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CrossMark
Abstract
Solving inverse problems with sparsity promoting regularizing penalties can
be recast in the Bayesian framework as finding a maximum a posteriori (MAP)
estimate with sparsity promoting priors. In the latter context, a computationally
convenient choice of prior is the family of conditionally Gaussian hierarchical
models for which the prior variances of the components of the unknown are
independent and follow a hyperprior from a generalized gamma family. In
this paper, we analyze the optimization problem behind the MAP estimation
and identify hyperparameter combinations that lead to a globally or locally
convex optimization problem. The MAP estimation problem is solved using a
computationally efficient alternating iterative algorithm. Its properties in the
context of the generalized gamma hypermodel and its connections with some
known sparsity promoting penalty methods are analyzed. Computed examples
elucidate the convergence and sparsity promoting properties of the algorithm.

Keywords: convexity, optimization, Krylov subspace, bound constraints

(Some figures may appear in colour only in the online journal)

Efficient algorithms promoting sparsity of the solution of inverse problems have been, and con-
tinue to be actively pursued. Sparsity-promoting regularization has been known for a long time
in geophysics, statistics and signal processing, see, e.g. [15, 16, 27, 29, 30], and [4] for further

1361-6420/20/025010+29$33.00 © 2020 IOP Publishing Ltd  Printed in the UK 1


https://orcid.org/0000-0001-5696-718X
https://orcid.org/0000-0001-5099-3512
mailto:dxc57@case.edu
mailto:monica.pragliola2@unibo.it
mailto:ejs49@case.edu
mailto:ags61@case.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/ab4d92&domain=pdf&date_stamp=2020-01-23
publisher-id
doi
https://doi.org/10.1088/1361-6420/ab4d92

Inverse Problems 36 (2020) 025010 D Calvetti et al

references. Interest in the topic was revived a little over a decade ago with the advancement
of compressed sensing, because it was shown that under certain conditions about the underly-
ing signal and the observation model, ¢!-regularization could recover exactly a sparse solu-
tion [5, 19]. While the regularizing properties of Tikhonov regularization with £7 penalty, for
1 < p < 2, are quite well understood from the theoretical and computational point of view, the
design of efficient methods for computing the corresponding regularized solution when p < 1
continues to pose significant challenges due to the non-convexity of the Tikhonov functional.
Recently many classical regularization questions have been recast in probabilistic terms
and efficient numerical schemes for their solutions have been proposed in the literature. In the
Bayesian framework, where all unknowns are modeled as random variables, the prior density
encodes what is believed about the solution before taking the data into account. Therefore, the
prior plays a role similar to that of the penalty term in classical regularization. The connection
between the classical Tikhonov regularized solution and the Bayesian maximum a posteriori
(MAP) estimate is well established, relating classes of penalty functionals and priors favor-
ing similar types of solutions. The philosophically correct way to promote sparsity in the
Bayesian framework is by designing suitable priors. Gaussian priors, while computationally
very convenient when seeking MAP estimates, are not well suited to promote sparsity unless
the support of the underlying array is known. One possible way to retain the computational
convenience while promoting sparsity is via conditionally Gaussian priors, with diagonal
covariance matrices with unknown positive diagonal entries. In line with the Bayesian para-
digm, the unknown diagonal entries of the prior covariance are modeled as random variables,
and their estimation becomes part of the problem. In order for the hierarchical prior model
to promote sparsity, the variances of the components of the sought solution should be inde-
pendent of each other, and all but few of them should be close to zero. Thus, the prior model
for the variances, usually referred to as hyperprior, should have mean close to zero and favor
few outliers, implying that a suitable choice must be a fat tailed, or leptokurtic distribution.
An example of such hyperprior is the gamma distribution, and a computationally efficient
globally convergent algorithm for the corresponding MAP estimate referred to as the iterated
alternating sequential (IAS) algorithm has been proposed. Recently it has been shown that
the shape parameter of the gamma distribution controls the sparsity of the solution, and in
an appropriate limit, the computed solution converges to the £' regularized solution [10, 14].
Moreover, an approximation of the MAP estimate, referred to as the qMAP for quasi-MAP,
can be computed very efficiently by incorporating a Krylov subspace least squares solver
equipped with a suitable stopping rule in the IAS algorithm [13]. The latter is particularly
efficient for the recovery of sparse solutions, because as the algorithm learns the effective
support of the underlying signal, the number of matrix-vector products with the matrix and its
transpose needed for the Krylov iterative solution approaches the cardinality of the support.
Because of this, the algorithm implicitly performs an adaptive and automatic model reduction.
In [10, 14], the analysis of sparsity promoting hierarchical models was limited to hyper-
priors from the family of gamma distributions, a choice that guarantees the convexity of the
objective function in the MAP estimation. This work extends the analysis to the wider class
of hierarchical models with hyperpriors from the family of generalized gamma distributions
[8], some of which are shown to correspond to earlier studied regularizing penalty functions.
In particular, we identify combinations of the parameter values of the generalized gamma
distribution for which the MAP objective function is either globally or locally convex, and
find conditions guaranteeing that the approximate solutions determined by the IAS algorithm
stay in the convexity region. By analyzing the asymptotics of the penalty function, we show
that the priors can be related to appropriately chosen £7-penalties, helping to better contextual-
ize and interpret the sparsity promoting properties of IAS. We point out that the £”-penalties
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represent only a limit case of the MAP estimates for hierarchical priors, which encompass
a genuinely richer class of priors. Therefore, rather than an alternative, the proposed algo-
rithm for computing the iterative updates for generalized gamma hyperpriors offers a uniform
computational alternative for dealing with the £ regularization. Furthermore, based on ideas
arising from convex optimization, we propose an extension of the IAS algorithm that can
account for bound constraints. Finally, we point out that a significant reduction in the IAS
computational effort can be achieved, in particular for large scale underdetermined inverse
problems, by solving a reduced problem via a priorconditioned Krylov subspace solver
[6, 7, 12] equipped with an early stopping criterion. Computed examples show that the per-
formance of the reduced model can be comparable, and even superior to that of the full model
for many choices of the hyperprior parameters. In particular, they illustrate how the choice of
hyperprior from the generalized gamma family affects the quality of the solution in terms of
sparsity promotion and accuracy, elucidating how to choose the parameters of the hyperprior
to reflect the strength of the a priori sparsity belief.

The paper is organized as follows: in section 1, the Bayesian parametric model and the algo-
rithm for computing the MAP estimate is introduced. Section 2 discusses the model scaling and
sensitivity analysis. The computation of the updating of the hyperparameters for values when
no closed form formula exist is presented in section 3. Moreover, the connection of the model
to previously discussed models such as the £7 penalized regularization is discussed. Section 4
contains the convexity analysis of the objective function with various model parameter values.
In section 5, the TAS algorithm is extended to cases with box constraints on parameters, and
computed examples are presented in section 6, followed by concluding remarks.

1. Hierarchical Bayesian models

Consider the linear observation model with additive Gaussian noise,
b=~Ax+e, e~N(02X), (1)

where A € R™" m < n, ¥ € R™ is a symmetric positive definite covariance matrix that
we assume to be known, and x € R” is the unknown that we are interested in recovering.
Without loss of generality, we may assume that 3 = |, since by defining a symmetric factor-
ization ¥~! = STS, we may whiten the noise through a redefinition of A — SA and b — Sbh.
Then the likelihood distribution is of the form

1
o | ocexp (= 3 1Ax— bl?), @

We assume that, possibly after a change of variables, the unknown is represented in a basis
where the generative vector x is sparse. The a priori belief that x is sparse is encoded by mod-
eling its components as independent random variables following a zero mean conditionally
Gaussian distribution, i.e.

xi~N(0,6), 6>0, 1<j<n, 3)
with unknown prior variances ;. According to the Bayesian paradigm, the unknown variances
are also modeled as random variables, hence the expression for the conditional Gaussian prior
must take into account the portion of the normalizing factor that depends on the variances,

1. .
(x| 6) o 2||D9]/2x||2>, Do = diag(61,....60,). (4

7
— = exp
L= Vo
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In this manner, the a priori believed sparsity of x can be formulated as a property of the vari-
ances of the components, with smaller variances promoting values closer to zero. In turn, the
a priori beliefs about the variance are encoded in the hyperprior mhype(0). In the Bayesian
setting, where all unknowns are modeled as random variables, solving (1) is tantamount to
estimating x and 8, or more generally, to exploring their joint posterior distribution conditional
on b. The joint prior distribution 7prior(x, @) is the product of the conditional prior and the
hyperprior. It follows from Bayes’ formula that the posterior distribution 7(x, 8 | b) is

7(x,0 | b) o Tprior(x, 0) w(b | x) = m(x | ) Thyper (6) (D | X)- )

To promote sparsity of the signal, we select the hyperprior from the parametric family of gen-
eralized gamma distributions,

om0 T (%) /Ay 6
Thyper () = Thyper(6 | 7, 5, )_F(ﬁ)nggj ; P v , “

where r € R\ {0}, 8 > 0, ¥; > 0; further restrictions on the parameters of the generalized
gamma may be necessary to guarantee finite mean and variance. Observe that the generalized
gamma hyperprior family could be generalized further by letting each component ¢; have its
own hyperparameter » and 3. This generalization is not considered here.

The maximum a posteriori (MAP) estimate of (1) is the maximizer of the posterior density,
thus the minimizer of the negative logarithm of the posterior,

(x*,6%) = argmin, 4 { —logm(x,0 | b)} = argmin,_,{F(x,0)}. @)
With our choices of prior, hyperprior, and likelihood,
F(x,0)=F(x,0|rpB,9)

1 | Y, S 3 “ 0; . 0; "
= a4 Loy e - (rﬁ— g+ S (4
2 2170 2 Z 9. Z 9, (

j=1 7 =1
1
= lIAx = b|* +P(x.0 | r. ,9).

In the following, we will refer to P(x,6 | r, 8,9) as the penalty term in the MAP objective
function. Our aim in this work is to analyze hierarchical Bayesian models with generalized
gamma hyperpriors for different choices of the hyperparameters. In particular, we are inter-
ested in shedding some light on

(i) how the sparsity of the MAP estimate depends on the hyperparameters;

(i1) how, for some choices of the hyperparameters, the MAP penalty term approaches clas-
sical penalty terms;

(iii) the dependency of the convexity—or lack thereof—of the MAP objective function on the
hyperparameters;

(iv) the performance of the iterative alternating sequential minimization algorithm, reviewed
in the next subsection, with various generalized gamma hyperpriors for the reconstruction
of sparse signals from underdetermined noisy data.

1.1. IAS algorithm

The algorithm that we employ for the solution of the minimization problem (7) is the itera-
tive alternating sequential scheme, whose properties and performance for some choices of
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hyperparameters have been analyzed in [10, 11, 13]. Given an initial 8°, the IAS algorithm
proceeds through a sequence of simple alternating updates of the form

AT = argmin{ F(x,0")}, 6! = argmin{F(¥'"',0)},

until a convergence criterion is met. In practice, two natural convergence criteria can be intro-
duced: either, the relative change of the objective function value is below a given threshold,
or the relative change in the variable updates is below a threshold. In the computed examples,
both criteria are used.

Among the appealing features of the IAS scheme, we mention the fact that both updating
steps are particularly simple to implement, and that the algorithm has been shown to converge
[11], with a convergence rate at least linear [10] for some classes of problems. We point out
that the minimization can be pursued by standard optimization schemes such as the Newton
method, however, the proposed algorithm is found to often lead to faster convergence. For
completeness, we review the updating steps below.

1.1.1. Step 1: updating x. Due to the structure of the objective function (8), the updating of x
given 6 reduces to solving a quadratic optimization problem,

X+ = argmin, {|Ax — b|3 + |, [}, 6 =¢" )

or, equivalently, to finding the solution of the linear system

A b
D;l/z X = [O} (10)

in the least squares sense. The latter is a well posed problem because € R”,; if x is of large
dimensions or A is not explicitly available, an iterative least squares solver may be the method
of choice to solve (10). Due to the well-posedness of the problem, the iteration will continue
until a sufficient reduction of the residual norm has been achieved. A computationally efficient
way to compute an approximation of the MAP solution that is particularly appealing when the
data vector is much lower dimensional than x, has been proposed in the cited articles on TAS
and further analyzed in [12]. After the change of variable,

D, '%x = w ~ N(0,1), (11)
which is equivalent to whitening x via a Mahalanobis transformation, the linear system (10)
becomes

A b

[ 19} "o [o] . Ag =AD" (12)

It has been pointed out repeatedly in the literature that the Tikhonov regularized solution is
close to the approximate solution obtained by solving the linear system

Agw = b (13)

with an iterative linear solvers, equipped with a suitable early termination rule discussed
below.

When the iterative solver selected is the conjugate gradient for least squares (CGLS)
method [23], the kth iterate satisfies

wy = argmin{ [|b — Agw|| | w € (AT, AJA)Y,  xi = Dy *wy, (14)
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where
H(AGb,AJAg) = span{(AJAg)'Ajb |0 < € <k— 1},

is the kth Krylov subspace associated with the vector A]b and the matrix A} Ag. The quantity
b — Agpwy whose norm is minimized is the discrepancy vector corresponding to wy. In the
traditional inverse problems literature, the Morozov discrepancy principle states that the itera-
tions should be stopped right before the norm of the discrepancy falls below the noise level.
Recalling that the standard deviation of the m-variate white noise is y/m, the Morozov stop-
ping criterion suggests to continue the iterations as long as

16— Agwi || > Vm.
On the other hand, letting

AD,/?

| = [} — ADg"wl” + [lwl”. (15)

2

b
G(w) = w [0}
denote the norm of the discrepancy of the original linear system (12), it follows that the least
squares solution of the original problem minimizes the functional G. It is therefore natural to
monitor the behavior of G(x;) as the iterations proceed, and continue iterating only as long as
G(wy) keeps decreasing. While it is known that the norm of the discrepancy of (13) decreases
and ||wy|| increases with the number of CGLS iterations, we do not know a priori how the
increase/decrease rates are related to each other, so without further analysis, it is not clear if a
minimum is reached before the maximum allowed number of iterations.

In light of these observations, we propose the following approximation to the squares solu-
tion of (12).

Definition 1.1. The reduced Krylov subspace (RKS) solution for the problem (12) is wy,
defined by (14), with ko chosen to be the first index k satisfying the criterion

(€): |b—Agwir1] < vVm, or G(wiy1) > 7G(wy),

where 7 — 1 = € > 0 is a small safeguard parameter.

Finding an optimal stopping criterion for CGLS is not a simple task. In [13], an alternative,
statistically motivated stopping rule based on the x2-error of discrepancy was suggested.

In the following, we refer to the IAS algorithm as approximate IAS when the minimization
of (15) is replaced by the RKS solution, as opposed to the original exact IAS.

1.1.2. Step 2: updating 6. The update of the prior variance 6 is based on the first order opti-
mality condition. Since the parameters ¢; are mutually independent, the update can be carried
out separately for each component. It follows from the form of the MAP objective function
that the updated jth component of € must satisfy the algebraic equation

oF 1% 31, 6 "
%_—20}—<r6—2)0j+r19; =0, X =x". (16)

There are combinations of the hyperparameter values for which the solution is available in
closed form, as will be discussed in detail later. We derive a computationally efficient form for
the general case in the ensuing discussion.

The IAS algorithm has a similarity to a class of a reweighted least squares methods [17, 22],
or fixed point iterative methods with lagged diffusivity [18], providing iterative algorithms to

6



Inverse Problems 36 (2020) 025010 D Calvetti et al

compute ¢!-regularized solutions to inverse problems. For similar alternating iterative meth-
ods in the Bayesian framework, we refer to [2, 3] applied to compressed sensing and imaging.

2. Scaling

The analyses of the IAS algorithm previously published were limited to some specific hyper-
priors from the generalized gamma family. Before extending the analysis to the family of
generalized gamma hyperpriors, we reformulate the problem in non-dimensional form. To that
end we introduce non-dimensional parameters z; and & such that

x5 =05 =98

and express the objective function in terms of these variables as

7 1 N 2 1 n ZJZ 3 n n ,
(2.€) = 5 [[Az — b +2;€j(r62>;log€,+;€-, (17)
where A is a column-scaled version of A, that is,
A= [19}%(1),-.. L9124 ] = Adiag(v)/?,--- ,9}/?).

Column scaling the forward map is a common practice in some geophysics and biomedical
imaging applications, where it has been motivated by sensitivity considerations. Define the
sensitivity of the forward map x — Ax with respect to the jth component x; as

0

Ax .

5= |22 = hae = tat21,

where ¢; is the jth canonical unit vector in R" and a" is the jth column of the matrix A. Then,
weighting the component x; by the corresponding sensitivity scalar can be seen as a way to
avoid favoring solutions with support concentrated near the receiver locations. This observa-
tion can be used as a guidance for selecting the values of the hyperparameters ¥;; however, in
the Bayesian framework this reasoning was considered problematic, as canonically, the selec-
tion of the prior should not depend on the observation model. Recently, however, a Bayesian
justification for such choice of ¥ in the case where r = 1 has been given in [10, 14]. The fol-
lowing theorem generalizes the result to the case of general gamma hyperpriors. The result is
formulated in terms of the signal-to-noise ratio (SNR) of the inverse problem (1),

E{B}
SR = By

Theorem 2.1.

(a) Assuming that a support set S C {1,2,...,n} is given, the SNR conditional to the un-
known x being supported on S, denoted by SNRg, is given by

2 jes v (r B)Y; _L(B+1/r)
trSacT +1, v(rnB) = —F77—

SNRs = I'(8)

provided that § > —1/r.
(b) Let py, = P{||x|lo = k} denote the probability that the support of the signal has cardinal-
ity k, fork = 1,2, ...,n. Then the exchangeability condition (&),

7
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(€): SNRg = SNRy whenever S and S’ are of the same cardinality,

is satisfied if and only if ¥; is chosen as

C (SNR — 1)trace(X)

Y=o € ()

n
Pk
k=1 k

Proof. The proof is a slight modification of that for the gamma hyperprior (r = 1, 5 > 3/2)
in [10] to account for the fact that if ; follows the generalized gamma distribution, then

E{6;} = v(r. B)V;. O

An important corollary of the above theorem is that, under the stated assumptions, scal-
ing the columns a¥) by 19; /? is tantamount to making them all of the same norm v/C. From

the point of view of linear inverse problems, this scaling renders the data equally sensitive to
each component of the unknown x. While this sensitivity scaling has been used for decades in
geophysics and biomedical imaging applications to compensate for the tendency of regular-
ized variational methods to favor solutions concentrated near the receivers or solutions para-
metrized by components with maximal sensitivity, to the best of our knowledge this is the first
proper Bayesian interpretation of sensitivity scaling.

Furthermore, as already pointed out in [10], the theorem provides a Bayesian argument to
choose the value of Tikhonov regularization parameter in linear inverse problems from an esti-
mated SNR and a priori belief about the cardinality of the support. The effect of the sensitivity
scaling has been demonstrated in [10] by computed examples.

3. Variance updating: a closer look

In this section, we analyze in detail the process of updating the variance vector given an
updated estimate of the signal. After scaling the variables as described in the previous sec-
tion to arrive at a non-dimensional formulation, the algebraic relation (16) for the non-dimen-
sional variance ; given the non-dimensional signal z; becomes

2

where we dropped the subscript j to simplify the notation. Since the expression depends only
on the square of z, we restrict our discussion to the case where z assumes non-negative values,
the negative values being covered by symmetry

The following result characterizes the variance as the solution of an initial value problem.

1 3
—58 =T =0, n=rf-73, (18)

Lemma 3.1. Ifr<0Oandn < —=3/2, orr >0andn > 0, formula (18) defines an implicit
function

p(z)=¢ ¢:Ry =Ry,
which is smooth and strictly increasing. Moreover, £ is the solution of the initial value problem

2z¢(2) 0) = (Q)l/r‘

10\ —
#'(2) = 2r2p(z)rt + 2%’ r (19)
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Proof. Starting from (18), we define the function

1/r
g€ =€0¢ —m. 0<q=(1) <¢<o

which is differentiable, with g’(¢) = —np+ r(r 4+ 1)¢". For r < —1 and n < —3/2, the de-
rivative is always positive. For —1 < r < 0 and n < —3/2, the condition £ > &; implies that
& < n/r, and consequently, g'(£) > rn > 0, and for r > 0 and > 0, we have " > n/r, and
therefore g’(£) > nr > 0. Hence, the function g(&) is strictly increasing for & > &,. Further-
more,

g(%) =0, fli)ﬂgog(f) = 0.

Therefore the equation
. 1
9(6) = €0€ —m) = 32

has a unique solution £ = &£(z) € [, 00) for every z > 0, hence the mapping from z to the
solution (18) defines a strictly increasing function £ = ¢(z). We have ¢(z) = g~!(z%/2) and
by the implicit function theorem, the function g~!, as an inverse of a differentiable function is
also differentiable, therefore ¢ is differentiable. Substituting £ = ¢(z) in (18),

1
7522 —np(2) + re(z) 1 =0, (20)

and differentiating with respect to z, we get
((r+ Dre(@)" —n)¢'(z) =z

or, equivalently,

2
(rzso(Z)”r (re(x)! —w(@))w/(Z) = (r%(Z)”r ; )w’(Z) =z

1
©(2)

yielding the differential equation (19). O

The characterization of £ in terms of the differential equation (19) can be used to compute
effectively the values of the updates of the variances in the IAS algorithm, as we will show in
the computed examples. Moreover, lemma 3.1 also makes it possible to analyze the asymp-
totic behavior of the variance parameter when the corresponding value of z is either close to
zero or very large.

Lemma 3.2. The asymptotic behavior of ¢ when z is close to zero is

p(z) = (ﬂ)l/rJr

r

1 2 4
Tmz +O(Z) (21)

whereas the asymptotics for z > 0 large is

1 1/(r+1)
0(z) = kD (1 +0(1)), k= <2r> (22)
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when r > 0, and
1

p(2) =k (1+0(1), K= 2

when r < 0.

Proof. The asymptotic behavior of ¢ for z near zero can be obtained from its Taylor expan-
sion at z = 0. It follows from (19) that ¢(0) = (2) /7, ¢'(0) = 0, and differentiating (19)
with respect to z yields

1 1
" O — = .
#10) r2p(0)

The asymptotic estimate follows from the observation that the third derivative of ¢ vanishes
atz = 0.

To obtain the asymptotics of ¢ for large z and r > 0, observe that (20) implies

lim ¢(z) — oo,
200

therefore, since (1 + o(1))~' =1 + o(1), for large z,

1 r+1 n = r
522 = ()" (r_ SO(Z)r> = ro(x) " (140(1)),

implying (22). Similarly, if r < 0, we write

i r
32 =€ (= g5 ) = e (14 o).

completing the proof. O

Figure 1 shows the updating functions in a logarithmic scale with selected values of the
parameter r.

The asymptotic behavior of the updating function helps us to interpret the role of the model
parameters r and (. For this interpretation, we need the following theorem establishing the
equivalence of the TAS optimization of the objective function with respect to the pair (z,£) in
R?"* and the optimization of the objective function along the manifold & = (z),with the last
equality to be understood as componentwise.

Lemma 3.3. Ler (z*,£*) be a local minimizer of the objective function ®(x,&) given by
(17). Then, the point z* is a local minimizer of ¥(z) = ®(z, ¢(z)). Conversely, if z* is a local
minimizer of U(z), then (z*, p(x*)) is a local minimizer of ®(x,§).

Proof. If (z*,&*) is a local minimizer of ®, then it must satisfy

0

—(z,&*) = 0, implying that £* = p(z").
&

Let U= B; x By € R be a neighborhood of (z*,£*) such that for any (z,&) € U,
D(z%,€*) < D(z,€). Since ¢ is continuous, for each z in some neighborhood B} C By of z*,

10
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——0(0)
— k(r)z 7
—0(2)

Figure 1. Logarithmic plots of the updating functions with different values of the
parameters r, with 7 = 0.5 in each case. The asymptotics given by lemma 3.2 as well as

the initial values (0) = (n/r)"/" are indicated in this figure.

©(z) € By, therefore ®(z*, p(z*)) < P(z, ¢(z)), that is, z* is a local minimizer of W.

Conversely, let z* be a local minimizer of W. Then, there is a neighborhood B of z* such
that for any z € B, ®(z*, ¢(z*)) < ®(z, ¢(z)). However, for each z, 6 = ¢(z) is the unique
minimizer of 6 — ®(z, ), therefore

(2", 0(z%)) < B(z,9(2)) < D(2.0), (z,0) € BxRT,

implying that (z*, ¢(z*)) indeed is a local minimizer of ®. O

It follows from the lemma that in order to understand the sparsity promoting properties
of the various hyperpriors, one can consider the objective function ¥(z) = ®(z, ¢(z)), and in
particular, the scaled penalty term

1<~ 22

() = 5 D0 o~ losels) + 3 w()
= J j=1 j=1

We will use this observation together with the asymptotic forms of the updating func-
tion to elucidate how the regularization properties of the penalty functions change with the
hyperparameter values. Before addressing the general case, we consider some special choices
of the parameter values.

3.1. Special generalized gamma hyperpriors

There are hyperparameter combinations for which the updating function is available in closed
form. Some of these special cases have been used in numerical computations in earlier works
[8, 9].

3.1.1. Gamma distribution and ¢' prior. The most thoroughly analyzed hyperprior in the con-
text of the IAS algorithm is the gamma distribution, which is a generalized gamma with r = 1
and n > 0. With that choice of parameters, equation (16) simplifies to

1
- —n{+£ =0,
2
and can be readily solved for &, yielding

ézﬂd:%@+vw+kﬂ.

1
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As pointed out in [10, 13], substituting §; = ¢(z;) in the MAP penalty function and letting 7
go to zero yields

n

(z) = g {2,- nlogfj+§;}—2{n+ 7”42z
j

n

j=1 j=1

1 1
—nlogi(n+\/772+22f) +2(n+\/n2+2zj2)}
— \/§Z|Zj|, as ) — 0+,
i=1

that is, in the limit, the penalty function approaches the ¢'-penalty. In [10], it was further
shown that the unique solution of the IAS algorithm converges to the solution with the ¢'-pen-
alty, thus recovering a compressible solution, if the data came from a sparse generative model.
For further results, we refer to [10].

3.1.2. Inverse gamma distribution and student prior. The second special case is that of
the inverse gamma hyperprior, corresponding to setting » = —1. In this case, equation (16)
becomes

1 2
—P_pt—1=0,
X né

and the update formula is

52@(2)2%@24-2), kzﬂ#—%

As for the gamma hyperprior, substituting §; = ¢(x;) in the MAP penalty functional yields

I(z) = Z{zzgjj + klog & + 5,-} = Z{Z’%j +klog§j}

j=1 j=1

= n(k — log 2k) + Z log(zj2 +2)k,
j=1
which corresponds to the prior model

n

1
71-Prior(z) X exp(—H(z)) X Jl;[l m

We observe that as § — 0+, k — 3/2, and the distribution of the individual components Zj
approaches the Student distribution,
1

St(z | I/) x W,
(%)

v

with parameter v = 2, a prominently fat tailed distribution that favors outliers, thus promoting
sparsity.

3.1.3. Generalized gamma and (P prior. The third special case that we consider here is that
where r3 = 3/2, for which the update formula becomes

12
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1
_EZZ + r£r+1 = 05

or
| Z|2/ (r+1)
E=0(2) = [LGRk
Substituting §; = ¢(z;) in the MAP penalty functional we get

(2r)1/(r+1)

"1z, - 2-2/(r+1 1 2 (r 1
H(Z):Z{2£j+£j}22{2 2~/ H‘mkﬂ /D

j=1 j=1

_c zn] e, o= L
=C, Zj s r = (2r)r/(r+1)
j=1

and letting

2r
r+1

p= , 0<p<?2,

yields
II(z) = C,Z lz]?, 0<p<2.
=1

The ¢P-penalties for 0 < p < 1 are known for their sparsity promoting properties, and have
been analyzed extensively in the literature. However, since are non-convex, they pose chal-
lenges when it comes to computing the corresponding regularized solution.

3.2. General case: asymptotics

Consider now the penalty functional II(z) = 3_;_, IL;(z;) in the general case with r > 0. From

lemma 3.2 we see that if |zl is large, the penalty function of the jth component can be written as
2

1) = 55 + 9la) ~nlogo(s)

1 —2/(r r r/(r
= 2[5+ o(1) + w5 (1 + o(1)

— 2 tog([51(1 +o(1))
el +o), p =2

Similarly, for small values of Izjl, (21) yields the asymptotic estimate
g

~ 2a+bz +0(z)
=C 1+ Gz +0(3))

I1;(z) + (a+ bz]2 + O(z}‘))r —nlog(a + bz]2 + O(Z?))

with a = (n/r)'/", b = 1/(2nr), and C; and C, are some scalars. Therefore, for large Iz, the
penalty behaves like an £”-penalty with p = 2r/(r + 1) € (0, 2), while for small Iz, the pen-
alty is essentially Gaussian.

13
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Figure 2 shows the level curves of the function II(z) in two dimensions for some parameter
choices. From these plots it is clear that for large values of ||z||, the level sets look like the £7
spheres, while for small values, the level curves become increasingly circular as predicted by
the asymptotic formulas.

4. Convexity

Our first goal in this section is to find out for which choices of the parameters (r, 3) the objec-
tive function ® given by (17) is globally convex for all (z,£) € R" x R, or, alternatively,
convex in a specified subset. The following theorem summarizes the results.

Theorem 4.1. Let B3>0 andr # 0, and let (z,&) = ®(z,£ | r, 8) be the objective func-
tion (17) for the dimensionless formulation of the problem.

(a) Ifr = landn = rB —3/2 > 0, the function ®(z,£) is convex everywhere.
(b)IfO<r<landn=rB—3/2>0,o0rifr <0and 3 > 0, the function ®(z, &) is convex
provided that

B n 1/r
5<i=(5ty) -

Proof. Recall that the positive definiteness of the Hessian is a sufficient condition for the
convexity of the underlying functional. Consider the block partitioning of the Hessian of @,

o _ VZV;I)(z,ﬁ) VZV5<I>(Z,5)
H=H(z¢) = [vgvzcb(z, §) VeVed(z, g)} :

where,
V.Vb(z€) =g+ ATA,
. Zi
2

VeVed(z,€) = diag(z

]

+r(r—1)g" 2+n§2)

u
For any vector g = [ } € R?", we have
v

2

¢"Hg = HAuHZ—i-Z Z(—v +r r—l)f’ zvz—i—ngz) _2252”101
= A+ 3 ¢ (- gv) ALy 23)
j=1 : j=1

where

Gi(& | rB) =r(r—1)& 2 + (24)

1
N—=-

Note that the first two terms in (23) are always non-negative, so the positivity of the quadratic
form defined by the Hessian it is guaranteed if ¢;(§; | r, 3) > 0 for all j, 1 < j < n. The proof

14
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r=0.25

Figure 2. Level set plots of the reduced penalty function II(z) in two dimensions with
different values of r, corresponding asymptotically to £”-penalties with p = 2/5 (left),
p = 1 (center) and p = 8/5 (right). The corresponding ¢”-sphere is superimposed with
dark blue. The boundary of the convexity region (see section 4) for » = 1/4 is marked
by the red square.

for the different cases follows by enforcing this condition. O

Figure 3 shows the regions in the r, 3 plane corresponding to hyperparameter choices lead-
ing to convex or conditional convex MAP objective functions. Observe that the ¢”-penalty
corresponds to the boundary 8 = 3/(2r), with p = 2r/(r + 1). In particular, for p < 1, the
generalized gamma family provides nearby penalty functionals that yield at least a locally
convex objective function. Similarly, for »r = —1, the non-convex Student distribution penalty
corresponds to the limit 5 — 04, while for 5 > 0, the convexity radius is positive.

We define the convexity radius p = p(r, 8) > 0, by

p=¢"'(5),
that is, for ||z]|eo < p, We have ||¢]|oo < € guaranteeing the convexity. If the objective function
is globally convex as in the case (a) of the theorem 4.1, we set p = cc.

4.1. Stable convexity

Consider the IAS algorithm for computing the MAP estimate, and denote the current iterate
by (,£"). The update of z requires the solution of the minimization problem

1~ 1 <2
+1 _ : 1Az — b 2 - A
z argmin 2|| z—b| +2j_El @

We say that ®(z, £) is stably convex if there is a T > 0 such that, for > T,

[Z'lse < p = [ oo < p,

in other words, stable convexity is tantamount to guaranteeing that once the IAS iterates (', £')
enter the convexity basin they do not leave it, thus keeping the optimization problem convex.

To find a sufficient condition for stable convexity, we need an estimate of the £>**-norm of
the least squares solution of the system

A b -
ngl/zl 2= o] el <
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r <0

—_
<

Figure 3. Convexity regions in the (r, 3) plane. The red shadowing denotes parameter
choices for which the MAP objective function is convex everywhere, and the blue
shadowing parameter choices for which the MAP objective function is only locally
convex. The curve 8 = 3/(2r) marks the parameter pairs for which the hierarchical
model is an ¢P-penalty priors, with p =2r/(r+ 1), which are convex if p > 1
or, equivalently, » > 1. The vertical line » =1 corresponds to the family of gamma
hyperpriors.

In the following, we assume that the columns @) of A have been scaled according to the
sensitivity and satisfy ||a(/)|| = C'/2. The following lemma provides an estimate for the size
of the components of the updated z.

Lemma 4.2. Assume that § < &. Then the entries of the solution z of the normal equations,

(ATA + DY)z = ATh

satisfy

C¢;

< —_(hCE+ 1)|ATD
1+C§,~( E+ 1)

|Zj| 2, h= mjaX { Z | CcOS é(a(’)’a(l)”}

i
Proof. In terms of the quadratic forms associated with the symmetric positive definite ma-
trices, we have that
ATA+D;'>D;!,
from which it follows that
(ATA+ D) < D,
establishing the following inequality for the induced £2-norms,
|(ATA+D¢") Il < IDell2 < &
and further, the estimate
lzlloe < lillz < ATl (25)

Next we express ATA as the sum of the two matrices Cl and R containing, respectively, its
diagonal and off-diagonal entries,
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Ccos Z(@D,aD), i+j,

ATA=CI+R, R;=
+ / {0, i=j.

A substitution of this expression in the normal equations gives
diag(C + 1/&)z+ Rz = ATh,

yielding the following upper bounds for the components of the solution,

5. ~
4l < g 1 (IR + IATH) ).

Furthermore, since

[(R2)j| < [IR]loollzlloo = maxe| Y~ Rielllzlloc = Chllz]|oo-
ik

replacing ||z]|oo with its upper bound from (25) and observing that || (ATb);| < [|ATh|, we
have

& ( AT C¢; r AT
1< Chllzl|o + |(ATH ) < hCE + 1)|ATh
51 < g 7 (CHlelle + 1ATIR) < L (HCE+ DIATH],
thus completing the proof. O

While not definitive, the previous lemma points to some of the factors that contribute to the
stable convexity. First, we observe that if |th| < 1, choosing the shape parameter 77 > 0 small
implies that & = ¢(|z}|) < 1. The above lemma suggests that in the IAS iterations, small
entries remain small, and therefore one can hope that they remain below the convexity bound.
On the other hand, if the columns of the matrix A are almost orthogonal, we have & < 1, we
have an upper bound close to the norm ||;‘\\Tb|| for the entries Iz;l. In such case, choosing the
parameters (r, 8) so that p = 7||ATb|, for some safeguard factor 7 > 1 guarantees stable con-
vexity of the objective function. The quantity # is closely related to the mutual coherence of
the matrix [21], and the Welch bounds for frames, widely studied in frame theory and signal
processing literature [31].

Figure 4 shows graphically the convexity radius as a function of the parameters » and 7, as
well as the evolution of the level curves in two dimensions of the reduced objective function
together with the convexity spheres. Eight selected zoomed-in tiles of the panel are shown in
figure 5. For r > 0, the £”-spheres corresponding to the large norm asymptotics are also plot-
ted to underline the similarity between them and the contour lines.

Remark 4.3. In general, one may not have an a priori guarantee that the components of
the unknown are bounded by a constant smaller than the convexity radius. However, if we
know that a priori, |x;l < M for some M > 0, we may choose the parameters (r,n) so that
p = M, guaranteeing global convexity and thus the existence of a unique minimizer. How-
ever, such parameter adjustment is a non-trivial optimization problem that is not addressed
here. A natural question that arises then is, how the IAS algorithm should be modified for
a case in which a box constraint is part of the prior. This question is addressed in the next
section.

17
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5. IAS with bound constraints

Consider the constrained optimization problem:
minimize ®(z, £) subject to the constraints 0 < z < H,

for some H > 0. The minimizer corresponds to the MAP estimate under the belief that the
components of the solution are nonnegative and not larger than H. More general box con-
traints can be treated in a similar way.

We begin by introducing the penalty function
{0, when 0 < z < H,

G =
(2) 00 otherwise,

and write the posterior density with the bound constraints as

(2, € | b) < exp (=D(z,£) — G(2)) = exp (= P3(z,¢)) -
Following the ideas in [20, 28], consider the Moreau—Yoshida envelope of the objective
function,

B5(2.6) = ®(2,€) + GM(2),

where

. 1
6*(e) = minieze {600 + 5~ P},

with A > 0 an auxiliary parameter. Its can be shown [26] that the Moreau—Yoshida envelope
is differentiable with respect to z, and its gradient is of the form

V.03(2.6) = VB(2.6) + § (z— proxd(2).

where the proximal operator is defined as

| | & G =0
proxg(z) = argmin, g, {G(u) + ﬁ”z B u||2} N {Pz, if G(z) = oo’

and P is the orthogonal projector onto the feasible set [0,H]". Since the derivatives of the

objective function with respect to the parameters §; are unaffected by the inclusion of the

bounds, a natural extension of the IAS algorithm for bound constrained problems can be

obtained by modifying the solution of the least squares minimization problem as follows:
Given the current &":

(a) Find z = 7" by solving V,®(z,£") = 0 in the least squares sense,
(b) Define 7! = prox(z*) as the projection of z* onto the feasible set.

Observe that unlike when exploring the posterior, for the computation of the MAP estimate it
is not necessary to specify the auxiliary parameter A, as the proximal operator is a projection
regardless of the value of A. It was proved in [20] that, as A — 0+, the posterior distribution
defined in terms of the Moreau—Yoshida envelope converges in the sense of total variation
towards the posterior distribution augmented by the positivity constraint.
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Figure 4. The radius of the convexity region as a function of r and 7 for generalized
gamma hyperpriors with—3 < r < 0 (top left) and 0 < r < 1 (top right). The two panels
on the bottom row show, for different choices of (r,7) in the generalized gamma family,
the level curves of the corresponding functionals. In each tile, a red curve, if present,
marks the boundary of the region inside which the functional is convex. The absence
of a red curve indicates that for that choice of (r,n) the functional is always convex.

6. Computed examples

In this section, we present computed examples that illustrate how the choice of the hyperprior
from the generalized gamma family affects the sparsity promotion of the computed MAP
solution. Moreover, we address some computational aspects when using a hypermodel that
does not allow a closed form updating formula for the parameter &.

6.1. Example 1

The first computed example is a one-dimensional deconvolution problem with and Airy con-
volution kernel. The generative model is a piecewise constant signal f : [0,1] — R, f(0) =
and the data consist of discrete noisy observations,

1 2
bj:/o Al —0f(dt +¢5, 1<j<m, All) = (JI'E&TXD) ,

where J; is the Bessel function of the first kind and « is a scaling controlling the width of the
kernel. We set k = 40, yielding a kernel with full width at half maximum FWHM = 0.08. We
discretize the integral as
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Figure 5. Eight of the panels in figure 4 corresponding to negative but varying r keeping
7 fixed (upper row), and positive fixed r with varying 7 (lower row). The convexity
region is shaded in red. For positive values of r, the plot of the £7-ball corresponding to
the asymptotic behavior is also plotted to underline the similarity with the contour lines.
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Figure 6. Left: the generative model. Center: the blurred and noisy data vector b € R?'.

Right: singular values of the discrete blurring kernel A €

RO1x500

used for the solution

of the inverse problem. Since only the first 30 singular values are significantly different

from zero, the matrix is numerically singular.

1 n
/ Als — 07 (= S wid(s — w)f(), 1<k<n,
0 =

where #;, = (k — 1)/(n — 1) and the wy’s are the trapezoidal quadrature weights. To gener-
ate the data, we use a dense discretization with # = ngense = 1253, while the forward model
used for solving the inverse problem assumes n = 500. The observation points are given by
s;= (4 +)/100, 1 <j < m =91, and the noise added is assumed to be scaled white noise,
with standard deviation o set to 1% of the noiseless generated signal. We denote x; = f(1).

Figure 6 shows the generative signal and the data.

To compute the update of the hyperparameter £ given the current vector z, we first sort the
values of z so that 0 < |z;,| < ... < [zj,|, and subsequently solve numerically the differential
equation (19) at these values. Observe that this solution is fast since the propagation needs not
to be restarted from zero, but rather we only need to propagate from|z;, | to |z, , [to get the next

value. The integration was done using the ode45 solver of Matlab.
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While the generative signal, a piecewise constant function, is not sparse, it admits a sparse
representation in terms of its increments z; = x; — x;j_ over the interval of definition. If we
assume that x, = 0, then

1 0 0
-1 1 ... 0
z=Dx, D= ) e R"™", (26)
0 -1 1
hence
1 0 0
1 1 ... 0
x=Cz with C=D""= |, ) € R™", (27)
1 ... 1 1

Therefore our inverse problem is to estimate the vector z, assumed to be sparse, from the data
vector b, given the forward model
b=ACz+e, &e~N(0,0%), Ax=wA(s—1). 28)
To illustrate how the sparsity of the MAP estimate determined by the IAS algorithm is
affected by the choice of hyperprior in the generalized gamma family, we show the results
with the hyperpriors corresponding to » = 3, r = 1 and r = 0.5, see figure 7. The results clearly
demonstrates that with decreasing r, the sparsifying properties are strengthened. Observe that
the dramatic decrease of the number of the CGLS iterations, compared to the numerical rank
of the matrix, makes the approximate IAS very attractive for large problems.

6.2. Example 2

In the second example, we consider the problem of estimating a nearly black two-dimen-
sional object. The generating model is an impulse image, defined as a distribution on
Q=10,1] x [0,1],

J

du(p) = Za,ﬁ(p —pr)dp,  pi ~ Uniform(Q?), a; ~ Uniform([1.5,2]),
k=1

and we assume that the distribution is observed with a Gaussian convolution kernel,
1 7112 2
A(p,p') = —e IP=P'IF/2v -y — 0,01,
(pr) =53
the discrete and noisy data being given at observation points g; € §2 by

K

bj = /QA(qj»p'>du(p’) +e =) al(gp) + <.
k=1

To solve the inverse problem, we divide the image 2 in n = 128 x 128 = 16384 pixels,
denoted by €, and discretize the kernel, approximating
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Figure 7. Reconstructions of the signal x (left), the hyperparameter 6 (center) and
the count of CGLS iterations per each IAS update when the approximate method is
employed. In the top row, the parameter values are r = 3 and 1 = 107, in the middle
row, 7 = 1 and 5y = 1077, and in the bottom row r = 1/2 and = 107>. The results with
both the exact and approximate IAS are shown.

. 1
[ A@pan(n) = 3 [0 a3 3= o [ aulo)
A 2 L) o Jo,

=Aj
where ¢} denotes the center point of the pixel €2, and |§2| is its area. In this example, we
assume that the number of observation points is m = 64 x 64 = 4096, hence the forward
model is defined by a matrix A € R™*". The noiseless signal is then corrupted by scaled white
noise with standard deviation approximately 1.8% of the maximum noiseless signal. In this
case, since the signal itself is sparse, no change of variable is needed. Figure 8 shows the posi-
tions of the point masses in the generative impulse image, as well as the noisy blurred image
with kernel width w = 0.01.

We consider three hyperpriors from the generalized gamma family, corresponding to r = 1,
r=0.5, and r = —1. In this example we do not assume non-negativity, hence no projection is
performed. To promote sparsity in the first two cases we set 7 = 107>, while in the third case,
where r = —1 and 7 does not have the same role as for positive values of r, we set 5 = 3. We
scale the hyperparameters by a constant value, setting ¥; = ¥y = constant, and to make the

results comparable, we select the parameter ¥y so that the lower bound for the scaling param-
eters 0; are equal,
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Figure 8. Left panel: the generative model, an impulse image of 50 point sources with
variable amplitude. Right panel: the 64 x 64 blurred and noisy observation, degraded
by Gaussian blur and additive while Gaussian noise, scaled so as to achieve SNR = 25,
corresponding to a standard deviation of about 1.8% of the maximum noiseless signal.

1/r
900(0) = Y (2) )
In this example, we consider only the approximate IAS algorithm.

The final reconstructions with the three hyperpriors, shown in figure 9 are almost identical,
and the number of iterations are comparable. The number of the CGLS inner iterations per
outer iteration in each case, shown in figure 10, is low, no more than 15. To see a difference
in the performance for the three parameter choices, we show how the reconstruction of the
hyperparameter 6 proceeds. Figure 11 shows logarithmic plots of the vector 6, rendered as a
pixel image, after 2,4,8, and 16 iterations. The first observation is that even if the lower bound
for the parameter vector  was set equal, each choice of hyperprior leads to a different scale
of values of 0: the value r = 0.5 yields the lowest values, while in the case r = —1 the interval
is shifted to considerably higher values. Interestingly, however, the ratio between the largest
and smallest value is in the same range. This observation is important, as the ratio informs us
about the relative weights of each column of A in the scaling A — AD;/ % The column scaling
performs an effective model reduction, identifying the relevant columns of A and suppress-
ing irrelevant ones. Each hyperparameter selection in the end identifies the same relevant
columns, however the plots in figure 11 show that the choice r = 1 is the most conservative,
while when r = —1 the suppression of irrelevant columns happens sooner. Therefore one can
argue that the parameter choices that correspond to less convex case pursue more greedily the
support, however, the lack of convexity also makes it possible that the support corresponds to
a local, rather than global minimum.

6.3. Example 3

The third example demonstrates the inclusion of bound constraints in the IAS algorithm. We
consider a limited angle tomography inverse problem under the assumption that the genera-
tive density, shown in figure 12, is piecewise constant, and the data consist of parallel beam
sinogram data corresponding to illumination angles from —40° to 40° around the vertical
illumination direction. More precisely, given a density function p > 0, the noiseless data can
be written as
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Iteration 27

Iteration 17

Iteration 29

Figure 9. Reconstructions of the impulse image from blurred noisy observation. The
reconstructed image is of size 128 x 128, and the hyperparameter values are, from left

to right: (r,n) = (1,107°), (r,n) = (1/2,107%), and (r, 3) = (—1,3). The images are
in the same scale.
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Figure 10. The number of CGLS iterations in each outer iteration. The hyperparameter
values correspond to those in figure 9.

bjk = /0 p(pj =+ th)dt, pj= (Sj, 0), Wi = (sin ¢k, Ccos ¢k), (29)
where the values s;, 1 < j < 100 are uniformly distributed over the interval [—0.4, 1.4], while
the angles ¢y, 1 < k < 80, cover uniformly the angle [—40°,40°], thus constituting data of
dimension m = 8000. We generate the noiseless data by formula (29), by finding the lengths
of the line segments intersecting the two inclusions shown in figure 12, and corrupt it with
additive scaled white noise with standard deviation o equal to 1% of the maximum of the
noiseless data. To solve the inverse problem, we divide the image area 2 = [0, 1] x [0, 0.5]
inton = n, X n, = 200 x 100 = 20 000 square pixels, denoted by €;, approximating the con-
ductivity by a piecewise constant density,

0o n
/ p(pj + Z’Wk)dt ~ Z |€jk n Qi|x,~,
0

i=1

where £ is the line parametrized by intercept s; and angle ¢, | N ;] is the length of its
intersection with the pixel €);, and x; is the ith pixel value of the density. By enumerating the
rays, the above formula defines the linear model with a sparse matrix A € R™*",

The target image is not sparse in the pixel basis, but as in [9], we seek to represent it in
terms of vertical and horizontal increments. Assuming that the density p is represented as an
image, and the pixels are enumerated column-wise, the vertical and horizontal increments, v

and A, of the image can be computed as
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Figure 11. Logarithmic plot, top to bottom, of the estimate of 6 for the three hyperpriors
corresponding to figure 9 at the end of the outer iteration 2, 4, 8 and 16 (left to right).
Observe that the focusing effect corresponding to effective model reduction is fastest
with r = —1 (bottom row) and slowest with r = 1 (top row).
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Figure 12. The underlying generative model in example 3 with two inclusions in a
transparent background p = 0. The sinogram data are computed by computing the
lengths of the intersections of the lines with the two inclusions.

0= (Inx &® Dny)xy h= (an & In).)x,
—— ——
=9, =9,
where D, € R™*"™ and D, € R™*™ are the first order finite difference matrices (26) of the
respective sizes, l,, and |,,, are the identity matrices, and ® is the Kronecker product.
As in [9], we write the conditional prior for the pair (v, h) € R*" as

1 1 07+ 07
m(0h|0) = G | T3 g |
n j

j=
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Figure 13. The limited angle tomography reconstruction with the hyperparameter
values (r,7) = (1,1073). The algorithm converges in 15 iterations to the solution
shown in the top row, left, and the corresponding scaled variance £, rendered as a pixel
image, is shown in a logarithmic scale on the right. The vertical intersection through the
two inclusion are shown in the bottom row, left, and the horizontal intersection on the
right. We observe that the hyperprior is not focalizing enough to suggest sharp edges at
the horizontal boundaries where the data do not support the jump.

that is, rather than treating the vertical and horizontal increments as independent, the prior
is written for the length of the gradient. Observe that unlike in example 1, in this case the
mapping between x and x = (v, ) is not bijective. Moreover, the prior can be interpreted to
promote group sparsity, being thus slightly more general than the plain sparsity promoting
prior discussed in the paper. We apply the alternating iteration with projection to the feasible
set as described above. We refer to the cited article for details about how the likelihood density
is interpreted.

We run the approximate IAS algorithm with the bound constraints, assuming that
0 < x; < H, where the upper bound in this case is chosen high enough so that in practice
the projection is performed only on the positive cone. We test the algorithm using two hyper-
models, corresponding to parameter values (r,1) = (1,107%) and (r,n) = (0.5,10~*). The
stopping criterion for the IAS algorithm is [|0'T! — 6| /||0"||co < T, With the threshold value
T=10"2

Figure 13 shows the final reconstructions with » = 1, and the corresponding results with
r = 1/2 are shown in figure 14. The results confirm that the hyperprior » = 1/2 produces a
sharper edge of the target objects in the horizontal direction where the data are not able to dis-
tinguish between a sharp and diffuse edge, while the hyperprior » = 1 is less committal. In this
example, the approximate IAS algorithm with projection converges rather fast for r =1 (15
iterations), while the convergence in the case » = 0.5 requires more iterations (153). However,
as in the previous example, even after a few iterations, the latter hypermodel has already iden-
tified the support of the discontinuities; the intermediate results are not shown here. As in the
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Figure 14. Reconstructions from the same data as in figure 13 with parameter values
(r,n) = (0.5,1073). The number of iterations before convergence is higher than in
the previous case, however, the contrast in £ is orders of magnitudes larger than in
the previous case. As in example 2, even after few iterations, the algorithm is already
identifying well the support of the discontinuities (not shown). Also, as the hyperprior is
more sparsifying, the algorithm suggests sharp jumps across the horizontal boundaries
of the inclusions.

previous example, the large dynamical range of £, around 9 orders of magnitude, provides a
very efficient column reduction of the matrix ADg.

7. Conclusions

The present article discusses conditionally Gaussian hypermodels and the IAS algorithm,
extending the previous analysis to a larger class of hyperpriors, and investigates the
asymptotic behavior of the resulting priors, as well as the convexity of the optimization
problem for finding the MAP estimate. The algorithm is modified to include simple bound
constraints, and an emphasis is given to an approximate method of solving the imbedded
least squares problem using Krylov subspace methods. The computed examples confirm
that the further away from the convexity conditions we are, the more pronounced the
identification of the support of the sparse variable is, with the caveat that without con-
vexity, there is no guarantee of a single global minimum of the energy functional. Thus,
the algorithm may get trapped in a local minimum. The question of how to effectively
take advantage of the convexity properties requires further tools and will be a topic of a
future work. The examples also show that the proposed methods for sparse recovery can
be an efficient model reduction scheme. The latter property will be further analyzed in a
forthcoming article.

The discussion in this article was limited to finite dimensional discretized inverse prob-
lems. While sparsity in infinite dimensions is not a well-defined concept, a significant body of

27



Inverse Problems 36 (2020) 025010 D Calvetti et al

work exists, with the interpretation that a prior is sparsity promoting if the finite dimensional
truncation in a given basis is sparsity promoting, giving rise, e.g. to Besov space priors with
wavelet bases, see, e.g. [1, 15, 24, 25]. The interpretation and extension of the hierarchical
model discussed in this paper to infinite dimensional spaces remain an open problem.
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