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I. INTRODUCTION

Metric-affine gravity (MAG) is a broad class of theories

of gravity based on an independent metric (or tetrad) and

connection. The study of MAG has a long history [1,2].

A general linear connection will have torsion and non-

metricity. In the literature, more attention has been given to

theories with torsion, but recently, there has been a great

deal of interest for MAGs with nonmetricity; see, e.g.,

Refs. [3–13].

There can be many reasons to study such theories. The

main reason for our interest in MAG is its relation to

quadratic gravity
1
and its similarity to gauge theories of the

fundamental interactions. Quadratic gravity is known to be

renormalizable [14] and asymptotically free [15] but prima

facie not unitary, as expected of a theory with a kinetic term

with four derivatives. There have been many proposals to

circumvent this problem, but none has proven entirely

convincing [16–19]. More recent progress has been

reported in Refs. [20–22]. In spite of this, there has been

a revival of interest in quadratic gravity, especially in

connection with the possibility of realizing scale invariance

at high energy [23–27].

MAG is closely related to quadratic gravity, since it can

be rewritten as quadratic gravity coupled to a specific

matter type. Let A denote a general linear connection and F
denote its curvature; also, let Γ be the Levi-Civita

connection and R be its curvature. Splitting A ¼ Γþ ϕ,

where ϕ is a general three-index tensor, an action of the

form
R

ðF þ F2Þ becomes, schematically,

Z

½Rþ ϕ2 þ ðRþ∇ϕþ ϕ2Þ2�: ð1:1Þ

In this way, one can study large classes of theories of

gravity and matter with special geometrical features.
2
In

MAG, the kinetic terms contain only two derivatives, but

ghosts are still generically present, due to the indefiniteness

of the quadratic form F2. Thus, much of the discussion

that is going on for quadratic gravity could be applied also

to MAG. However, the status of MAG is much less

understood.

It is thus of obvious interest to determine what special

classes of MAGs could be free of ghosts and tachyons. In

the metric case, the most general ghost and tachyon-free

theories not containing accidental symmetries
3
have been

determined in Refs. [29,30]. It was based on the use of spin

projectors for a general two-index tensor and a three-index

tensor, antisymmetric in one pair.
4
This has been extended

to include parity-violating terms [31,32], and a more

detailed analysis of a large number of cases including also

accidental symmetries has been given recently in Ref. [33].

A broader analysis of the spectrum of a Poincaré gauge

theory has been given in Ref. [34], in which a class of
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.

1
By quadratic gravity, we mean theories with action containing

terms linear and quadratic in the Riemann tensor.

2
As an example, let us mention here Weyl geometry, in which

ϕ is constructed in terms of a vector field. This theory has been
revisited recently in Ref. [28].

3
By accidental symmetry, we mean a gauge symmetry that is

present in the linearized action but not in the full action.
4
This is due to the use of the vierbein formalism. The general

two-index tensor is the linearized vierbein, and the three-index
tensor is the linearized spin connection.
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ghost- and tachyon-free models was obtained. The purpose

of this paper is to give the tools that are necessary to address

this problem for general MAG, containing both torsion and

nonmetricity, and to exhibit a new class of ghost- and

tachyon-free theories with nonmetricity.

The relation of MAG to gauge theories of fundamental

interactions is best understood if one uses arbitrary frames

in the tangent bundle. The theory is then seen to have a

local gauge invariance under diffeomorphisms and under

local GLð4Þ transformations, but it is in a Higgs phase

[35–38]. The frame field, the metric, and the connection are

all independent, with the first two playing the role of

Goldstone bosons. The gauge GLð4Þ is “spontaneously

broken” to the trivial group, and the connection (or more

precisely the difference between the connection and the

Levi-Civita connection) becomes massive.

This formalism is not well suited for practical applica-

tions because it contains a large number of redundant fields

(essentially, the 16 components of the frame field). In a

linearized analysis, one would discover that these fields are

all part of the kernel of the kinetic operator and can be

gauge fixed to be zero. It is convenient instead to work from

the start with a formalism that contains the smallest number

of fields. This is the standard formulation in terms of a

metric gμν and an independent connection Aλ
μ
ν. In this

formalism, the only gauge freedom is the diffeomorphism

group, and one cannot reduce the number of fields further

while preserving locality.
5
It is important, however, to keep

in mind that this is just a gauge-fixed version of the general

GLð4Þ formulation and is gauge equivalent to the vierbein

formulation.

In the following, we start from the most general MAG

action which contains 28 free parameters and determine the

conditions under which it has additional symmetries under

shifts of the connection. We then determine the spin

projection operators for the fields that appear in the

linearized action, which facilitate the inversion of the wave

operator to obtain the propagator for each spin sector. We

then specialize these results to the case of theories with

metric or torsion-free connections. In the latter case, we

determine a six-parameter family of theories that are ghost

and tachyon free, propagating a massless graviton and

massive spin-2−, -1þ, and -1− states with distinct masses.

II. METRIC AFFINE GRAVITY

A. Action

In the model we shall consider, the independent dynami-

cal variables are the metric gμν of signature −þ � � � þ and a

linear connection Aμ
ρ
σ
The curvature is defined as

Fμν
ρ
σ
¼ ∂μAν

ρ
σ − ∂νAμ

ρ
σ
þ Aμ

ρ
τ
Aν

τ
σ − Aν

ρ
τAμ

τ
σ
; ð2:1Þ

whereas torsion and nonmetricity are defined by
6

Tμ
α
ν
¼ Aμ

α
ν
− Aν

α
μ; ð2:2Þ

Qλμν ¼ −∂λgμν þ Aλ
τ
μgτν þ Aλ

τ
νgμτ: ð2:3Þ

For an action, we take

Sðg; AÞ ¼ −
1

2

Z

ddx
ffiffiffiffiffi

jgj
p

½−a0F þ Fμνρσðc1Fμνρσ þ c2Fμνσρ þ c3Fρσμν þ c4Fμρνσ

þ c5Fμσνρ þ c6FμσρνÞ þ Fð13Þμνðc7Fð13Þ
μν þ c8F

ð13Þ
νμ Þ þ Fð14Þμνðc9Fð14Þ

μν þ c10F
ð14Þ
νμ Þ

þ Fð14Þμνðc11Fð13Þ
μν þ c12F

ð13Þ
νμ Þ þ Fμνðc13Fμν þ c14F

ð13Þ
μν þ c15F

ð14Þ
μν Þ þ c16F

2

þ Tμρνða1Tμρν þ a2TμνρÞ þ a3T
μTμ þQρμνða4Qρμν þ a5QνμρÞ

þ a6Q
μQμ þ a7Q̃

μQ̃μ þ a8Q
μQ̃μ þ a9T

μρνQμρν þ Tμða10Qμ þ a11Q̃μÞ�; ð2:4Þ

where

Tμ ≔ Tλ
λ
μ; Qμ ≔ Qμλ

λ; Q̃μ ≔ Qλ
λ
μ;

Fμν ≔ Fμνλ
λ; F

ð14Þ
μν ≔ Fλμν

λ; F
ð13Þ
μν ≔ Fλμ

λ
ν
; F ≔ Fμν

μν: ð2:5Þ

Note that there are two “pseudo-Ricci” tensors F
ð13Þ
μν and F

ð14Þ
μν , without symmetry properties, and one pseudo-Ricci scalar

that we denote the a0 F term. The Einstein-Hilbert action is described by the a0g
μνF

ð13Þ
μν term. The action contains 28

parameters, namely, (a0; a1;…; a11; c1;…; c16). In d ¼ 4, however, the combination

5
Except for the possible choice of unimodular gauge; see Ref. [39].

6
Note that the torsion tensor is antisymmetric in its first and third indices. This is not to be confused with the convention used widely

in the supergravity literature in which it is antisymmetric in its first two indices instead.
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FμνρσF
ρσμν − F

ð13Þ
μν Fνμð13Þ − F

ð14Þ
μν Fð14Þνμ

þ 2F
ð13Þ
μν Fνμð14Þ þ F2; ð2:6Þ

which reduces to the Gauss-Bonnet integrand in the

Riemannian case, does not contribute at quadratic level

when expanding around flat space. Indeed, in Weyl

geometry (i.e., if the nonmetricity is of the form

Qλμν ¼ vλgμν), it is a total derivative [40]. In the presence

of trace-free nonmetricity, it is not a total derivative [41],

but in flat space, it only gives cubic and quartic interactions.

Thus, for the purposes of our analysis, one parameter is

redundant. Turning to the action (2.4), it is convenient to

express it as

Sðg; AÞ ¼ −
1

2

Z

ddx
ffiffiffiffiffi

jgj
p

½Gμ1…μ4;ν1…ν4Fμ1…μ4
Fν1…ν4

þ Aμ1μ2μ3;ν1ν2ν3Tμ1μ2μ3
Tν1ν2ν3

þ Bμ1μ2μ3;ν1ν2ν3Qμ1μ2μ3
Qν1ν2ν3

þ Cμ1μ2μ3;ν1ν2ν3Tμ1μ2μ3
Qν1ν2ν3

�: ð2:7Þ

The tensors G, A, B, and C inherit the symmetries of the

objects they are contracted with. Furthermore, G, A, and B
are also symmetric under the interchange of the first half of

indices with the second half. In the following expres-

sions, symmetrizations that are not already manifest are

indicated
7
:

Gμ1…μ4
ν1…ν4 ¼ ½δν1μ1δν2μ2ðc1δν3μ3δν4μ4 þ c2δ

ν4
μ3δ

ν3
μ4Þ þ c3δ

ν3
μ1δ

ν4
μ2δ

ν1
μ3δ

ν2
μ4 þ c4δ

ν1
μ1δ

ν3
μ2δ

ν2
μ3δ

ν4
μ4

þ δ
ν1
μ1δ

ν4
μ2ðc5δν2μ3δν3μ4 þ c6δ

ν3
μ3δ

ν2
μ4Þ þ ημ1μ3η

ν1ν3ðc7δν2μ2δν4μ4 þ c8δ
ν4
μ2δ

ν2
μ4Þ

þ ημ1μ4η
ν1ν4ðc9δν2μ2δν3μ3 þ c10δ

ν3
μ2δ

ν2
μ3Þ þ ημ1μ4η

ν1ν3ðc11δν2μ2δν4μ3 þ c12δ
ν4
μ2δ

ν2
μ3Þ

þ ημ3μ4ðc13ην3ν4δ
ν1
μ1δ

ν2
μ2 þ c14η

ν1ν3δ
ν2
μ1δ

ν4
μ2 þ c15η

ν1ν4δ
ν2
μ1δ

ν3
μ2Þ

þ c16ημ1μ3ημ2μ4η
ν1ν3ην2ν4 �½μ1μ2�½ν1ν2�; ð2:8Þ

Aμ1μ2μ3
ν1ν2ν3 ¼ ½δν1μ1ða1δν2μ2δν3μ3 þ a2δ

ν3
μ2δ

ν2
μ3Þ þ a3ημ1μ2η

ν1ν2δ
ν3
μ3 �½μ1μ3�½ν1ν3�; ð2:9Þ

Bμ1μ2μ3
ν1ν2ν3 ¼ ½a4δν1μ1δν2μ2δν3μ3 þ a5δ

ν3
μ1δ

ν2
μ2δ

ν1
μ3 þ a6ημ2μ3η

ν2ν3δ
ν1
μ1

þ ημ1μ2ða7ην1ν2δ
ν3
μ3 þ a8η

ν2ν3δ
ν1
μ3Þ�ðμ2μ3Þðν2ν3Þ; ð2:10Þ

Cμ1μ2μ3
ν1ν2ν3 ¼ ½a9δν1μ1δν2μ2δν3μ3 þ ην1ν2ða10ημ2μ3δ

ν3
μ1 þ a11ημ1μ2δ

ν3
μ3Þ�½μ1μ3�ðν2ν3Þ; ð2:11Þ

where it is understood that G is to be symmetrized with

respect to interchange of indices ðμ1…μ4Þ and ðν1…ν4Þ and
that A, B, and C are to be symmetrized with respect to the

interchange of indices ðμ1…μ3Þ and ðν1…ν3Þ.

B. Gauge symmetries

In general, the action is invariant under the action of

diffeomorphisms,

g0μνðx0Þ ¼
∂xα

∂x0μ
∂xβ

∂x0ν
gαβðxÞ; ð2:12Þ

A0
μ
α
β
ðx0Þ ¼ ∂xν

∂x0μ
∂x0α

∂xγ
∂xδ

∂x0β
Aν

γ
δðxÞ þ

∂x0α

∂xγ
∂2xγ

∂x0μ∂x0β
: ð2:13Þ

For an infinitesimal transformation x0μ ¼ xμ − ξμðxÞ, the
transformation is given by the Lie derivatives, plus an

inhomogeneous term for the connection,

δgμν ¼ Lξgμν; δAρ
μ
ν
¼ LξAρ

μ
ν
þ ∂ρ∂νξ

μ; ð2:14Þ

where LξAρ
μ
ν
¼ξλ∂λAρ

μ
ν
þAλ

μ
ν∂ρξ

λ−Aρ
λ
ν
∂λξ

μþAρ
μ
λ
∂νξ

λ.

In four dimensions, if all the coefficients ai are zero, the

action is additionally invariant under the following reali-

zation of Weyl transformations:

δgμν ¼ 2ωgμν; δAμ
ρ
ν
¼ 0: ð2:15Þ

This is the usual way in which Weyl transformations are

realized on Yang-Mills fields, while the Levi-Civita con-

nection transforms as

δΓμ
ρ
ν
¼ ∂μω δ

ρ
ν þ ∂νω δ

ρ
μ − gρτ∂τωgμν: ð2:16Þ

In the following, we shall be interested in cases in which

the action is invariant under additional transformations of

the connection (see also Ref. [42]). The following three

classes of transformations will be relevant. First, we

consider the projective transformations

δ1Aμ
ρ
ν
¼ λμδ

ρ
ν; δ1gμν ¼ 0; ð2:17Þ

7
In our conventions, the (anti)symmetrizations are always with

unit strength, e.g., X½aYb� ¼ 1
2
ðXaYb − XbYaÞ.
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where λμðxÞ is an arbitrary gauge parameter. Under this

transformation,

δ1Fμνρσ ¼ ð2∇½μλν� þ Tμ
τ
ν
λτÞgρσ ¼ 2∂ ½μλν�gρσ;

δ1Tμ
ρ
ν
¼ 2λ½μδ

ρ

ν�; δ1Qρμν ¼ 2λρgμν: ð2:18Þ

In particular, δ1F ¼ 0. Assuming that neither torsion nor

the nonmetricity vanish, one finds that the action is

invariant, provided that

2c1 þ 2c2 þ 2dc13 − c14 − c15 ¼ 0;

c5 þ 2c6 þ 2c7 − 2c8 þ c11 − c12 − dc14 ¼ 0;

2c4 þ c5 þ 2c9 − 2c10 þ c11 − c12 − dc15 ¼ 0;

2a1 þ a2 þ ðd − 1Þa3 þ a9 − da10 − a11 ¼ 0;

4a4 þ 4da6 þ 2a8 þ a9 − ðd − 1Þa10 ¼ 0;

4a5 þ 4a7 þ 2da8 − a9 − ðd − 1Þa11 ¼ 0: ð2:19Þ
There is a similar transformation with the second index

singled out

δ2Aμ
ρ
ν
¼ λρgμν; δ2gμν ¼ 0; ð2:20Þ

under which

δ2Fμνρσ ¼ 2gσ½ν∇μ�λρ þ 2gσ½νQμ�ρτλ
τ þ 2ðQ½νμ�σ þ TμσνÞλρ;

δ2Tμ
ρ
ν
¼ 0; δ2Qρμν ¼ 2gρðμλνÞ: ð2:21Þ

In this case, the variation of the general action gives rise to a

large number of independent structures. Then, the invari-

ance of the action requires that

c1 ¼ c2 ¼ … ¼ c16 ¼ 0;

ð2 − dÞa0 þ a9 þ 2a10 þ ðdþ 1Þa11 ¼ 0;

ð3 − dÞa0 þ 4a5 þ 8a6 þ 2ðdþ 1Þa8 ¼ 0;

−a0 þ 4a4 þ 2a5 þ 2ðdþ 1Þa7 þ 2a8 ¼ 0: ð2:22Þ

Finally, there is the transformation that singles out the

third index

δ3Aμ
ρ
ν
¼ δ

ρ
μλν; δgμν ¼ 0; ð2:23Þ

under which

δ3Fμνρσ ¼ 2gρ½ν∇μ�λσ þ Tμρνλσ;

δ3Tμ
ρ
ν
¼ 2δ

ρ

½μλν�; δ3Qρμν ¼ 2gρðμλνÞ: ð2:24Þ

Once again, the variation of the general action gives rise to

a large number of independent structures. Assuming that

the torsion and nonmetricity do not vanish, the action is

invariant, provided that

c1 ¼ c2 ¼ � � � ¼ c16 ¼ 0;

ðd − 2Þa0 þ 4a1 þ 2a2 þ 2ðd − 1Þa3 þ a9 þ 2a10 þ ðdþ 1Þa11 ¼ 0;

ðd − 1Þa0 þ 4a5 þ 8a6 þ 2ðdþ 1Þa8 − 2a9 þ 2ðd − 1Þa10 ¼ 0;

ð1 − dÞa0 þ 4a4 þ 2a5 þ 2ðdþ 1Þa7 þ 2a8 þ a9 þ ðd − 1Þa11 ¼ 0: ð2:25Þ

III. LINEARIZATION AND SPIN PROJECTORS

A. Linearized action

The equations of motion that come from the action (2.4)

have as a solution the Minkowski space

gμν ¼ ημν; Aρ
μ
ν
¼ 0: ð3:1Þ

Expanding the action around this solution, the quadratic

wave operator takes the form

Sð2Þ ¼ 1

2

Z

ddqðAλμνOλμν
τρσAτρσ þ 2AλμνOλμν

ρσhρσ

þ hμνOμν
ρσhρσÞ; ð3:2Þ

where, by abuse of notation, we denote A also the

fluctuation and

Oμν;ρσ ¼−Bλμν;τρσqλqτ;

Oλμν;ρσ ¼−2iðAλμν;τρσþCλμν;τρσÞqτ

þ i

2
a0

�

ηνσðηλρqμ−ηλμqρÞ−1

2
ηρσðηλνqμ−ηλμqνÞ

�

;

Oλμν;τρσ ¼−4ðGκλμν;ητρσqκqηþAλμν;τρσþBλμν;τρσ

þ2Cλμν;τρσÞþa0η
νρðηλμητσ−ηλσημτÞ: ð3:3Þ

This operator has a kernel consisting (at least) of the

infinitesimal diffeomorphisms (2.14), which in the present

case read

δgμν ¼ ∂μξν þ ∂νξμ; δAλμν ¼ ∂ν∂λξμ: ð3:4Þ

For specific values of the couplings, the kernel could be

larger.
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B. Spin projectors

In the analysis of the spectrum of operators acting on
multi-index fields in flat space, it is very convenient to use

spin-projection operators, which can be used to decompose
the fields in their irreducible components under the three-

dimensional rotation group [43–45]. For a three-index
tensor that is antisymmetric in one pair of indices, the spin

projectors were given in Refs. [29,46]. The spin projectors
for totally symmetric three-index tensors have been given

also in Ref. [47]. To the best of our knowledge, the spin
projectors for a general three-index tensor have not been

given in the literature. We thus turn to the construction of
these objects.

1. GLðdÞ decomposition

The space of two-index tensors can be decomposed into

irreducible representations (irreps) of the group GLðdÞ,
given by symmetric and antisymmetric tensors. The pro-

jectors onto these subspaces are

Π
ðs=aÞ
ab

ef ¼ 1

2
ðδeaδfb � δ

f
aδ

e
bÞ: ð3:5Þ

The finer decomposition into irreps of SOðd − 1Þ is widely
used in gravity. The corresponding treatment of three-index

tensors is algebraically more complicated. We begin with

some elementary facts about three-index tensors as repre-

sentations of GLðdÞ. To discuss their symmetry properties,

we will focus on the second pair of indices. Thus, when we

say that tcab is (anti)symmetric, without further specifica-

tion, we mean tcba ¼∓ tcab.

The space V of three-index tensors has dimension d3.

The subspaces VðsÞ and VðaÞ of symmetric and antisym-

metric tensors are invariant subspaces of dimensions

d2ðdþ 1Þ=2 and d2ðd − 1Þ=2, respectively. The projectors
onto these subspaces are

Π
ðsÞ
cab

def ¼ 1

2
δdcðδeaδfb þ δ

f
aδ

e
bÞ;

Π
ðaÞ
cab

def ¼ 1

2
δdcðδeaδfb − δ

f
aδ

e
bÞ: ð3:6Þ

The subspaces VðtsÞ and VðtaÞ of totally symmetric and

totally antisymmetric tensors are invariant subspaces of

dimensions dðd − 1Þðd − 2Þ=6 and dðdþ 1Þðdþ 2Þ=6,
respectively. Given any tensor, one can extract its totally

(anti)symmetric part by means of the projectors

Π
ðtsÞ
cab

def ¼ 1

6
ðδdcδeaδfb þ δdcδ

f
aδ

e
b þ δ

f
cδ

d
aδ

e
b þ δ

f
cδ

e
aδ

d
b

þ δecδ
f
aδ

d
b þ δecδ

d
aδ

f
bÞ;

Π
ðtaÞ
cab

def ¼ 1

6
ðδdcδeaδfb − δdcδ

f
aδ

e
b þ δ

f
cδ

d
aδ

e
b − δ

f
cδ

e
aδ

d
b

þ δecδ
f
aδ

d
b − δecδ

d
aδ

f
bÞ: ð3:7Þ

The complements of VðtsÞ in VðsÞ and of VðtaÞ in VðaÞ are
also invariant subspaces denoted VðhsÞ and VðhaÞ, respec-
tively.

8
They consist of tensors that are (anti)symmetric but

have zero totally (anti)symmetric part. The projectors onto

such subspaces are

Π
ðhsÞ
cab

def¼Π
ðsÞ
cab

def−Π
ðtsÞ
cab

def

¼1

6
ð2δdcδeaδfb−δdbδ

e
cδ

f
a−δdaδ

e
bδ

f
cÞþa↔b;

Π
ðhaÞ
cab

def¼Π
ðaÞ
cab

def−Π
ðtaÞ
cab

def

¼1

6
ð2δdcδeaδfb−δdbδ

e
cδ

f
a−δdaδ

e
bδ

f
cÞ−a↔b: ð3:8Þ

Thus, the decomposition of a three-index tensor in its

GLðdÞ-irreducible parts is

tcab ¼ t
ðtsÞ
cab þ t

ðhsÞ
cab þ t

ðhaÞ
cab þ t

ðtaÞ
cab : ð3:9Þ

where

t
ðtsÞ
cab ¼

1

6
ðtcab þ tcba þ tbca þ tbac þ tabc þ tacbÞ;

t
ðhsÞ
cab ¼ 1

6
ð2tcab þ 2tcba − tacb − tabc − tbca − tbacÞ;

t
ðhaÞ
cab ¼ 1

6
ð2tcab − 2tcba þ tacb − tabc − tbca þ tbacÞ;

t
ðtaÞ
cab ¼ 1

6
ðtcab − tcba þ tbca − tbac þ tabc − tacbÞ: ð3:10Þ

2. SOðd − 1Þ decomposition

A 4-vector qa with q2 ≠ 0 breaks SOð1; d − 1Þ to

SOðd − 1Þ. In physical applications, qa has the meaning

of a timelike 4-momentum. Given qa, we can decompose

every other vector in parts longitudinal and transverse to it,

by using the projectors

q̂a ≡ qa=

ffiffiffiffiffiffiffiffi

jq2j
q

; La
b ¼ q̂aq̂

b; Ta
b ¼ δba − Lb

a:

ð3:11Þ

This leads to a finer decomposition of V into irreps of the

group SOðd − 1Þ. For a first step, we expand the identity

δdcδ
e
aδ

f
b ¼ ðTd

c þ Ld
cÞðTe

a þ Le
aÞðTf

b þ L
f
bÞ ð3:12Þ

in eight terms. It is easy to see that the combinations

8
“hs” and “ha” stand for “hook symmetric” and “hook

antisymmetric,” since these tensors have the structure of the
hook Young tableau.
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TTT; TTLþ TLT þ LTT;

TLLþ LTLþ LLT; LLL ð3:13Þ

(all with fixed indices) are projectors. Then, consider the

simultaneous eigenspaces with eigenvalue 1 of these and of

the GLðdÞ projectors introduced above. The dimensions of

these spaces are given in Table I. The last column and the

last row give the total dimension of the þ1 eigenspaces of

the projectors in the corresponding rows and columns.

All of these spaces are representations of SOðd − 1Þ,
some irreducible and others not. To obtain the irreps, let us

note that the hs and ha projections of 3
2
LTT and TTLþ

TLT − 1
2
LTT are themselves projectors. Finally, in several

of these representations, one can isolate the “trace” and the

“trace-free” parts. In dimension d ¼ 4, the SOð3Þ irreduc-
ible representations are then given in Table II, together with

the spin and parity carried by them. For completeness, we

also list the representations carried by the two-index

symmetric tensor h. The subscripts refer to the number

in the labeling of the projectors.

A given representation of the group SOð3Þ may appear

more than once in the decomposition of Acab. These copies

will be distinguished by a label i. Thus, for example, the

representation 2− occurs twice, and the two instances are

denoted 2−1 and 2−2 . In addition, the same representation

may occur also in the decomposition of the 2-tensor hab.

We use the same label for all these representations. Thus,

for example, the representation 2þ occurs altogether four

times: the representations 2þi with i ¼ 1, 2, 3 come from

Acab, whereas 2
þ
4 comes from hab. The irreps carried by A

and h are listed in Table III.

For each representation JPi , there is a projector denoted

PiiðJPÞ. In addition, for each pair of representations with

the same spin parity, labeled by i, j, there is an intertwining

operator PijðJPÞ. We collectively refer to all the projectors

and intertwiners as the “spin projectors.” Formulas for all

the spin projectors are given in Appendix A. For conven-

ience, they are also given in an ancillary Mathematica

notebook on the arXiv.

Let us emphasize again that these spin projectors are

suitable to decompose tensors that either have no symmetry

property or are (anti)symmetric in the last two indices. If

one is interested in tensors that are (anti)symmetric in the

first and third indices, it is more convenient to work with

another set of spin projectors P0
ijðJPÞ, such that whenever

the representation i or j is carried by a three-index tensor

the first two indices are permuted. For example,

P0
11ð2þÞcabdef ¼ P11ð2þÞacbedf;
P0
14ð2þÞcabef ¼ P14ð2þÞacbef; etc: ð3:14Þ

Similarly, one can deal with tensors that are (anti)sym-

metric in the first two indices.

TABLE I. Dimensions of projected spaces in d dimensions.

ts hs ha ta Dimension

TTT dðd2−1Þ
6

dðd−1Þðd−2Þ
3

dðd−1Þðd−2Þ
3

ðd−3Þðd−2Þðd−1Þ
6

ðd − 1Þ3
TTLþ TLT þ LTT dðd−1Þ

2
ðd − 1Þ2 ðd − 1Þ2 ðd−2Þðd−1Þ

2
3ðd − 1Þ2

LLT þ LTLþ TLL d − 1 d − 1 d − 1 0 3ðd − 1Þ
LLL 1 0 0 0 1

dim dðdþ1Þðdþ2Þ
6

dðd2−1Þ
3

dðd2−1Þ
3

dðd−1Þðd−2Þ
6

d3

TABLE II. SOð3Þ spin content of projection operators for A and

h in d ¼ 4 [ts=ta ¼ totally (anti)symmetric; hs=ha ¼ hook (anti)

symmetric].

ts hs ha ta

TTT 3−, 1−1 2−1 , 1
−
2 2−2 , 1

−
3 0−

TTLþ TLT þ LTT 2þ1 , 0
þ
1

� � � � � � 1þ3
3
2
LTT � � � 2þ2 , 0

þ
2 1þ2 , � � �

TTLþ TLT − 1
2
LTT � � � 1þ1 2þ3 , 0

þ
3

� � �
TLLþ LTLþ LLT 1−4 1−

5
1−6 � � �

LLL 0þ4 � � � � � � � � �

s

TT 2þ4 , 0
þ
5

TL 1−7
LL 0þ6

TABLE III. Count of fields of general MAG: list of irreps of

given spin contained in A (second column) in h (third column);

their total number (fourth column) and total number of fields they

carry in d ¼ 4.

JP A h No. of irreps No. of fields

3− 1 � � � 1 7

2þ 1, 2, 3 4 4 20

2− 1, 2 � � � 2 10

1þ 1, 2, 3 � � � 3 9

1− 1, 2, 3, 4, 5, 6 7 7 21

0þ 1, 2, 3, 4 5, 6 6 6

0− 1 � � � 1 1

total 74
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C. Rewriting the quadratic action

The projector PijðJPÞ has two sets of hidden indices: one
for the representation JPi and one for the representation JPj .

These multi-indices A, B… consist of either three or two

indices, depending whether the carrier field of the repre-

sentation is A or h. Thus, for example, P11ð2þÞ has indices
P11ð2þÞcabdef, P41ð2þÞ has indices P41ð2þÞabdef, etc. The
spin projectors satisfy the orthonormality relation

PijðJPÞABPklðIQÞBC ¼ δIJδPQδjk PilðJPÞAC ð3:15Þ

and the completeness relation

X

J;P;i

PiiðJPÞ ¼ 1: ð3:16Þ

The linearized quadratic action (3.3), can be written as

Sð2Þ ¼ 1

2

Z

ddq

�

Að−qÞ hð−qÞ
�

×

�

OAAðqÞ OAhðqÞ
OhAðqÞ OhhðqÞ

��

AðqÞ
hðqÞ

�

: ð3:17Þ

In four dimensions, the kinetic operator is an 74 × 74

matrix, that we have written as 64 × 64, 10 × 10 and off-

diagonal 10 × 64 and 64 × 10 blocks. Since the operator is

Lorentz covariant, it maps states of a given spin and

parity to states of the same spin and parity. Therefore,

decomposing Acab and hab into irreducible representations

of the rotation group puts the kinetic operator in block

diagonal form.

Expanding the operator OAB in terms of these projection

operators, one can rewrite the quadratic action as

Sð2Þ ¼ 1

2

Z

ddq
X

JPij

Φð−qÞ · aijðJPÞPijðJPÞ ·ΦðqÞ: ð3:18Þ

Exploiting the relations (3.15), (3.16), the matrix elements

aijðJPÞ, where both representations JPi and JPj are carried

by A, can be obtained by

aijðJPÞ ¼
1

dðJPÞPijðJPÞcabdefOdef
AA cab

¼ 1

dðJPÞPkiðJPÞcabdefOdef
AA lmnPjkðJPÞlmn

cab;

ð3:19Þ

for any fixed k, where dðJPÞ is the dimension of the

representation JP . The second equality follows from (3.15),

and it shows that it suffices to know the projections

operators Pjk for any fixed k in order to obtain all

coefficients matrices. This was also observed in

Ref. [34], in which Pjk for a fixed k (chosen for conven-

ience to give the simplest projector) were referred to as

“semiprojectors.” Similarly, if the representation JPi is

carried by A and JPj is carried by h, we can use, for

example,

aijðJPÞ ¼
1

dðJPÞPijðJPÞdecabOcab
Ah de

¼ 1

dðJPÞPkiðJPÞcabdefOdef
Ah mnPjkðJPÞmn

cab;

ð3:20Þ

where we have chosen k that is carried by A. These matrices

aijðJPÞ will be referred to as the “coefficient matrices.” For

a general MAG in four dimensions, they are given in

Appendix B. 1.

IV. CONSTRAINTS FOR GHOST

AND TACHYON FREEDOM

Let us arrange the fluctuations into a multifield ΦA and

introduce corresponding sources:

ΦA ¼
�

Acab

hab

�

; J A ¼
�

τcab

σab

�

: ð4:1Þ

Adding source terms, the linearized action can be written

Sð2Þ ¼
Z

ddq

�

1

2

X

JPij

Φð−qÞ · aijðJPÞPijðJPÞ ·ΦðqÞ

þ J ð−qÞ ·ΦðqÞ
�

; ð4:2Þ

which gives the field equations

X

JPij

aijðJPÞPijðJPÞ ·Φ ¼ −J : ð4:3Þ

Inverting for Φ as a function of J and substituting back

into Sð2Þ, we obtain a quadratic form in J that we identify

with the saturated propagator and we denote byΠ. There is,

however, a complication: in a given spin-parity sector, the

matrix aij may have null eigenvectors. This corresponds to

the presence of gauge symmetries as follows. Suppose for a

given JP, the matrix aij is n × n and has rank m, thereby

admitting (n −m) null vectors,

X

j

aijV
ðrÞ
j ¼0; i;j¼1;…;n; r¼1;…;n−m: ð4:4Þ

Then, Eq. (4.2) is easily seen to be invariant under

NEW CLASS OF GHOST AND TACHYON FREE METRIC AFFINE … PHYS. REV. D 101, 084040 (2020)

084040-7



δΦ ¼
X

k;r

V
ðrÞ
k Pkl · ξ

ðrÞ; ∀ l; ð4:5Þ

where ξðrÞ are arbitrary functions of the coordinates,

provided that the sources obey the constraints

X

i

V
†ðrÞ
i Pji · J ¼ 0; ∀ j; r; J;P; ð4:6Þ

The preceding analysis has to be repeated in each spin

sector to determine all the gauge symmetries and source

constraints. In practice, this cumbersome procedure will not

be necessary for the following reasons.

Let us distinguish gauge symmetries that are already

present in the original action (2.4) from “accidental”

symmetries that are only present in the linearized action.

The latter are broken by interactions and therefore cannot

be maintained in the quantum theory. In the following, we

shall restrict ourselves to theories that do not have acci-

dental symmetries. Thus, the only infinitesimal gauge

invariance is given by the diffeomorphisms (3.4):

δAcab ¼ −qbqcξa; δhab ¼ iðqaξb þ qbξaÞ: ð4:7Þ

Writing this schematically as δΦ ¼ Dξ, since Dξ is a null

eigenvector of the linearized kinetic term, we must have

X

JPij

aijðJPÞPijðJPÞDξ ¼ 0: ð4:8Þ

Explicit calculation shows that PijðJPÞDξ is only nonzero

for JP ¼ 1− and j ¼ 4, 5, 6, 7 or JP ¼ 0þ and j ¼ 4, 6.

Then, one finds that að1−Þ has the null eigenvector

ð0; 0; 0;−ijqj=
ffiffiffi

6
p

;−ijqj=ð2
ffiffiffi

3
p

Þ; ijqj=2; 1Þ; ð4:9Þ

and að0þÞ has the null eigenvector ð0; 0; 0; ijqj=2; 0; 1Þ.
Thus, in general, the ranks of the coefficient matrices að1−Þ
and að0þÞ are 6 and 5, respectively. Invariance of the source
term then demands that the sources satisfy the constraint

9

2iqaσac þ qaqbτbca ¼ 0: ð4:10Þ

To obtain the propagator sandwiched between physical

sources, one takes the inverse of any m ×m submatrix of

aij with nonzero determinant. This amounts to fixing the

gauge symmetries, and it does not affect the form of the

physical saturated propagator [48]. Denoting this submatrix

by bkl; ðk;l ¼ 1;…mÞ, the resulting saturated propagator

Π, upon solving for Φ in terms of the source and

substituting back into the action, takes the form

Π¼−
1

2

X

J;P;k;l

b−1kl ðJPÞJ † ·PklðJPÞ ·J

¼−
1

2

X

J;P;k;l

1

detbðJPÞCklðJPÞJ † ·PklðJPÞ ·J ; ð4:11Þ

where Ckl is the transpose of the cofactor matrix associated

with the matrix b, which is assumed to have rank m. It is

important to stress that in our notation b−1kl denotes the

matrix element of b−1 in the representations k, l, which

need not agree with the element of the matrix b−1 in the kth
row and lth column (unless a is nondegenerate, in which

case b ¼ a). Given that bijðqÞ is a Hermitian matrix and its

momentum dependence is polynomial, the poles at non-

vanishing values of q2 can only come from det bðJPÞ. We

assume that for each given JP there will be s propagating

particles, with s ≤ m. Then, we can write

det b ¼ Cðq2 þm2
1Þ � � � ðq2 þm2

sÞ; ð4:12Þ

where ðC;m2
1;…; m2

sÞ are constants. For a physical spec-

trum, these constants must be real, and to simplify the

analysis, we shall further assume that the masses m2
n,

n ¼ 1;…; s, are nonvanishing and distinct (possibly, one of
the masses could be zero). The determinant det b has a

simple zero for q2 ¼ −m2
n, so exactly one eigenvalue of b

must have a zero there. This implies that the residue matrix

lim
q2→−m2

n

ðq2 þm2
nÞb−1 ð4:13Þ

has exactly one nonvanishing eigenvalue.

Before proceeding to the implication of this for ghost-

freedom criteria, we need to first note that the spin

projectors in (4.11) contain powers of 1=q2 that do not

contribute to the physical propagators. These spurious

poles at zero momentum, which we shall sometimes refer

to as kinematical singularities, cancel out in the full

saturated propagator. These poles arise from the product

of constants, or 1=ðq2 þm2Þ, with the longitudinal parts of
the spin projection operators. In the latter case, the simple

procedure of partial fractions gives rise to terms in which

the spin projection operator are evaluated on the mass shell,

plus terms with powers of 1=q2. For example,

1=q2

q2 þm2
¼ 1=ð−m2Þ

q2 þm2
þ 1=m2

q2
; ð4:14Þ

and similarly for expressions of the form

1=ððq2Þnðq2 þm2ÞÞ. The first term on the rhs has the

same pole at q2 ¼ −m2, but in its coefficient, the momen-

tum squared is now evaluated at the pole. The second term

9
In the tetrad formulation of the theory, the antisymmetric part

of the tetrad fluctuation transforms as δh½ab� ¼ −λab þ ∂ ½aξb�,
where λab is the local Lorentz parameter. Maintaining the gauge
choice h½ab� ¼ 0 fixes λab ¼ ∂ ½aξb�. Since δAcab ¼ ∂cλab, one

finds (4.7) and hence the source constraint (4.10).
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gives another spurious pole at zero. In the end, all the

spurious poles cancel out, and we are left with a combi-

nation of the spin projectors evaluated on the mass shell or

constants sandwiched between sources that obey source

constraints.

With the issue of kinematical singularities out of the way,

we can now state the conditions for the absence of ghosts

and tachyons. The tachyon-freedom condition is very

simple, namely,

tachyon free ⇒ m2
n > 0; n ¼ 1;…; s: ð4:15Þ

To examine the ghost-freedom condition, it is convenient

to diagonalize the matrix b−1. Denoting its eigenvalues by

λI, and the corresponding eigenvectors by VðIÞ, we have

Π ¼ −
1

2

X

J;P;k

�

X

I

λIðJPÞjĴ ðIÞ
k ðJPÞj2

�

; ð4:16Þ

where

Ĵ
ðIÞ
k ðJPÞ ¼

X

l

V
ðIÞ
l
PklðJPÞ · J : ð4:17Þ

Ghost freedom requires that for each value of k the residue
of the sum in (4.16) must be negative. As already remarked,

precisely one eigenvalue has nonzero residue at a given

pole. Thus, noting also that the modulus of the source-

squared term evaluated at q2 ¼ −m2
n is finite, we can

express the ghost-freedom condition as
10

ghost free ⇒ trResð−b−1jq2¼−m2
n
Þ > 0; n ¼ 1;…; s:

ð4:18Þ

Going back to the formula (4.11), or (4.16), in any J P

sector involving the matrix b−1 with rank greater than 1,

there will clearly be mixing of sources that survive the

source constraints. Given that all the kinematical singular-

ities have canceled, the result for the saturated propagator in

such J P sectors can be written in such a way that the

standard form of the spin JP propagators arises in terms of a

suitable combination of these sources. This phenomenon

will be clearly shown in the multiparameter models

analyzed below; see (5.9) and (6.34).

Given any MAG with specific couplings c1…c16,
a0; a1…a11, one can use these conditions on the coefficient
matrices given in Appendix B. 1 and determine the spec-

trum of the theory. However, the 28-parameter class of all

MAGs is too broad for a general analysis, so in the

following, we discuss two important subclasses: MAGs

with either Q ¼ 0 or T ¼ 0.

V. THEORIES WITH METRIC CONNECTION

A. General case

In metric theories, the following identities hold:

Qλμν ¼ 0; FμνðρσÞ ¼ 0; F
ð14Þ
μν ¼ −F

ð13Þ
μν ; Fμν ¼ 0:

ð5:1Þ

Using these properties, the most general action up to and

including curvature and torsion squared terms is a ten-

parameter action given by

Sðg; AÞ ¼ −
1

2

Z

ddx
ffiffiffiffiffi

jgj
p

½−a0F þ Fμνρσðg1Fμνρσ

þ g3Fρσμν þ g4FμρνσÞ þ Fð13Þμνðg7Fð13Þ
μν

þ g8F
ð13Þ
νμ Þ þ g16F

2 þ Tμρνðb1Tμρν

þ b2TμνρÞ þ b3T
μTμ�: ð5:2Þ

Note that the metricity condition Q ¼ 0 is a kinematic

constraint that changes the nature of the theory: the action

(5.2) is not obtained from the general MAG action (2.4)

simply by specializing the values of the couplings.

Nevertheless, it is useful to write it in the same form

and to preserve the numbering of the invariants. To

distinguish the two cases, we changed the name of the

couplings from ci to gi and from ai to bi. Notwithstanding
the fact that the action (5.2) is not a special case of (2.4), it

is possible to linearize it by making use of the results

already computed for the general action (2.4) as follows.

Let us first consider the F2 terms. In the action (5.2), and in

accordance with (5.1), making the substitutions

Fabcd →
1

2
ðFabcd − FabdcÞ; F

ð13Þ
ab →

1

2
ðFð13Þ

ab − F
ð14Þ
ab Þ

ð5:3Þ

and comparing the result with the general action (2.4), we

obtain the relations

c1¼
1

2
g1; c2¼−

1

2
g1; c3 ¼ g3; c4¼

1

4
g4;

c5¼−
1

2
g4; c6¼

1

4
g4; c7 ¼

1

4
g7; c8 ¼

1

4
g8;

c9¼
1

4
g7; c10¼

1

4
g8; c11¼−

1

2
g7; c12¼−

1

2
g8;

c13¼ c14¼ c15¼ 0; c16¼ g16: ð5:4Þ

Next, let us consider the substitution required for

the parameters ai in terms of bi. This is more subtle due

to the fact that, expanding around Acab ¼ 0, the variation of

the metricity condition implies that the fluctuation fields are

related by

10
The sign depends on the signature of the metric. It may be

useful to recall that in our signature, for a massive scalar field,
b ¼ −ðq2 þm2Þ.
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∂chab ¼ Acab þ Acba; ð5:5Þ

where we recall that A denotes also the fluctuation. Thus,

inserting in the linearized action the decomposition

Acab ¼ Ac½ab� þ AcðabÞ, the symmetric part of A gives terms

proportional to h that can be compared to those that, in a

general MAG, are produced by Q. This gives the relations

a1 ¼ b1; a2 ¼ b2; a3 ¼ b3;

a4 ¼ −a5 ¼
1

2
b1 þ

1

4
b2; a6 ¼ a7 ¼

1

4
b3;

a8 ¼ −
1

2
b3; a9 ¼ 2b1 þ b2; a10 ¼ −a11 ¼ −b3:

ð5:6Þ

In summary, the coefficient matrices of the metric theory

are obtained from those of the general MAG by inserting

the values for the couplings ci, ai in terms of gi, bi as given
in (5.4) and (5.6) and deleting all the rows and columns that

pertain to representations carried by symmetric 3-tensors.

The remaining representations, and the count of degrees of

freedom that they carry, are given in Table IV. The

coefficient matrices of metric MAG in d ¼ 4 are given

explicitly in Appendix B. 2.

B. Neville’s model

To test of our formulas and procedures, we reconsider

here, as an example, the Neville model [46], which is the

same as model ii in Ref. [29]. It corresponds to choosing the

couplings g1 ¼ g3 ¼ −g4=4≡ g, g7 ¼ g8 ¼ g16 ¼ 0,

and b1 ¼ b2 ¼ b3 ¼ 0.

In the sectors 1− and 0þ, to fix diffeomorphism invari-

ance, we choose the nondegenerate b matrices to be the

upper left 2 × 2 submatrices of the general amatrices given

in Appendix B. 2, namely, b−1ij ð1−Þ with i, j ¼ 3, 6 and

b−1ij ð0þÞ with i, j ¼ 3, 5. The inverses of these coefficient

matrices are then given by

b−1ð2þÞ¼ 1

a0

0

B

@

0 2i
ffiffi

2
p

jqj

−2i
ffiffi

2
p

jqj − 4

q2

1

C

A
; b−1ð2−Þ¼ 2

a0
;

b−1ð1þÞ¼ 1

a0

�

2 0

0 −1

�

; b−1ð1−Þ¼ 1

a0

�

0 −
ffiffiffi

2
p

−
ffiffiffi

2
p

1

�

;

b−1ð0þÞ¼ 1

a0

0

B

@

0 − i
ffiffi

2
p

jqj
i
ffiffi

2
p

jqj
2

q2

1

C

A
; b−1ð0−Þ¼−

1

a0þ6gq2
:

ð5:7Þ

The analysis of Sec. 4.4 shows that this theory contains a

massless graviton and a massless pseudoscalar state, with

mass m2 ¼ a0=ð6gÞ. The absence of tachyons and ghosts

requires a0 > 0 and g > 0. The saturated propagator is

Π ¼ −
1

2

Z

d4q

�

J

�

X

i;j¼3;4

b−1ij ð2þÞPijð2þÞ

þ
X

i;j¼3;5

b−1ij ð0þÞPijð0þÞ
�

J þ τ

�

b−1ð2−ÞP22ð2−Þ

þ
X

i;j¼2;3

b−1ij ð1þÞPijð1þÞ þ
X

i;j¼3;6

b−1ij ð1−ÞPijð1−Þ

þ b−1ð0−ÞPð0−Þ
�

τ

�

ð5:8Þ

As discussed in Sec. 4.4, and using the source constraint

(4.10), it can be rewritten in a more explicit form, in which

the spin projection operators are put on shell,

Π¼−
1

2a0

Z

dq

�

τ ·

�

−
m2

q2þm2
Pð0−;m2Þþ2P22ð2−;ηÞ

�

·τ

−
4

q2
S ·

�

P44ð2þ;ηÞ−
1

2
P55ð0þ;ηÞ

�

·S

�

; ð5:9Þ

where Sab ¼ σab þ iqcτacbσab, and following Ref. [29], we
have used

PðJP; m2Þ≡ PðJP ; qÞjq2¼−m2 : ð5:10Þ

PðJP ; ηÞ≡ PðJP; qÞj∂→0: ð5:11Þ

The last term is the standard graviton propagator

Z

dq Sabð−qÞ 2

a0q
2

�

ηacηbd −
1

2
ηabηcd

�

ScdðqÞ; ð5:12Þ

while for the spin 0−, we have

TABLE IV. Count of fields of metric MAG: list of irreps of

given spin contained in A, in h, their total number, and number of

fields they carry in d ¼ 4.

JP A h No. of irreps No. of fields

3− � � � � � � 0 0

2þ 3 4 2 10

2− 2 � � � 1 5

1þ 2, 3 � � � 2 6

1− 3, 6 7 3 9

0þ 3 5, 6 3 3

0− 1 � � � 1 1

Total 34
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τ · Pð0−; m2Þ · τ ¼ τ½cab�
�

ηcd þ
qcqd

m2

��

ηae þ
qaqe

m2

��

ηbf þ
qbqf

m2

�

τ½def�: ð5:13Þ

The spin 1þ and 1− contributions actually vanish.

VI. TORSION-FREE THEORIES

A. General case

In torsion-free theories, the following identities hold:

Tμ
ρ
ν
¼ 0; F½μν

ρ
σ� ¼ 0; Fμν ¼ −2F

ð13Þ
½μν� : ð6:1Þ

These reduce the number of independent invariants. One finds that the terms in (2.4) with parameters c5; c6; c13; c14; c15; a1;
a2; a3; a9; a10; a11 become redundant. Thus, we parametrize the most general torsion-free MAG action as

Sðg; AÞ ¼ −
1

2

Z

ddx
ffiffiffiffiffi

jgj
p

½−a0F þ Fμνρσðh1Fμνρσ þ h2Fμνσρ þ h3Fρσμν þ h4FμρνσÞ

þ Fð13Þμνðh7Fð13Þ
μν þ h8F

ð13Þ
νμ Þ þ Fð14Þμνðh9Fð14Þ

μν þ h10F
ð14Þ
νμ Þ þ Fð14Þμνðh11Fð13Þ

μν þ h12F
ð13Þ
νμ Þ þ h16F

2

þQρμνða4Qρμν þ a5QνμρÞ þ a6Q
μQμ þ a7Q̃

μQ̃μ þ a8Q
μQ̃μ�: ð6:2Þ

Once again, we note that T ¼ 0 is a kinematic constraint, so

the theories we now consider are not equivalent to just

setting to zero the parameters listed above. For this reason,

the remaining parameters ci have been renamed hi.
In the torsion-free case, the field Aλμν is symmetric in λ,

ν. In four dimensions, this reduces the number of degrees of

freedom of A from 64 to 40. The corresponding spin

representations are listed in the second column of Table V.

To obtain the coefficient matrices, we use the “primed” spin

projectors defined in the end of Sec. III. B, which are better

suited to decompose a tensor symmetric in the first and last

indices. All the primed spin projectors in the columns ha
and ta in Table II give zero when acting on a torsion-free

connection. Thus, the coefficient matrices for this case are

smaller: their dimensions are given by the fourth column of

Table IV. A diffeomorphism (2.13) preserves the symmetry

of Aλμν, and diffeomorphism symmetry reduces by 1 the

rank of the coefficient matrices for spins 1− and 0þ. The

coefficient matrices for the torsion-free theory in four

dimensions are given in Appendix B. 3.

B. Torsion-free theories with projective symmetry

Let us now examine the possible additional symmetries

in this case. We find that, while the symmetry (2.20) is still

too restrictive, in the sense that it requires all c coefficients

to vanish, we can achieve projective symmetry, which is

now a symmetric combination of (2.17) and (2.23):

δ4Aμ
ρ
ν
¼ 2λðμδ

ρ

νÞ; δgμν ¼ 0: ð6:3Þ

It follows that

δ4Fμνρσ ¼ 2gρσ∇½μλν� − 2gρ½μ∇ν�λσ;

δ4Qρμν ¼ 2λρgμν þ 2gρðμλνÞ: ð6:4Þ

TABLE V. Count of fields of torsion-free MAG: list of irreps of given spin contained in A, in h, their total number,

and number of fields they carry in d ¼ 4.

JP A h No. of irreps No. of fields

3− 1 � � � 1 7

2þ 1, 2 4 3 15

2− 1 � � � 1 5

1þ 1 � � � 1 3

1− 1, 2, 4, 5 7 5 15

0þ 1, 2, 4 5, 6 5 5

0− � � � � � � 0 0

Total 50
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Invariance of the action is found to require that

h1 ¼
1

4
½−2h7 þ 2dh8 þ ðd − 1Þh11 þ ðdþ 2Þh12 þ 2ð1 − dÞh16�;

h3 ¼
�

2h2 þ
d

2
ðh11 þ h12Þ þ ð1 − dÞh16

�

;

h4 ¼
1

2
½−4h2 þ 2ð2 − dÞh7 þ 2ð1 − 2dÞh8 − 2dh11 − ð2dþ 3Þh12 þ 4ðd − 1Þh16�;

h9 ¼
1

6
½2ðd − 2Þh7 þ 2ð2d − 1Þh8 þ ðdþ 1Þh11 þ ð2dþ 5Þh12 þ 6ð1 − dÞh16�;

h10 ¼
1

6
½−2ðd − 2Þh7 − 2ð2d − 1Þh8 − ðd − 2Þh11 − 2ðdþ 1Þh12�;

a4 ¼
1

16
½5ð1 − dÞa0 − 24ðdþ 1Þa6 þ 4ðdþ 3Þa7 − 2ðdþ 7Þa8�;

a5 ¼
1

8
½3ðd − 1Þa0 þ 8ðdþ 1Þa6 − 4ðdþ 3Þa7 þ 2ð1 − dÞa8�; ð6:5Þ

where we have used (6.1) and the formula

δ4

Z

ddx
ffiffiffiffiffiffi

−g
p

F ¼
Z

ddx
ffiffiffiffiffiffi

−g
p ð1 − dÞ

�

1

2
Qμ − Q̃μ

�

λμ; ð6:6Þ

with a total derivative term discarded. The part of the action proportional to h2 vanishes due to the identity

FμνρσðFμνσρ þ 2Fρσμν − 2FμρνσÞ ¼ 0; ð6:7Þ

which follows from repeated use of the second equation in (6.1). Therefore, the action depends on nine parameters, namely,

ða0; a6; a7; a8Þ and ðh7; h8; h11; h12; h16Þ, and it takes the form

Sðg; AÞ ¼ −
1

2

Z

ddx
ffiffiffiffiffi

jgj
p

f−a0F þ Fμνρσðγ1Fμνρσ þ γ2Fμρνσ þ γ3FρσμνÞ þ h16F
2

þ Fð13Þμνðh7Fð13Þ
μν þ h8F

ð13Þ
νμ þ h11F

ð14Þ
μν þ h12F

ð14Þ
νμ Þ þ Fð14Þμνðγ4Fð14Þ

μν þ γ5F
ð14Þ
νμ Þ

þQρμνðγ6Qρμν þ γ7QνμρÞ þ a6QμQ
μ þ a7Q̃

μQ̃μ þ a8Q
μQ̃μÞ; ð6:8Þ

where the parameters ðγ1;…; γ7Þ are defined in terms of the nine parameters of the action as

γ1 ¼ −
1

2
h7 þ

d

2
h8 þ

d − 1

4
h11 þ

dþ 2

4
h12 þ

1 − d

2
h16;

γ2 ¼ ð2 − dÞh7 þ ð1 − 2dÞh8 − dh11 −
2dþ 3

2
h12 þ 2ðd − 1Þh16;

γ3 ¼
d

2
ðh11 þ h12Þ þ ð1 − dÞh16;

γ4 ¼
d − 2

3
h7 þ

2d − 1

3
h8 þ

dþ 1

6
h11 þ

2dþ 5

6
h12 þ ð1 − dÞh16;

γ5 ¼
2 − d

3
h7 þ

1 − 2d

3
h8 þ

2 − d

6
h11 −

dþ 1

3
h12;

γ6 ¼
5ð1 − dÞ

16
a0 −

3ðdþ 1Þ
2

a6 þ
dþ 3

4
a7 −

dþ 7

8
a8

γ7 ¼
3ðd − 1Þ

8
a0 þ ðdþ 1Þa6 −

dþ 3

2
a7 þ

1 − d

4
a8: ð6:9Þ

In four dimensions, the projective symmetry eliminates four fields, reducing by 1 the ranks of the coefficient matrices 1−

and 0þ. In fact, one finds that að1−Þ has the null eigenvectors
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ð
ffiffiffiffiffiffiffiffiffiffi

10=3
p

ijqj;
ffiffiffiffiffiffiffiffi

2=3
p

ijqj;
ffiffiffiffiffiffiffiffi

3=2
p

ijqj;0;1Þ;ð
ffiffiffiffiffi

10
p

;
ffiffiffi

2
p

;
ffiffiffi

2
p

;1;0Þ;
ð6:10Þ

while að0þÞ has the null eigenvectors

ð−ð1=2Þijqj; ð1=2
ffiffiffi

2
p

Þijqj; 0; 0; 1Þ; ð1;−1=
ffiffiffi

2
p

; 1; 0; 0Þ:
ð6:11Þ

The ranks of the coefficient matrices for the representations

3−, 2þ, 2−, 1þ, 1−, 0þ are 1, 3, 1, 1, 3, 3, respectively.

Invariance of the source term implies that the sources

must obey the constraints:

τννμ ¼ 0; τμν
ν ¼ 0: ð6:12Þ

Next, we examine the spectrum of this nine-parameter

model.

C. New ghost- and tachyon-free theories

To further simplify matters, we shall restrict our attention

to choices of parameters such that:

(i) The spin-3 field does not propagate.

(ii) In the spin-2þ sector, only the massless graviton

propagates.

Condition i is achieved by setting to zero the coefficient of

−q2 in (B14):

h16 ¼
1

6
ð6h7 þ 6h8 þ 5h11 þ 5h12Þ: ð6:13Þ

To impose ii, we consider the rank-3 matrix bijð2þÞ ¼
aijð2þÞ with i, j ¼ 1, 2, 4. Demanding that the determinant

of this matrix contains no powers of −q2 higher than 1

leads to

h12 ¼ −h11; h8 ¼ −h7: ð6:14Þ

With these conditions, the class of actions that we consider

is of the form

Sðg; AÞ ¼ −
1

2

Z

dnx
ffiffiffiffiffi

jgj
p

�

−a0F −
1

4
ð10h7 þ 3h11ÞFμνρσðFμνρσ − 2FμρνσÞ

þ 2F
ð13Þ
½μν� ðh7Fð13Þμν þ h11F

ð14ÞμνÞ − 2

3
ð5h7 þ 4h11ÞFð14Þ

½μν� F
ð14Þμν

þ 1

48
ð12a0 þ A − 16BÞQρμνQρμν −

1

24
ð12a0 − A − 8BÞQρμνQνμρ

−
1

288
ð72a0 þ A − 32Bþ 49CÞQμQ

μ −
1

72
ðA − 8Bþ 25CÞQ̃μQ̃

μ

þ 1

72
ð36a0 − A − 16Bþ 35CÞQμQ̃

μ

�

; ð6:15Þ

where we introduced the following convenient new combi-

nations of parameters:

A ¼ 7a0 − 40a6 − 28a7 − 34a8;

B ¼ 4a0 þ 20a6 − 7a7 þ 2a8;

C ¼ a0 þ 8a6 − 4a7 þ 2a8: ð6:16Þ

Let us now discuss the dynamical content of this theory.

We have already ruled out the propagation of a spin-3 state,

for which

að3−Þ ¼ −
A

4
: ð6:17Þ

In the spin-2þ sector, we have

det bð2þÞ ¼ 1

32
a0ABq

2: ð6:18Þ

As is well known, the propagation of a massless spin-2þ

state requires an admixture of a spin-0þ state. Having

imposed (6.13) and (6.14), and fixing the diffeomorphism

and projective gauges by choosing the nondegenerate

coefficient submatrix to be bijð0þÞwith i, j ¼ 3, 4, 5, we get

det bð0þÞ ¼ −
1

16
a0ACq

2: ð6:19Þ

Thus, the existence of a massless graviton requires thatA,B,
C, and a0 are all nonvanishing. In particular, this implies that

the coefficient matrix for the spin-3 sector is not zero.

As we shall now see, having imposed (6.13) and (6.14),

we find that all the coefficient matrices have maximum rank

submatrices whose determinants are at most first order in

q2. This means that in any given sector at most one state

propagates. Indeed, denoting bð2−Þ ¼ að2−Þ11, bð1þÞ ¼
að1þÞ11, and taking the nondegenerate submatrix bijð1−Þ
with i, j ¼ 2, 4, 5, we find
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bð2−Þ ¼ 1

4
½2Bþ ð30h7 þ 9h11Þq2�: ð6:20Þ

bð1þÞ ¼ 1

6
½3Bþ ð40h7 þ 17h11Þq2�; ð6:21Þ

det bð1−Þ ¼ −
5A

288
Δ; where Δ ¼ 6BCþ ð16Bþ 25CÞð2h7 þ h11Þq2: ð6:22Þ

Note that, since A, B, C are nonvanishing, there is no room for accidental symmetries. From these equations, we read off the

masses of the modes 2−, 1þ, and 1−:

m2
2 ¼

2B

30h7 þ 9h11
; m2

þ ¼ 3B

40h7 þ 17h11
; m2

− ¼ 6BC

ð16Bþ 25CÞð2h7 þ h11Þ
; ð6:23Þ

We can now list the matrices b−1ij ðJPÞ:

b−1ð3−Þ ¼ −
4

A
; ð6:24Þ

b−1ð2þÞ ¼ 1

a0q
2

0

B

B

B

B

B

@

− 1
3
q2 2

ffiffi

2
p

3
q2 − 2

ffiffi

3
p ijqj

2
ffiffi

2
p

3
q2 − 8

3
q2 4

ffiffi

2
3

q

ijqj

2
ffiffi

3
p ijqj −4

ffiffi

2
3

q

ijqj −4

1

C

C

C

C

C

A

þ

0

B

@

− 4
A

0 0

0 2
B

0

0 0 0

1

C

A
; ð6:25Þ

b−1ð0þÞ ¼ 1

a0q
2

0

B

B

B

B

B

@

3
4
q2 1

2
ffiffi

2
p q2 −

ffiffiffiffiffiffiffiffi

3=2
p

ijqj
1

2
ffiffi

2
p q2 1

6
q2 − 1

ffiffi

3
p ijqj

ffiffiffiffiffiffiffiffi

3=2
p

ijqj 1
ffiffi

3
p ijqj 2

1

C

C

C

C

C

A

þ

0

B

@

1
C
− 1

A
2
ffiffi

2
p

A
0

2
ffiffi

2
p

A
− 8

A
0

0 0 0

1

C

A
: ð6:26Þ

b−1ð2−Þ ¼ 4

2Bþ ð30h7 þ 9h11Þq2
; ð6:27Þ

b−1ð1þÞ ¼ 6

3Bþ ð40h7 þ 17h11Þq2
; ð6:28Þ

b−1ð1−Þ ¼ 1

Δ

0

B

@

4ðBþ CÞ þ 2
3
ð2h7 þ h11Þq2 0

ffiffi

2
p

3
ð6B − 12Cþ 13ð2h7 þ h11Þq2Þ

0 0 0
ffiffi

2
p

3
ð6B − 12Cþ 13ð2h7 þ h11Þq2Þ 0 2Bþ 8Cþ 169

3
ð2h7 þ h11Þq2

1

C

A

−
1

15A

0

B

@

2 12
ffiffiffi

2
p

12 72 6
ffiffiffi

2
p

ffiffiffi

2
p

6
ffiffiffi

2
p

1

1

C

A
: ð6:29Þ

We can now state the ghost- and tachyon-free conditions. The tachyon-free conditions amount to the positivity of the

masses (6.23), which are equivalent to

ð10h7 þ 3h11ÞB > 0; ð40h7 þ 17h11ÞB > 0;

BCð16Bþ 25CÞð2h7 þ h11Þ > 0: ð6:30Þ
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Applying the formula (4.18), one finds that the ghost-free

conditions for the spin-2þ, -2−, -1þ, and -1− sectors, are

given by

a0 > 0; 10h7 þ 3h11 < 0;

40h7 þ 17h11 < 0; ð2h7 þ h11Þ < 0: ð6:31Þ

All these conditions together are equivalent to

a0 > 0; B < 0; Cð16Bþ 25CÞ > 0; and

h11 < −2h7 for h7 ≤ 0; or h11 < −
10

3
h7 for

h7 > 0: ð6:32Þ

Finally, the saturated propagator is

Π ¼ −
1

2

Z

d4q

�

J

�

X

i;j¼1;2;4

b−1ij ð2þÞPijð2þÞ þ
X

i;j¼3;4;5

b−1ij ð0þÞPijð0þÞ
�

J

þ τ½b−1ð3−ÞPð3−Þ þ b−1ð2−ÞP11ð2−Þ þ b−1ð1þÞP11ð1þÞ þ
X

i;j¼2;4;5

b−1ð1−ÞijPijð1−Þ�τ
�

: ð6:33Þ

We can make this expression more understandable by explicitly displaying the denominators of each propagator and

evaluating the contractions of the spin projectors with the sources,

Π ¼ −
1

2

Z

d4q

�

−
4

A
τ · Pð3−; ηÞ · τ − 1

a0q
2
Sab

�

Pabcd
44 ð2þ; ηÞ − 1

2
Pabcd
55

ð0þ; ηÞ
�

Scd

þ 16

30h7 þ 9h11

1

q2 þm2
2

τ · P11ð2−; m2
2Þ · τ

−
1

2B

1

q2 þm2
þ
div1τ½ab�

�

ηac þ qaqc

m2
þ

��

ηbd þ qbqd

m2
þ

�

div1τ½cd�

−
1

6B2ð16Bþ 25CÞ2ð2h7 þ h11Þ
1

q2 þm2
−

Za

�

ηab þ qaqb

m2
−

�

Zb

þ 1

45

�

1

A
−

5

16Bþ 25C

�

tr13τatr13τ
a

�

; ð6:34Þ

where we defined

Sab ¼ 2i div1τab − i div2τab − 2σab; ð6:35Þ

Za ¼ð16Bþ 25CÞð2h7 þ h11Þðdiv12τa − div13τaÞ − 2Bð4Bþ 5CÞtr13τa; ð6:36Þ

and

div1τab ¼ qcτcab; div2τab ¼ qcτacb;

div12τa ¼ qbqcτcba; div13τa¼ qbqcτcac; tr13τa¼ τca
c: ð6:37Þ

This manifestly shows the spin-2þ, -1þ, and -1− degrees of freedom being sourced by suitable combinations of sources. In

particular, we note that the spin-2þ and -1− degrees of freedom have propagators of the standard form. The propagator for

the spin 1þ seems less familiar, but it is simply that of a massive two-form potential, described by the Lagrangian

L ¼ −
1

12
HμνρH

μνρ −
1

2
m2BμνB

μν; ð6:38Þ

where Hμνρ ¼ 3∂ ½μBνρ�. We also note that, unlike the case of spin 2þ, the spin-2− propagator cannot be written solely in

terms of second-rank tensor sources, as it necessarily requires the presence of the third-rank sources.
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VII. CONCLUSIONS

In this paper, we have set up the machinery that is

necessary to analyze the spectrum of a general MAG

theory. In particular, we have constructed the spin projec-

tors for a general three-index tensor, and we have used them

to rewrite the wave operator for the most general, 28-

parameter MAG. Not surprisingly, this case turns out to be

too complicated to determine its spectrum, but it is possible

to do so in special subclasses of theories. We have

considered here theories that have either vanishing non-

metricity, recovering previously known results, and theo-

ries with vanishing torsion. In the latter case, the theory

depends on 17 parameters; imposing projective invariance

reduces this to ten parameters, and imposing that there be

no propagating spin-3− and no massive propagating spin-

2þ fields further reduces this number to 6. The absence of

ghosts and tachyons results in the inequalities (6.32) on

these six parameters. Even within the torsion-free sub-

theory, relaxing the conditions of Sec. VI.3 will lead to a

much more complicated system.

With hindsight, the absence of ghosts and tachyons in

these models is related the fact that, when converting to the

R, ϕ variables in the manner of Eq. (1.1), they do not

contain any terms quadratic in curvature. For the same

reason, these models are also nonrenormalizable. This is

entirely analogous to the situation also pointed out in

Ref. [29] for the nine-parameter metric quadratic theories

with torsion. Similarly, we expect that allowing a propa-

gating massive spin-2þ mode will probably make the

theory renormalizable but not unitary.

It is important to stress that the metric and torsion-free

cases are kinematically distinct from the original general

MAG and that the ghost- and tachyon-free models we have

found are not special cases of the general MAG, but only of

the kinematically restricted models. In fact, some classes of

ghost- and tachyon-free Poincaré gauge theories that are

different from our six parameter ghost- and tachyon-free

model have been found in Ref. [34]. We leave it for future

work to study special subclasses of the general MAG.

Also of some interest would be the study of models with

propagating spin 3−. It is known that the free massless spin-

3 theory can be embedded in linearized MAG [49];

however, the underlying linearized gauge symmetry does

not extend to the full theory. It would be interesting to

explore whether MAG can describe a massive spin-3 field

coupled to gravity. We hope to return to these questions in

the future.
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Note added.—Recently, we were informed that the spin

projectors for the general theory have also been worked out

in Ref. [50] and that they agree with ours.

APPENDIX A: SPIN PROJECTORS

In the torsion-free case, the spin projectors have also

been given in Ref. [5].

1. PðJ − Þ projectors, J = 0, 1, 2, 3
Let us introduce the notation

Πi ≔ ðΠðtsÞ;ΠðhsÞ;ΠðhaÞ;ΠðtaÞ;ΠðsÞ;ΠaÞ; i ¼ 1; 2;…; 6;

ðA1Þ

where we recall that ΠðtsÞ;…;Πa are defined in (3.5), (3.6),

and (3.7).

The negative parity projectors are given by

Pð3−Þ ¼ Π1ðTTTÞΠ1 − Pð1−Þ11; ðA2Þ

Pð2−Þi−1;j−1¼ΠiAijΠj−Pð1−Þij; i;j¼2;3;

Pð1−Þij¼ΠiBijΠj; i;j¼1;2;3;

Pð1−Þi;3þj¼ΠiBi;3þjΠj; i;j¼1;2;3;

Pð1−Þ3þi;3þj¼ΠiBijΠj;i; j¼1;2;3;

Pð1−Þi7¼ΠiBi7Π5;Pð1−Þ3þi;7¼ΠiB3þi;7Π5; i¼1;2;3;

Pð1−Þ77¼Π5ðTLþLTÞΠ5;

Pð0−Þ¼Π4ðTTTÞΠ4; ðA3Þ

where it is understood that there is no summation over the

indices displayed, and

Að2−Þij ≔
�

1
ffiffiffi

2
p

ffiffiffi

2
p

1

�

TTT; ðA4Þ
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Bð1−Þij ≔

0

B

B

B

B

B

B

@

3
dþ1

3
ffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd−2Þðdþ1Þ
p

ffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd−2Þðdþ1Þ
p

3
ffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd−2Þðdþ1Þ
p 6

d−2
2
ffiffi

3
p

d−2

ffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd−2Þðdþ1Þ
p 2

ffiffi

3
p

d−2
2

d−2

1

C

C

C

C

C

C

A

T12T
12T;

Bð1−Þi;3þj ≔

0

B

B

B

B

B

@

3
ffiffiffiffiffiffiffi

dþ1
p 3

ffiffi

2
p
ffiffiffiffiffiffiffi

dþ1
p

ffiffi

6
p
ffiffiffiffiffiffiffi

dþ1
p

3
ffiffi

2
p
ffiffiffiffiffiffiffi

dþ1
p 6

ffiffiffiffiffiffi

d−2
p 2

ffiffi

3
p
ffiffiffiffiffiffi

d−2
p

ffiffi

6
p
ffiffiffiffiffiffiffi

dþ1
p 2

ffiffi

3
p
ffiffiffiffiffiffi

d−2
p 2

ffiffiffiffiffiffi

d−2
p

1

C

C

C

C

C

A

L12T
12T;

Bð1−Þ3þi;3þj ≔

0

B

B

@

LLT þ LTLþ TLL 3
ffiffiffi

2
p

LLT
ffiffiffi

6
p

LLT

3
ffiffiffi

2
p

LLT LLT þ LTLþ TLL 2
ffiffiffi

3
p

LLT
ffiffiffi

6
p

LLT 2
ffiffiffi

3
p

LLT LLT þ LTLþ TLL

1

C

C

A

;

½Bð1−Þi7�cabef ≔

0

B

B

B

@

ffiffi

6
p
ffiffiffiffiffiffiffi

dþ1
p T23q̂

0T

−
ffiffi

3
p
ffiffiffiffiffiffi

d−2
p T23q̂

0T

2
ffiffiffiffiffiffi

d−2
p T31q̂

0T

1

C

C

C

A

; ½Bð1−Þ3þi;7�cabef ≔

0

B

B

@

ffiffiffi

6
p

L23q̂
0T

−
ffiffiffi

3
p

L23q̂
0T

2L31q̂
0T

1

C

C

A

: ðA5Þ

Note that the transposition raises and lowers the vector indices on T and L such that, for example, Tc
d and Tca get mapped

to Td
c and Tca, respectively. Therefore, we have ðBTÞdefcab ¼ TdeL

caTf
b.

2. PðJ + Þ projectors, J = 0, 1, 2
The positive parity projectors are given by

Pð2þÞij ¼ ΠiCijΠj − Pð0þÞij; Pð2þÞ ¼ ΠCi4Π5; Pð2þÞ44 ¼ Π5ðTTÞΠ5 − Pð0þÞ55;
Pð1þÞi−1;j−1 ¼ ΠiDijΠj; i; j ¼ 2; 3; 4;

Pð0þÞij ¼ ΠiEijΠj; Pð0þÞi4 ¼ ΠiEi4Π1; Pð0þÞ44 ¼ Π1ðLLLÞΠ1;

Pð0þÞir ¼ ΠiEirΠ5; Pð0þÞ4r ¼ Π1E4rΠ5; Pð0þÞrs ¼ Π5ErsΠ5; ðA6Þ

Cð2þÞij ≔

0

B

B

B

@

TTLþ TLT þ LTT 3

2
ffiffi

2
p LTT

ffiffiffi

6
p

TLT

3

2
ffiffi

2
p LTT 3

2
LTT Π5ðTTÞL

ffiffiffi

6
p

TLT Π5ðTTÞL TTLþ TLT − 1
2
LTT

1

C

C

C

A

;

Cð2þÞi4 ≔

0

B

B

B

@

ffiffiffi

3
p

q̂cTa
eTb

f

ffiffi

3
2

q

Ta
eTb

f

1
ffiffi

2
p Tc

eq̂aTb
f

1

C

C

C

A

;
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Dð1þÞij ≔

0

B

B

B

@

TTLþ TLT − 1
2
LTT 2

ffiffiffi

3
p

Π6ðTTÞL
ffiffiffi

6
p

TTL

2
ffiffiffi

3
p

Π6ðTTÞL 3
2
LTT − 3

ffiffi

2
p LTT

ffiffiffi

6
p

TTL − 3
ffiffi

2
p LTT TTLþ TLT þ LTT

1

C

C

C

A

;

Eð0þÞij ≔
1

d − 1

0

B

B

B

@

3LT23T
23 3

ffiffi

2
p LT23T

23
ffiffiffi

6
p

T31T31L

3
ffiffi

2
p LT23T

23 3
2
LT23T

23 2
ffiffiffi

3
p

T12T
12L;

ffiffiffi

6
p

T31T31L 2
ffiffiffi

3
p

T12T
12L 2T12T

12L

1

C

C

C

A

;

Eð0þÞi4 ≔
1
ffiffiffiffiffiffiffiffiffiffiffi

d − 1
p

0

B

B

B

@

ffiffiffi

3
p

LT23T
23

ffiffi

3
2

q

LT23T
23

−
ffiffiffi

2
p

T12T
12L

1

C

C

C

A

;

Eð0þÞir ≔

0

B

B

B

@

ffiffi

3
p

d−1
q̂T23T

23
ffiffi

3
p
ffiffiffiffiffiffi

d−1
p q̂T23L

23

ffiffi

3
p

2ðd−1Þ q̂T23T
23

ffiffi

3
p
ffiffiffiffiffiffi

d−1
p q̂T23L

23

ffiffi

3
p

d−1
q̂T31T

12
ffiffi

2
p
ffiffiffiffiffiffi

d−1
p q̂T31L

12

1

C

C

C

A

; Eð0þÞ4r ≔
�

ffiffi

2
p
ffiffiffiffiffiffi

d−1
p L12q̂T

23

L12q̂L
23

�

;

Eð0þÞrs ≔
 

1
d−1

T23T
23 1

ffiffiffiffiffiffi

d−1
p T23L

23

1
ffiffiffiffiffiffi

d−1
p L23T

23 L23L
23

!

; i ¼ 1; 2; 3; r; s ¼ 5; 6: ðA7Þ

APPENDIX B: COEFFICIENT MATRICES

1. General MAG

Here, we provide the coefficient matrices aðJPÞ arising in the expansion of the wave operator in the general 28-parameter

model, in terms of the spin projection operators. For a weak check, we observe that all coefficient matrices vanish

identically for the combination (2.6).

að3−Þ ¼ ð2c1 þ 2c2 þ c4 þ c5 þ c6Þð−q2Þ − a0 − 4a4 − 4a5 ðB1Þ

að2−Þ11 ¼ 2ðc1 þ c2 − c4 − c5 − c6Þð−q2Þ þ
1

2
ða0 − 6a1 − 3a2 − 8a4 þ 4a5 − 6a9Þ

að2−Þ12 ¼
ffiffiffi

3
p

2
½ðc4 − c6Þð−q2Þ − 2a1 − a2 − a9�

að2−Þ22 ¼
�

2ðc1 − c2Þ þ
1

2
ðc4 − c5 þ c6Þ

�

ð−q2Þ þ 1

2
a0 − a1 −

1

2
a2 ðB2Þ

að2þÞ11 ¼
�

2

3
ð2c1 þ 2c2 þ c4 þ c5 þ c6Þ þ

1

3
ðc7 þ c8 þ c9 þ c10 þ c11 þ c12Þ

�

ð−q2Þ − a0 − 4a4 − 4a5

að2þÞ12 ¼ −
1

3
ffiffiffi

2
p ½2ð2c1 þ 2c2 þ c4 þ c5 þ c6Þ þ c7 þ c8 þ c9 þ c10 þ c11 þ c12�ð−q2Þ

að2þÞ13 ¼
1
ffiffiffi

6
p ðc7 þ c8 − c9 − c10Þð−q2Þ

að2þÞ14 ¼
1

2
ffiffiffi

3
p ða0 þ 4a4 þ 4a5Þijqj
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að2þÞ22 ¼
�

1

3
ð2c1 þ 2c2 þ c4 þ c5 þ c6Þ þ

1

6
ðc7 þ c8 þ c9 þ c10 þ c11 þ c12Þ

�

ð−q2Þ

þ 1

2
a0 − 3a1 −

3

2
a2 − 4a4 þ 2a5 − 3a9

að2þÞ23 ¼
1

2
ffiffiffi

3
p ½ð−c7 − c8 þ c9 þ c10Þð−q2Þ − 6a1 − 3a2 − 3a9Þ�

að2þÞ24 ¼
1

2
ffiffiffi

6
p ð−a0 þ 8a4 − 4a5 þ 3a9Þijqj

að2þÞ33 ¼
�

ð2c1 − 2c2 þ 2c3 þ c4 − c5 þ c6Þ þ
1

2
ðc7 þ c8 þ c9 þ c10 − c11 − c12Þ

�

ð−q2Þ þ 1

2
a0 − a1 −

1

2
a2

að2þÞ34 ¼
1

2
ffiffiffi

2
p ða0 þ a9Þijqj

að2þÞ44 ¼ −a4q
2 ðB3Þ

að1−Þ11 ¼
�

2c1 þ 2c2 þ c4 þ c5 þ c6 þ
5

3
ðc7 þ c9 þ c11 þ 2c13 − c14 − c15Þ

�

ð−q2Þ

þ 2

3
a0 − 4a4 − 4a5 −

20

3
ða6 þ a7 þ a8Þ

að1−Þ12 ¼
ffiffiffi

5
p

6
½ð2c7 þ 2c9 þ 2c11 − 8c13 þ c14 þ c15Þð−q2Þ þ 2a0 þ 16a6 − 8a7 þ 4a8 − 6a10 − 6a11�

að1−Þ13 ¼
ffiffiffi

5
p

2
ffiffiffi

3
p ½ð2c7 − 2c9 − c14 þ c15Þð−q2Þ − 2a10 − 2a11�

að1−Þ14 ¼
ffiffiffi

5
p

3
½ð−c8 − c10 − c12 þ 2c13 − c14 − c15Þð−q2Þ þ a0 − 4a6 − 4a7 − 4a8�

að1−Þ15 ¼
ffiffiffi

5
p
ffiffiffiffiffi

18
p ½2ðc8 þ c10 þ c12 − 2c13 þ c14 þ c15Þð−q2Þ þ a0 þ 8a6 − 4a7 þ 2a8 − 3a10 − 3a11�

að1−Þ16 ¼ −

ffiffiffi

5
p
ffiffiffi

6
p ða10 þ a11Þ

að1−Þ17 ¼
ffiffiffiffiffi

5

24

r

ð−a0 þ 4a7 þ 2a8Þijqj

að1−Þ22 ¼
1

6
ð12c1 þ 12c2 − 3c4 − 3c5 − 3c6 þ 2c7 þ 2c9 þ 2c11 þ 16c13 þ 4c14 þ 4c15Þð−q2Þ

þ 5

6
a0 − 3a1 −

3

2
a2 − 3a3 − 4a4 þ 2a5 −

16

3
a6 −

4

3
a7 þ

8

3
a8 − 3a9 þ 4a10 − 2a11

að1−Þ23 ¼
1

2
ffiffiffi

3
p ½ð3c4 − 3c6 þ 2c7 − 2c9 þ 2c14 − 2c15Þð−q2Þ − 6a1 − 3a2 − 6a3 − 3a9 þ 4a10 − 2a11�

að1−Þ24 ¼
1

6
½ð−2c8 − 2c10 − 2c12 − 8c13 þ c14 þ c15Þð−q2Þ þ 2a0 þ 16a6 − 8a7 þ 4a8 − 6a10 − 6a11�

að1−Þ25 ¼
1

3
ffiffiffi

2
p ½ð2c8 þ 2c10 þ 2c12 þ 8c13 − c14 − c15Þð−q2Þ

þ a0 − 9a3 − 16a6 − 4a7 þ 8a8 þ 12a10 − 6a11�

að1−Þ26 ¼
1
ffiffiffi

6
p ð−3a3 þ 2a10 − a11Þ
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að1−Þ27 ¼
1

2
ffiffiffi

6
p ð−a0 þ 4a7 − 4a8 þ 3a11Þijqj

að1−Þ33 ¼
1

2
½ð4c1 − 4c2 þ c4 − c5 þ c6 þ 2c7 þ 2c9 − 2c11Þð−q2Þ − a0 − 2a1 − a2 − 2a3�

að1−Þ34 ¼
1

2
ffiffiffi

3
p ½ð−2c8 þ 2c10 − c14 þ c15Þð−q2Þ − 2a10 − 2a11�

að1−Þ35 ¼
1
ffiffiffi

6
p ½ð2c8 − 2c10 þ c14 − c15Þð−q2Þ − 3a3 þ 2a10 − a11�

að1−Þ36 ¼ −
1
ffiffiffi

2
p ða0 þ a3Þ

að1−Þ37 ¼
1

2
ffiffiffi

2
p ð−a0 þ a11Þijqj

að1−Þ44 ¼
1

3
½ð2c1 þ 2c2 þ c4 þ c5 þ c6 þ c7 þ c9 þ c11 þ 2c13 − c14 − c15Þð−q2Þ

− 2a0 − 12a4 − 12a5 − 4a6 − 4a7 − 4a8�

að1−Þ45 ¼
1

3
ffiffiffi

2
p ½−2ð2c1 þ 2c2 þ c4 þ c5 þ c6 þ c7 þ c9 þ c11 þ 2c13 − c14 − c15Þð−q2Þ

þ a0 þ 8a6 − 4a7 þ 2a8 − 3a10 − 3a11�

að1−Þ46 ¼ −
1
ffiffiffi

6
p ða10 þ a11Þ

að1−Þ47 ¼
1

2
ffiffiffi

6
p ða0 þ 8a4 þ 8a5 þ 4a7 þ 2a8Þijqj

að1−Þ55 ¼
2

3
ð2c1 þ 2c2 þ c4 þ c5 þ c6 þ c7 þ c9 þ c11 þ 2c13 − c14 − c15Þð−q2Þ

þ 2

3
a0 − 3a1 −

3

2
a2 −

3

2
a3 − 4a4 þ 2a5 −

8

3
a6 −

2

3
a7 þ

4

3
a8 − 3a9 þ 2a10 − a11

að1−Þ56 ¼
1

2
ffiffiffi

3
p ð−6a1 − 3a2 − 3a3 − 3a9 þ 2a10 − a11Þ

að1−Þ57 ¼
1

4
ffiffiffi

3
p ½−2a0 þ 8a4 − 4a5 þ 4a7 − 4a8 þ 3a9 þ 3a11�ijqj

að1−Þ66 ¼ −
1

2
ð2a1 þ a2 þ a3Þ

að1−Þ67 ¼
1

4
ða9 þ a11Þijqj

að1−Þ77 ¼
1

2
ð2a4 þ a5 þ a7Þð−q2Þ ðB4Þ

að1þÞ11 ¼
1

2
½ð4c1 þ 4c2 þ c7 − c8 þ c9 − c10 þ c11 − c12Þð−q2Þ

þ a0 − 6a1 − 3a2 − 8a4 þ 4a5 − 6a9�

að1þÞ12 ¼ −
1

2
ffiffiffi

3
p ½ð2c4 − 2c6 þ c7 − c8 − c9 þ c10Þð−q2Þ − 6a1 − 3a2 − 3a9�

að1þÞ13 ¼
1
ffiffiffi

6
p ð−2c4 þ 2c6 − c7 þ c8 þ c9 − c10Þð−q2Þ

að1þÞ22 ¼
1

6
ð4c1 − 4c2 − 4c3 þ c7 − c8 þ c9 − c10 − c11 þ c12Þð−q2Þ þ

1

2
a0 − a1 −

1

2
a2
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að1þÞ23 ¼
1

3
ffiffiffi

2
p ð4c1 − 4c2 − 4c3 þ c7 − c8 þ c9 − c10 − c11 þ c12Þð−q2Þ

að1þÞ33 ¼
1

3
ð4c1 − 4c2 − 4c3 þ c7 − c8 þ c9 − c10 − c11 þ c12Þð−q2Þ − a0 − 4a1 þ 4a2 ðB5Þ

að0þÞ11 ¼
2

3
ð2c1 þ 2c2 þ c4 þ c5 þ c6 þ 2c7 þ 2c8 þ 2c9 þ 2c10 þ 2c11 þ 2c12Þð−q2Þ

− 4ða4 þ a5 þ a6 þ a7 þ a8Þ

að0þÞ12 ¼
1

3
ffiffiffi

2
p ½−2ð2c1 þ 2c2 þ c4 þ c5 þ c6 þ 2c7 þ 2c8 þ 2c9 þ 2c10 þ 2c11 þ 2c12Þð−q2Þ

− 3a0 − 24a6 þ 12a7 − 6a8 þ 9a10 þ 9a11�

að0þÞ13 ¼
1
ffiffiffi

6
p ½2ð−c7 − c8 þ c9 þ c10Þð−q2Þ þ 3ða10 þ a11Þ�

að0þÞ14 ¼ a0 − 4ða6 þ a7 þ a8Þ

að0þÞ15 ¼
1

2
ffiffiffi

3
p ða0 þ 4a4 þ 4a5 þ 12a6 þ 6a8Þijqj

að0þÞ16 ¼
�

−
1

2
a0 þ 2a6 þ 2a7 þ 2a8

�

ijqj

að0þÞ22 ¼
1

3
ð2c1 þ 2c2 þ c4 þ c5 þ c6 þ 2c7 þ 2c8 þ 2c9 þ 2c10 þ 2c11 þ 2c12Þð−q2Þ

þ a0 − 3a1 −
3

2
a2 −

9

2
a3 − 4a4 þ 2a5 − 8a6 − 2a7 þ 4a8 − 3a9 þ 6a10 − 3a11

að0þÞ23 ¼
1

2
ffiffiffi

3
p ½2ðc7 þ c8 − c9 − c10Þð−q2Þ − 6a1 − 3ða2 þ 3a3 þ a9Þ þ 6a10 − 3a11�

að0þÞ24 ¼
1
ffiffiffi

2
p ½−a0 − 8a6 þ 4a7 − 2a8 þ 3a10 þ 3a11�

að0þÞ25 ¼
1

2
ffiffiffi

6
p ð−a0 þ 8a4 − 4a5 þ 24a6 − 6a8 þ 3a9 − 9a10Þijqj

að0þÞ26 ¼
1

2
ffiffiffi

2
p ða0 þ 8a6 − 4a7 þ 2a8 − 3a10 − 3a11Þijqj

að0þÞ33 ¼ ð2c1 − 2c2 þ 2c3 þ c4 − c5 þ c6 þ 2c7 þ 2c8 þ 2c9 þ 2c10 − 2c11 − 2c12 þ 6c16Þð−q2Þ

− a0 − a1 −
1

2
a2 −

3

2
a3

að0þÞ34 ¼
ffiffiffi

3

2

r

ða10 þ a11Þ að0þÞ35 ¼
1

2
ffiffiffi

2
p ð−2a0 þ a9 − 3a10Þijqj

að0þÞ36 ¼ −

ffiffiffi

3
p

2
ffiffiffi

2
p ða10 þ a11Þijqj

að0þÞ44 ¼ −4ða4 þ a5 þ a6 þ a7 þ a8Þ
að0þÞ45 ¼

ffiffiffi

3
p

ð2a6 þ a8Þijqj að0þÞ46 ¼ 2ða4 þ a5 þ a6 þ a7 þ a8Þijqj

að0þÞ55 ¼ ða4 þ 3a6Þð−q2Þ að0þÞ56 ¼
ffiffiffi

3
p

2
ð2a6 þ a8Þð−q2Þ

að0þÞ66 ¼ ða4 þ a5 þ a6 þ a7 þ a8Þð−q2Þ ðB6Þ

að0−Þ¼ð2c1−2c2−c4þc5−c6Þð−q2Þ−a0−4a1þ4a2: ðB7Þ
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2. Metric MAG

Using (5.4) and (5.6) in the coefficient matrices of Appendix B.1, and deleting the rows and columns that pertain to

symmetric 3-tensors, we recover the coefficient matrices of the metric theory, as computed in Ref. [29] (see also Ref. [51])

with two differences. First, one has to keep in mind that the graviton field hab used here is equal to one-half of the graviton
field φab used in those references. This gives a factor 2 in the mixed A − h coefficients and 4 in the h − h coefficients.

Second, the projectors Pijð1þÞ with i, j ¼ 2, 3 span the same space as Pijð1þÞ with i, j ¼ 1, 2 in those references but differ

by a linear transformation [the old projectors do not respect the GLð4Þ decomposition]. This is of no consequence for the

physical results.

að2−Þ ¼ 1

2
ðð4g1 þ g4Þð−q2Þ þ a0 − 2b1 − b2Þ ðB8Þ

að2þÞ33 ¼
1

2
ðð4g1 þ 4g3 þ 2g4 þ g7 þ g8Þð−q2Þ þ a0 − 2b1 − b2Þ

að2þÞ34 ¼
ijqj
2
ffiffiffi

2
p ða0þ 2b1 þ b2Þ; að2þÞ44 ¼

1

4
ð2b1 þ b2Þð−q2Þ ðB9Þ

að1þÞ22 ¼
1

6
ð4g1 − 4g3 þ g7 − g8Þð−q2Þ þ

1

2
a0 − 2b1 þ b2

að1þÞ23 ¼
4g1 − 4g3 þ g7 − g8

3
ffiffiffi

2
p ð−q2Þ

að1þÞ33 ¼
1

3
ð4g1 − 4g3 þ g7 − g8Þð−q2Þ − a0 þ 8b1 − 8b2 ðB10Þ

að1−Þ33 ¼
1

2
ðð4g1 þ g4 þ 2g7Þð−q2Þ − a0 − 2b1 − b2 − 2b3Þ

að1−Þ36 ¼ −
a0 þ b3

ffiffiffi

2
p ; að1−Þ37 ¼

ijqj
2
ffiffiffi

2
p ð−a0 þ b3Þ

að1−Þ66 ¼ −
1

2
ð2b1 þ b2 þ b3Þ; að1−Þ67 ¼

ijqj
4

ð2b1 þ b2 þ b3Þ

að1−Þ77 ¼
1

8
ð2b1 þ b2 þ b3Þð−q2Þ ðB11Þ

að0þÞ33 ¼ ð2g1 þ 2g3 þ g4 þ 2g7 þ 2g8 þ 6g16Þð−q2Þ þ
1

2
ð−2a0 − 2b1 − b2 − 3b3Þ

að0þÞ35 ¼ −
ijqj
2
ffiffiffi

2
p ð2a0 − 2b1 − b2 − 3b3Þ

að0þÞ55 ¼
1

4
ð2b1 þ b2 þ 3b3Þð−q2Þ

að0þÞ36 ¼ að0þÞ56 ¼ að0þÞ66 ¼ 0 ðB12Þ

að0−Þ ¼ð2g1 − g4Þð−q2Þ − a0 − 4b1 þ 4b2: ðB13Þ

3. Torsion-free MAG

We give here the coefficient matrices for the most general torsion-free model, as discussed in Sec. VI. A. If one wishes to

further impose the projective symmetry discussed in Sec. VI. B, one has to further impose (in four dimensions) the

conditions given in Eq. (6.5).

Beware of our notational convention; the indices i, j on the coefficient matrix aijðJPÞ refer to the representations they

carry. Thus, they do not always agree with the usual convention of numbering matrix elements. For example, the

representation 2þ3 is absent from the symmetric tensor Acab; only the representations 1, 2, 4 are present. Accordingly, the

element of að2þÞ in the third row and column is labeled a44ð2þÞ.
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að3−Þ ¼ ð2h1 þ 2h2 þ h4Þð−q2Þ − a0 − 4a4 − 4a5 ðB14Þ

að2þÞ11 ¼
1

3
ð4h1 þ 4h2 þ 2h4 þ h7 þ h8 þ h9 þ h10 þ h11 þ h12Þð−q2Þ − a0 − 4a4 − 4a5

að2þÞ12 ¼
1

6
ffiffiffi

2
p ½4h1 þ 4h2 þ 2h4 þ 4h7 þ 4h8 − 2h9 − 2h10 þ h11 þ h12�ð−q2Þ

að2þÞ14 ¼
1

2
ffiffiffi

3
p ða0 þ 4a4 þ 4a5Þijqj

að2þÞ22 ¼
1

6
ð10h1 − 8h2 þ 9h3 þ 5h4 þ 4h7 þ 4h8 þ h9 þ h10 − 2h11 − 2h12Þð−q2Þ þ

1

2
ða0 − 2a4 þ a5Þ

að2þÞ24 ¼
1
ffiffiffi

6
p ða0 − 2a4 þ a5Þijqj; að2þÞ44 ¼ a4ð−q2Þ: ðB15Þ

að2−Þ11 ¼
�

2h1 − h2 −
1

2
h4

�

ð−q2Þ þ 1

2
a0 − a4 þ

1

2
a5 ðB16Þ

að1þÞ11 ¼
1

2
½ð2h1 − h3 − h4 þ h9 − h10Þð−q2Þ þ a0 − 2a4 þ a5� ðB17Þ

að1−Þ11 ¼
1

3
ð6h1 þ 6h2 þ 3h4 þ 5h7 þ 5h9 þ 5h11Þð−q2Þ þ

2

3
a0 − 4a4 − 4a5 −

20

3
ða6 þ a7 þ a8Þ

að1−Þ12 ¼ −

ffiffiffi

5
p

6
½ð−2h7 þ 4h9 þ h11Þð−q2Þ þ a0 þ 8a6 − 4a7 þ 2a8�

að1−Þ14 ¼
ffiffiffi

5
p

3
½ð−h8 − h10 − h12Þð−q2Þ þ a0 − 4a6 − 4a7 − 4a8�

að1−Þ15 ¼ −

ffiffiffi

5
p

6
ffiffiffi

2
p ½2ðh8 þ h10 þ h12Þð−q2Þ þ a0 þ 8a6 − 4a7 þ 2a8�

að1−Þ17 ¼
ffiffiffi

5
p

2
ffiffiffi

6
p ð−a0 þ 4a7 þ 2a8Þijqj ðB18Þ

að1−Þ22 ¼
1

6
½ð12h1 − 6h2 − 3c4 þ 2h7 − 8h9 þ 4h11Þð−q2Þ − a0 − 6a4 þ 3a5 − 8a6 − 2a7 þ 4a8�

að1−Þ24 ¼ −
1

6
½ð2h8 − 4h10 − h12Þð−q2Þ þ a0 þ 8a6 − 4a7 þ 2a8�

að1−Þ25 ¼
1

6
ffiffiffi

2
p ½ð−2h8 þ 4h10 þ h12Þð−q2Þ − 4a0 − 8a6 − 2a7 þ 4a8�

að1−Þ27 ¼ −
1

2
ffiffiffi

6
p ða0 þ 2a7 − 2a8Þijqj

að1−Þ44 ¼
1

3
½ð2h1 þ 2h2 þ h4 þ h7 þ h9 þ h11Þð−q2Þ − 2a0 − 12a4 − 12a5 − 4a6 − 4a7 − 4a8�

að1−Þ45 ¼
1

6
ffiffiffi

2
p ½2ð2h1 þ 2h2 þ h4 þ h7 þ h9 þ h11Þð−q2Þ − a0 − 8a6 þ 4a7 − 2a8�

að1−Þ47 ¼
1

2
ffiffiffi

6
p ða0 þ 8a4 þ 8a5 þ 4a7 þ 2a8Þijqj
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að1−Þ55 ¼
1

6
½ð2h1 þ 2h2 þ h4 þ h7 þ h9 þ h11Þð−q2Þ þ a0 − 6a4 þ 3a5 − 4a6 − a7 þ 2a8�

að1−Þ57 ¼
1

4
ffiffiffi

3
p ða0 − 4a4 þ 2a5 − 2a7 þ 2a8Þijqj

að1−Þ77 ¼
1

2
ð2a4 þ a5 þ a7Þð−q2Þ ðB19Þ

að0þÞ11 ¼
2

3
ð2h1 þ 2h2 þ h4 þ 2h7 þ 2h8 þ 2h9 þ 2h10 þ 2h11 þ 2h12Þð−q2Þ

− 4ða4 þ a5 þ a6 þ a7 þ a8Þ

að0þÞ12 ¼
1

6
ffiffiffi

2
p ½2ð2h1 þ 2h2 þ h4 − h7 − h8 þ 5h9 þ 5h10 þ 2h11 þ 2h12Þð−q2Þ

þ 3a0 þ 24a6 − 12a7 þ 6a8�
að0þÞ14 ¼ a0 − 4ða6 þ a7 þ a8Þ

að0þÞ15 ¼
1

2
ffiffiffi

3
p ða0 þ 4a4 þ 4a5 þ 12a6 þ 6a8Þijqj; að0þÞ16 ¼

1

2
ð−a0 þ 4a6 þ 4a7 þ 4a8Þijqj

að0þÞ22 ¼
1

6
ð10h1 − 8h2 þ 9h3 þ 5h4 þ 7h7 þ 7h8 þ 13h9 þ 13h10 − 8h11 − 8h12 þ 27h16Þð−q2Þ

þ 1

2
ð−a0 − 2a4 þ a5 − 4a6 − a7 þ 2a8Þ

að0þÞ24 ¼
1

2
ffiffiffi

2
p ½a0 þ 8a6 − 4a7 þ 2a8�; að0þÞ25 ¼ −

1

4
ffiffiffi

6
p ð5a0 þ 8a4 − 4a5 þ 24a6 − 6a8Þijqj

að0þÞ26 ¼ −
1

4
ffiffiffi

2
p ða0 þ 8a6 − 4a7 þ 2a8Þijqj

að0þÞ44 ¼ −4ða4 þ a5 þ a6 þ a7 þ a8Þ að0þÞ45 ¼
ffiffiffi

3
p

ð2a6 þ a8Þijqj
að0þÞ46 ¼ 2ða4 þ a5 þ a6 þ a7 þ a8Þijqj; að0þÞ55 ¼ ða4 þ 3a6Þð−q2Þ

að0þÞ56 ¼
ffiffiffi

3
p

2
ð2a6 þ a8Þð−q2Þ; að0þÞ66 ¼ ða4 þ a5 þ a6 þ a7 þ a8Þð−q2Þ ðB20Þ

að0−Þ ¼ 0: ðB21Þ
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