduler is lower than the existing energy-unaware federated scheduler (named “federated

scheduler” subsequently) at all values of total utilization. There is up to 0.159 Watts of

power savings in our approach. Due to the randomness of the task set generation policy, the

task set with utilization value 2 has tasks with smaller critical path length compared to the

task set with utilization 2.4. (This is due to our task generation policy that connected two

nodes in the graph based on whether a randomly generated number is less than 0.6 or not.

For task at utilization 2.4, the random task generator did not add as many edges as the

task at utilization 2 which resulted in smaller critical path length.) This resulted in higher

frequency assignment for all nodes in the former. Thus, the average power consumption for

task set with utilization 2.4 was lower than that of task set with utilization 2.

Figure 11 shows the average power consumption for both the baseline and the proposed

approach is in the order of 6 − 7 Watts. This high power consumption is due to the

static power consumed by input devices (like keyboard and mouse), communication chips,

RAM/memory modules, and the big cluster operating 600Mhz on each ODROID board. In

a processor with per-core DVFS, the static power consumption would be significantly lower

than that exhibited by the proof of concept platform, and hence the average power savings

as a percentage of the baseline power consumption will be significantly higher. Due to the

high static power consumption of our experimental platform, the proof of concept results

only show energy savings but are not indicative of the percentage of energy savings that can

be obtained through the proposed approach.

8 Conclusion and Future Directions

In this paper, we have proposed energy-aware real-time scheduling for parallel tasks. We

have demonstrated its performance through simulations as well as a proof of concept system

evaluation on a physical platform. The adopted resource augmentation bounds only provide

a sufficient condition for schedulability. Any improvement over the resource augmentation

bounds in the future would lead to more energy efficient scheduler under our framework. We

have limited the scope of our results to CPU energy consumption ignoring several practical

factors. For example, we have ignored the overhead in processor speed switching as well as

turn on/off. Also, the speed assignment is based on the worst-case execution requirement of

the tasks while the actual execution requirement of a task may vary across runs/instances.
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Yet, our results provide a strong fundamental basis to incorporate these considerations into

future research. In the future, we shall also take into account all key components, i.e., CPU,

GPU, system bus, and memory/cache, that contribute to energy consumption.
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