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We construct the spin-projection operators for a theory containing a symmetric two-index tensor and a
general three-index tensor. We then use them to analyze, at linearized level, the most general action for a
metric affine theory of gravity with terms up to second order in curvature, which depends on 28 parameters.
In the metric case, we recover known results. In the torsion-free case, we are able to determine the most
general six-parameter class of theories that are projective invariant, contain only one massless spin 2 and no

spin 3, and are free of ghosts and tachyons.

DOI: 10.1103/PhysRevD.101.084040

I. INTRODUCTION

Metric-affine gravity (MAG) is a broad class of theories
of gravity based on an independent metric (or tetrad) and
connection. The study of MAG has a long history [1,2].
A general linear connection will have torsion and non-
metricity. In the literature, more attention has been given to
theories with torsion, but recently, there has been a great
deal of interest for MAGs with nonmetricity; see, e.g.,
Refs. [3-13].

There can be many reasons to study such theories. The
main reason for our interest in MAG is its relation to
quadratic gravity' and its similarity to gauge theories of the
fundamental interactions. Quadratic gravity is known to be
renormalizable [14] and asymptotically free [15] but prima
facie not unitary, as expected of a theory with a kinetic term
with four derivatives. There have been many proposals to
circumvent this problem, but none has proven entirely
convincing [16-19]. More recent progress has been
reported in Refs. [20-22]. In spite of this, there has been
a revival of interest in quadratic gravity, especially in
connection with the possibility of realizing scale invariance
at high energy [23-27].

MAG is closely related to quadratic gravity, since it can
be rewritten as quadratic gravity coupled to a specific
matter type. Let A denote a general linear connection and F
denote its curvature; also, let I" be the Levi-Civita

lBy quadratic gravity, we mean theories with action containing
terms linear and quadratic in the Riemann tensor.
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connection and R be its curvature. Splitting A =T+ ¢,
where ¢ is a general three-index tensor, an action of the
form [(F + F?) becomes, schematically,

/[R+¢2+(R+V¢+¢2>2]. (1.1)

In this way, one can study large classes of theories of
gravity and matter with special geometrical features.” In
MAG, the kinetic terms contain only two derivatives, but
ghosts are still generically present, due to the indefiniteness
of the quadratic form F 2. Thus, much of the discussion
that is going on for quadratic gravity could be applied also
to MAG. However, the status of MAG is much less
understood.

It is thus of obvious interest to determine what special
classes of MAGs could be free of ghosts and tachyons. In
the metric case, the most general ghost and tachyon-free
theories not containing accidental symmetries3 have been
determined in Refs. [29,30]. It was based on the use of spin
projectors for a general two-index tensor and a three-index
tensor, antisymmetric in one pair.4 This has been extended
to include parity-violating terms [31,32], and a more
detailed analysis of a large number of cases including also
accidental symmetries has been given recently in Ref. [33].
A broader analysis of the spectrum of a Poincaré gauge
theory has been given in Ref. [34], in which a class of

As an example, let us mention here Weyl geometry, in which
¢ is constructed in terms of a vector field. This theory has been
revisited recently in Ref. [28].

By accidental symmetry, we mean a gauge symmetry that is
present in the linearized action but not in the full action.

This is due to the use of the vierbein formalism. The general
two-index tensor is the linearized vierbein, and the three-index
tensor is the linearized spin connection.
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ghost- and tachyon-free models was obtained. The purpose
of this paper is to give the tools that are necessary to address
this problem for general MAG, containing both torsion and
nonmetricity, and to exhibit a new class of ghost- and
tachyon-free theories with nonmetricity.

The relation of MAG to gauge theories of fundamental
interactions is best understood if one uses arbitrary frames
in the tangent bundle. The theory is then seen to have a
local gauge invariance under diffeomorphisms and under
local GL(4) transformations, but it is in a Higgs phase
[35-38]. The frame field, the metric, and the connection are
all independent, with the first two playing the role of
Goldstone bosons. The gauge GL(4) is “spontaneously
broken” to the trivial group, and the connection (or more
precisely the difference between the connection and the
Levi-Civita connection) becomes massive.

This formalism is not well suited for practical applica-
tions because it contains a large number of redundant fields
(essentially, the 16 components of the frame field). In a
linearized analysis, one would discover that these fields are
all part of the kernel of the kinetic operator and can be
gauge fixed to be zero. It is convenient instead to work from
the start with a formalism that contains the smallest number
of fields. This is the standard formulation in terms of a
metric g,, and an independent connection A;*,. In this
formalism, the only gauge freedom is the diffeomorphism
group, and one cannot reduce the number of fields further
while preserving locality.5 It is important, however, to keep
in mind that this is just a gauge-fixed version of the general

For an action, we take

GL(4) formulation and is gauge equivalent to the vierbein
formulation.

In the following, we start from the most general MAG
action which contains 28 free parameters and determine the
conditions under which it has additional symmetries under
shifts of the connection. We then determine the spin
projection operators for the fields that appear in the
linearized action, which facilitate the inversion of the wave
operator to obtain the propagator for each spin sector. We
then specialize these results to the case of theories with
metric or torsion-free connections. In the latter case, we
determine a six-parameter family of theories that are ghost
and tachyon free, propagating a massless graviton and
massive spin-27, -17, and -1~ states with distinct masses.

II. METRIC AFFINE GRAVITY
A. Action

In the model we shall consider, the independent dynami-
cal variables are the metric g,, of signature — + - - -+ and a
linear connection A,”  The curvature is defined as
(2.1)

0 J— 0 0 g T 0 T
FMV/O' - auAvla - avA//n + Au/ rAv o= AS rAﬂ o’

whereas torsion and nonmetricity are defined by6

1
S(g’A) = _z/ ddx |g|[_a0F + F”Vﬂo—(Cleupﬂ + C2F/w0p + C3Fp0';w + C4Fﬂpl/6

+ CSFyo-p/) + CGF/MF[)D) + F<13)MD(C7F

+ F(M)W(Can(tlf) + Clez(z/lf)) + F*(ci3Fu, + 014F/(41u3) + ClsFl(tlv4)> + c16F?
+ Tﬂﬂy(a] Tﬂpl/ + aZT;wp) + as TMT# + Qp#v(a4 Qp/w + as Quﬂp)

+as0"Q, + a;0" 0, + ag 0" 0, + agT"Q,,,, + T"(a100, + a1, 0,)].

where

T,:= Ti/lﬂ’ Q, = QM{

— 2 (14) . _ 2
F/u/'_ 2 F/w '_Fﬂ/,wv

Note that there are two “pseudo-Ricci” tensors F f,},3> and F f,

that we denote the a( F' term. The Einstein-Hilbert action is described by the aqg*“F, ,(,lf
., C1g)- In d = 4, however, the combination

parameters, namely, (ag, ay, ..., a;,cq, ..

s, =A" —A“%,, (2.2)
Qﬁ/w = _alg/w + Alrﬂgrb + AlTvgw:' (23)
o+ e FUl) + PO (o Pt + ey )
(2.4)
Qﬂ = Q/Iiw
FW' = Fyt.  Fi=F M (2.5)

, without symmetry properties, and one pseudo-Ricci scalar

) term. The action contains 28

5 Except for the possible choice of unimodular gauge; see Ref. [39].
®Note that the torsion tensor is antisymmetric in its first and third indices. This is not to be confused with the convention used widely
in the supergravity literature in which it is antisymmetric in its first two indices instead.
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FﬂprF/m;w _ F,(,?)F””(B) _ FE;”F(M)W[

2R (%) 4 p2, (2.6)
which reduces to the Gauss-Bonnet integrand in the
Riemannian case, does not contribute at quadratic level
when expanding around flat space. Indeed, in Weyl
geometry (i.e., if the nonmetricity is of the form
QO = ;39,), it is a total derivative [40]. In the presence
of trace-free nonmetricity, it is not a total derivative [41],
but in flat space, it only gives cubic and quartic interactions.
Thus, for the purposes of our analysis, one parameter is
redundant. Turning to the action (2.4), it is convenient to
express it as

G

Hi---Hq

1
S(g,A) = _5/ dx |g|[Gﬂlmm'y]“.D4F/,t1.../44Fv1...v4

HiHa3,V1V7V3
+

Hipap3 = Vials

M2 3.V VaV3
+ B Qlllﬂzﬂs Qu1v2v3

-+ CHik2H3. V1003 Tﬂ (27)

1H2H3 QVII/ZV}] :

The tensors G, A, B, and C inherit the symmetries of the
objects they are contracted with. Furthermore, G, A, and B
are also symmetric under the interchange of the first half of
indices with the second half. In the following expres-
sions, symmetrizations that are not already manifest are
indicated’:

Vy...vy — [SY1 SY2 V3 Sly Uy oU3 ZBNZBNAPNZ) V| qU3 ol oy
= [5M15M2(Cl5ﬂ35ﬂ4 + C25#35ﬂ4) + C35M15M25M35ﬂ4 + C45ﬂ15ﬂ25ﬂ35ﬂ4

+ 811y 813 (€563 + €680 ) My (€781084 + C36364)
+ ’7;41/44’1DID4<C95;§5;33 + Cloéll;;allg) + n,ul/mr]yly} (Cl 15112225112 + C125Z;5Z2)

U3l SH1 SV2 VU3 SV2 sVa Vivy SVY2 SV3
A My, (€138, By + €140 38,30y + €154, 643

+ C16Mu s Mo 11 N ol 1] (2.8)
Aﬂlllzﬂsylyzy3 = [6;/‘]1 (aléziézi + 025;25;1:%) + aSnﬂlﬂzﬂylyzéllg][}41#3][V1U3]’ (29)
By oy = (408,85 + a5, 81,8, + My 1> Oy
+ My (a777U]V26;§ + aS”yﬂ}é}z;)}(/42;43)(1/21/3)’ (210)
C”lﬂzﬂgvlyzw = [agé,”}, 5;25;2 + nlfll/z (alol/lﬂzﬂs&;}l + all”ﬂmzé;i)][ulm](vzuz)’ (211)
where it is understood that G is to be symmetrized with 59,w = ﬁgg,m 5Ap” P £§Apﬂ T 6p3y§” ) (2-14)

respect to interchange of indices (y;...u4) and (v...v4) and
that A, B, and C are to be symmetrized with respect to the
interchange of indices (u;...u3) and (v;...v3).

B. Gauge symmetries

In general, the action is invariant under the action of
diffeomorphisms,

Ox* OxP
G (¥') = ngaﬂ(x)v (2.12)
Ox¥ Ox'* Ox® ox'*  9*x7

! N . 7 R -
Ay¥) = Ox'™ Ox’ Ox'P alx) + Ox? Ox'MOxP” (2.13)
For an infinitesimal transformation x* = x* — &(x), the
transformation is given by the Lie derivatives, plus an
inhomogeneous term for the connection,

"In our conventions, the (anti)symmetrizations are always with
unit strength, e.g., X[, Yy = 3 (XY, — X, Y,,).

where LA} =E0,A ) +AF,0,E A 0,8 +AF,0,E.
In four dimensions, if all the coefficients a; are zero, the
action is additionally invariant under the following reali-
zation of Weyl transformations:
89 = 209,,; 64,7, = 0. (2.15)
This is the usual way in which Weyl transformations are
realized on Yang-Mills fields, while the Levi-Civita con-
nection transforms as
oyl = 0,0 8, + 0,0 8 — g7 0,009, (2.16)
In the following, we shall be interested in cases in which
the action is invariant under additional transformations of
the connection (see also Ref. [42]). The following three
classes of transformations will be relevant. First, we
consider the projective transformations
51AL, = 4,00,

019w = 0, (2.17)
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where J,(x) is an arbitrary gauge parameter. Under this
transformation,

51F;wpa = (2V[ﬂ/1y] + T”Tyﬂf)gp(, = 28[;;%]%0,
51 Tﬂp” = 2},[”55], 51 me/ = 2//{/79/!11'
In particular, 6, F = 0. Assuming that neither torsion nor

the nonmetricity vanish, one finds that the action is
invariant, provided that

(2.18)

2¢i +2¢y +2dciz — iy — 15 =0,

¢cs +2c6+2c7 —2cg+cjp —cpp—dcyy =0,

2¢4 + 5+ 2¢9 —2¢ig+ ¢y —cpp —deys =0,
2a; +ay + (d - 1)as + ag —dayg — a;; =0,

4ay +4dag + 2ag + ag — (d — 1)a;p =0,

4as +4a; + 2dag — ag — (d — 1)ay; = 0. (2.19)

There is a similar transformation with the second index
singled out

62AI4PI/ = /V)gl“” 529}” = O, (220)

under which

62F;w/)(7 = 2grf[yvﬂ]/1/) + 29{;[1/ Qﬂ][)‘[l‘[ + 2(Q[Dﬂ](r + Tﬁmlz)j’p’

T, =0, 020 = 29p(uhn)- (2.21)
|

In this case, the variation of the general action gives rise to a
large number of independent structures. Then, the invari-
ance of the action requires that

Cl = Cy = ... :Cm:o,
(2—d)a0+a9 +2a10+ (d+ I)Cl” :O,
(3 —d)ao +4a5 +8616 +2(d+ ])618 = 0,

—ag + 4ay + 2as + 2(d + 1)a; + 2ag = 0. (2.22)

Finally, there is the transformation that singles out the
third index

0AL, = Sy, 09, = 0, (2.23)
under which
53F/4Uﬂ0' = 2gp[uvy]j’o‘ + Tﬂpuﬂ“m
T, = 25@/1,4, 330 = 29,4 h0)- (2.24)

Once again, the variation of the general action gives rise to
a large number of independent structures. Assuming that
the torsion and nonmetricity do not vanish, the action is
invariant, provided that

C1202:~‘«:C16:O,

(d—2)ag+4a, +2a, +2(d —1)az + ag + 2a,0 + (d + 1)a;; =0,

(d=1)ag + 4as + 8ag + 2(d + 1)ag — 2a9 + 2
(1 =d)ag+4a4 +2as +2(d + 1)a; + 2a3 + ag +

III. LINEARIZATION AND SPIN PROJECTORS

A. Linearized action

The equations of motion that come from the action (2.4)
have as a solution the Minkowski space

(3.1)

g/w = 77;41/7 A/)”y =0.

Expanding the action around this solution, the quadratic
wave operator takes the form

1
S<2) =3 / ddQ(Al”yOﬂuvaﬁArpa + 2A2Myoiﬂb/mhpa

2

+ "0, h,,), (3.2)

where, by abuse of notation, we denote A also the
fluctuation and

d
d

(d=1)a;p =0,
(d=1)a;; =0 (2.25)

[
OHv-po — _Biﬂp,‘rpo’qlqp
O/I;w,pa — _21'(Al/,w,rpa + Ciﬂy,rpzr)qf
i 1
+3a0 [0 gt —ntg") =5 (' g =nq") |
Oﬁyy.rpo‘ — _4_(Glc/l,ub,;7‘L'p¢7qKLL7 +Aiyu.rp0' + Bi/u/,rpo
+ 2clﬂu.rpa) + aonup (’,]lu’,lra _ ’720',1/47) . (33)

This operator has a kernel consisting (at least) of the
infinitesimal diffeomorphisms (2.14), which in the present
case read

(3.4)

59/41/ = a}lél/ + ay&w 5A/1m/ = aya/lgﬂ-

For specific values of the couplings, the kernel could be
larger.
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B. Spin projectors

In the analysis of the spectrum of operators acting on
multi-index fields in flat space, it is very convenient to use
spin-projection operators, which can be used to decompose
the fields in their irreducible components under the three-
dimensional rotation group [43-45]. For a three-index
tensor that is antisymmetric in one pair of indices, the spin
projectors were given in Refs. [29,46]. The spin projectors
for totally symmetric three-index tensors have been given
also in Ref. [47]. To the best of our knowledge, the spin
projectors for a general three-index tensor have not been
given in the literature. We thus turn to the construction of
these objects.

1. GL(d) decomposition

The space of two-index tensors can be decomposed into
irreducible representations (irreps) of the group GL(d),
given by symmetric and antisymmetric tensors. The pro-
jectors onto these subspaces are

s/a 1
N/ ef = (868} + 5465).

ab = E (35)

The finer decomposition into irreps of SO(d — 1) is widely
used in gravity. The corresponding treatment of three-index
tensors is algebraically more complicated. We begin with
some elementary facts about three-index tensors as repre-
sentations of GL(d). To discuss their symmetry properties,
we will focus on the second pair of indices. Thus, when we
say that 7., is (anti)symmetric, without further specifica-
tion, we mean ?.,, =7F t,4p-

The space V of three-index tensors has dimension d°.
The subspaces V() and V(@ of symmetric and antisym-
metric tensors are invariant subspaces of dimensions
d*(d +1)/2 and d*(d — 1)/2, respectively. The projectors
onto these subspaces are

. 1
N — Lot + ).

(3.6)

), et = L st(556] — 613,
The subspaces V() and V(@) of totally symmetric and
totally antisymmetric tensors are invariant subspaces of
dimensions d(d —1)(d—2)/6 and d(d+ 1)(d+2)/6,
respectively. Given any tensor, one can extract its totally
(anti)symmetric part by means of the projectors

. I
i, %! = 2 (64058, + 615055, + 6L640, + 5l635

cab
+ 85,87 + 5e628)),

D 1 : : : :
iy % = 2 (61555 — 616455 + 615167, — 5L635

cab

+ 5¢545¢ — 5e545)). (3.7)

The complements of V() in V) and of V(4 in V(@) are
also invariant subspaces denoted V(%) and V(") respec-
tively.® They consist of tensors that are (anti)symmetric but
have zero totally (anti)symmetric part. The projectors onto
such subspaces are

H(cisb) def _ H(CS) def _ H(t;g def

ab c

1
= 8(2535;5§ — 546060, —81656L) +a <> b,
ha) ger _ vy(a) def 1a) def
HE‘ab) def = Hga)b def HEalz def

1

: (260625} —595¢8} —51695L) —a < b.

(3.8)

Thus, the decomposition of a three-index tensor in its
GL(d)-irreducible parts is

feab = Iy + loah + Loy + Ieat- (39)
where
) = é (teab + teba + toca T toac + tabe + Lach)s
t(cilz;) = é (2eab + 2t eba = tacs = tabe = toea = toac)s
IEZ? = é (2eab = 2eba + tach = abe = thea T thac):
fﬁ’fﬁ = é (teab = teba + thea = thac + tabe = tacp)-  (3.10)

2. SO(d - 1) decomposition
A 4-vector ¢° with ¢*> #0 breaks SO(1,d—1) to
SO(d —1). In physical applications, g has the meaning
of a timelike 4-momentum. Given ¢, we can decompose
every other vector in parts longitudinal and transverse to it,
by using the projectors

q“ = q"/\/14*|.

Lab = Qaelb’ Tab = 51; - LZ
(3.11)

This leads to a finer decomposition of V into irreps of the
group SO(d — 1). For a first step, we expand the identity

81855, = (T4 + L) (TS + Lg)(T) + L)) (3.12)

in eight terms. It is easy to see that the combinations

S<ps” and “ha” stand for “hook symmetric” and “hook
antisymmetric,” since these tensors have the structure of the
hook Young tableau.
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TABLE 1. Dimensions of projected spaces in d dimensions.

ts hs ha ta Dimension
TTT d(d®-1) d(d—lg(d—Z) d(d—lg(d—Z) (d—3)(dgz)(d—1) (d—-1)3
TTL + TLT + LTT dd-1) (d—1) (d—1)? (d-2)d-1) 3(d— 1)
LLT + LTL +TLL d—1 d—1 d—1 0 3(d-1)
LLL 1 0 0 0 1
dim d(d+1)(d+2) d(d®-1) d(d*~1) d(d=1)(d=2) 4B

6 3 3 6

TTT;
TLL+ LTL + LLT,

TTL+TLT + LTT,

LLL (3.13)
(all with fixed indices) are projectors. Then, consider the
simultaneous eigenspaces with eigenvalue 1 of these and of
the GL(d) projectors introduced above. The dimensions of
these spaces are given in Table I. The last column and the
last row give the total dimension of the +1 eigenspaces of
the projectors in the corresponding rows and columns.

All of these spaces are representations of SO(d — 1),
some irreducible and others not. To obtain the irreps, let us
note that the hs and ha projections of %LTT and TTL +
TLT — %LTT are themselves projectors. Finally, in several
of these representations, one can isolate the “trace” and the
“trace-free” parts. In dimension d = 4, the SO(3) irreduc-
ible representations are then given in Table II, together with
the spin and parity carried by them. For completeness, we
also list the representations carried by the two-index
symmetric tensor h. The subscripts refer to the number
in the labeling of the projectors.

A given representation of the group SO(3) may appear
more than once in the decomposition of A,.,;,. These copies
will be distinguished by a label i. Thus, for example, the
representation 2~ occurs twice, and the two instances are
denoted 27 and 2;. In addition, the same representation
may occur also in the decomposition of the 2-tensor /.

TABLEIL  SO(3) spin content of projection operators for A and
hind = 4 [ts/ta = totally (anti)symmetric; hs/ha = hook (anti)
symmetric].

ts hs ha ta
37,17 27, 15 25, 13 0-
2?-, O-Ii- - A 1;—
LTT e 21, 0F 17,
TTL+TLT —LTT 17 27,07
TLL +LTL +LLT 1; 15 Iy
LLL OI oo o

TTT
TTL+TLT + LTT

TT 24,04
TL 17
LL 0

We use the same label for all these representations. Thus,
for example, the representation 2" occurs altogether four
times: the representations 2;L with i = 1, 2, 3 come from
A, qp» Whereas 2, comes from /. The irreps carried by A
and & are listed in Table III.

For each representation J?, there is a projector denoted
P;(JP). In addition, for each pair of representations with
the same spin parity, labeled by i, j, there is an intertwining
operator P;;(J7). We collectively refer to all the projectors
and intertwiners as the “spin projectors.” Formulas for all
the spin projectors are given in Appendix A. For conven-
ience, they are also given in an ancillary Mathematica
notebook on the arXiv.

Let us emphasize again that these spin projectors are
suitable to decompose tensors that either have no symmetry
property or are (anti)symmetric in the last two indices. If
one is interested in tensors that are (anti)symmetric in the
first and third indices, it is more convenient to work with
another set of spin projectors P’ j(JP), such that whenever
the representation i or j is carried by a three-index tensor
the first two indices are permuted. For example,

Pl11(2+>cabdef = P11(2+>a6bedf’

P’14(2+)C“bef = P14(2+)“Cbef,etc. (3.14)

Similarly, one can deal with tensors that are (anti)sym-
metric in the first two indices.

TABLE III.  Count of fields of general MAG: list of irreps of
given spin contained in A (second column) in % (third column);
their total number (fourth column) and total number of fields they
carry in d = 4.

JP A h No. of irreps ~ No. of fields
3~ 1 1 7
2+ 1,2,3 4 4 20
2- 1,2 e 2 10
1+ 1,2,3 3 9
1~ 1,2,3,4,5,6 7 7 21
0" 1,2,3,4 5,6 6 6
0~ 1 1 1
total 74
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C. Rewriting the quadratic action

The projector P;;(J 7) has two sets of hidden indices: one
for the representation J? and one for the representation J}).
These multi-indices A, B... consist of either three or two
indices, depending whether the carrier field of the repre-
sentation is A or h. Thus, for example, P;(2") has indices
Py (27)°4 4y, P4y (27) has indices P4y (2+)*, . etc. The
spin projectors satisfy the orthonormality relation

Py(JP) pPu(I9)P e = 81,6pgdy Pu(JP)'c  (3.15)
and the completeness relation

J.Pii

The linearized quadratic action (3.3), can be written as

s =1 [ (a0 =)

« (OAA(CI) OAh(Q)) (A(CI)>
Ona(q)  Omlq) h(q)

In four dimensions, the kinetic operator is an 74 x 74
matrix, that we have written as 64 x 64, 10 x 10 and off-
diagonal 10 x 64 and 64 x 10 blocks. Since the operator is
Lorentz covariant, it maps states of a given spin and
parity to states of the same spin and parity. Therefore,
decomposing A, and h,;, into irreducible representations
of the rotation group puts the kinetic operator in block
diagonal form.

Expanding the operator O ,p in terms of these projection
operators, one can rewrite the quadratic action as

/ 4193 0 (=q) - ay(JP)P(I7) - B(g).

JPij

(3.17)

(3.18)

Exploiting the relations (3.15), (3.16), the matrix elements
a;;(J7), where both representations JP and Jf are carried
by A, can be obtained by

1
aij(‘lp) = d(JP) (JP)CabdefOAA cab
1
Pye P\¢mn
d(pr) sz(‘, ) defOAA ‘mn jk(‘l ) cab>

(3.19)

for any fixed k, where d(J”) is the dimension of the
representation J” . The second equality follows from (3.15),
and it shows that it suffices to know the projections
operators Py for any fixed k in order to obtain all
coefficients matrices. This was also observed in

Ref. [34], in which P, for a fixed k (chosen for conven-
ience to give the simplest projector) were referred to as

“semiprojectors.” Similarly, if the representation J7 is
carried by A and Jf is carried by h, we can use, for
example,
P 1 P cab
aij(‘] ) (J’P) l](‘] ) LubOAh de
1
(JP) sz(fp) defOAh mn jk('ﬂ))mncab’

(3.20)

where we have chosen k that is carried by A. These matrices
a;;(J7) will be referred to as the “coefficient matrices.” For
a general MAG in four dimensions, they are given in
Appendix B. 1.

IV. CONSTRAINTS FOR GHOST
AND TACHYON FREEDOM

Let us arrange the fluctuations into a multifield ®, and
introduce corresponding sources:

Aca Tea
o) =0
hab Oab

Adding source terms, the linearized action can be written

(4.1)

5 = [ atq ;5" 0(-0) a7 P7) - 000
+T(-q)- <1><q>], (@2)
which gives the field equations
> ay(J JP) @ =-7. (4.3)

JPij

Inverting for @ as a function of J and substituting back
into ), we obtain a quadratic form in 7 that we identify
with the saturated propagator and we denote by I1. There is,
however, a complication: in a given spin-parity sector, the
matrix a;; may have null eigenvectors. This corresponds to
the presence of gauge symmetries as follows. Suppose for a
given J*, the matrix a;; is n X n and has rank m, thereby
admitting (n — m) null vectors,

Zal] ; =0

i,j=1,...,n,

Then, Eq. (4.2) is easily seen to be invariant under
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0= VP, V¢ (4.5)
k,r

where £) are arbitrary functions of the coordinates,
provided that the sources obey the constraints
S VP =0
i

Y j.rJ,P, (4.6)

The preceding analysis has to be repeated in each spin
sector to determine all the gauge symmetries and source
constraints. In practice, this cambersome procedure will not
be necessary for the following reasons.

Let us distinguish gauge symmetries that are already
present in the original action (2.4) from “accidental”
symmetries that are only present in the linearized action.
The latter are broken by interactions and therefore cannot
be maintained in the quantum theory. In the following, we
shall restrict ourselves to theories that do not have acci-
dental symmetries. Thus, the only infinitesimal gauge
invariance is given by the diffeomorphisms (3.4):

0Acap =

5hab = i<qa'§b + nga)' (47)

_QbQCga’

Writing this schematically as 6® = D¢, since D¢ is a null
eigenvector of the linearized kinetic term, we must have

Z“U

JPij

i;(J7)DE = 0. (4.8)

Explicit calculation shows that P;; (JP)D¢ is only nonzero
forJP =1"and j=4,5,6,7 or J” =0" and j = 4, 6.
Then, one finds that a(17) has the null eigenvector

~ilq|/V6.~ilql/(2V3).ilq]/2.1),  (4.9)

and a(0") has the null eigenvector (0,0,0, ).
Thus, in general, the ranks of the coefficient matrices a(17)
and a(0™) are 6 and 5, respectively. Invariance of the source
term then demands that the sources satisfy the constraint’

(0.0.0,

2ig“c, + qaqbfbca =0. (410)

To obtain the propagator sandwiched between physical
sources, one takes the inverse of any m x m submatrix of
a;; with nonzero determinant. This amounts to fixing the
gauge symmetries, and it does not affect the form of the
physical saturated propagator [48]. Denoting this submatrix
by bys, (k,€ =1, ...m), the resulting saturated propagator

°In the tetrad formulation of the theory, the antisymmetric part
of the tetrad fluctuation transforms as &hja = —Aap + 0jaSs)»
where 4, is the local Lorentz parameter. Maintaining the gauge
choice h,p =0 fixes Ay = 0)o&p). Since 8Acq, = Oodqp, ONE
finds (4.7) and hence the source constraint (4.10).

I, upon solving for @ in terms of the source and
substituting back into the action, takes the form

1
I1=-7 > b TPe(IP)- T

J Pkt
1 1
=—— - C (IT-P(JP)- T, 4.11

where C,, is the transpose of the cofactor matrix associated
with the matrix b, which is assumed to have rank m. It is
important to stress that in our notation b;! denotes the
matrix element of b~! in the representations k, Z, which
need not agree with the element of the matrix 5~ in the kth
row and Zth column (unless a is nondegenerate, in which
case b = a). Given that b;;(¢) is a Hermitian matrix and its
momentum dependence is polynomial, the poles at non-
vanishing values of ¢> can only come from det b(J7). We
assume that for each given J? there will be s propagating
particles, with s < m. Then, we can write

deth = (4.12)

Clg* +m3) - (q* + m3),

where (C,m?, ..., m?) are constants. For a physical spec-
trum, these constants must be real, and to simplify the
analysis, we shall further assume that the masses m2,
n =1,...,s, are nonvanishing and distinct (possibly, one of
the masses could be zero). The determinant detd has a
simple zero for g> = —m?2, so exactly one eigenvalue of b

must have a zero there. This implies that the residue matrix

lim (g% +m2)b™! (4.13)
g —=m;
has exactly one nonvanishing eigenvalue.

Before proceeding to the implication of this for ghost-
freedom criteria, we need to first note that the spin
projectors in (4.11) contain powers of 1/¢* that do not
contribute to the physical propagators. These spurious
poles at zero momentum, which we shall sometimes refer
to as kinematical singularities, cancel out in the full
saturated propagator. These poles arise from the product
of constants, or 1/(g* + m?), with the longitudinal parts of
the spin projection operators. In the latter case, the simple
procedure of partial fractions gives rise to terms in which
the spin projection operator are evaluated on the mass shell,
plus terms with powers of 1/¢>. For example,

Vg 1/(=m?) 1/m?

q2+m q+m2+ q2 ’

(4.14)

and similarly for expressions of the form
1/((¢*)"(¢*> + m?)). The first term on the rths has the
same pole at g> = —m?, but in its coefficient, the momen-
tum squared is now evaluated at the pole. The second term
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gives another spurious pole at zero. In the end, all the
spurious poles cancel out, and we are left with a combi-
nation of the spin projectors evaluated on the mass shell or
constants sandwiched between sources that obey source
constraints.

With the issue of kinematical singularities out of the way,
we can now state the conditions for the absence of ghosts
and tachyons. The tachyon-freedom condition is very
simple, namely,
n=1,...,s.

tachyon free = m2 > 0, (4.15)

To examine the ghost-freedom condition, it is convenient
to diagonalize the matrix 5~!. Denoting its eigenvalues by
A, and the corresponding eigenvectors by V), we have

:_l 1( 1P| o) ¢ Py|?
n=—3 > (SHMIHF). i

1

where

TOUP) =S VvIPL Py 7. (417)
4

Ghost freedom requires that for each value of k the residue
of the sum in (4.16) must be negative. As already remarked,
precisely one eigenvalue has nonzero residue at a given
pole. Thus, noting also that the modulus of the source-
squared term evaluated at g> = —m> is finite, we can
express the ghost-freedom condition as'”

ghost free = trRes(=b7"|,.__,2) > 0. n=1,....5.

(4.18)

Going back to the formula (4.11), or (4.16), in any J7
sector involving the matrix b~' with rank greater than 1,
there will clearly be mixing of sources that survive the
source constraints. Given that all the kinematical singular-
ities have canceled, the result for the saturated propagator in
such J7 sectors can be written in such a way that the
standard form of the spin Jp propagators arises in terms of a
suitable combination of these sources. This phenomenon
will be clearly shown in the multiparameter models
analyzed below; see (5.9) and (6.34).

Given any MAG with specific couplings cy...cys,
ag, a,...aj;, one can use these conditions on the coefficient
matrices given in Appendix B. 1 and determine the spec-
trum of the theory. However, the 28-parameter class of all
MAGs is too broad for a general analysis, so in the
following, we discuss two important subclasses: MAGs
with either Q =0 or T = 0.

'"The sign depends on the signature of the metric. It may be
useful to recall that in our signature, for a massive scalar field,

b=—(q’+m?).

V. THEORIES WITH METRIC CONNECTION

A. General case

In metric theories, the following identities hold:

FUH _ _p3)

Fﬂy(po‘):()’ w — F

nv

Ql/w =0,
(5.1)

Using these properties, the most general action up to and
including curvature and torsion squared terms is a ten-
parameter action given by

1
S(g’A) = _5/ ddx |g|[_a0F + Fﬂypo—(glFﬂvpa

13
+ g3Fp0'/4u + g4F;4pu0) + F(IS)MD(Q7F/(M/ )
+ gSFl(/llt3)> + gi16F* + T (b, T,

+ b,T,,,) + b3THT ). (5.2)
Note that the metricity condition Q = 0 is a kinematic
constraint that changes the nature of the theory: the action
(5.2) is not obtained from the general MAG action (2.4)
simply by specializing the values of the couplings.
Nevertheless, it is useful to write it in the same form
and to preserve the numbering of the invariants. To
distinguish the two cases, we changed the name of the
couplings from c; to g; and from a; to b;. Notwithstanding
the fact that the action (5.2) is not a special case of (2.4), it
is possible to linearize it by making use of the results
already computed for the general action (2.4) as follows.
Let us first consider the F2 terms. In the action (5.2), and in
accordance with (5.1), making the substitutions

1 13
Fapea = 3 (Fabea = Fabac) ng )

1, a3 14
~ 5 (Fly) = Foy)
(5.3)

and comparing the result with the general action (2.4), we
obtain the relations

1 1 1

0125917 02:—591, C3 =03, 042194,

1 1 1 1
052—594, 062194, 0721977 CSIZQS’

1 1 1 1
Co=—-0¢7, Ci9p=-0s, Ci1=—=G7, Ci»=—=0g,
9 497 10 498 11 297 12 298
cy=cu=c;5=0, cig=4is- (5~4)

Next, let us consider the substitution required for
the parameters a; in terms of b;. This is more subtle due
to the fact that, expanding around A.,;, = 0, the variation of
the metricity condition implies that the fluctuation fields are
related by
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8chab = Acab + Acbuv (55)

where we recall that A denotes also the fluctuation. Thus,
inserting in the linearized action the decomposition
Acap = Aclap) + Ac(ap)> the symmetric part of A gives terms
proportional to /4 that can be compared to those that, in a
general MAG, are produced by Q. This gives the relations

ap = bl’ a, = bz, asy = b3,
1 1 1
ay, = —ds :Ebl+zb2, 616261721b3,
1
a8:_§b37 ag = 2by + b, ajp = —ay = —bs.
(5.6)

In summary, the coefficient matrices of the metric theory
are obtained from those of the general MAG by inserting
the values for the couplings c;, a; in terms of g;, b; as given
in (5.4) and (5.6) and deleting all the rows and columns that
pertain to representations carried by symmetric 3-tensors.
The remaining representations, and the count of degrees of
freedom that they carry, are given in Table IV. The
coefficient matrices of metric MAG in d =4 are given
explicitly in Appendix B. 2.

B. Neville’s model

To test of our formulas and procedures, we reconsider
here, as an example, the Neville model [46], which is the
same as model ii in Ref. [29]. It corresponds to choosing the
couplings g =g3 =—-g/4=9, 97=95= 916 =0,
andb1:b2:b3:0.

In the sectors 1~ and OV, to fix diffeomorphism invari-
ance, we choose the nondegenerate » matrices to be the
upper left 2 x 2 submatrices of the general @ matrices given
in Appendix B.2, namely, b;;'(17) with i, j =3, 6 and
b,-‘j1 (07) with i, j = 3, 5. The inverses of these coefficient
matrices are then given by

TABLE IV. Count of fields of metric MAG: list of irreps of
given spin contained in A, in /4, their total number, and number of
fields they carry in d = 4.

JP A h No. of irreps No. of fields
3= . o 0 0
2 3 4 2 10
2- 2 .- 1 5
1+ 2,3 2 6
1~ 3,6 7 3 9
0" 3 5,6 3 3
0~ 1 e 1 1
Total 34

L0 HF
b1 (2+)=— o)==,
( ) ap | _2iv2 _4 ( ) ag

lql q’

(5.7)

The analysis of Sec. 4.4 shows that this theory contains a
massless graviton and a massless pseudoscalar state, with
mass m”> = ay/(6g). The absence of tachyons and ghosts
requires ay > 0 and g > 0. The saturated propagator is

= —%/d“q{j( Z bi_jl(2+)Pij(2+>

ij=3.4

+ Z bi_jl(0+)Pij(O+)>t7+T|:b_l(2_)P22(2_>
i,j=3.5
+ Db IHP (1) + Y b (17)Py(17)

ij=2.3 i,j=3.6

+ ! (0‘)P(O‘)] T} (5.8)

As discussed in Sec. 4.4, and using the source constraint
(4.10), it can be rewritten in a more explicit form, in which
the spin projection operators are put on shell,

1 m? _ _
H:_Z_ao dCI{T' <—mP(O ,m2)+2P22(2 JI)) T
4 4 1 +
— =58+ ( Pau(27m) =5 Pss(0.0) ) -S ¢ (59)
q 2

where S, = 64, + 1T 40,04, and following Ref. [29], we
have used

P(JP,m*) =P(J7.q) 2 (5.10)

[P
P(I”.n) =PI, q)]y-0- (5.11)

The last term is the standard graviton propagator

2 1 .
/ dq S (—q)— <’7ac’7bd - ’7ab77cd> S<d(q),  (5.12)
apq 2

while for the spin 0™, we have
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7-P(0~,m?) - 7 = leab] <r]cd +

The spin 1™ and 1~ contributions actually vanish.

qdcqa

m2

VI. TORSION-FREE THEORIES

A. General case

In torsion-free theories, the following identities hold:

Fi,

| =

9daqe Qbe of
> (n[,e + ) <nbf + o >r[d 11, (5.13)
_ _ (13)
0, Fu = =2F,). (6.1)

These reduce the number of independent invariants. One finds that the terms in (2.4) with parameters cs, cg, €13, C14, C15, 15
a,, as, dg, o, a;; become redundant. Thus, we parametrize the most general torsion-free MAG action as

1
S(g’ A) - _z/ddx |g| [_aOF + Fﬂpﬂg(thyupo + thﬂlJO'p + h3Fp6m/ + h4F,upu0)

+ F(13)W(h7F/(4]v3> + hsFIE/];)) + F(14)W(h9F/(4L4) + thFt(/llt4)) + F(14)””(h11F/(4L3) + hlez(//l;)) + hyoF?

+ Qmw(aétQp;w +as Qu}lp) + a6QﬂQu + a7QM Qu + Cng”Q#]-

Once again, we note that 7 = 0 is a kinematic constraint, so
the theories we now consider are not equivalent to just
setting to zero the parameters listed above. For this reason,
the remaining parameters c; have been renamed #;.

In the torsion-free case, the field A, is symmetric in 4,
v. In four dimensions, this reduces the number of degrees of
freedom of A from 64 to 40. The corresponding spin
representations are listed in the second column of Table V.
To obtain the coefficient matrices, we use the “primed” spin
projectors defined in the end of Sec. III. B, which are better
suited to decompose a tensor symmetric in the first and last
indices. All the primed spin projectors in the columns ha
and ta in Table II give zero when acting on a torsion-free
connection. Thus, the coefficient matrices for this case are
smaller: their dimensions are given by the fourth column of
Table I'V. A diffeomorphism (2.13) preserves the symmetry
of Ay, and diffeomorphism symmetry reduces by 1 the
rank of the coefficient matrices for spins 1~ and 0. The

(6.2)

coefficient matrices for the torsion-free theory in four
dimensions are given in Appendix B. 3.

B. Torsion-free theories with projective symmetry

Let us now examine the possible additional symmetries
in this case. We find that, while the symmetry (2.20) is still
too restrictive, in the sense that it requires all ¢ coefficients
to vanish, we can achieve projective symmetry, which is
now a symmetric combination of (2.17) and (2.23):

AL, =248 6, =0. (6.3)
It follows that
54Fﬂvp6 = 2gpav[/4/1y] - 2gp[/4vv]ﬂo'v
040 = 24,9 + 29,4 0)- (6.4)

TABLE V. Count of fields of torsion-free MAG: list of irreps of given spin contained in A, in £, their total number,

and number of fields they carry in d = 4.

JP A h No. of irreps No. of fields
3 1 1 7
2+ 1,2 4 3 15
2- 1 = 1 5
1t 1 1 3
1~ 1,2,4,5 7 5 15
0* 1,2, 4 5,6 5 5
0" 0 0
Total 50
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Invariance of the action is found to require that

S -

hy =~ [-2h7 + 2dhg + (d = 1)hyy + (d + 2)hyp +2(1 = d)hy6),

d
hy = |2hy + = (h11+h12) (1 =d)hg|.

hy = ; [~4hy +2(2 = d)hy + 2(1 = 2d)hg — 2dhy, — (2d + 3)hys + 4(d — 1)),

hy = é[ (d = 2)hy +2(2d = Vg + (d + Dhyy + (2d + 5)hys + 6(1 = d)hyg),
i = é[ 2(d = 2)hy —2(2d — 1)hg — (d = 2)hy; = 2(d + 1)hy].

a, = %[5(1 —d)ay—24(d + 1)ag +4(d + 3)a; — 2(d + 7)ag],

as = % 3(d = 1)ag + 8(d + 1)ag — 4(d + 3)az + 2(1 — d)ag], (6.5)

where we have used (6.1) and the formula

1 -
4 / dix\/=gF = /ddxw/—g(l —d) <§ 0, - Qﬂ>/1”, (6.6)
with a total derivative term discarded. The part of the action proportional to s, vanishes due to the identity

F*%(F 5, + 2F

pouy 2F;4/11/0') =0, (67)

puvop

which follows from repeated use of the second equation in (6.1). Therefore, the action depends on nine parameters, namely,
(ag, ag, az, ag) and (hq, hg, hyy, hio, hyg), and it takes the form

1
S(Q’A) = _5/ ddx\/B"{_aOF + Fﬂypﬁ(ylFﬂvpa + 7/2F/4pua + }/3Fp0'/4v) + h16F2

+ FOOR ( FRY + hgFLY + by Fla® + ki FLY )+ FOOR (r, FGY 4 ysFLY)

+ Qmw()%Qp/w + y7QIJ/lp) + a()QuQ# + a7Q”Q;4 + aSQ”Q#)’ (68)
where the parameters (yy, ...,77) are defined in terms of the nine parameters of the action as
1 d d—1 d—|-2 1-d
71:_§h7+§h8+ 1 hy + hiy + 5 hie.
2d+3
r2=(2-d)hy + (1 =2d)hg — dhy, — hiy +2(d = 1)hyg,
d
Y3 = E(hn + hia) + (1 = d)he,
d-2 2d -1 d+1 2d +5
va=—3 hy + 3 hg + 6 hyy + z hiy + (1 = d)hys,
2—-d 1-2d 2—d d+1
rs=3 hy + 3 hg + 6 hy = 3 hya,
5(1-d 3(d+1 d+3 d+17
Y6 = (16 >ao—(2 )a6+ 7 1T g
d—1 d+3 1-d
y7 = ( g )a0+(d+1)a6— a; + YRRLE (6.9)

In four dimensions, the projective symmetry eliminates four fields, reducing by 1 the ranks of the coefficient matrices 1~
and 0. In fact, one finds that a(17) has the null eigenvectors
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(+v/10/3ilq].v/2/3ilq|.\/3/2ilq].0.1),(V10.v/2,v2.1,0),
(6.10)

while a(0") has the null eigenvectors

(—=(1/2)ilq]. (1/2v/2)i]q|.0,0,1), (1, =1/+/2,1,0,0).

(6.11)

The ranks of the coefficient matrices for the representations
37,2%,27, 1%, 17, 0" are 1, 3, 1, 1, 3, 3, respectively.

Invariance of the source term implies that the sources
must obey the constraints:

(6.12)

Next, we examine the spectrum of this nine-parameter
model.
|

C. New ghost- and tachyon-free theories

To further simplify matters, we shall restrict our attention
to choices of parameters such that:
(i) The spin-3 field does not propagate.
(ii) In the spin-2* sector, only the massless graviton
propagates.
Condition i is achieved by setting to zero the coefficient of
—g* in (B14):

h16 = (6h7 + 6h8 + Shll + 5]’112). (613)

AN =

To impose ii, we consider the rank-3 matrix b;;(2%) =
a; j(2+) with i, j = 1, 2, 4. Demanding that the determinant
of this matrix contains no powers of —g> higher than 1
leads to

h12 = _h]l’ hg - _h7. (614)
With these conditions, the class of actions that we consider

is of the form

1 1
$(0.4) = =3 [ @5/ =a0F = (1085 + 30) P9 F e = 2Fp)

3)

(1
+ ZFW

2
(h7F(13)/w + hllF(14)/w) _ g (5]’17 + 4h11)F(14)F(14);w

(]

1 1
+ 13 (12ag +A - 16B)0"Q,,,, — ~(12ay — A - 8B) 0" Q,,,

288

72

where we introduced the following convenient new combi-
nations of parameters:

A= 7a0 - 40(16 - 28(17 - 3408,

B =4ay+ 20a¢ — 7a7 + 2ag,

C = ay + 8ag — 4a; + 2ag. (6.16)

Let us now discuss the dynamical content of this theory.
We have already ruled out the propagation of a spin-3 state,
for which

A
a(37)=—--. (6.17)
4
In the spin-2" sector, we have
1
detb(2+) = 3—2(10ABq2. (618)

1 3
+—(36ay— A —16B + 35C)Q,,Qﬂ},

24

1 .
(7249 + A~ 32B +49C)Q,0" ~ = (A ~ 8B +25C) 0, 0"

(6.15)

As is well known, the propagation of a massless spin-2"
state requires an admixture of a spin-0" state. Having
imposed (6.13) and (6.14), and fixing the diffeomorphism
and projective gauges by choosing the nondegenerate
coefficient submatrix to be b;;(0") with i, j = 3,4, 5, we get

deth(0") = —1—16a0ACq2. (6.19)
Thus, the existence of a massless graviton requires that A, B,
C, and a are all nonvanishing. In particular, this implies that
the coefficient matrix for the spin-3 sector is not zero.

As we shall now see, having imposed (6.13) and (6.14),
we find that all the coefficient matrices have maximum rank
submatrices whose determinants are at most first order in
g*. This means that in any given sector at most one state
propagates. Indeed, denoting b(27) = a(27),;, b(1") =
a(17);;, and taking the nondegenerate submatrix b;;(17)
with i, j =2, 4, 5, we find
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1
b(27) = 1 [2B + (30h; + 9hy,)q?]. (6.20)
1
b(17) = 5 3B + (40h; + 17h11)q’], (6.21)
A
deth(17) = —%A, where A = 6BC + (16B + 25C)(2h; + hy,) . (6.22)

Note that, since A, B, C are nonvanishing, there is no room for accidental symmetries. From these equations, we read off the
masses of the modes 27, 17, and 1~:

2B ) 3B ) 6BC
=2 o= = , (6.23)
30/, + 9h, 40h + 17hy, (16B + 25C)(2hy + hy,)

2
m;

We can now list the matrices b;;'(J7):

4
b3y = _ & 6.24
() =-7. (6.24)
g w2 - Zilql 40 0
1 , A
b‘1(2+):a—q2 222 -t 4flal [+] 0 2 0 (6.25)
0
) ) 0 0 0
Zilgl —4f3lgl -4
1 1 557 —V/3/2idl 1_1 24
-1+ — 1,2 1.2 _ 1
b (0)_a0q2 534 54 aild |+ 22 s (6.26)
3/2ilq| ilq] 2 0 0
4
b71(27) = - (6.27)
6
b~1(117) = , 6.28
| 4B+ C)+2(2h; +hi)g* 0 Y2(6B—12C + 13(2h; + hy1)¢?)
b“(l‘)zg 0 0 0
Y2(6B — 12C + 13(2h7 + hy1)g?) O 2B +8C + 192 (2hy + hyy)g?
] 2 12 V2
- . 2
sal 12072 6v2 (6.29)
V2 6v2 1

We can now state the ghost- and tachyon-free conditions. The tachyon-free conditions amount to the positivity of the
masses (6.23), which are equivalent to

(10hy +3h,)B >0,  (40h; 4+ 17h,,)B > 0,
BC(16B + 25C)(2h; + hy,) > O. (6.30)
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Applying the formula (4.18), one finds that the ghost-free ag > 0, B <0,C(16B +25C) >0, and
conditions for the spin-2*, -27, -1*, and -1~ sectors, are 10
given by hyy < —=2h; for h; <0, or hy < —?h7 for

ay > 0, 10k, + 3hy; <0, h7 > 0. (6.32)
40h; +17hy, < 0, (2hy + hyy) < 0. (6.31)

All these conditions together are equivalent to Finally, the saturated propagator is

H:—%/d“q{j( > b EP;2N)+ > b,»‘,l(0+>Pij(0+))J

i,j=124 i,j=3.4.5

+2[b™ (37)P(37) + 571 (27) Py (27) + b7 (NP (1) + Y b—l(l—),.jpl.,u—)]T}. (6.33)
ij=245

We can make this expression more understandable by explicitly displaying the denominators of each propagator and
evaluating the contractions of the spin projectors with the sources,

1 4 _ 1 abe 1 abe
I = —§/d4(]{—ZT'P<3 1) 'T_msab<P4Z 42%.n) —§P5§ d(0+v’7>>scd
16 1
+ 3 P
30h7 + 9]’111 q —|— m2

1 1 ] qa qc qqu )
2B +m2 div17(a (,]ac i ) (nbd 5 ) divizg

-P(27,md) 7

+ my
1 1 qaqb
_ 7 ab 7
6BZ(I6B+25C)2(2]’17+h1])q2+m% a(;/] + m% b
1 /1 5
— -t triz7? 5, 6.34
T (A 16B + 25c> f13%alln? } (6:34)
where we defined
Sab =2i diVl‘L'ab - idinTab - 20ab, (635)
Za :(16B + 25C) (2h7 ‘|‘ l’lll)(diVmTa - diVl3Ta) - 2B(4B —|— 5C)tr13ra, (636)
and
diVITab =q “Teaps diV2Tab =q Tachs
diVlZTa = qchfcbav diVlSTa = qchfcam 137, =7e0 - (637)

This manifestly shows the spin-2*, -17, and -1~ degrees of freedom being sourced by suitable combinations of sources. In
particular, we note that the spin-2* and -1~ degrees of freedom have propagators of the standard form. The propagator for
the spin 11 seems less familiar, but it is simply that of a massive two-form potential, described by the Lagrangian

1 1
L= ~55Hu H" —5m’B,, B". (6.38)

where H,,,, = 30;,B,,). We also note that, unlike the case of spin 2, the spin-2~ propagator cannot be written solely in
terms of second-rank tensor sources, as it necessarily requires the presence of the third-rank sources.
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VII. CONCLUSIONS

In this paper, we have set up the machinery that is
necessary to analyze the spectrum of a general MAG
theory. In particular, we have constructed the spin projec-
tors for a general three-index tensor, and we have used them
to rewrite the wave operator for the most general, 28-
parameter MAG. Not surprisingly, this case turns out to be
too complicated to determine its spectrum, but it is possible
to do so in special subclasses of theories. We have
considered here theories that have either vanishing non-
metricity, recovering previously known results, and theo-
ries with vanishing torsion. In the latter case, the theory
depends on 17 parameters; imposing projective invariance
reduces this to ten parameters, and imposing that there be
no propagating spin-3~ and no massive propagating spin-
27 fields further reduces this number to 6. The absence of
ghosts and tachyons results in the inequalities (6.32) on
these six parameters. Even within the torsion-free sub-
theory, relaxing the conditions of Sec. VI.3 will lead to a
much more complicated system.

With hindsight, the absence of ghosts and tachyons in
these models is related the fact that, when converting to the
R, ¢ variables in the manner of Eq. (1.1), they do not
contain any terms quadratic in curvature. For the same
reason, these models are also nonrenormalizable. This is
entirely analogous to the situation also pointed out in
Ref. [29] for the nine-parameter metric quadratic theories
with torsion. Similarly, we expect that allowing a propa-
gating massive spin-2" mode will probably make the
theory renormalizable but not unitary.

It is important to stress that the metric and torsion-free
cases are kinematically distinct from the original general
MAG and that the ghost- and tachyon-free models we have
found are not special cases of the general MAG, but only of
the kinematically restricted models. In fact, some classes of
ghost- and tachyon-free Poincaré gauge theories that are
different from our six parameter ghost- and tachyon-free
model have been found in Ref. [34]. We leave it for future
work to study special subclasses of the general MAG.

Also of some interest would be the study of models with
propagating spin 3. It is known that the free massless spin-
3 theory can be embedded in linearized MAG [49];
however, the underlying linearized gauge symmetry does
not extend to the full theory. It would be interesting to
explore whether MAG can describe a massive spin-3 field
coupled to gravity. We hope to return to these questions in
the future.
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Note added.—Recently, we were informed that the spin
projectors for the general theory have also been worked out
in Ref. [50] and that they agree with ours.

APPENDIX A: SPIN PROJECTORS

In the torsion-free case, the spin projectors have also
been given in Ref. [5].

1. P(J~) projectors, /=0, 1, 2, 3

Let us introduce the notation
I1; == (), 0®s) 110 11t 1) 119), i=1,2,...,6,
(A1)

where we recall that TI("®), ..., TI¢ are defined in (3.5), (3.6),
and (3.7).
The negative parity projectors are given by

PG7) = I(ITD, - P(17),,  (A2)

P(27) =LA =P(17),;, 6,j=2.3,
P(l_)ij:HiBinjv i,j=1,2,3,
P(17);5;=1;B;3, I1;, i,j=1,2,3,
P(17 )543, =IL:B 11,0, j=1,2,3,
P(17)7=I1;BIl5,P(17)3,,,=I1;B3 7115, i=1,2,3,
P(17)5,=05(TL+LT)1ls,
P(07)=T1,(TTT)1,,

i-1,j-

(A3)

where it is understood that there is no summation over the
indices displayed, and
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3 3v2 V6
d+1 V(d=2)(d+1)  +/(d-2)(d+1)
R I 1V, R 6 2V3 12
B(l )ij = (d-2)(d+1) d-2 d=2 T12T T,
V6 2V3 2
(d-2)(d+1) d=2 d-2
3 32 V6
Vd+1 Vd+1 Vd+1
B(17) — 32 6 2V3 L. T2T
i3+j T | Vax1 Va2 Va2 |12 ’
V6 2V3 2
Vd+1 d-2 Vd-2
LLT +LTL +TLL 3V2LLT VOLLT
B(17)3451) = 3V2LLT LLT +LTL+TLL 2V3LLT ,
VOLLT 23LLT LLT + LTL +TLL
V6 N
Vd+1 T23q T \/8L232]/T
B(17)i7]eap® = —\/%TBCAI/T , [B(l_)3+i.7]mhef = | —V/3Lyq'T |- (AS5)
«/;—z T34'T 2Lag'T

Note that the transposition raises and lowers the vector indices on T and L such that, for example, 7% and T, get mapped
to T, and T, respectively. Therefore, we have (B”) ;" = T4, LT .

2. P(J*) projectors, J=0, 1, 2

The positive parity projectors are given by

P(2+)ij = ILCII; - P(O+) P(2+) = HCylls, P(2+)44 = HS(TT)HS - P(O+)SS’

ijrey ij
P(1+)i—],j—l :HIDUH)’ i,j:2,3,4,
P<0+>ij = HiEinjv P(O+)i4 = ILE,IT,, P(0+)44 =11 (LLL)HM
P(O+)ir == HiEirH51 P(0+)4r == H1E4rH5, P(()Jr)rs = HSE”H5, (A6)
3
TTL+TLT + LTT 2\/ELTT \/ETLT
— 3 3
C(2+)ij = mLTT §LTT H5(TT)L s
V6TLT I5(TT)L  TTL+TLT -1LTT
ﬁQCTaebe
C Y= | AT |
ﬁTceé\Iabe
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TTL +TLT -1LTT  2V3I4(TT)L VOTTL
D(1%),; = 24310 (TT)L SLTT —%LTT ,
V6TTL —%LTT TTL +TLT + LTT

BLTHT? S5 LTyT™ V6T5,T5, L
E(0"); =—— %LTBTB ILTHRT  2V3T,TRL, |,
V6T5, Ty L 23T, T2L 2T, T"2L

V3LT;T?
E(07)y = \/ELTZSTZB ,
—V2T,T"L
difl Ty T j/; Ty L% 5
3 - 03
=L »,qT
E(0"), = T et [ B0, = (V.
L AL23
di Ty T" /;qule w
AT T% T23L23
E(0),, := . 23 L1 , i=1,23, r,s =35,6. (A7)
T L

APPENDIX B: COEFFICIENT MATRICES
1. General MAG

Here, we provide the coefficient matrices a(J') arising in the expansion of the wave operator in the general 28-parameter
model, in terms of the spin projection operators. For a weak check, we observe that all coefficient matrices vanish
identically for the combination (2.6).

0(3_) = (26’1 + 2C2 + Cy + Cs + C6>(—q2) —dg — 4a4 - 46[5 (Bl)

1
a(27)y =2(cr + ey —cy—cs—ce)(=q7) + 3 (ag — 6a; — 3a, — 8ay + 4as — 6ay)

a27), = ? [(cs = c6)(—4*) — 2a; — ay — ay]

a2 = (2er—ca) 4 3les st e9) ) (=) + a0 - = 5 (B2)

2 1
a(2+)11 = (5(261 +2C2 + Cy +C5 +C6) +§(C7 + Cg + Co +C1() +C11 +C12)> (_q2) — dy —4(14 —4615
1
a(2%), = _ﬁ[z(zcl +2¢cy 4+ ¢4+ ¢s+cg) + ¢7+ cg 4 o+ c19 + €11 + 1) (—4?)
1
a(2%); = %(ﬁ + cg — cg — ¢10)(—4?)

a2 )y = (ag + 4ay + 4as)ilq|

1
2V/3
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1 1
Cl(2+)22 = <§(2C1 +2C2+C4+C5 +C6) +6(C7+Cg +C9+C|0+C11 +C12)>(—q2)

1 3
+—(10 —3(11 —5(12 —4614 +2615 —3(19

2
1
a(2)y = 3 [(=¢7 = ¢g + co + €10)(—¢%) = 6a; — 3a; — 3ay)]
1 .
a(2)y = 2—\/6(—00 + 8ay — 4as + 3ay)ilq|
1 1 1
a(2+)33 = ((26’1 - 2C2 -+ 2C3 + Cqy — Cs -+ C6) +E(C7 + Cg + Cog + Cio—C11 — C12)> (_qZ) +§a0 —a —Eaz

1 .
a(2t)sy = 2—\@ (ag + aq)ilq|

a(2+)44 = —a4q2
_ 5 2
a(17); = (2¢1 +2¢, + ey +¢5+ co +§(C7 g+ ¢y +2c3=cy—cys) | (=q7)
2 20
+§a0—4a4—4a5—?(a5+a7+a8)
_ V& )
a(l7);, = ?[(26’7 +2¢9 +2¢1y = 8¢y3 + 14 + ¢15)(—q°) + 2a9 + 16ag — 8a; + 4ag — 6a,y — 6ay]
V5
a(17);3 = ﬁ[@cﬁ —2c9 — 14+ ¢15)(—q*) — 2a,9 — 2ay;]

[(—cs = 10 = €12+ 2¢13 — €14 — €15)(—¢%) + ag — 4ag — 4a; — 4as]

Q

—

—_

\L

=

I
o[%)
S e

a(l_)IS = \/—1_8[2<68 + C10 + Cip — 2C13 + Ci4 + (715)(—q2) + ap + 8“6 — 4(17 + 2(18 — 3(110 — 3(111}
V5
a(17)6 = —%(Cllo-ﬂln)
_ 5 :
a(17); = ﬁ(_ao+4a7+208)1|‘1|

1
Cl(l_)22 = 8(126'1 + 126’2 - 3C4 - 3C5 - 3C6 + 2C7 + 269 + 2C11 + 16C13 + 4C14 + 4C15)<—q2)

3 16 8
+—Cl() —3611 —=<day —3613 —4(14 +2(15 ——ag — 5 ay +—ag —3619 +46110 —26111

6 2 3 3 3
1
a(17)y = m [(Bey = 3cg + 207 = 2¢9 + 2014 — 2¢15)(—¢*) — 6a; — 3a; — 6a3 — 3ag + 4ayy — 2a,]

1
a(17)yy = 3 [(=2¢g = 2¢19 = 2¢1p = 8¢13 + ¢14 + ¢15)(—¢?) 4 2ag + 16a6 — 8a; + 4ag — 6a;y — 6ay;]
1
a(l7),s = EWG [(2cs +2¢19 + 2¢12 + 8¢y — c14 — €15)(—¢%)
+ ag — 9(13 - 16a6 - 4617 + 8618 + 126110 - 66111]

1
—=(=3a3 +2a,9 — ay)

a(17)ye = NG
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a(17)y; = 2\/—( ag +4a; —4ag + 3ay, )ilq|
a(17)33 —%[(401 —4ey + ¢y = €5+ 6+ 207 + 2¢9 = 2¢11)(—¢7) = ag — 2a; — ay — 2a;3]
a(17)3 = %[(_26'8 +2¢10 = €14+ €15)(=¢%) = 2a10 — 2a,]
a(17)35 = %[(2% —2¢10 + c1a = €15)(=¢*) = 3az +2a,0 — ay
1

a(l17)36 = —ﬁ(ao + a3)
a(l7)y; = 2\1/2(—“0 +ay)ilq|

[(2c; +2cs+cy+ s+ co+ e+ co+cpy 4 2¢13 — ¢4 — €15)(—¢%)

W | =

a(17)yy =

—2ag — 12a, — 12a5 — 4ag — 4a, — 4ag)

_ 1 2

a(17),s = ﬁ[—Z(ch +2¢) + ¢yt s+ g+ 7+ cog+ 1) +2¢13 — ¢4 — ¢15)(—4°)
+ ag + 8ag —4a; + 2ag — 3a,y — 3ay]

- _—L a a
a(17)ye = \/6< 10+ an)

a(l7)yy = 2\/—(00+804+805 + 4a; + 2ay)ilq|
a(l_)ss25(201+202+C4+05+Cé+07+09+011+2013—C14—015)(—q2)
2 4
—|—§a0—3a1—§a2—§a3—4a4—|—2a5—§a6—§a7 +§a3—3a9+2a10—a11

(—6611 - 3612 - 3613 - 309 + 2010 - all)

a(17)s :%
a(l7)s; = % [-2ag + 8a, — 4as + 4a; — dag + 3ay + 3ay,]ilq]
a(l7)ee = —%(201 +a, + a3)

a(17)gy = 3 (@ +a )ilg

a(17) = 5 (205 + as + ay)(~¢?)

1
a(17)y :E[(4C1 +4cy+ 07 —cg+cog—cro+ cpy — c12)(—4¢%)

+ apg — 6611 - 3612 - 8a4 + 4a5 - 6619]

1
a(17), = —m[(zﬂ —2c6 + 7 — g — ¢o + C19)(—¢*) — 6a; — 3a; — 3ay]
1
a(17); = %(—204 +2¢6 — ¢7 + g + c9 — ¢10)(—47)
Lo L1 1
a(17)y, = 6(401 —dcy—des+c7—cg+cg—cp—cyy +cpp)(—q7) +§a0 —a —Eaz
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1
a(17)3 = —=(4c; —4cy —dey + ¢; —cg + cg — cj9 — €11 + ¢12)(—¢%)

3V2

1
a(17)s; :§(4C1 —4cy—4es+ o —cg+ g —cio— ¢y + 1) (—q%) — ag — 4a; + 4a, (B5)

2
a(0+)11 :§(2C1 +2C2 + Cy + Cs +C6 +2C7 +2C‘8 +2Cg +2C10 +2C11 +2612)(—q2)

—4(a4+a5+a6+a7+a8)

1
a(0™)y, = ﬁ [=2(2¢ +2¢y + ¢4 + €5+ ¢ + 2¢7 + 2¢5 + 2¢9 + 2¢1 + 2¢11 + 2¢12)(—¢?)
- 3(10 - 24616 + 126!7 — 6dg + 9010 + 96!11]
1
a(0%); = NG [2(=c7 = g + cg + ¢10)(—4?) + 3(ao + any)]

a(0%)yy = ag — 4(ag + a; + ag)

1
a(0%),s = —=(ag + 4a4 + 4as + 12a¢ + 6ag)i|q|

2V3
a(0) = (—;ao + 2a¢ + 2a7 + 2a8> ilq]
a(0")y; = % (2¢1 4263 + ¢4 4 €5+ €6 4 207 + 2¢5 + 2¢9 + 219 + 2¢1; + 2¢12)(=¢)
+ ay —3a —%az —ga3 —4ay + 2as — 8ag — 2a7 + 4ag — 3ag + 6a;y — 3ay,
= % [2(c7 + g = co = ¢10)(=¢%) = 6a; = 3(ay + 3as + ag) + 6a,p — 3ay]

1
a(0%)yy = —=[—a¢ — 8ag + 4a; — 2ag + 3ayo + 3a;,]

V2
a(07)ps = 2%/5

1 .
a(0%)ys = —=(ag + 8ag — 4a; + 2ag — 3a,y — 3ay,)ilq|

(—ao + 804 - 4(15 + 24@6 — 6618 =+ 3619 - 9a10)l|q|

2V2
a(0")33 = (2¢1 =265 +2¢3 + ¢4 — €5 + €6 + 267 + 2¢5 4 2¢9 + 2¢19 — 2¢1 = 2¢1p + 6¢16)(—¢7)
1 3
—do—a; —502—5613
a(0")3 = \/E(alo +an)  a(0%);s = L (—2ag + ag — 3ay)ilq|
2 22
V3

a0y = ——=(a;g+ay )i
(07)36 2\/-2—( 10 11)ilql
a(0%)yy = —4(as + as + ag + a; + ag)
a(0*),5 = V3(2a + ag)ilq| a(0%),6 = 2(as + as + ag + a7 + ag)ilq|

a0 )5 = (a4 +3a0)(=)  a(0%)sg =2 (20 + ax) ()
a(0%)gs = (a4 + as + ag + a7 + ag)(—q?) (B6)
a(07)=(2c, =2cy—cy+cs—cg)(—q*) —ag—4a, +4a,. (B7)
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2. Metric MAG

Using (5.4) and (5.6) in the coefficient matrices of Appendix B.1, and deleting the rows and columns that pertain to
symmetric 3-tensors, we recover the coefficient matrices of the metric theory, as computed in Ref. [29] (see also Ref. [51])
with two differences. First, one has to keep in mind that the graviton field %, used here is equal to one-half of the graviton
field ¢,;, used in those references. This gives a factor 2 in the mixed A — h coefficients and 4 in the & — h coefficients.
Second, the projectors P;;(1*) with i, j = 2, 3 span the same space as P;;(1*) with 7, j = 1, 2 in those references but differ
by a linear transformation [the old projectors do not respect the GL(4) decomposition]. This is of no consequence for the
physical results.

a(27) = 3 (49, + 92)(~47) +ay 26, — bo) (BS)
a(2)s; = % (491 + 493 + 294 + g7 + g3)(=q%) + ag — 2by — by)
o2y =1 (@0 + 20, 4 Br). a2 = (2014 b)) (B9)

1 1
a(1t)y, = 8(491 —4g5+ 97 — gs)(—¢*) + 540~ 2by + by

4g —4 _
(l(l+) a0 g3 + g7 — 3 (_qQ)

23 — 3\/§
1
a(lt)3; = 5(491 — 495+ 97— 93)(—q*) — ap + 8b; — 8b, (B10)
1
a(l7)3; = 5((491 + g4 +297)(—q*) — ag — 2b; — by — 2b;)
_ ag + b _ ilq|
a(l = a(l =——(—ayg+b
( )36 \/§ ( )37 2\/5( 0 3)

_ 1 _ ilq
a(l )66:_5(2b1+b2+b3)v a(l )67:%(2b1+b2+b3)

a1} = 4 (b1 + by + 1) (~4?) (B11)

1
a(0)33 = (291 + 295 + g4 + 297 + 295 + 6916) (—¢*) + 3 (=2ag —2by — by — 3b5)

a(0+)35 = —M (2ag —2by — by — 3b3)

2V2
a(0%)5s = (26 + by +3b:)(~¢?)
a(0%)35 = a(0%)s = a(0%)gs = 0 (B12)

a(07) =29 — 94)(—¢*) — ag — 4b; + 4b,. (B13)

3. Torsion-free MAG

We give here the coefficient matrices for the most general torsion-free model, as discussed in Sec. VI. A. If one wishes to
further impose the projective symmetry discussed in Sec. VI.B, one has to further impose (in four dimensions) the
conditions given in Eq. (6.5).

Beware of our notational convention; the indices i, j on the coefficient matrix a; j(JP) refer to the representations they
carry. Thus, they do not always agree with the usual convention of numbering matrix elements. For example, the
representation 27 is absent from the symmetric tensor A.,;; only the representations 1, 2, 4 are present. Accordingly, the
element of a(27) in the third row and column is labeled ay,(27).
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Cl(3_) = (2h1 + 2h2 + h4)(—q2) —dagy — 404 - 4615 (B14)

1
a2t), = §(4h1 +4hy + 2hy + hy + hg + hg + hyg + hyy + hyp)(—g%) — ag — 4a, — 4as

1
a(2+)12 = F [4}11 + 4h2 + 2]14 + 4]’17 + 4h8 — 2]’19 - 2]’110 + hll + hlz](—qz)
a(2%)y = 2\/_(a0+4a4—|—4a5) ilq|
1
Cl(2+)22 = 6(10/’11 — 8]’12 + 9]’1’; + 5]’14 + 4]’17 + 4h8 + ]’l9 + th - 2]111 - Zhlz)(—qz) + E(Clo - 2614 + Cl5)
1 .
a(2%)yy = %(ao —2ay + as)ilq|, a(2") 4y = as(—4¢*). (B15)
) 1 o1 1
a(27)y = (2hy —hy =5 hy | (=q%) + 500 — as + 5 as (B16)
2 2 2
1
a(l%)y, = 2 [(2hy = h3 = hy + hg = hyo)(=q?) + ag — 2a4 + as] (B17)

1 2 20
Cl(l_)H = §(6h1 + 6]’12 + 3]’14 + 5]’17 + Shg + Sh’ll)( ) +§(10 - 4(14 - 4615 —?(06 + ay + 618)

a(17), = _g [(=2h7 + 4hg + hyy)(=q%) + ag + 8ag — 4a; + 2as]

a(l17),4 = ? [(=hg = hig = h12)(=q%) + ag — 4ag — 4a; — 4ag]

a(l17);5 = _6—\/\/55 [2(hg + hyo + hi2)(=47) + ag + 8ag — 4a; + 2as]

a(17); = 2\\//_—( —ay + 4a; + 2ag)ilq| (B18)

[(=2hg + 4hyo + h12)(—q*) — 4ag — 8ag — 2a; + 4as]

6ﬁ
a(17)y; = 2\/—(00 +2a7 - 2ag)i|q]|
1
a(17)yy = 3 [(2hy +2hy + hy + hy + hg + hyy ) (—q*) — 2ag — 12a4 — 12as — 4ag — 4a; — 4ag]
1
a(l7),s = 62 [2(2hy 4 2hy + hy + hy + ho + hy)(—4*) — ag — 8ag + 4a; — 2ag]
_ 1 .
a(l7)yy = m(ao + 8ay + 8as + 4a; + 2ag)ilq|
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1
a(17)ss = 3 [(2hy + 2hy + hy + hy + hg + hy1)(—¢%) + ag — 6as + 3as — 4ag — a7 + 2as]
1 .
a(l7)s; = m(ao —4day + 2as — 2a7 + 2ag)ilq|
1
a(l7)7; = 5 (2a4 + as + a7)(—¢*) (B19)
2
a(0%)y; = 5(2h1 + 2hy + hy + 2hq 4 2hg + 2hg + 2hyo + 2hyy + 2h15)(—47)
—4(a4+a5+a6+a7+a8)
1
a(o+)12 = m [2(2]’11 + 2]’12 + ]’l4 - ]’l7 - ]’lg + 5]’19 + 5]’110 + 2h11 + 2h12)(—q2)
+ 3(10 + 24616 - 1207 + 6618]
a(0%)4 = ag —4(as + a7 + ag)
1 1
a(0%);s = ﬁ(ao + 4ay + 4as + 12a4 + 6ag)ilq|, a(0)6 = 3 (=ag + 4ag + 4a; + 4ag)ilq|
1
a(0+)22 = 6(10h1 - 8/’12 + 9/’13 + 5]’14 + 7]’17 + 7h8 + 13]’19 + 13/’110 - 8]’111 — 8h]2 + 27h]6)(_q2)
1
+§(—a0 - 2[14 + as — 4[16 —ay + 2(18)
1 1
a(0t),, = —=lag + 8as — 4a+ + 2ay], a(0t),s = ———=(5ay + 8a, — 4as + 24a, — 6ag)i
(07)n4 2\/5[0 6 7 ] (07)25 4\/6( 0 4 5 6 8)ilq|
1
a(0h),e = ———=(ag + 8ag — 4a, + 2ayg)i
(07)s6 4\/5( 0 6 7 8)ilq|
a(0%)y = —4(as + as + ag + a; + ag) a(0*),s = V3(2as + ag)ilq|
a(0") 6 = 2(as + as + as + a7 + ag)ilq|, a(0")ss = (ay + 3as)(—4¢?)
o V3 2 . 2
a(0")s = 7(2616 + ag)(=q), a(0%)gs = (ay +as + ag + a; + ag)(—q°) (B20)
a(07) = 0. (B21)
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