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Abstract
Layer stripping is a method for solving inverse boundary value problems for
elliptic PDEs, originally proposed in the literature for solving the Calderón
problem of electrical impedance tomography (EIT), where the data consist of
theNeumann-to-Dirichletoperator on the boundary.Defining a tangent–normal
coordinate system near the boundary, the data are extended to a family of bound-
ary operators on tangential surfaces inside the body, and it is shown that the
operators satisfy a non-linear Riccati type differential equation with respect to
the normal coordinate. The layer stripping process consists of a sequence of
two alternating steps: the conductivity near the current boundary is estimated
from the spatial high-frequency limit of the boundary data, and the boundary
operator is propagated through a thin layer further into the domain via the Ric-
cati equation. This way, the unknown conductivity in the interior of the domain
is estimated layer by layer starting from the boundary and moving inward. The
ill-posedness of the EIT problem manifests itself in such high sensitivity of the
backwards Riccati equation to errors in the boundary data to cause the solutions
to blow up in finite time, thus requiring regularization. In this article, we formu-
late the layer stripping process in the framework of Bayesian inverse problems,
andwe revisit the implementation in the light of Bayesian filtering.More specif-
ically, we recast the related inverse boundaryvalue problemas a state estimation
problem, and propose an algorithm for its numerical solution based on ensemble
Kalman filtering (EnKF). The new Bayesian layer stripping approach that we
propose is quite robust, derivative-free and intrinsically suited for the quantifi-
cation of uncertainties in the estimate. Furthermore, we show that the algorithm
can be extended to realistic data collected by using a finite number of contact
electrodes.
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1. Introduction

The goal in electrical impedance tomography (EIT) inverse problem is to reconstruct the
unknown electric conductivity distribution inside a body from current–voltage measurements
at the boundary. The measurements of the data can be done either by applying on the bound-
ary a set of known electric current densities, representing the Neumann data of the governing
differential equation, and measuring the resulting voltage distributions, comprising the Dirich-
let data, or vice versa, by applying known voltage distributions and measuring the resulting
electric current densities. Ideally, the former measurement modality would give the Neumann-
to-Dirichlet operator,while the latter would give its inverse, theDirichlet-to-Neumannoperator
of the governing PDE. The arising EIT inverse problem, usually referred to as the Calderón
problem [8], has been extensively studied in the literature [3, 32, 34, 35, 46]. The boundary
operators are idealizations of the actual data, collected by attaching to the boundary of the body
a finite number of contact electrodes and applying either known currents or known voltages
on them, yielding the discrete counterpart of the boundary operator, the admittance matrix
or the resistance matrix. The mathematical model for the electrode data is well established
[16, 41], and the connection between the idealized and practical measurements, although not
straightforward, is well understood [11, 23, 24].

Several numerical implementations of the Calderón problem can be found in the literature.
While practical implementations usually start with the realistic electrode model, sophisticated
algorithms based on idealized data have been widely studied: among them, we mention the
layer stripping method [14, 15, 40, 44], the d-bar method [27], the inclusion method [26], and
the sampling method [6, 7] and its generalization, the factorization method [31]. In this paper,
we reformulate the layer stripping algorithm in the Bayesian framework, and leverageBayesian
filtering ideas [30] to propose a novel computational algorithm for its implementation. In addi-
tion to showing how the approach naturally provides a way to quantify the uncertainty in the
computed solutions, we also outline how it can be used with realistic electrode data.

The original layer stripping algorithm was based on two basic ideas. By using a tan-
gent–normal coordinate system near the boundary, a family of artificial boundary operators
were defined on fictitious tangential boundary surfaces inside the domain. It was shown that
the operator family parametrized with the normal coordinate satisfy a Riccati type operator
equation, thus allowing in principle the propagation of the boundary data into the domain.
However, the propagation would require the knowledge of the conductivity inside the domain.
To overcome this obstacle, it was shown that the high spatial frequency asymptotics of the
boundary operator determines the conductivity at the boundary surface. By extrapolating the
value into a thin layer underneath the surface, the boundary data are propagated through the
layer by the Riccati equation. In this way, the conductivity in the interior of the domain is esti-
mated layer by layer, peeling the domain in an onion-like fashion. The layer stripping idea has
been generalized to other PDEs [45] and systems of PDEs of elliptic type [36, 42].

Implementation of the original layer stripping algorithm poses several challenges. The con-
tinuation of the Cauchy data, and therefore the propagation of the boundary operator whose
graph is the complete Cauchy data, is a highly ill-posed process that often leads to a blow-up of
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the solutions. Furthermore, the conductivity reconstruction is based on high frequency asymp-
totics of the operators, whereas it is understood that the high frequency components deteriorate
most rapidly in the propagation process. In [40], these problems were addressed by a judicious
choice of the discretization scheme in the normal direction and a protocol for discarding dete-
riorated high frequency components while marching in. Although the viability of the method
was illustrated with computed examples, the instability still remains a characteristic of the
approach.

In this article, the layer stripping idea is revisited from the Bayesian point of view. Rather
than propagating the boundary data inside the body, we consider a forward model in which
unknown fictitious boundary data defined on an artificial boundary inside the domain are prop-
agated outwards through a layer of unknown conductivity. The estimation of the fictitious
boundary data, together with the conductivity of the layer is viewed as an inverse problem
in a Bayesian setting. Moving the artificial boundary step by step deeper in the domain results
in a sequence of nested inverse problems that can be recast as a Bayesian filtering problem, and
using ensemble Kalman filtering (EnKF) techniques for its solution, we are able to perform the
parameter estimation by a simple linear operation over an ensemble. The resulting algorithm
is related to recently studied EnKF based derivative free inversion methods [13, 25, 39]. More-
over, applying similar ideas as in [1], we also incorporate the numerical approximation error
of the Riccati equation in the filtering scheme. The viability of the method is illustrated by
computed examples. Finally, we extend the method to the complete electrode data, bypassing
the ill-posed process of approximating the continuous boundary data from true measurement
data.

2. Layer stripping

We start by reviewing the ideas behind the layer stripping algorithm. For simplicity, the dis-
cussion is restricted to the case where the domain is a two-dimensional disc with unit radius,
Ω = {(x1, x2) | x21 + x22 < 1}, although the method can be used with general domains with C2-
boundary provided that a tangent–normal coordinate system is available. The existence of such
system for general domains can be shown by the Riemann mapping theorem.

Let σ ∈ C1(Ω), and assume that σ � σ0 > 0, for some constant σ0. Using the notation

H1/2
0 (∂Ω) = {w ∈ H1/2(∂Ω) |

∫
∂Ω

wdS = 0},

we consider the boundary value problem

∇ · (σ∇u) = 0 inΩ (1)

σ
∂u
∂n

= f on ∂Ω, f ∈ H1/2
0 (∂Ω), (2)

with the ground condition∫
∂Ω

udS = 0.

Standard elliptic regularity results ([19], chapter 6.3.2) guarantee that the solution is in
H2(Ω). In fact, the assumptions about σ can be slightly weakened to Lipschitz continu-
ity (see [22], theorem 3.1.3.1). Given the solution u ∈ H2(Ω) of the above problem, the
Neumann-to-Dirichlet operator

W :H1/2
0 (∂Ω)→ H3/2(∂Ω), f �→ [u]r=1,
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defines the noiseless boundary data. The inverse problem is to estimate σ from noisy observa-
tions ofW.

2.1. Propagation of the boundary data

The first step in the layer stripping algorithm consists of embedding the boundary operatorW
into a continuous family of operators. Let u = u(r, θ) be the solution of (1) and (2) expressed
in polar coordinates. For 0 < R � 1, we re-parametrize u and σ restricted to a disc of radius R
by defining the notations

uR(t, θ) = u(Rt, θ), σR(t, θ) = σ(Rt, θ), 0 � t � 1, 0 � θ < 2π.

Defining the scaled Cartesian coordinates as

ξ = (ξ1, ξ2) = (t cos θ, t sin θ) ∈ Ω,

it is straightforward to check that

∇ξ · (σR∇ξuR) = 0 inΩ.

We define a continuous family of Neumann-to-Dirichlet operators,

WR :
[
σR

∂uR
∂t

]
t=1

�→ [uR]t=1.

Denoting by 〈· , ·〉 the duality between Hs(∂Ω) and H−s(∂Ω), s > 0, extending the standard
L2(∂Ω) inner product, we define

H−s
0 (∂Ω) = {w ∈ H−s(∂Ω) | 〈w, 1〉 = 0}.

The operators WR constitute a family of pseudo-differential operators with the smoothing
property

WR :Hs
0(∂Ω)→ Hs+1(∂Ω), − 1/2 � s � 1/2.

The noiseless boundary dataW can be identified asW = W1.
Consider the complete Cauchy data

UR = UR(θ) =

[
vR
wR

]
∈ H3/2(∂Ω)× H1/2

0 (∂Ω),

where vR = vR(θ) and wR = wR(θ) are defined as

vR = [uR]t=1, wR =

[
σR

∂uR
∂t

]
t=1

.

To calculate the derivatives of these two functions with respect to Rwe begin by observing that
vR(θ) = u(R, θ), and therefore

v̇R =
∂vR
∂R

=
1

Rσ(R, θ)

[
σ(Rt, θ)

∂

∂t
u(tR, θ)

]
t=1

=
1

Rσ(R, θ)
wR,

The derivative of the second component can be computed in a similar manner, first writing

ẇR =
∂wR

∂R
=

∂

∂R

[
σ(R, θ)R

∂u
∂R

(R, θ)

]
,
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and, expressing the differential equation (1) in polar coordinates,

ẇR = − 1
R

∂

∂θ

[
σ(R, θ)

∂

∂θ
u(R, θ)

]
= − 1

R
∂

∂θ

[
σ(R, θ)

∂

∂θ
vR

]
,

which is a well defined element of L2(Ω) since u ∈ H2(Ω).
By defining the operators

GR :H
1/2
0 (∂Ω)→ H1/2(∂Ω), ϕ �→ 1

R
σ(R, ·)−1ϕ,

SR :H
1/2
0 (∂Ω)→ H1/2(∂Ω), ϕ �→ 1

R
σ(R, ·)ϕ,

and

D :Hs(∂Ω)→ Hs−1
0 (∂Ω), ϕ �→ ∂ϕ

∂θ
, s � 1/2,

we arrive at the identity

U̇R =

[
v̇R
ẇR

]
=

[
0 GR

−DSR D 0

]
U ∈ H1/2(∂Ω)× H−1/2

0 (∂Ω).

The mapping properties of GR and SR can be verified, e.g., by interpolation between L2(∂Ω)
and H1(∂Ω) [4].

Differentiating both sides of the equationWRwR = vR with respect to R leads to

ẆRwR +WRẇR = v̇R,

and after substituting the formulas for the derivatives, we obtain

ẆRwR = v̇R −WRẇR =
1
R
(GRwR +WR DSR DvR)

=
1
R
(GR +WR DSR DWR)wR,

thus proving that the Neumann-to-Dirichlet operator satisfies the Riccati equation

R
dWR

dR
= GR +WR DSR DWR. (3)

The above equation can be understood as an operator equationH1/2
0 (∂Ω)→ H1/2(∂Ω). Indeed,

the mapping properties of the non-linear term follow as

H1/2
0 (∂Ω)

WR−−→H3/2(∂Ω)
D−→H1/2

0 (∂Ω)
SR−−→H1/2(∂Ω)

D−→H−1/2
0 (∂Ω)

WR−−→H1/2(∂Ω),

The Riccati equation is what makes it possible to continue the boundary data into the domain
Ω, assuming that the conductivity, and therefore the operators GR and SR are known. The esti-
mation of the conductivity at the boundary can be based on the high frequency asymptotics as
shown below.
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2.2. Boundary reconstruction

Physically, a highly oscillatory current density applied on the body surface penetrates only a
small depth, and therefore the corresponding voltage density depends only on the conductivity
at or near the boundary. This idea can be expressed more precisely in terms of the entries of
the matrix representation of WR in the Fourier basis of the boundary operator. The following
limit result was proved in [40]: we have

lim
|k|→∞

|k|〈ei(n+k)θ,WRe
ikθ〉 = 1

2πR

∫
einθ

1
σ(R, θ)

dθ, (4)

that is, the nth Fourier coefficient of the reciprocal of the conductivity, or resistivity, is found
as a limit of the entries in the nth diagonal of the above infinite matrix.

2.3. Layer stripping algorithm

For completeness, we briefly summarize the original layer stripping algorithm in terms of the
results above. Given the boundary operatorW = W1, (4) offers a way to estimate the conduc-
tivity at the outer boundary. Assuming that the conductivity does not vary rapidly in the radial
direction, the boundary conductivity can be approximately extrapolated to a thin subsurface
layer of thickness δ 	 1 and the boundary dataW1 can be propagated through the layer using
a numerical approximation of the Riccati equation (3), yielding an approximation ofW1−δ. At
this point, one can use (4) again to find a numerical approximation for σ(R− δ, θ). Continuing
this process recursively, the data is propagated from the boundary to the inside of the domain
Ω layer by layer, until the conductivity is approximately reconstructed in the entire domain.

Since the algorithm relies on the continuation of the Cauchy data and the high frequency
asymptotics, two procedures known for their intrinsic ill-posedness, the numerical challenges
that need to be overcome are significant. In [40], the regularization comprised a judicious
choice of the marching steps and a scheme for discarding high frequency components when
they became unreliable. Our main novel contribution to layer stripping is a different way for
dealing with the inherent ill-posedness. Before presenting the new proposed algorithm, we
revisit the numerical approximation of the Riccati equation.

3. Matrix approximation of the Riccati equation

In the following, we derive a finite dimensional approximation of the Riccati equation and
discuss a related, computationally efficient propagation scheme.

Let n > 0 be a given even integer. Define the n trigonometric basis vectors orthonormalwith
respect to the L2(∂Ω) inner product,

ϕj(θ) =
1√
π
cos jθ, ϕn/2+j(θ) =

1√
π
sin jθ, j = 1, 2, . . . , n/2,

and denote by WR, GR, SR, and D the matrix approximations of the operators WR,
GR, SR, and D respectively. More specifically, letting Hn = span{ϕj, 1 � j � n}, for any
f =

∑n
k=1 fkϕk ∈ Hn,

〈ϕj,WR f 〉 =
n∑
j=1

[
WR

]
jk
f k,

[
WR

]
jk
= 〈ϕj,WRϕk〉,

the brackets indicating the natural dual pairing. The other matrices are defined in a
similar manner with expressions given below. Let R > 0 be fixed, σ = σ(R, θ) and let
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ρ = ρ(R, θ) = 1/σ(R, θ) denote the resistivity for fixed radial variable R. The sine and cosine
Fourier coefficients of the function ρ are denoted by

ρ(c)j =
1
π

∫ 2π

0
ρ(R, θ) cos jθdθ,

ρ(s)j =
1
π

∫ 2π

0
ρ(R, θ) sin jθdθ.

Then, for f =
∑n

k=1 fkϕk ∈ Hn, we have

〈ϕj, ρf 〉 =
n∑
j=1

fk〈ϕj, ρϕk〉 =
n∑

k=1

[GR]jk f k,

where the matrix GR is

(5)

(6)

with γ j = 1+ δj0.
Similarly,

〈ϕj, σf 〉 =
n∑
j=1

f k〈ϕj, σϕk〉 =
n∑

k=1

[SR]jk f k,

where

(7)

(8)

where σ(c)
j and σ(s)

j denote the cosine and sine Fourier coefficients of the function σ(R, θ).
Finally,

〈ϕj,Df 〉 =
n∑
j=1

f k〈ϕj,Dϕk〉 =
n∑

k=1

[D]jk f k,

7
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(9)

where d ∈ R
n/2 is a diagonal matrix with main diagonal entries {1, 2, . . . , n/2}.

3.1. Grassmannian flow and Möbius solver

In this subsection, we summarize our numerical solver for the Riccati equation, which is
based on [38]. We begin by considering the problem in an abstract setting. Let z = z(R) ∈ R2n

represent the nth order Fourier approximation of the Cauchy data, that is,

z =

[
z1
z2

]
=

[
v
w

]
, v =

⎡⎢⎣v1...
vn

⎤⎥⎦ , w =

⎡⎢⎣w1
...
wn

⎤⎥⎦ ,

with

vj =

∫ 2π

0
[uR]t=1ϕjdθ, wj =

∫ 2π

0

[
σR

∂uR
∂t

]
t=1

ϕjdθ.

Observe that we do not include the zero frequency component in v as the absolute voltage level
is physically irrelevant. Consider the action of a matrix A ∈ GL(2n) on the symplectic linear
space R2n,

z =

[
z1
z2

]
�→ z′ = Az =

[
A11 A12

A21 A22

] [
z1
z2

]
.

If the vector components z1 and z2 are connected through a linear relation,

z1 = Wz2, (10)

whereW = WR can be identified with an element in the Grassmannian Grn(2n), we have

z′1 = A11z1 + A12z2 = (A11W+ A12)z2

z′2 = A21z1 + A22z2 = (A21W+ A22)z2.

Assuming that (A21W+ A22) is invertible, we obtain a linear relation between the transformed
vector components,

z′1 = (A11W+ A12)(A21W+ A22)
−1z′2.

Therefore the action of A ∈ GL(2n) induces a non-linear transformation on Grn(2n), given by

W �→ W′ = (A11W+ A12)(A21W+ A22)−1.

If z = z(R) ∈ R2n satisfies a linear differential equation,

ż =
∂z
∂R

= Cz =
[
C11 C12

C21 C22

] [
z1
z2

]
, (11)
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differentiating both sides of (10), we obtain

ż1 = Ẇz2 +Wż2,

or

Ẇz2 = ż1 −Wż2.

which, upon substitution yields

Ẇz2 = ż1 −Wż2

= C11z1 + C12z2 −W(C21z1 + C22z2)

=
(
C11W+ C12 −WC21W−WC22

)
z2,

proving thatW satisfies the Riccati equation

Ẇ = C12 + C11W−WC22 −WC21W. (12)

Thereforewe conclude that the linear evolution model (11) inR2n induces a Riccati a flow (12)
on the Grasmannian Grn(2n).

Combining the two observations aboveyields a numerical propagationscheme of theRiccati
equation. Consider the first order forward Euler scheme for (11),

z(R+ h) ≈ z(R)+ C(R)z(R)h = (I+ hC(R))︸ ︷︷ ︸
=A

z(R).

In light of the previous analysis, we define the first order propagation ofW = WR,

WR+h ≈ (A11WR + A12)(A21WR + A22)−1

= ((I+ hC11)WR + hC12)(I+ hC22 + hC21WR)−1, (13)

which is well defined for |h| small enough.
For the Neumann-to-Dirichlet operator, the matrix,

C = CR =
1
R

[
0 GR

−DSR D 0

]
defines the linear evolution model for the approximate Cauchy data, hence the induced time
step propagator in the Grassmannian is

WR+h =

(
WR +

h
R
GR

)(
I− h

R
DSRDWR

)−1

. (14)

This propagation scheme is referred to as the first order Möbius solver. To prove the well-
posedness of the propagation step for h > 0, we need the following result.

Lemma 3.1. All eigenvalues of the matrix DSRDWR are real and negative.

Proof. For any ζ ∈ Cn, we introduce the notation

fζ =
n∑
j=1

ζjϕj ∈ Hn,

9
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where Hn has been extended to complex coefficients.
Let μ ∈ C be an eigenvalue and α ∈ Cn a corresponding eigenvector of DSRDWR,

DSRDWRα = μα.

Multiplying both sides from the left by (WRα)H, where the superscript H indicates Hermitian
transpose, we get

αHWT
RDSRDWRα = μαHWT

Rα.

Since the operatorWR is symmetric positive definite (see [11]), we have

αHWT
Rα = 〈 f α,WR f α〉 > 0,

where the duality is extended to complex vectors by taking the complex conjugate of the first
term. In view of the symmetry of the matrixWR,

αHWT
RDSRDWRα = (WRα)HDSRD(WRα),

and letting β = WRα, this expression can be written as

(WRα)
HDSRD(WRα) = 〈 f β ,DSRDfβ〉 = −〈Dfβ , SRDfβ〉

= −
∫ 2π

0
σ(R, θ)

∣∣∣∣∂fβ(θ)∂θ

∣∣∣∣2dθ < 0.

Therefore,

μ = −
∫ 2π
0 σ(R, θ)

∣∣∣ ∂fβ (θ)∂θ

∣∣∣2dθ
〈 f α,WR f α〉

< 0,

thus proving the claim. �
An immediate consequence of the lemma is that the propagation in the forward direction

(h > 0) with (14) is well defined, whereas in the backward direction (h < 0) there is no guar-
antee that the spectral interval of the matrix is bounded away from the origin. Moreover, due
to the roughening properties of the matrixDSDWR, whose eigenvalues are increasing, numer-
ical instabilities may appear already for h of small magnitude if the size of the matrix is large.
However, as pointed out in [38], the singularities of the Riccati equation are coordinate singu-
larities of the compact Grassmannian manifold, and the Möbius solver, unlike solvers based
on Runge–Kutta or linear multistep methods, has no difficulties marching through them.

3.1.1. Second order scheme. For purposes of estimating the approximation error of the first
order numerical scheme, a higher order method is needed. Following the ideas in [38], we first
integrate the equation (11),

z(R+ h) = z(R)+
∫ h

0
C(R+ h1)z(R+ h1)dh1,

and by iterating, we arrive at the series representation

z(R+ h) = z(R)+
∞∑
n=1

∫
· · ·

∫
0�h1�···�hn

C(R+ hn) · · ·C(R+ h1)z(R)dh1 · · · dhn.

10
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Truncating the series at n = 2 and approximating the integrals over the interval 0 � h1 � h
(n = 1) and over the triangle {(h1, h2) | 0 � h2 � h1 � h} (n = 2) by evaluating the matrix
functions C at the center points of the interval, we get a second order approximation,

z(R+ h) ≈
(
I+ hC(R+ h/2)+

1
2
h2C(R+ h/2)2

)
z(R),

By an argument analogous to that used for the first order Euler approximation, this linear evo-
lution of z yields a second order accurate Möbius scheme for the matrix W. Further details
concerning e.g., stiffness control, can be found in [38].

4. Layer stripping and Bayesian filtering

As pointed out above, the ill-posedness of the EIT inverse problem manifests itself as insta-
bility in the solution of the backwards Riccati equation, marching from the boundary to the
interior of the domain, while solving the forward Riccati equation, i.e., marching from the
inside of the domain to the boundary, is a stable process [40]. In this section, we reformulate
the layer stripping as a Bayesian inverse problem and propose a numerical algorithm based
on Bayesian filtering methods, and in particular, on the EnKF algorithm. In the Bayesian set-
ting, all unknown parameters are modeled as random variables, with the belief of their values
encoded in terms of probability distributions [12, 30].

Before presenting the details of the Bayesian setting, we define a suitable parametrization
of the discrete problem, and derive a sequential algorithm in which the conductivity estimate
is updated layer by layer inwards starting from the exterior boundary.

4.1. Parametrization

We subdivide the unit disc Ω into a finite number K of concentric annuli of radial thickness
equal to the radius of the central disc. Letting h = 1/(K+ 1) be the radial resolution, and
setting

1 = R0 > R1 > · · · > RK > 0, Rk = 1− kh,

we denote the annuli by

Ak = {(r, θ) | Rk < r < Rk−1}, 1 � k � K.

We approximate the conductivity in each annulus by a function σ that is independent of the
radial coordinate r, hence becoming a function of the angular coordinate alone, i.e.,

σ |Ak (r, θ) = σk(θ), Rk < r < Rk−1.

For each annulus Ak, 1 � k � K, we define the parameter vectors λk ∈ Rnk ,

(λk)� = log
σk(θ�)
σ0

, θ� =
�

nk
2π 1 � � � nk, (15)

with λK+1 = log σ(0)
σ0

, ensuring that the estimated conductivity is strictly positive. We refer to
σ0 as the background conductivity. The value λK+1 parametrizes the constant value of σ inside

11
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Figure 1. The discretization of the unit disc with K = 30 layers. The angular discretiza-
tion is chosen so that the radial and angular discretization intervals are approximately
equal.

the disc of radius RK. To attain uniform resolution, the number nk of discretization points in
each annulus changes with its distance from the center, that is

nk =

⌊
2πRk
h

⌋
.

In this manner we obtain a radial pixel map of the conductivity. Figure 1 shows the discretiza-
tion of the disc when K = 30.

Consider the n× nmatrix approximationof theNeumann-to-Dirichlet operator on the circle
of radius r = Rk and introduce the notation

wk ∈ R
n2 , wk = vec(WRk ), 0 � k � K,

where the operator vec :Rn×n → Rn2 stacks the columns of the n× n matrix into a vector of
length n2. Observe thatw0 represents the matrix approximation of the noiseless boundary data.
Furthermore, we define the aggregate vectors

λ(k) =

⎡⎢⎢⎢⎣
λ1

λ2
...
λk

⎤⎥⎥⎥⎦ ∈ R
n1+···+nk , w(k) =

⎡⎢⎢⎢⎣
w1

w2
...
wk

⎤⎥⎥⎥⎦ ∈ R
k n2 .

Consider the initial value problem in the annular domain which is the union of k outmost annuli
A1, . . . ,Ak,

dw
dR

= F(R,w,λ1, . . . ,λk), Rk < R < 1, (16)

w(Rk) = wk, (17)

12
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Figure 2. Schematic picture of the algorithm. The matrix W1 = WR=1 represents the
boundary data. In the first step (left), we estimate the interior boundary value WR1 and
the conductivity σ1 in the outermost ring from which we proceed to estimate the next
interior boundary value WR2 as well as the conductivity σ2. In the process, the previous
estimate for σ1 may be updated.

where F is the quadratic function in w corresponding to the Riccati equation under the current
parametrization. Assume that the value of w at R = R0 = 1 is observed with an additive noise,
or, equivalently, that we have an observation model

b = w0 + ε ∈ R
d, (18)

where d = n2 and the random vector ε represents the noise. For the sake of definiteness, we
assume that ε can be modeled as a normally distributed random variable with mean μ and
covariance C ∈ Rd×d.

4.2. Bayesian formulation

Our goal is to develop a sequential algorithm to estimate the parameter vectors λj, starting
from the boundary and marching inside the domain. In the Bayesian paradigm, solving the
inverse problem is tantamount to finding the posterior distribution that expresses the proper-
ties of the unknowns by correcting the a priori belief encoded in the prior distribution, in light
of the contribution coming from the observations expressed via the likelihood. Before formu-
lating the layer stripping problem in probabilistic terms, we present a brief outline of the ideas
behind it.

In the spirit of the original layer stripping idea, we are looking for a sequential scheme with
an updating structure of the form[

w1

λ(1)

]
update−−−−→

[
w2

λ(2)

]
update−−−−→ · · · update−−−−→

[
wK

λ(K)

]
→ λ(K+1). (19)

In other words, at each step an additional layer is added to the aggregate annular domain,
and the information about the estimate of conductivity is extended to the larger domain and
updated; see figure 2. The updating steps are data based, but the only available data are the outer
boundary measurement b. In order to reuse the same data over and over without excessively
biasing the process towards the data, we develop a Bayesian formalism similar to that used
in sequential Monte Carlo (SMC) [17, 18], where the posterior density is obtained through a
series of data-based updating steps of the current approximation of the posterior.

Assuming that wk and λ1, . . . ,λk are known, the propagation of the initial boundary value
through the annuli Ak,Ak−1, . . . ,A1 via the Riccati equation (17), defines the forward map

ψk : (wk,λ(k)) �→ w0,

13
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that does not depend on λ� for � > k. In this manner we define a sequence of forward
observation models,

(Mk) b = ψk(wk,λ(k))+ εk, εk ∼ N (μk,Ck). (20)

To match the data with all the forward models (20), we introduce a mean likelihood model,

πlkh(b | λ(K),w(K)) ∝ exp

⎛⎝− 1
2K

K∑
j=1

‖b− ψj(wj,λ( j))− μk‖2Ck

⎞⎠
∝

K∏
j=1

π j
lkh(b | wj,λ( j)),

where

π j
lkh(b | λ( j),wj) ∝ exp

(
− 1
2K

‖b− ψj(wj,λ( j))− μk‖2Ck

)
,

and ‖z‖2C = zTC−1z. In the SMC setting, this definition corresponds to writing the likelihood
as a product of densities with inflated variances. Observe that the error εk comprises the obser-
vation error and a modeling error of the model ψk discussed in detail later. We remark that
the mean likelihood model does not account for the correlation of the observation noise in the
different models as we march inwards through the rings.

Assume that we have a sequence of prior densities,

π1
pr(w1,λ1), π

2
pr(w(2),λ(2)), . . . , π

K
pr(w(K),λ(K)) ;

using Bayes’ formula, we define the kth posterior density for (w(k), λ(k)) by

πkpost(w(k),λ(k) | b) ∝ πkpr(w(k),λ(k))
k∏
j=1

π j
lkh(b | λ( j),wj). (21)

The solution of our problem is the posterior density for k = K, and we construct it through
a sequential process. To this end, consider first the sequence of priors. For the priors to be
mutually compatible, we write

πk+1
pr (w(k+1),λ(k+1)) = πk+1(wk+1,λk+1 | w(k),λ(k))π

k
pr(w(k),λ(k)),

and by assuming that a priori,

(a) wk+1 is independent of w(k) and λ(k+1),
(b) λk+1 is independent of w(k) but not necessarily of λ(k),

the formula simplifies to

πk+1
pr (w(k+1),λ(k+1)) = πk+1

w (wk+1)π
k+1
λ (λk+1 | λ(k))πkpr(w(k),λ(k)), (22)

where the densities πk+1
w and πk+1

λ will be specified later.
According to (a), the NtD matrix on the inner surface depends only on the conductivity inside
the disc but not on the outside conductivity distribution or on the NtD matrix on the surface
of the outer layer. This simplifying assumption ignores the interdependencies of the inside
and outside conductivity values coming from the smoothness assumption, which are explicitly

14
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taken into account by assumption (b), where the dependency of λk+1 on λ(k) accounts for the
smoothness assumptions on σ. The independence of λk+1 andw(k) is a simplifying assumption
to keep the algorithm tractable.

To update the posterior, we substitute the updated prior (22) in (21),

πk+1
post (w(k+1),λ(k+1) | b) ∝ πk+1

pr (w(k+1),λ(k+1))
k+1∏
j=1

π j
lkh(b | λ( j),wj)

= πk+1
w (wk+1)π

k+1
λ (λk+1 | λ(k))π

k
pr(w(k),λ(k))

×
k+1∏
j=1

π j
lkh(b | λ( j),wj),

and rewrite it as

πk+1
post (w(k+1),λ(k+1) | b) ∝ πk+1

w (wk+1)π
k+1
λ (λk+1 | λ(k))π

k+1
lkh (b | λ(k+1),wk+1)

× πkpost(w(k),λ(k) | b).

Since we are primarily interested in the conductivity values inside Ω, we marginalize the
density with respect to wj’s and arrive at the marginalized posterior

πk+1
post (λ(k+1) | b) = πk+1

λ (λk+1 | λ(k))πkpost(λ(k) | b)

×
(∫

πk+1
w (wk+1)π

k+1
lkh (b | λ(k+1),wk+1)dwk+1

)
, (23)

where

πkpost(λ(k) | b) =
∫

πkpost(w(k),λ(k) | b)dw(k).

Formula (23) is the basis for the sequential estimation of the conductivity from boundary data.
It is important to observe that

(a) the posterior density of the previous round constitutes part of the prior for the next
update, in particular for the parameters λ(k),

(b) the likelihood πk+1
lkh concerns only the model (Mk+1), with the noise covariance inflated

by a factor K to avoid overconfidence in the data.
(c) the marginalized estimate of the boundary data wk, in the particle approximation proce-

dure that we introduce next, can be obtained by simply discarding the components to be
integrated out.

The conductivity λK+1 in the last layer, which is a disc, can be estimated from wK , as it
corresponds to the boundary operator of a constant conductivity disc.

4.3. Sequential estimation by EnKF

The formula (23) provides the means to update the current information about the conductiv-
ity. A natural way to explore the densities as our domain keeps growing from the boundary
towards the interior of the unit disc, one annulus at a time, is to use particle methods. Our
method of choice here is ensemble Kalman filtering (EnKF), which is briefly reviewed below
for completeness [20, 28, 33].

15



Inverse Problems 36 (2020) 055014 D Calvetti et al

Assume that we have a sequence x0, x1, x2, . . . of random variables with a stochastic propa-
gation model xk �→ xk+1 which is tantamount to the existence of a conditional density π(xk+1 |
xk), and a noisy observation model, where the noise is assumed to be Gaussian,

bk = gk(xk)+ εk, εk ∼ N (νk,Σk),

defining a likelihood density π(bk | xk).
A single updating step of the EnKF can be summarized as follows.

(a) Propagation step: given a sample

{x(1)k , x(2)k , . . . , x(N)k }

with equal weights from the current density πk(xk), generate a predictive sample using the
propagation model,

{x̂ (1)k+1, x̂
(2)
k+1, . . . , x̂

(N)
k+1}, x̂ ( j)k+1 ∼ π(xk+1 | x( j)k ).

(b) Calculate the empirical mean xk+1 and covarianceGk+1 of the predictive sample

xk+1 =
1
N

N∑
�=1

x̂ (�)k+1, Gk+1 =
1
N

N∑
�=1

(
x̂ (�)k+1 − xk+1

)(
x̂ (�)k+1 − xk+1

)T
,

(c) Given the observation bk+1, generate a data ensemble{
b(1)k+1, b

(2)
k+1, . . . , b

(N)
k+1

}
, b(�)k+1 = bk+1 + e(�)k+1 − νk+1, e(�)k+1 ∼ N (0,Σk+1).

(d) Analysis step: generate a sample from the posterior by solving the set of optimization
problems

x( j)k+1 = argmin
{
‖x− x̂ ( j)k+1‖2Gk+1

+ ‖gk+1(x)− b( j)k+1‖2Σk+1

}
.

It is well known that if the prior distribution of xk and the distribution of xk+1 conditional on xk

are Gaussian and the observation model is linear, the above scheme produces a sample that is
distributed according to the Gaussian posterior density. For non-Gaussian models, the sample
distribution is only approximate. For a further discussion of the use of EnKF in the inverse
problems, see, e.g., [25, 39].

To set up the conductivity estimation problem in the EnKF framework, we start by defining
the state variables xk as

xk =

⎡⎣ w0

wk

λ(k)

⎤⎦ ,

as well as the observation model,

bk = Bkxk + εk, εk ∼ N (ν,KΣ),

whereΣ is the covariancematrix of the observation noise,K the number of the annuli, inflating
the noise covariance to compensate for the reuse of the data, and

Bk =
[
In2 On2×n2 On2×Nk+1

]
: xk �→ w0,
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where In2 is the n
2 × n2 identity matrix,Op×q is a null matrix of the indicated size, and Nk+1 =

n1 + n2 + · · ·+ nk+1. For the filtering algorithm, we need to define the stochastic evolution
model. The evolution is composed by two steps,

xk =

⎡⎣ w0

wk

λ(k)

⎤⎦ (a)−−→
[
wk+1

λ(k+1)

]
(b)−−→

⎡⎣ w0

wk+1

λ(k+1)

⎤⎦ = xk+1,

where the two steps are defined as follows.

Step (a): given the current λ(k), draw λk+1 from the conditional prior distribution πk+1
λ (λk+1 |

λ(k)), and draw wk+1 from the prior distribution πk+1
w (wk+1).

Step (b): propagatewk+1 through the k+ 1 layers using the first orderMöbius propagator (14).
Add innovation with variance estimated from the second order Möbius propagator
to get w0.

We recall that, as in [1], the innovation term in step (b) models the unknown numerical
approximation error of the first ordermethod for the propagation.Following a standard practice
in numerical time integration error control, a second order method is used to assess its size.
The computational details will be explained in the following section, prior to demonstrating
the viability of the algorithm with a few computed examples.

4.4. Extension to electrode model

The discussion so far has been limited to idealized Neumann-to-Dirichlet data, while in reality,
the boundary measurements are carried out by attaching a finite number of contact electrodes
to inject electric currents in the body and measuring the corresponding voltages at the elec-
trodes. Let e� ⊂ ∂Ω be non-overlapping intervals representing the electrodes, 1 � � � L, and
let J ∈ RL be a current pattern, the �th component J� being the current injected through e� and
satisfying Kirchhoff’s law arising from the conservation of charge,

∑L
�=1 J� = 0. The com-

plete electrodemodel for the EIT problem is characterized by the replacement of the Neumann
condition (2) by the non-standard electrode boundary conditions,∫

e�

σ
∂u
∂n

dS = J�,

σ
∂u
∂n

= 0 in ∂Ω\∪L
�=1e�,(

u+ z�σ
∂u
∂n

)
|e� = V� = constant,

where z� > 0 is the contact impedance of the �th electrode, and V� is the electrode voltage, the
vector V ∈ RL being the corresponding voltage pattern that needs to be solved together with u
when J is given. The resistance matrix R ∈ RL×L is defined through Ohm’s law,

V = RI.

The EIT problem based on electrode measurements is to estimate the conductivity from the
knowledge of the matrix R. For a detailed description of the complete electrode model, we
refer to [41].

In [11], the connection between the Dirichlet-to-Neumannmap and the resistance map was
analyzed. Let L denote the infinite matrix of the Dirichlet-to-Neumannmap with respect to the
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orthonormal trigonometric basis in H1/2(∂Ω),

φ0(θ) =
1√
2π

, φ2j(θ) =
1√
πj

cos jθ, φ2j−1θ =
1√
πj

sin jθ, j = 1, 2, . . . , (24)

that is,

(L)jk = 〈φj,Λφk〉, Λ = W−1 :H1/2(∂Ω)→ H−1/2(∂Ω).

We introduce the diagonal matrix D with entries

D�� =
|e�|
z�

, 1 � � � L,

where |e�| is the size of the electrode e�, a matrix Y with entries

Yj� =
1
|e�|

∫
e�

φjdS, 1 � � � L, 0 � j < ∞,

and a matrixM with entries

Mjk =

L∑
�=1

1
z�

∫
e�

φjφkdS, 0 � j, k < ∞.

Furthermore, let φ ∈ R
L×(L−1) denote a matrix whose columns contain the trigonometric

current patterns

(
φm

)
�
=

√
(2− δm,L/2)

L
cos

2π
L
m(�− 1), 1 � � � L,

for 1 � m � L/2, and

(
φL/2+m

)
�
=

√
2
L
sin

2π
L
m(�− 1), 1 � � � L,

for 1 � m � L/2− 1.With these notations, the following connection between the discrete and
continuous boundary data can be established.

Theorem 4.1. The matrices L : �2 → �2 and R ∈ RL×L satisfy the identity

ΦTDΦ− (YDΦ)T(L+M)−1YDΦ = R̃−1, (25)

where R̃ is the representation of the resistance map in the basis Φ,

R̃ = ΦTRΦ ∈ R
(L−1)×(L−1),

For the proof, see theorem 3.3 of [11].
In particular, from the analysis in [11] it follows that if a finite matrix approximation of

the operator W is given, we can estimate in a stable way the resistance matrix based on the
above formula, while the converse is an ill-posed problem. This observation allows us to extend
the Bayesian layer stripping algorithm to electrode data. Indeed, the above theorem defines a
mapping

F :Rn2 → R
(L−1)2 , w0 �→ r = vec(R̃). (26)
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Figure 3. The discrete approximation of the Laplacian uses a six point stencil for pixel
centers not in the outermost layer (left) and a four point stencil for points in the outermost
layer (right). The coefficients are indicated in the figure, guaranteeing that the discrete
Laplacian satisfies the mean value principle.

Hence, if the data comprise a noisy observation of the matrix R̃, the Bayesian filtering algorithm
can be modified for electrode data by defining the particles as

xk =

⎡⎣F(w0)
wk

λ(k)

⎤⎦ ,

while keeping everything else in the algorithm intact.

5. Computational details

In this section we present the details of the implementation of the EnKF layer stripping
algorithm. We start by discussing the prior models that constitute the first step in the
particle propagation, then comment on how to address modeling errors due to numerical
approximations that may affect the results.

5.1. Prior densities

The first step in the particle propagation scheme requires priors for generating the log-
conductivity in the next ring when marching inwards, as well as a generation of a new random
initial value of the Neumann-to-Dirichlet map at the new interior boundary.

5.1.1. Conditional priors for log-conductivity. Consider first the problemof drawingλk+1 given
λ(k). To define the process of generating random samples conditional on estimated values in
the exterior rings, we denote by {pk} the set of pixel centers, augmented with the center of the
disc Ω. We denote by L a discrete graph Laplacian computed over the vertices pk. We use a
six point stencil of five nearest neighbor pixels to approximate the Laplacian in pixels that are
not in the outermost layer, and a four point stencil in the outer ring, as explained graphically
in figure 3.

Consider now the vector λ(K+1), partitioned as

λ(K+1) =

⎡⎢⎢⎢⎣
λ(k)

λk+1
...

λK+1

⎤⎥⎥⎥⎦ =

[
λ(k)

λ′
(k)

]
, λ′

(k) =

⎡⎢⎣ λk+1
...

λK+1

⎤⎥⎦ ,
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and partition the matrix L accordingly,

L =
[
L(k) L′

(k)

]
,

Postulating that λ(K+1) follows a second order smoothness prior,αLλ(K+1) ∼ N (0, I), for some
scaling parameter α, the joint probability density of λ(k) and λ

′

(k) can be written as

π(λ(K+1)) = π(λ(k),λ′
(k)) ∝ exp

(
−α2

2
‖Lλ(K+1)‖2

)
= exp

(
−α2

2
‖L(k)λ(k) + L′(k)λ

′
(k)‖2

)
.

Introducing the matrix

B = LTL =

[
B11 B12

B21 B22

]
,

where

B11 = LT(k)L(k), B22 = (L′(k))
TL′(k), and B12 = LT(k)L

′
(k) = BT

21,

the probability density of λ
′

(k) conditional on λ(k) can be expressed as

π
(
λ′
(k) |λ(k)

)
∝ exp

(
−α2

2
(λ′

(k) + B−1
22 B21λ(k))TB22(λ′

(k) + B−1
22 B21λ(k))

)
. (27)

Since the matrix L
′

(k) is of full rank, B22 is invertible, and we can draw random samples of

λ
′

(k) conditional on λ(k) from the normal distributionN (−B−1
22 B21λ(k), 1

α2B
−1
22 ). The conditional

density πk+1
λ (λk+1 | λ(k)) used for the updating scheme is obtained by marginalizing over the

components λk+2, . . . ,λK+1, which in practice is done by simply discarding the components
from λ

′

(k).
To complete the discussion, we need a prior model to initialize the process by drawing the

log-conductivities λ1 in the outermost layer.
To do this, we introduce a periodic discrete Laplacian L1, defined over the pixel centers of

the outermost layer by

L1 =

⎡⎢⎢⎢⎢⎢⎣
−2 1 0 · · · 1
1 −2 1 0

. . .
. . .

. . .
1 −2 1

1 0 · · · 1 −2

⎤⎥⎥⎥⎥⎥⎦ ∈ R
n1 ,

and define a Whittle–Matérn prior with correlation length �1 > 0,

λ1 ∼ N (0,Ξ1), Ξ−1
1 =

1
α2
1

(−L1 + �−2
1 In1)

T(−L1 + �−2
1 In1 ).

where α1 > 0 is a scaling parameter [37]. The choice of the scaling parameters α and α1 and
of the correlation length �1 is discussed in the section in the context of the computed examples.
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5.1.2. Prior model for the interior boundary values. We define next the process to generate
the sample of the Neumann-to-Dirichlet data in the inner boundary at R = Rk of the annulus.
For simplicity, we generate a sample of radially symmetric conductivity profiles and compute
the correspondingNeumann-to-Dirichletmatrices. To generate radial log-conductivity profiles
that are not too oscillatory, we define a second order finite difference matrix

LA =
1
h2

⎡⎢⎢⎢⎢⎢⎣
−δ
1 −2 1

. . .
. . .

. . .
1 −2 1

−δ

⎤⎥⎥⎥⎥⎥⎦ ∈ R
K+1,

where δ > 0 is a parameter controlling the variance of the end values, see [12] for a criterion
of choice, and define theWhittle–Matérn covariancematrix [37] for a radial correlation length
�r > 0,

Ξ−1
r =

1
α2
r
(−LA + �−2

r Ink )
T(−LA + �−2

r Ink ),

and generate a random log-conductivity profile λ ∼ N (0,Ξr) from which we computed the
conductivity profile σ ∈ RK+1 according to (15).

For each random realization of the conductivity profile, we compute the diagonal entries of
the Neumann-to-Dirichletmatrix, using the exact propagation formula for a piecewise constant
conductivity model derived in [40]. More specifically, given a piecewise constant conductivity
profile σ = [σ1, . . . , σK+1],

(a) Set

wj(RK) =
1

jσK+1
, 1 � j � jmax,

(b) Propagate wj through the rings Rk < R < Rk−1 by the formula

wj(Rk−1) =
1
jσk

M

([
Rk
Rk−1

]2j
M
(
jσkwj(Rk)

))
, (28)

whereM(t) = (1− t)/(1+ t).

The radial symmetry in the sample construction is a limitation assumed for computational
convenience, however numerical experiments show that it does not seem to bias significantly
the results of the inverse towards radially symmetric solutions.

5.2. Approximation error in the propagator

A natural question arising when particle methods, e.g., the EnKF, are applied to deterministic
models, is how to assign the innovation term in the propagation step. One possibility, advo-
cated e.g., in [1], is to interpret the stochastic innovation as an expression of the uncertainty
in the numerical approximation of the deterministic propagation model. This interpretation is
particularly useful for parallel implementation of the methods. To set the variance of the inno-
vation, it is necessary to have an estimate of the numerical error, which can be obtained by
pairing the method of choice with a higher order method that in this case is the second order
Möbius solver [38].
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5.3. Data, noise model and approximation error in the forward solver

We test the viability of the algorithm in the two-dimensional case by generating the synthetic
boundary data with a second order finite element model. To improve the accuracy of the solu-
tion at the boundary where the data are collected, isoparametric elements with second order
shape functions are employed [5, 21]. We assume here that the finite element mesh is chosen
fine enough for the FEM model to produce an accurate approximation of the noiseless data.
The details are discussed further in the section on computed examples.

When testing the robustness of an algorithm with respect to observation noise, one can-
not ignore the modeling error contribution, which, in the current application, is coming from
the discrepancy between the data generated by the FEM code that approximates the noise-
less observations and the model predictions obtained by the forward model used in the inverse
solver, which in the current version is the Riccati equation approximated by the Möbius solver.
It has been demonstrated [2, 9, 10, 29, 30] that when the exogenous noise level in the data is
low, ignoring themodeling errormay have adverse effects on results: a too optimistic likelihood
model forces the estimates to explain the modeling error by fictitious conductivity structures
inside the object, and since the problem is ill-posed, the induced artifacts may be significantly
strong. Furthermore, it has been demonstrated that often the modeling error has non-vanishing
mean and structured covariance. Therefore, to account for the modeling error, we perform the
following analysis. Consider the model (Mk), equation (20), and assume that the model ψ∗

represents accurately the noiseless data. If ε∗ denotes the exogenous noise, we can write

b = ψ∗(λ(K+1))+ ε∗

= ψk(wk,λ(k))+
[
ψ∗(λ(K+1))− ψk(wk,λ(k))

]
+ ε∗,

where the term inside the square brackets represents the modeling error. This suggests that the
noise term ε in (20) should account for both the modeling error and the exogenous error. Since
the modeling error depends on the unknown, it has been proposed in the literature to use a
Gaussian approximation, with mean and covariance computed from a sample of realizations
corresponding to conductivities drawn from the prior [2, 29, 30]. Further improvements of the
approximation using iterative updating were considered in [9, 10].
Rather than estimating the modeling error corresponding to ψk for each k, we perform the
analysis only once with k = K and use the same estimated modeling errormean and covariance
for all k. First, we draw a sample {λ1, . . . ,λM} of smooth log-conductivities, compute the
corresponding conductivities, and generate the boundary data in two different ways: Using the
second order FEM model ψ∗ that in our simulations represents accurately the measurement
process, and by evaluating the functions λ� at the pixel centers to get the vectors λ�

(K+1) and
using the Riccati solver ψK(w�

K ,λ
�
(K)) that is the forward model in our algorithm. Denoting the

data samples by {m1
j ,m

2
j , . . . ,m

M
j }, where j = 1 corresponds to the FEM model and j = 2 to

the Riccati model, we compute the modeling error sample,

εkmod = mk
1 − mk

2, 1 � k � M,

and estimate its the mean and covariance as

μ =
1
M

M∑
k=1

εkmod, Cmod =
1
M

M∑
k=1

(εkmod − μ)(εkmod − μ)T.

The approximate noise model comprising both the exogenous and modeling noise is

ε = εmod + εex ∼ N (μ,Cmod + Cex),
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Table 1. Parameter values used in the algorithm.

K Number of layers 30
n Number of Fourier modes 60
N Ensemble size 1000
L Number of electrodes 32

Table 2. Parameter values used for defining the prior densities.

σ0 Background conductivity 1.5
α Prior scaling for λ(K+1) 0.01
α1 Prior scaling at outer ring 0.004
�1 Correlation length at outer ring 10
δ Boundary variance in LA 0.0768
αr Prior scaling for radially symmetric sample 0.2
�r Radial correlation length 2
Γ Innovation in the radial AR(2) model 0.08

Table 3. Parameter values defining the noise level, including those used
for estimating the approximation error.

η1 Noise level relative to ‖b‖ ∞, radial model
√
10−3

η2 Noise level relative to ‖b‖ ∞, non-radial model
√
10−7

M Sample size of modeling error realizations 1000

where Cex is the covariance matrix of the exogenous noise that we assume to have vanishing
mean.

6. Computed examples

We demonstrate the viability of the proposed algorithm with computed examples. As a proof
of concept, we test the method with a radially symmetric profile, and subsequently with a
more realistic non-symmetric problem. In the non radially symmetric case, we consider both
the Neumann-to-Dirichlet data as well as the electrode data. The number of Fourier modes
included, number of electrodes and number of layers in the model are given in table 1. The
parameters defining the prior densities as well as the noise simulations are listed in tables 2
and 3.

6.1. Radial conductivities

We consider first the case in which the conductivity is radially symmetric, and the inverse
problem is to estimate the radial profile from the diagonal entries of the Neumann-to-Dirichlet
map. Because of the radial symmetry, the entries corresponding to sine and cosine current
patterns coincide, Wk,k = Wn/2+k,n/2+k, and the Riccati equations for the diagonal entries
decouple, yielding

R
dWk,k

dR
=

1
σ
− k2σW2

k,k , 1 � k � n
2
, σ = σ(R). (29)
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Figure 4. Reconstructions of a smooth radial conductivity profile (left) and a boxcar
profile (right), including the 95% credibility envelopes.

In order to avoid the inverse crime, instead of a Möbius solver, we synthesize the data by
solving (29) using Matlab built-in function ode45. In the EnKF algorithm, we approximate
the conductivity by a piecewise constant function and propagate the solution according to (28).
For the prediction of λk+1 conditional on λ(k), in this simplified setting we use an AR(2) model
based on a second order smoothness prior, that is, λk+1 is drawn as

λk+1 = 2λk − λk−1 + γν, ν ∼ N (0, 1),

where γ is a constant, controlling the variance of the random draws. For k = 1, we add a
fictitious history λ0 = λ1, where λ1 is drawn from a normal distribution with zero mean and
standard deviation 0.1. The standard deviation of the innovation process is γ = 0.08. The data
were corrupted by exogenous scaled white noise with variance 10−3 × ‖b0‖2∞, or standard
deviation approximately 3 percent of the maximum entry of the noiseless data.

Figure 4 shows the ensemble mean and the 95% credible intervals calculated by the
algorithm with two different profiles. The sinusoidal profile (left) is in line with the smooth-
ness assumptions, and the ensemble mean is following the true profile with reasonable fidelity,
with the uncertainty increasing considerably when moving inwards. In the discontinuous
case (right), the ensemble mean shows that the smoothness assumptions of the prior are not
fully in line with the generative signal, thus it is not surprising that the jumps are not well
captured.

6.2. Non-radial conductivity, continuousmodel

In the second computed example, we generate the synthetic data by the second order FEM
approximation with isoparametric elements along the boundary. The mesh, generated with
DistMesh [43], consists of 3548 elements and 7369 nodes, with the diameter of the trian-
gles in the center roughly five times the diameter of the triangles on the boundary. The
number of sine and cosine current densities applied to the boundary is n/2 = 30, so the
Neumann-to-Dirichlet matrix is of size 60× 60. The conductivity profile used for generat-
ing the data is shown in the last panel of the figure 5. To estimate the modeling error, we
generated a sample of 1000 conductivities with Gaussian inclusions, with random cardinal-
ity between one and four, random positions and strictly positive amplitudes, and computed
the boundary data with both the FEM model and the first order Möbius solver to generate
a sample of realizations of the modeling error. In addition to the estimated modeling error,

24



Inverse Problems 36 (2020) 055014 D Calvetti et al

Figure 5. Progression of the conductivity estimates at selected instances of the layer
striping process based on the continuous data model. The numbers indicate the current
ring, while the last panel shows the generative model used to compute the data. The
Neumann-to-Dirichlet matrix was computed by using a finite element approximation.

Gaussian scaled white noise with the variance 10−7 × ‖b‖2∞ was added to the data corre-
sponding to a standard deviation of about 0.3% of the maximum of the absolute value of the
data. Observe that at high frequencies, the relative noise level is higher than at low frequen-
cies. The values of the parameters in the prior for generating the conductivity are given in
table 2.

Figure 5 shows the progression of the ensemble mean for different radial values Rj, as well
as the true conductivity that was used to generate the data. The results show an accurate local-
ization of the inhomogeneities, and a good resolution of the dynamical range. In numerical
tests with significantly smaller prior variance values (not shown here), the algorithm had some
difficulties, which is understandable, since the predictive ensemble may not contain particles
able to explain the data.

6.3. Non-radial conductivity, electrode data

Finally, we run the algorithm adapted to the electrode data. The simulated data were com-
puted by using a second order FEM model with 32 uniformly distributed electrodes. For the
details of the computational model, we refer to [11]. The contact impedances were assumed
to be all equal, z� = 0.01 and known. The values of the prior parameters were chosen as
in the continuous data case. The modeling error covariance was estimated by calculating
the electrode data with the finite element CEM model, and comparing it to the resistance
matrix obtained by combining the Riccati solver with the mapping (26). The results, shown
in figure 6, show that the algorithm performs as well with electrode data as with continuous
data.
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Figure 6. Progression of the conductivity estimates at selected instances of the layer
striping process based on the complete electrode model data. The numbers indicate
the current ring, while the last panel shows the generative model used to compute
the data. The Neumann-to-Dirichlet matrix was computed by using a finite element
approximation.

7. Discussion

The layer stripping algorithm in its original formulation suffered from numerical instabil-
ities that limited its performance. To overcome some of the problems, we recast it in the
Bayesian framework and proposed a novel numerical algorithm that combines the Möbius
forward solver, ensemble Kalman filter and modeling error compensation. Numerical exam-
ples illustrate the viability of the proposed algorithm. The implementation of the Bayesian
layer stripping algorithm in this article assumes that a noisy observation of the Neumann-to-
Dirichlet operator or the resistance matrix is available, and the performance of the approach
was demonstrated using computed examples in a disc. From the practical point of view, one
can ask whether the approach can be extended to more general domains. While theoretically
it is not difficult to extend the approach to any two or three dimensional domain for which
a tangent–normal coordinate system is available at least near the boundary, the numerical
implementation may pose some challenges. Another question that is of practical importance is
the modeling of the noise in the boundary operator which in practice needs to be constructed
from noisy current–voltage pairs. In the present article, a simplified additive Gaussian scaled
white noise model was used as a proof of concept. We demonstrated that unlike the orig-
inal layer stripping algorithm, the Bayesian version allows a natural extension to the case
in which the data arise from realistic electrode measurements. The testing of the algorithm
with real data, including the incorporation of a realistic noise model, will be part of a future
research.
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