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Abstract. The mechanism of gas transport across cell membranes remains a topic of consid-
erable interest, particularly regarding the extent to which lipids versus specific membrane proteins
provide conduction pathways. Studies of transmembrane carbon dioxide (CO2) transport often rely
on data collected under controlled conditions, using pH-sensitive microelectrodes at the extracellular
surface to record changes due to extracellular CO4 diffusion and reactions. Although recent detailed
computational models can predict a qualitatively correct behavior, a mismatch between the dynam-
ical ranges of the predicted and observed pH curves raises the question of whether the discrepancy
may be due to a bias introduced by the pH electrode itself. More specifically, it is reasonable to
ask whether bringing the electrode tip near or in contact with the membrane creates a local mi-
croenvironment between the electrode tip and the membrane, so that the measured data refer to
the microenvironment rather than to the free surface. Here, we introduce a detailed computational
model, designed to address this question. We find that, as long as a zone of free diffusion exists
between the tip and the membrane, the microenvironment behaves effectively as the free membrane.
However, according to our model, when the tip contacts the membrane, partial quenching of ex-
tracellular diffusion by the electrode rim leads to a significant increase in the pH dynamics under
the electrode, matching values measured in physiological experiments. The computational schemes
for the model predictions are based on semidiscretization by a finite element method and on an
implicit-explicit time integration scheme to capture the different time scales of the system.
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1. Introduction. Numerous cellular processes are strongly affected by extracel-
lular and intracellular pH, and therefore maintaining the pH values within physio-
logical ranges is crucial for the well-being of cell functions. The central role of pH
regulation makes the acid-base balance of cells a topic of wide and ongoing interest
[2]. The pH inside and around a single cell depends on, among other factors, the
transport of gases such as carbon dioxide (CO2) or ammonia (NHj3) across the cell
membrane. Modeling the transport of these gases is complicated by the presence
of buffers surrounding the cell membrane and enzymes such as carbonic anhydrases
(CAs) that effectively catalyze the interconversion of CO2 and bicarbonate (HCO3 ).
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In addition, the current understanding of gas transport across biological membranes
points to a more complex mechanism than the traditional paradigm, in which gases
dissolve in and then diffuse through lipid phase. In fact, the observation that some
membranes have virtually no permeability to CO2 or NHj3 called for alternative ex-
planations [16]. Increasing evidence points toward certain membrane proteins such as
aquaporins (AQPs) as being capable of providing a pathway, or a gas channel, for gases
to pass the membrane [3, 5, 6, 7, 10, 11, 12]. The goal is to address both the extent
to which these channels contribute to overall gas transport and the molecular mech-
anism of gas movements through these channels. However, a major challenge is that
although these channels are on a nanometer spatial scale and operate on a nanosecond
temporal scale, the physiological evidence is almost solely based on indirect inferences
drawn from measurements on micrometer/second spatiotemporal scales. Because the
extracellular and the intracellular pH are directly affected by the transport of CO4
through the membrane, pH measurements provide the natural indirect data. Math-
ematical models for understanding the pH data [7, 10, 11] and for bridging the gap
between the different scales have recently been developed [15, 13].

The computational models that constitute the starting point of our contribution
were developed to describe COs9 transport across the membrane of an oocyte of the
African clawed frog Xenopus laevis, a spherical cell suitable for physiological studies
mostly because (1) its large size (= 1.3 mm in diameter) allows experimental manip-
ulations such as measurements of surface pH and (2) it is an outstanding system for
the heterologous expression of the membrane proteins encoded by injection of foreign
RNA [5, 12, 10, 11]. Despite the qualitative agreement between the model predictions
and the measured data, the details of acid-base dynamics and transmembrane CO4
transport are not completely resolved, as the pH dynamics is known to be sensitive
to numerous factors besides the permeability of the membrane. These other factors
include catalysis by CAs near or at the cell membrane, the mobility of H*, COs, and
various acid-base buffers within the poorly understood fine structure of the cytoplasm
inside the cell, and the vitelline membrane near the outer surface of the cell mem-
brane. Current computational models [15, 13], while qualitatively predicting the pH
dynamics observed experimentally, are unable to reproduce the dynamical range of
the pH measured on the cell membrane, suggesting that the models are missing some
important factors. In particular, it is possible that the exclusion of the pH electrode
itself from the current models is a major contributing factor for the discrepancy. The
objective of this article is to investigate, by means of a new, more detailed compu-
tational model, whether and to what extent the presence of the electrode used for
measuring the pH at the membrane may create a local microenvironment that could
affect the data.

The mathematical description of the experimental setting of our model is rel-
atively straightforward: The COy concentration outside a cell is regulated, and the
observed pH near the cell membrane is governed by a classical reaction-diffusion equa-
tion accounting for the transport of COs through the membrane. While the oocyte
itself can be modeled by spherical geometry, the presence of the electrode near the
membrane breaks the spherical symmetry. From the computational point of view,
the submicron distance of the tip of the electrode from the membrane becomes quite
challenging, because a dense spatial discretization is needed in the proximity of the
electrode tip to provide useful spatial resolution. In addition, the presence of charac-
teristic times differing by orders of magnitude renders the computational task a multi-
scale problem also in the temporal direction. While the individual modules of the
computational model are fairly straightforward, e.g., finite element semidiscretization

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/11/20 to 129.22.126.5. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

MICROENVIRONMENT MODEL FOR pH ELECTRODE 1055

and stiff time integrators, the real challenge was to bridge the orders of magnitude
differences in both space and time, with slow reactions coupled to near instantaneous
ones, and the state of a submicron environment linked to that of the distant free
membrane. In section 2, we set up the spatially discretized model based on a finite
element method (FEM), and in section 3 we propose a multiscale time integration
scheme based on an implicit-explicit method. In section 4 we present computed ex-
periments where we investigate to what extent the changes in the model’s geometry
alone can yield predictions that match the data, and consider two different limited
diffusion scenarios. We find that, with an appropriate limitation of the diffusive ac-
cessibility of the special environment under the electrode, our new model produces
pH dynamics well within the observed experimental dynamical range.

2. Reaction-diffusion model. In this section, we develop the mathematical
reaction-diffusion model describing the experimental arrangement near the electrode
tip in the vicinity of the cell membrane. We consider an oocyte immersed in a liquid
in which the pH depends on the components of the COy buffer system and other
buffers. More precisely, the bidirectional reactions affecting the pH in the liquid and
inside the cell are given by

k1
(21) COy + HQka:\ H>COg3,
-1
k
(2.2) H,COs f HCO; +HT,
—2
k
(2.3) HA, = A, +H', 1<(<L,
k_(2+40)

where A, is a buffer different from the HCO3 . In this paper, we limit ourselves to
the case of one nonspecified buffer, that is, L = 1; thus, excluding the water, the total
number of substances is N = 44 2L = 6. Throughout the paper, we use the following
numbering for the concentrations:

Uy = [COQ], U = [HQCOg], uz = [HCO;L Uy = [H+], Uus = [HA], Ug = [Ai]

In addition to the reactions above, the local concentrations change also due to diffusion
and gas transport through the cell membrane, the overall dynamics being a conse-
quence of these phenomena and the external COs control. The geometric setting of
the measurement is shown schematically in Figure 1.

2.1. Radial model. We start by reviewing the experimental setup and the
spherically symmetric model that does not take into account the symmetry break
and the possible effect of the electrode on the data.

Let R > 0 denote the radius of the oocyte, assumed to be spherically symmetric,
immersed in quiescent liquid. We assume that at the beginning of the experiment,
the concentrations u,, 1 < v < N, are constants throughout the liquid, and possibly
different constants inside the cell. Further, we assume that at a distance Ro, > R
from the center of the cell, the external concentrations are kept at constant values
throughout the experiment, thus defining a constant Dirichlet boundary condition.

Denoting by u; the vth concentration outside the cell, R < r < R, and by
u,, the concentration inside the cell, 0 < r < R, in the radial model we assume that
the functions ur depend only on time and the radial variable r and satisfy the radial
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CO,+H,02H,CO;=HCO5+H*

HA=H+A-

Fi1c. 1. The measurement geometry. The pH electrode is placed on or near the spherical oocyte
immersed in a liquid in which the concentrations are controlled. The radius of the oocyte is denoted
by R, while Ry denotes the distance beyond which we assume that the concentrations take on
prescribed constant values (i.e., those of the bulk extracellular fluid). The liquid is assumed to be
quiescent; hence the reaction-diffusion equation contains no advection term.

reaction-diffusion equation,
(2.4) Ouy 10 (s, 28“ ZS
' ot r2or s

where Ii is the radial diffusion coefficient of the species, S, is the stoichiometric
matrix correspondlng to the reactions (2.1)-(2.3), and @f is the reaction flux of the
puth reaction. We use the simple mass action formulas for the reactions,

COs + Hy0 24 H,CO5 ¢ @y = k1[COy),

HoCO3 278 COu + HoO ¢ @y = k_y [HoCOy),
25) H,CO;3-22 H(kJOg FHT ¢ B3 = ko[HCO;],

HCO; +HT =3 HyCO3 @ &y = k_o[HCOZ|[HT],

HA *2 A- 4 H* . @5 = ks[HA],

A+ HY 2iHA . g = k_s[A][H*],

where we suppressed the superscript “£” of the reaction fluxes, reaction rates, and
concentrations. However, observe that the reaction rates k4, need not be the same
inside and outside the cell and may vary depending on the distance from the mem-
brane, modeling the fact that the membrane and a surrounding region may express
enzymes such as CA catalyzing the reactions. These points will be detailed in the
computed examples.

Finally, the exterior and interior solutions are glued together through the mem-
brane by Fick’s law,

L ouf ou;;

5 (B) = A (g (R+) —u, (R-)) = k) (R=), 1<v<N,

KJ

where )\, is the membrane permeability for the substance in question. For substances
not passing through the membrane, we set A, = 0. For later reference, we denote the

. . . +
solutions of this radial system by Upad -
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Fi1G. 2. Left panel: The pH on the outer surface (blue) and inner surface (red) of the cell
membrane as a function of time, computed by using the radial FEM algorithm. In this simulation,
the CA enhancement at the cell membrane and inside the cell is A = 20. Observe the different
scale on the left and on the right. Right panel: The pH curve outside the membrane corresponding
to three different A values. The time t. is when the diffusion becomes dominant compared to the
transport through the membrane, and the pH starts to decrease. (Color available online.)

In [15], the radial model was studied by using a finite difference discretization
of the spatial derivatives, and a standard stiff implicit solver (Runge-Kutta with
backward differentiation formula) was used for solving the resulting time-dependent
initial value problem. While the qualitative behavior of the solution was found to
correspond well to the measured pH traces inside and outside the cell, the surface
pH was unable to reproduce the dynamical range of the observations. Figure 2 shows
characteristic pH curves obtained by a finite element discretization of the system
(2.4) outside and inside the cell membrane (left), as well as with varying CA-induced
accelerating factors of the reaction rates ki; near the membrane outside the cell.
While increasing the CA factor makes the pH peak higher, the predicted values do
not match the measured data.

Figure 3 explains schematically the pH dynamics: for ¢ < t,., where ¢, is the
pH peak time, the system is dominated by the transport across the cell membrane,
while for ¢ > t,, the transport through the membrane slows down, making the system
diffusion dominated. This observation is, in some sense, the key to the modeling
problem considered in this work. More precisely, we ask whether the electrode used
to measure the pH creates a microenvironment near the cell membrane causing a shift
of the equilibrium away from diffusion dominance, and a pH increase beyond the value
reached near a free membrane. As the electrode is not likely to affect the membrane
properties or reaction rates, a plausible explanation is that the replenishment of CO»
through diffusion is affected. We therefore need to focus on the diffusion process.

2.2. Electrode geometry. To investigate the local effects of the electrode tip
at or in the vicinity of the cell membrane we restrict our model to a small portion
of space near the oocyte membrane containing the electrode, connecting the local
model inside the domain to the exterior domain through an approximate boundary
condition. Ignoring the local curvature of the cell membrane, we set the system of
cylindrical coordinates (p, 8, z) so that the cell membrane coincides locally with the
plane z = 0, and the positive direction of the z-axis, coinciding with the electrode axis,
points toward the exterior of the cell. As in the radial model, the membrane thickness
is assumed to be negligible, the thickness contributing to the effective permeability.
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F1G. 3. Left panel: During the interval 0 < t < t«, the CO2 concentration inside the cell is low,
and due to the high gradient across the membrane, the transport through the cell membrane, compared
to the replenishment of COgq through diffusion, is fast enough to guarantee that the equilibrium of the
composite reaction conversion COg = HT + HCOg is strongly toward CO2, causing an increase in
pH. Right panel: Ast > t., the increase in COg concentration inside the cell decreases the gradient
across the membrane and consequently slows down the transport rate, so that the system becomes
diffusion dominated, causing the pH to drop.

The electrode tip is modeled as a rotationally symmetric cylinder along the radial
axis. The sensor surface at the tip of the electrode is, in the first approximation,
assumed to be flat and parallel to the membrane at a distance h > 0. We restrict
the computation domain to the pillbox centered at the origin of radius W > 0, and
with vertical extension —L~ < z < LT, schematically shown in Figure 4. We denote
by V* and V~ the spatial computational domains above and below the membrane,
respectively, and define the two-dimensional sectorial projections Q% via the relation

VE={(p.0.2) | (p.2) €QF,0<0<2r}, OF CR, xR

Moreover, we denote the electrode surface by I', the top and bottom surfaces of the
pillbox by I'; and I, respectively, the outer hull p = W of the cylinder by 'y, and
the membrane patch inside the pillbox domain, separating V' from V~, by I',.

2.3. Diffusion model. Our model assumes that the diffusion processes of dif-
ferent species are uncoupled; therefore the corresponding governing equations can be
derived for each concentration separately.

Consider a single species with concentration u = u(t,z) and let

U+: u :U|V_.

ulyss

Ignoring for the time being the reaction terms, the concentrations satisfy the diffusion

equation,

ou* i
7 =V- (I‘LV’U, )7

where the diffusion tensor, or mobility tensor x € R3*3 of the substance may depend
on the position, K = k(x); in particular, the diffusion coeflicient can be different inside
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L+

oz

Fic. 4. A schematic picture of the geometry of the computational domain around the tip of
the electrode. The yellow surface at z = 0 corresponds to the cell membrane. The top and bottom
surfaces at z = £LE are denoted by T'y and 'y, respectively, and Ty is the cylindrical outer surface.
The radius of the electrode tip is denoted by w. The proportions in this figure do not correspond to
values used in the computations. (Color available online.)

and outside the cell. On the surface of the electrode, we impose the homogeneous
Neumann boundary condition,

. +
n-kVu |F€—0,

where n = n(z) is the exterior unit normal vector of V't at the boundary.
. . —+
We postulate Dirichlet data at the exterior surfaces I'y, I'y, and I‘#,EV =Ty NV

_ + _ + _ ., E
ry = Uout, U |Fb = Uin, u |Fﬁv{/ = Uy

(2.6) ut|
The boundary values uoyut, i, and uﬁ, are, in general, time dependent and will be
specified later.

At the cell membrane I'y;, = {(p, 6, z) | z = 0}, the interior and exterior solutions
are coupled by Fick’s law,
(2.7) —n-mVu"r’F =Aut —u7)|p,, :n~nVu_‘F )
which guarantees also the conservation of mass. Here, the conormal derivatives are
exterior normal projections for the respective domains. For substances that do not
pass the membrane, we set A = 0.

2.4. Coupling through chemical reactions. We include in the model the
same chemical reactions (2.1)—(2.3) as in the radial model, with the mass action
dynamics (2.5). The reactions provide a coupling between the diffusion models of the
individual substances. Letting S € RV*¥ denote the stoichiometric matrix of the set
of N reactions above, associated to the N species that we track in our model, the
governing system of reaction-diffusion equations can be written as

+ N
(2.8) %Lt” =V-(kiVui)+>°8,,0F 1<v<N,
p=1
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equipped with the boundary conditions introduced in subsection 2.3. We remark that
while diffusion and reaction rates may be different in the domains V™ and V~, the
stoichiometry remains unaltered.

2.5. Variational form. For the semidiscretization of the problem based on fi-
nite element approximation (see, e.g., [4] for a general reference), we derive a varia-
tional form of the system of reaction-diffusion equations. In the following, we denote
by H' the standard Sobolev space over bounded domains with smoothness index one.

We consider first the equation in V. Let v € HY (V) be a test function, v =
v(z), with no time dependency; multiplying both sides of (2.8) by v and integrating
over VT, we obtain

N
d
(2.9) Qi Jys vuldr = /v+ oV - (k) Vul)de + Z Suu /V+ v®}dz.

=1

Integration by parts of the diffusion term yields

/ oV - (k) Vu)l)de = / vn-kTVutds — Vo -k} Vu!de.
v+ v+ v+

Using the homogeneous Neumann boundary condition on the surface of the electrode,
the boundary integral reduces to

(2.10) / vn-kTVutdS = / +/ +/ vn - kTVutds,
v+ | A i, I,

where F;LV =I'wynN V+, and by choosing the test function so that
ve Hy(VH T ulf,)={ve H'(VT) | ’U‘Ft = U‘WV =0},

the second and third terms in the right-hand side of (2.10) vanish, while the membrane
boundary condition (2.7) can be used to reformulate the first term. In summary, (2.9)
can be written as

(2.11)
d N
it ) vuldr = -\, /Fm v(uf —u,)dS — - Vv -k} Vuldr + Z Svu /V+ 0@ da.

p=1
Treating the diffusion equation in the lower half space in a similar manner and
choosing w € Hj(Q™, T, UTY;,) so that w|rb = w|F, =0, we have
w
(2.12)

N
d B L -
at - wuydx:)\y/rmw(uy —uu)dS—/7Vw~f£,,Vuudx+ZS,,M/

w@;d:c.
p=1 V=

We remark that the Dirichlet boundary conditions are still implicitly imbedded in
these equations and will be discussed next.

2.6. Initial-boundary values. Corresponding to the “standard experiment”
described in [15], we assume that the initial values are defined as

uwlf(0,z) = uIO = constant, u, (0,7) = u, ; = constant,
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where the constants outside the cell are the values of the concentrations in the ho-
mogeneous bath, and those inside correspond to the physiological homeostasis before
immersing the oocyte in the bath. Tacitly, we assume that the pH electrode is placed
in the bath prior to the onset of the experiment, thus measuring the initial pH on or
near the membrane from ¢ = 0 on.

To set the Dirichlet boundary condition, we assume that the perturbation due to
the electrode is local enough to justify the Dirichlet conditions

uj (t,x) |-'L'EFt = u;rad,u

(t,R+ L"), wu, (t,x)|x6rb = U, (t, R —L7),

where L* denote the distances of the top and bottom boundaries from the cell mem-
brane; see Figure 4. Likewise, at the cylindrical boundary, we use the radial solutions
as boundary data,

uf(p,@,z)‘pzw = Urad v (t, R+2), —L~ <z<Lt.
The assumed symmetry implies that the concentrations u} are independent of the

angle 6, reducing the problem to a two-dimensional one over the domains Q% C
Ry xR.

2.7. Semidiscretization by finite elements. In view of the axial symmetry,
we may write the solutions as uf = uf(t, p, 2); similarly, it is reasonable to assume
that the test functions v and w depend only on p and z. Therefore, the contribution of
the integration with respect to 6 amounts to a factor 27, and the weak form integrals
over the volume and along the membrane surface reduce to a two-dimensional and a

one-dimensional integral, respectively,
dx — 2mpdpdz, dS — 2mpdp.

For the sake of notational simplicity, in the following we identify the two-dimensional
boundary surfaces with their one-dimensional line boundaries.

We discretize the problem by generating triangular meshes in the upper and lower
half spaces separately, subsequently fitting the meshes along the membrane boundary,
doubling the membrane boundary nodes. We denote by n* the number of nodes in
the mesh in Q% respectively, and by p; the nodes of the mesh. Furthermore, we define
the standard nodal Lagrange basis functions 1); to be piecewise first order polynomials
satisfying the condition ¢;(px) = 0;x, where 0, is the Kronecker delta.

Consider first the discrete approximation of u}. Let n;r be the number of free
nodes, and nlf the number of the bound nodes on I'; U 1";,7 so that nf + ng =nt.
We write

nt n:r nt
+ o o + +
u, XY a = § a, Yk + E 9y 1 Vs
k=1 k=1 k=nt 41

where g, = g;fk (t) is the boundary value function (2.6) of the vth concentration at
the kth node obtained by solving the radial model. Similarly, in the lower half space,

n- "; n-
u, = E o, e = E a, e+ E 9y Ve
{=1 =1 f=n; +1
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The spatially distributed reaction fluxes are represented in terms of the same basis
functions,

ngt +
f n

o = Z @:,kwk + Z 80,—:;@7%,
k=1 k:n;.r-&-l
ng n-

- _ + —

¢, = Z Pretet Z P

=1 f=n; +1

Choosing the test function in (2.11) to be v = 1b;, 1 < j < n;f, so that it vanishes
on the top and lateral boundaries, and dividing by the common 27-factor, we obtain

(2.13)
- dajk < dg:k
Z dt / Yiepdpdz + Z T / Yrpdpdz
Q+ o+
k=1 k=nS+1
nt n.
f f
=-\ Za:k/ T/lebkpdpfza;g/ Vjthepdp
=1 T — T
n+ n-
A gik/ bibkpdp — Y g;g/ Yjepdp
o T = Lo
k=ng+1 l=n; +1
(2.14)
’n,?» ’I’L+
=Dk / Vi -k Vikpdpdz — > gl / Vo, - KV pdpdz
k=1 Q+ o+ Qt
k=ng +1
N n?’ nt
+ ZSV,H Z@:k/ Yijrpdp + ‘P:,k/ Yipipdp |, 1<j<nf,
— o+ o+
n=1 k=1 k:n;r—i-l
where

Y.
Vi, = [ 20 ]
0z

A similar expression can be derived for the equations in the lower half space. To
express these equations in matrix form, we introduce the vectors

+ —
au,l al/,l
4+ . - .
UV - . ) Uy - . I 1 S v S N7
+ —
« «
u7nf+ ving

and collect the reaction fluxes into the vectors

+ + — -
(p#vl (p,u,n;r—i-l <‘0/‘71 spy,n;—&-l
+ _ : + . - _ : — .
FH - . ’ Fb,u - : ) FH - . ’ Fb,# :
+ —
+ _ -
(pﬂv”? Punt w%"f LTRSS
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and the boundary values into the vectors

+ —

gu,nf*H gu:n; +1
+ . - _ .
Gl/ - : ’ Gl/ - :
+ —_
G+t Iyn-

Furthermore, we define the mass matrices M+ and M,‘f with entries

(M*), = /Q+ ibepdpdz, 1< j k <nf,

o St +
(ME),0 = [ bt apdpds, 1S5 <ni, 1< k<n,

the substance-specific stiffness matrices K™ and K; , With entries

(Kj)jk = /+ Vp; - kI Vippdpdz, 1<k < nf+,
Q

(K'b")y)jk = /+ Vap; - njVi/Jn?ijpdpdz, 1<53< nlj', 1<k< n,i',
Q

and, finally, the coupling matrices

(€)= /F Yibkpdp, 1< 4,k <nf,

(€)= A Yibepdp, 1<j<nf, 1<0<ng,

and
(€)= [ stugaurde. 1<i<nf, 1<k<n],

(Céz)jé - /F Uit epdp, 1< 5 < n, 1<l<n,.
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With this notation, the diffusion equation in the upper portion of the domain can

be written in matrix form as

(2.15)
|v|+dU”+— A\, (CHUT —C2u7) —KHUS NS Mt FF
dt 771’( v u)iuu+z m m
p=1

LdG

N
- )\u (Cll)lGj - Cll)2G;) - Kb+,ij - Mb dt + Z SV#M;)F
pn=1

for 1 < v < N. Likewise, we derive a matrix differential equation for U, ,
(2.16)

auv,;
M™T—2% =
dt

N
A (CPU; = CWOF) =Ko U, + Y S, M,

p=1

_dG;,

F+

b,

N
+ A (GG, — GIGY) — Ky, Gy =My — 2+ SuuMy Fy
p=1
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To combine the equations for the upper and lower portions of the domain, let

+ +
Uyzligi_:leRn?‘i’nf, FV:|:§:_:|6Rnf++nf’

and, similarly,
G+ ] - Fr -
Gyz[ vl R Fb,,:{ bl eR™ ™
G, ’ Fy,

and introduce the combined mass and stiffness matrices

M+ K+
[ ] xe[® ]

[ my _[ K,
O R e L
as well as the coupling matrices

Cll _C12 Cll _C12
C[_Czl C22:|a Cb[_cgl ng}-

Furthermore, introducing the vector

N
dG,
Vl,(t) = —(Kb + )\l,Cb)G,, + My, ; SV/,LFb,[L - Mb?’

the governing equations for the vth substance over the entire spatial domain can be
written in matrix form as

duU, al
- == (K, + MO U, + MY S, F, +V,, 1<v<N.

p=1

(2.17) M

Finally, we combine the equations for all substances into a single expression, letting

Ly
M=IyM, L= , L, =K, +\,C, y:S@Ianf_,
Ly

where the symbol “®” denotes the Kronecker product and |y is the N-dimensional
unit matrix, and writing the system of differential equations (2.17) compactly as

(2.18) %%:—EU—F(//ZYF-FV,
where
U1 F1 Vl
v=| | F=| |, V=]
UN FN VN
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3. Time integration. The presence of widely different time scales in the model
requires a careful numerical implementation of the time integration so that the com-
puted solution is not dominated by amplified unstable modes. We begin by observing
that dissociation reactions (2.2)—(2.3) involving H* equilibrate almost instantaneously
relative to the time scale of diffusion and that, while their equilibrium constants are
well known, the exact time scale of the fast reactions is not. The equilibrium of
the fast reactions needs to be taken into consideration when assigning the boundary
conditions, too.

To address the problem of the different time scales, we introduce a fast time scale
parameter ¢ < 1, with dimension [¢] = second, and write

1
k:tZ: gklb 2§€§L7

where the relative rates k7, are dimensionless.

Integrating systems with different well-separated time scales is a widely studied
topic; see, e.g., [17]. Here, to separate the time scales, we use the particular form of
the mass action equations and separate the reaction term in (2.18) into the sum of
the contributions from the slow reactions (2.1) and fast reactions (2.2)—(2.3), that is,

MSFU) = MfU)+ é///h(U).

Observe that since the slow reactions do not involve the proton concentration, the
slow contribution is linear in U,

f(U) =AU

Moreover, the slow reactions depend only on the concentrations Uy and Uy (CO2 and
H5COs3); therefore the matrix £ has a block form,

kil k_ql 0
A= kil —k_il 0],
0 00

where and we assume that the reaction rates are uniform over all free

=1+, -

e +nf ?
nodes. It is straightforward to extend this formulation to account for the presence of
CA near the membrane, whose effect is locally to speed up the reactions. The input

vector V' can be expressed in the form

1
V=W+_B,

where B accounts for the contribution from the fast reactions at the boundary.

It is clear that when € is small, the fast term dominates the right-hand side unless
the system is driven into equilibrium. Let M be the slow manifold of the concentration
satisfying the equilibrium condition

M= {U | hU) =0}

To handle the different time scales in a computationally stable manner, we employ
a two phase propagation, similar in spirit to the predictor-corrector schemes employed
in the IMEX (implicit-explicit) approach [1]. For simplicity, we restrict our attention
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to a first order propagation scheme. Let U™ denote the current numerical approxima-
tion for the solution at t = t,,, and assume that the fast reactions are in equilibrium
both at the free nodes and at the boundary; hence U™ € M. Following the IMEX
approach and motivated by our assumptions about U™, we replace the original system
by the following approximation:

U
dt

Q

(3.1) A — UMt UM W (L) + é (ANWU™) + B(ty))

= _D?UiHJ + %%Ul”rl + W(tn)a

(tn)

where the 1/e term vanishes due to the assumed equilibrium at ¢,,. We compute the
solution of this stiff system to the next time instance t,; using the implicit Euler
time integrator

M (U*”+1 — U”) = —-At(¥ — //lji/)UfH + AtW (ty,),
where At = t,11 — t,, > 0, which is tantamount to solving the linear system
(3.2) (M A+ AL — M) UM = U™ + AW (t,).

Since the computed solution U?*! at the next time step is no longer guaranteed to be
on the slow manifold, we need to perform a correction step to drive the fast reactions
to equilibrium. To do so, consider the dominant part of the differential equation for
small €,

dau 1 1
3.3 M— = —-Mh(U)+ -B.
(3.3) o = ohU) + -
Reparametrizing time in (3.3) in the units 7 of the small time constant ¢, or, equiva-
lently, letting t = 7, we have

(3.4) a_ h(U) + .4~ B.

dr

Note that since the eigenvalues of the Jacobian of h are all nonpositive, the slow
manifold is stable. We then drive the system into equilibrium, starting with the
initial value U, Since the fast reactions were assumed to be in equilibrium at time
instant t¢,,, in our approximation B = 0; hence the system is local, nonstiff, and can
be driven to equilibrium using standard ODE solvers. The new equilibrium value is

denoted by Un*!,

4. Computed examples. In this section, we describe the details of the numer-
ical experiments as well as their outcomes. We focus on the behavior of the predicted
pH curve on the cell membrane, which is directly observed by the experiments.

4.1. Parameters and meshes. To run the model, the first task is to solve the
radial model over a free membrane, that is, without the presence of the electrode. To
set up the model, we assume a spherical oocyte with diameter 1.3 mm, surrounded by
a layer characterized purely by diffusion, while outside the layer the concentrations
are assumed to be constants and known. The thickness of the layer in our model is
0.15 mm, so that the diffusive computational domain is a sphere with diameter 1.6 mm.
Table 1 gives the geometric parameters as well as the membrane permeability.

In the basic simulation setting, we assume that the diffusion is isotropic, each
substance having its characteristic mobility, or diffusion coefficient, given in Table 2.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/11/20 to 129.22.126.5. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

MICROENVIRONMENT MODEL FOR pH ELECTRODE 1067

TABLE 1
Geometric parameters and membrane permeability.

R oocyte radius 650 pm

Roo | external radius 800 pm

w radius of the electrode tip 10 pm

A membrane permeability 34.2 pm/s
TABLE 2

Diffusion coefficients k of the substances.

Substance Inside [(um)?/s] | Outside [(um)2/s]
CO2 1.71x102 1.71x102
H2CO3 1.11x103 1.11x103
HCO3~ 1.11x103 1.11x103
HT 8.69x103 8.69x103
HA 1.56x10% 1.56x102
A- 1.56%103 1.56x103

For simplicity, we assume that the mobility of each substance is the same inside and
outside the cell. This assumption may be questioned, as inside the cell the mobility
can be argued to be smaller due to the presence of microstructures discussed in [14].
However, as pointed out in the aforementioned article, the mobilities do not have
a significant effect on the pH curve on the cell membrane. We assume that at the
cell membrane and inside the cell, the presence of CA accelerates the carbonic acid
formation and dissociation, modeled by increasing the corresponding reaction rates
by a multiplicative factor, k11 — Aky;, A > 1. The values of the reaction rates used
in the calculations are given in Table 3.

TABLE 3
Reaction rates. Observe that for the two fast time scale parameters, € and €', the precise values
in the fast/slow propagation scheme are not important, since only the ratios defining the equilibrium
conditions are needed in the model. When CA is present, the reaction rates k41 are enhanced by an
acceleration factor, denoted by A.

Reaction ke k_g K [mM]
COsy + HQOk%Hzcog 0.0302 [1/s] 10.9631 [1/s] 2.7547x 104
Hzcogk%Hco; +HT | e=1079 [1/s] e/Ka Ko = 0.2407
HAmk’%A;n +Hb e/ =1076 [1/s] e /Kua Kpa = 7.9433 x 1075
HAoutk'%Agut +HY, | ¢ =10"6[1/5] ¢'/Kua Kpna = 3.1623 x 1075

The finite element mesh used for computations is a triangular mesh, and the
computational domain is chosen so that 0 < p < 40um, and |z| < 60 pm. We perform
the experiments with three different values for the gap between the electrode and the
cell membrane, h = 0.1 yum, h = 0.2 ym, and h = 0.4 pm. To generate the mesh, we
discretize the computational domain so that near and on the membrane, the distance
between the nodes is one-third of the smallest value of h, guaranteeing that when the
distance between the electrode tip and the membrane is smallest, h = 0.1um, there are
three element layers between the membrane and the electrode, and as many as twelve
when h = 0.4um. The element size increases when moving away from the membrane,
both outside and inside the cell domain; however, the element size is kept fixed in
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TABLE 4
The number of nodes and elements corresponding to the different distances of the electrode tip
from the membrane.

Electrode distance [pm] | Number of nodes | Number of elements
0.1 47712 94814
0.2 51315 102014
0.4 58521 116414
60 [
1 AAAVAVATAY:
40|
0.5}
20
0 0
M ASANINAAX AR AR KA A AAARARA RN
-20 AVATAYAYA )
-0.5
-4 () BARRRERREARRR NAANNNNNNNNNNNNNAAAAAANNNNNNNINNN
-60 -1 ANNNANAAAAAAA ‘ NN
0 20 40 9 9.5 10 105 11

Fic. 5. The full triangular mesh used in the FEM calculation, with the electrode distance
0.1um (left), and a detail of the mesh over a domain of size 2 x 2 (um)? around the electrode corner
(right). The azes are given in microns. Beyond the dense boundary layers near the membrane, the
distance between the nodal layers increases geometrically by a factor 1.05 as one moves orthogonally
away from the cell membrane. To guarantee isotropic elements, at each nodal layer we set the
horizontal distance between nodes equal to the vertical distance between the nodal layers. The mesh
is a standard Delaunay triangularization.

the layer —0.1um < z < h along the width of the computational domain. The latter
requirement implies that since the number of layers below the electrode is proportional
to the distance between the tip of the electrode and the membrane, as h increases,
so does the number of elements along the entire membrane, significantly increasing
the number of nodes. Keeping the size of the elements the same is important because
we interpolate the reaction rates linearly between nodes, and the presence of CA at
the membrane nodes increases the carbonic acid formation and dissociation. Using a
variable element size would cause a spatial variation in the reaction rate that cannot
be justified physiologically. Despite the coarsening of the mesh in the direction away
from the membrane, the required density of the mesh near the membrane leads to
a large number of nodes and elements, as indicated in Table 4. Figure 5 shows the
overall mesh and a detail of the mesh in the proximity of the electrode tip in the case
h = 0.1 pum. The number of variables in the system varies from 286 272 for h = 0.1 to
351126 for h = 0.4.
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TABLE 5
Initial values of the concentrations in the standard experiment. The model assumes that at
t = 0, the oocyte is added to the bath with the pH electrode already in place.

Substance Inside [mM] Outside [mM]
CO2 0 0.4720
H2COs3 0 0.0013
HCO3™~ 0 9.901

H* (pH) 6.310x107° (7.2) | 3.162x1072 (7.5)
HA 12.09 2.500

A~ 15.22 2.500

In the simulated protocol, referred to as “standard experiment” in [15], we assume
that at ¢ = 0, the concentrations both outside and inside the cell are constants, with
a concentration gradient across the membrane. In practice, we may think that the pH
electrode is placed in the bath of controlled concentrations, and at ¢ = 0, the oocyte
is added in the bath. The initial values of the concentrations are given in Table 5.
Solutions based on the radial model with different CA enhancement values are shown
in Figure 2. In the following sections, we consider the pH curve in the presence of the
electrode, and with different local modifications of the mobility of the substances.

4.2. Isotropic diffusion. In the first computed protocol, we test the electrode
model for three different submicron distances of the electrode tip from the membrane,
setting A = 0.4 um, h = 0.2 um, and h = 0.1 ym, respectively. We assume that the
diffusion processes are isotropic, thus setting

Ky, =k, 1<v <N,

where | is the unit matrix.

The computed pH curves are compared with the free membrane pH traces that
constitute the Dirichlet boundary values at the cylindrical domain boundary I'yy. The
panels in Figure 6 show that the presence of the electrode has virtually no effect on
the dynamic range of the pH at the electrode tip, or on the membrane below it, and
that the distance of the electrode from the membrane does not affect significantly the
response. An explanation for the lack of sensitivity to the presence and position of
the electrode emerges when comparing the time constants of the different processes.
Consider first the diffusion of COs, whose diffusion kernel in R™, 1 < n < 3, with
diffusion coefficient x is given by the formula

D(t,z) = (4wrt) "™ 2exp —@ ;
’ 4kt )’

its characteristic diffusion time over a distance §, regardless of the spatial dimension
n, defined as the time that halves the exponential, is

52
Tt = (4log2) K

Using the radius w = 10 um as the characteristic length &, the characteristic time for
CO4, to diffuse from the edge of the electrode to the center of the oocyte is

Taiff = 0.02s.
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Fi1G. 6. The pH time courses during the first minute. The plots in the top row correspond to pH
computed on the outer surface of the membrane, while those in the bottom row show the pH on the
inner surface of the membrane. The dashed red curves labeled “free membrane” are the computed pH
traces using the radially symmetric model where the electrode is absent. The distance of the electrode
from the membrane is, from left to right, h = 0.1 um, h = 0.2 um, and h = 0.4 um, respectively. In
these experiments, the CA acceleration factor is A = 20. Thus, at the mesh nodes on the membrane
and inside the cell, the reaction rates k+1 are enhanced by this factor, i.e., k+1 — A X k+1. (Color
available online.)

On the other hand, in the presence of CA the time constant of the slowest of the
reactions, CO5 + HoO — H5COg3, becomes

Treact = Aikl ~ % x 33.1s

and, even with the enhancement factor A = 20, the order of magnitude of the time
constant is about a second, or two orders of magnitude larger than the diffusion time.
These considerations indicate that the physics is diffusion dominated, the bottleneck
being the slowest reaction in the conversion chain COy — HCO3~ + H™ affecting the
pH. The reduction of the dimensionality of the special environment under the elec-
trode from a three-dimensional space of free diffusion to an effectively two-dimensional
space does not change the conclusion, as the diffusion time constant is dimension in-
dependent.

In light of the considerations above, there are two possible explanations for the
putative effect of the electrode on the pH: Either the reaction rates are significantly
higher in the vicinity of the membrane, or the diffusion time is significantly reduced.
While the former scenario is hard to justify, the latter may be in line with the con-
formation of the membrane and the shape of the electrode tip. We use our model to
test the second scenario in the second numerical protocol.

4.3. Anisotropic diffusion near the membrane. It is known that the cell
membrane is not a smooth surface but, on the contrary, is covered by the microvilli,
dense microscopic protrusions that facilitate diffusion by increasing the surface area,
and various proteins attached to the membrane. Physiologically, it is therefore rea-
sonable to assume that the diffusion in the tangential and radial directions near the
membrane is different. Notice that simply lowering the scalar mobility under the
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FiGg. 7. The peak pH values at the membrane surface under the electrode. The tangential
diffusion coefficient is reduced by a factor 1/8 at the distance z < 0.4pum from the membrane. The
CA acceleration factor is A = 20, and the distance of the electrode tip from the membrane is 0.1um.
The plot shows that the increase in the pH peak value is insignificant and increases erponentially
slowly as the parameter 3 is increased. Observe that the increase in pH is below 1073, indicating that
the anisotropy alone mear the membrane is not responsible for the observable microenvironmental
effect near the electrode tip.

electrode may not be justified, as the microscopic membrane structure is present in
the free membrane, too, and is sometimes accounted for in the effective membrane
permeability [14]. Therefore, to take into account the membrane structure, we modify
the diffusion tensor near the membrane, writing it in the (p, z) coordinates as

=% L=

0 1
where « is the scalar diffusion coefficient of the substance away from the membrane,
and f > 1 is the slow-down factor in the direction tangential to the membrane,
introduced in the space near the membrane. In our numerical experiments, we assume
that § =1 for z > 0.4 um, while 8 > 1 in the vicinity of the membrane.

In line with the calculations of subsection 4.2, in order to render the time constants
of the tangential diffusion and the reaction comparable, an enhancement factor of
the order 3 ~ 10% should be introduced. However, numerical simulations shown in
Figure 7 indicate that physiologically plausible reduction of the tangential mobility
has only a small effect on the pH, and that the effect increases exponentially slowly as a
function of the reduction factor 8. We see that even a reduction by a factor of 103 has
only a negligible enhancement effect on the peak value of the pH on the membrane
below the electrode, remaining significantly lower than the reported experimental
values. For this reason, a third scenario is considered.

4.4. Quenching by the electrode. The third computational protocol is de-
signed to test the effect of the electrode rim. In the actual measurement, the electrode
is not only brought close to the cell membrane but actually pushed against it, creating
a dimple. While detailed modeling of this geometry would require a modification of
the mesh, we may assume that effectively the electrode rim occludes the substance
pathway near the edge of the electrode, leaving a partly or completely isolated pocket
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F1a. 8. Left: A schematic rendering of the geometry of the electrode tip, a micropipette with a
void inside, effectively creating a partially sealed microenvironment, the level of sealing depending on
the smoothness of the pipette tip [9, 8]. Middle: When the electrode is pushed against the membrane,
the geometry is slightly perturbed from the horizontal structure assumed in the present model. The
effect may be numerically simulated by introducing a sealing, or a Tim region in which we assume
that the tangential component of the diffusion tensor is locally strongly reduced, impeding the free
access of the substances to the microenvironment. Right: Schematic picture of the modeling of the
electrode Tim effect. The horizontal mobility of the biochemical species is reduced by a factor ¢ K 1
under the rim of thickness § of the electrode tip, while elsewhere under the electrode the mobility is
unaltered.

between the electrode and the membrane. Mathematically, this effect can be simu-
lated by reducing the mobility over a ring of a few tenths of a micron around the
electrode rim. The geometry of the modification of the model is illustrated schemati-
cally in Figure 8: We divide the domain Q7 into two subdomains, isolating the domain
under the electrode from the exterior domain by a rim region of thickness § where the
horizontal mobility is locally significantly reduced, x,, = qr,p, ¢ < 1. We refer to
q as the quench parameter. Letting q go to zero corresponds to a total occlusion by
the electrode rim, creating a perfect seal approaching that obtained in patch-clamp
experiments. A more realistic assumption is to use a small but positive factor q. We
refer the reader to [9, 8] for a study of the effect of the electrode surface roughness. In
the cited articles, it is pointed out that a smooth electrode tip considerably increases
the membrane adhesion and results in improved sealing, thereby better isolating the
microenvironment from the rest of the membrane.

In our computed examples we set the rim thickness to § = 0.1um, or 1 percent of
the radius of the electrode. Observe that this parameter does not represent the actual
thickness of the glass of the micropipette but rather simulates the narrow contact of
the outer rim with the cell membrane when the electrode is pushed against it. Figure 9
shows two pH curves on the outside surface of the membrane under the central axis
of the electrode with different quench values, as well as the maximum values of the
simulated pH curves, obtained by varying g over a range of values. The maxima can
be well modeled by a sigmoidal function fitted to them, given by the formula

pHsat - prree
1+ o—(— oz ad-K)Jw’

f(Q) = prree +

where pHy,,, = 7.508 corresponds to the maximum with no quenching, pH,, = 7.780
is the saturation value, w = 0.42, and K = 5.0. Observe that while the choice of
a sigmoidal model is arbitrary and the fitting of the curve is purely empirical, the
upper and lower saturation values can be physically related to the limit cases with
no quenching (¢ = 1) and completely isolated microcompartment under the electrode
(¢=0).

In these simulations, we have fixed the CA acceleration factor on the membrane
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F1G. 9. Left: The pH time course on the surface of the membrane, computed with two different
values of the quench parameter q. The mazima are indicated in the plot. Right: The pH mazxima
corresponding to different values of the parameter q, indicated by red dots, and a fitted sigmoidal
curve. (Color available online.)

and inside the cell to be A = 20, and the radial mobility of the substances is otherwise
unaltered, i.e., no additional anisotropy is assumed.

Quench values between ¢ = 10™* and ¢ = 10~° correspond to the measured
dynamical range of the pH curve [11], indicating that the rim effect may indeed be
a viable explanation of the discrepancy between observations and the free surface
simulations.

5. Conclusions and discussion. The pH control of cells is a critically impor-
tant physiological function, and transport of gases across the cell membrane plays
a fundamental role in the process. A further motivation to better understand the
gas transport across cell membrane comes from oxygen transport by red blood cells
that need to exchange oxygen and carbon dioxide with the environment. The role of
membrane proteins such as aquaporins can be studied indirectly, e.g., by pH measure-
ments. However, the parameters describing the microstructure can be inferred from
the data only if a reliable predictive model tying the two is available. In particular, it
is important to understand secondary factors that may distort the model predictions
and possibly lead to misinterpretations. It is a well understood principle in physics
that when observing microscopic systems, the observer itself constitutes a part of the
system and therefore needs to be taken into account in the model. The present article
addresses this modeling challenge in the case of membrane pH measurements. Here
we have shown that whereas an assumed anisotropic diffusion under the membrane
(e.g., due to the presence of microvilli and various proteins protruding from the mem-
brane) triggers only a minimal change in the pH dynamics, the quenching of diffusion
by the rim of the electrode (allowing free diffusion in the pocket remaining under the
electrode tip) can produce a profound effect. This quenching by the electrode rim is
analogous to a leaky seal in a patch-clamp experiment. Furthermore, the maximum of
the pH time course depends in a sigmoidal fashion on the logarithm of the quenching
factor.

The spatial discretization in the paper is based on a first order finite element
model. To gain higher accuracy, higher order schemes could be introduced, at the
cost of increased computational burden. Due to computational complexity of the
problem, the present article does not address in detail questions involving numerical
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accuracy and convergence of the discretized algorithm. Alternative approaches to
increase accuracy include spectral methods and domain decomposition methods cou-
pling the microenvironment under the electrode to the exterior domain. In this work,
the primary goal was to demonstrate the existence of the electrode effect, and the
development of more accurate and efficient computational schemes is left for future
studies. Likewise, detailed geometric modeling of the cell membrane curvature and
deformation due to the electrode, which may have a quantitative effect, are beyond
the scope of the present article.

The estimation of the membrane properties, and in particular the membrane
permeability from the pH data, requires the availability of a relatively fast computa-
tional model. The algorithm used in our simulations involves hundreds of thousands
of unknowns and is too time consuming for solving efficiently the inverse problem of
membrane permeability. Therefore, a reduced surrogate model that effectively takes
into account the measuring electrode will be necessary. The sigmoidal behavior of the
pH maxima may allow a way to develop a reduced model with an electrode-correction
factor. The development of such a model will be the topic of future work.
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