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R-symmetry gauged 6D (1, 0) supergravities free from

all local anomalies, with gauge groups G × GR where

GR is the R-symmetry group and G is semisimple

with rank greater than one, and which have no

hypermultiplet singlets, are extremely rare. There

are three such models known in which the gauge

symmetry group is G1 × G2 × U(1)R, where the first

two factors are (E6/Z3) × E7, G2 × E7 and F4 × Sp(9).

These are models with single tensor multiplet, and

hyperfermions in the (1, 912), (14, 56) and (52, 18)

dimensional representations of G1 × G2, respectively.

So far, it is not known if these models follow

from string theory. We highlight key properties of

these theories, and examine constraints which arise

from the consistency of the quantization of anomaly

coefficients formulated in their strongest form by

Monnier and Moore. Assuming that the gauged

models accommodate dyonic string excitations, we

find that these constraints are satisfied only by the

model with the F4 × Sp(9) × U(1)R symmetry. We also

discuss aspects of dyonic strings and potential caveats

they may pose in applying the stated consistency

conditions to the R-symmetry gauged models.

1. Introduction
The work described herein is on a subject in which

Michael has made magnificent contributions. Let us

also remember that his advocacy of supermembranes

and eleven dimensions (11D) prior to their wide

acceptance, is in the annals of physics. He has

related amusing anecdotes about the era prior to this

2020 The Author(s) Published by the Royal Society. All rights reserved.
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acceptance. One of us (ES) has this one to add: In an Aspen Conference in 1987, in a conversation

on supermembranes and 11D, a very distinguished colleague said that ‘in Cambridge meeting

there were 5 h of talk on the subject, this must be a Thatcherian plot to destroy the British physics’!

Asked about 11D supergravity, he replied , ‘it is a curiosity’!

In the spirit of exploring some other ‘curiosities’, here we aim at drawing attention to a class of

supergravities in six dimensions (6D) that are free from all local anomalies in a rather remarkable

fashion. To begin with, let us recall that the requirement of anomaly freedom has considerably

constraining consequences for supergravity theories. The gauge groups and matter content

are restricted, and on-shell supersymmetry, in the presence of the Green–Schwarz anomaly

counterterm, requires the introduction of an infinite tower of higher derivative couplings. While

this is not expected to fix uniquely an effective theory of quantum supergravity [1–4], it may

nonetheless provide a framework for a ‘α′-deformation’ program in which extra consistency

requirements, including those arising from global anomalies, may restrict further the effective

theory. If consistent such theories exist, in principle, they may offer viable spots in a region

outside the string lamp post in a search for UV completeness. In fact, even in 10D it would be

instructive to determine if and how the α′ deformation approach runs into problems unless it

is uniquely determined by string theory. If all roads lead to string theory that too would be a

valuable outcome in this program, providing more evidence for what is referred to as the ‘string

lamp post principle’ [5,6].

In this note, as mentioned above, we draw attention to a class of 6D supergravities which are

remarkably anomaly free, and yet it is not known if they can be embedded into string theory.

These are U(1)R gauged supergravities with specific gauge groups, and from the string theory

perspective unusual hypermatter content. The qualification ‘remarkable’ is due to the fact that

R-symmetry gauged 6D (1, 0) supergravities free from all local anomalies, and with gauge groups

G × GR, where GR is the R-symmetry group and G is semisimple with rank greater than one,

and without any hypermultiplet singlets, are extremely rare; see for example [7]. By contrast,

there is a huge number of anomaly free ungauged 6D (1,0) supergravities1 one can construct

directly, and a very large class that can be embedded, indeed directly be obtained from, string

theory; see for example [8]. One can also find several R-symmetry gauged models in which

there are several hypermultiplet singlets, and gauge group G that involves a number of U(1)

factors [7,9].

If we insist on semisimple gauge groups and exclude hyperfermion singlets, then there are

only three anomaly free gauged 6D (1, 0) supergravities known so far. They have the gauge

symmetry G1 × G2 × U(1)R where the last factor is the gauged R-symmetry group, and the

first two factors are (E6/Z3) × E7 [10], G2 × E7 [11] and F4 × Sp(9) [7]. These are models with

a single tensor multiplet, and hyperfermions in the (1, 912), (14, 56) and (52, 18) dimensional

representations of G1 × G2, respectively. The embedding of these theories in string theory is not

known.2 In particular, the (E6/Z3) × E7 × U(1)R model contains a representation of E7 beyond the

fundamental and adjoint what normally one encounters in string theory constructions. Neither

R-symmetry gauging, nor such representations seem to arise in string/F theory constructions.3

Another landmark of these models is that they come with a positive definite potential

proportional to the exponential function of the dilaton, even in the absence of the hypermultiplets.

This has significant consequences. For example, these models do not admit maximally symmetric

6D space–time vacua, but rather Minkowski4 × S2 with a monopole configuration on S2 [12].

1There is a crucial difference between gauging of R-symmetry compared to gauging of non-R-symmetries. Here, we shall
reserve the word ‘gauged’ to mean ‘R-symmetry gauged’.

2If one considers strictly the U(1)R gauged theory with nT = 1 and no other gauge sector and hypermatter [12], it has been

shown [13] to follow from pure Type I supergravity in 10D, on a non-compact hyperboloid H2,2 times S1 and a consistent
chiral truncation. However, the inclusion and origin the Yang–Mills hypermatter remains an open problem.

3It has been suggested in [14] that higher Kac–Moody level string worldsheet algebras may lead to such representations but
this matter is far from being settled.
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In its simplest form, such gauged supergravities seem to have attractive features for cosmology

(see, for example, [15–19]). The presence of the potential also has interesting consequences for

the important question of whether dyonic string excitations are supported by the theory. While

some encouraging results have been obtained in that direction [20–22], much remains to be

investigated.

The GS mechanism ensures the cancellation of local anomalies. Demanding the absence

of possible global anomalies, on the other hand, can impose additional constraints. Such

anomalies can arise from different aspects of the data furnished by the local anomaly free

theory, and they can be rather difficult to compute. The best understood global anomaly

has to do with large gauge transformations not connected to the identity. The models in

question are free from these anomalies. Other global considerations, motivated in part by lessons

learned from the F-theory construction of anomaly free 6D theories [23], have led to additional

constraints.

To begin with, Seiberg & Taylor [24], employed the properties of the dyonic charge lattice

and the Dirac quantization conditions they must satisfy, to deduce the consequences for the

coefficients of the anomaly polynomial. They observed that these coefficients form a sublattice

of dyonic string charge lattice, and that the consistency requires that this can be extended

to a unimodular (self-dual) lattice. A stronger condition was put forward relatively recently

by Monnier et al. [25] who assumed that a consistent supergravity theory may be put on an

arbitrary spin manifold and that any smooth gauge field configurations should be allowed in

the supergravity ‘path integral’, referring to this assumption as the ‘generalized completeness

hypothesis’. They find a constraint which states that the anomaly coefficients for the gauge group

G should be an element of 2H4(BG; Z) ⊗ ΛS where BG is the classifying space of the gauge group

G, and ΛS is the unimodular string charge lattice.

Monnier & Moore [26,27] have further argued that these constraints are necessary but not

sufficient for the cancellation of all anomalies, local and global, and proposed the necessary and

sufficient conditions. They do so by requiring that the Green–Schwarz anomaly counterterm is

globally well defined, and show that this leads to the requirement that for any given Green–

Schwartz counterterm, there must exist a certain 7D spin topological field theory that is trivial.

These authors arrive at a proposition in [26] which states the conditions that need to be satisfied

for the 6D theory to be free from all anomalies, in the case of connected gauge groups. Assuming

that the theories under consideration here support dyonic string excitations, we will take this

proposition as a basis for testing the consistency of these theories. We will see that the model

based on (E6/Z3) × E7 × U(1)R satisfies the weaker set of constraints mentioned above, but not

all the conditions of the stronger criterion of Monnier and Moore, and that the model based on

F4 × Sp(9) × U(1)R remarkably satisfies them all.

The paper is organized as follows. In the next section, we shall describe the anomaly freedom

aspects of the class of models being considered here. In §3, we recall the structure of the bosonic

field equations, discuss the issue of higher derivative corrections, and survey the key properties

of the few known dyonic string solutions. In §4, we summarize the Monnier–Park constraints,

and in §5, we study these constraints for the models at hand. In the conclusions, we discuss the

possible caveats in the interpretation of our results, and the appendix contain useful formula for

the anomalies of the models under consideration, and in particular, we provide more details for

the ones based on F4 × Sp(9) × U(1)R gauge group.

2. U(1)R gauged anomaly free models
We shall focus on U(1)R gauged 6DN = (1, 0) supergravities coupled to one tensor multiplet,

vector multiples associated with group G = G1 × G2 × U(1)R, and (half)hypermultiplets

transforming in (R1, R2)0 representation of G1 × G2, with the subscript denoting the U(1)R charge

of hyperfermions. The gravitino, dilatino and gauginos have unit U(1)R charge. The three models
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we shall consider have the gauge groups and hyperfermion contents [7,10,11]

(A) (E6/Z3) × E7 × U(1)R (1, 912)0 (2.1)

(B) G2 × E7 × U(1)R (14, 56)0 (2.2)

and (C) F4 × Sp(9) × U(1)R (52, 18)0. (2.3)

The perturbative gravitational, gauge and mixed anomalies are encoded in an 8-form

anomaly polynomial I8, and they are cancelled by Green–Schwarz mechanism that exploits its

factorization as

I8 = 1

2
ΩαβYαYβ and Ωαβ =

(
0 1

1 0

)
, (2.4)

where

Yα = 1

16π2

(
1

2
aα tr R2 + bα

r

(
2

λr
tr F2

r

)
+ 2 cα F2

)
(2.5)

r = 1, 2 labels the group G1 × G2. Here, Fr is the field strength of the rth component of the gauge

group, F denotes the U(1)R field strength, tr is the trace in the fundamental representation, and

summation over r is understood,4 and λr is normalization factor which is fixed by demanding that

the smallest topological charge of an embedded SU(2) instanton is 1 [31]. These factors, which are

equal to the Dynkin indices of the fundamental representations, are listed below for the groups

needed here.

G E7 E6 F4 G2 Sp(9)

λ 12 6 6 2 1 (2.6)

The vectors (a, bi, c) in the space R
1,1 should belong to an integral lattice, referred to as the

anomaly lattice. For the three models, we are considering, these vectors are [7,10,11]

(A) a = (2, −2), b6 = (1, 3), b7 = (3, −9), c = (2, 18), (2.7)

(B) a = (2, 2), b2 = (3, 15), b7 = (3, 1), c =
(

2, −38

3

)
(2.8)

and (C) a = (2, −2), b4 = (2, −10), b9 =
(

1,
1

2

)
, c = (2, 19). (2.9)

Note that in models (A) and (C), the anomaly polynomial starts with −tr (R2)2, while in the model

(B) it starts with +tr (R2)2. The anomaly polynomials for models (A) [10,21], (B) [11] and (C) [7]

are provided in the appendix.

For groups with a non-trivial sixth homotopy group, there may be global anomalies associated

with large gauge transformations not connected to the identity. Among the gauge groups of the

three models above, only G2 has a non-trivial such homotopy group given by π6(G2) = Z3. In that

case, the vanishing of the global anomaly requires that [32]

G2 : 1 − 4
∑

R

nR dR = 0 mod 3, (2.10)

where nR is the number of (half)hypermultiplets transforming in the representation R of G2,

and dR is defined by trRF4 = dR(tr F2)2. Since n14 = 1
2 × 56 and d14 = 5

2 for model (B), the global

anomaly is absent [11].

3. Supersymmetry, bosonic field equations and dyonic strings
In order to highlight the issues that arise in the context of finding dyonic string solutions of the

U(1)R gauged theory, here we shall review the bosonic field equations, with the assumptions that

4There exists the identity (tr F2)/λ = (Tr F2)/(2h∨), where Tr is the trace in the adjoint representation and h∨ is the dual Coexeter
number. λ is in fact the index of the fundamental representation of group G.
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the hyperscalar fields are set to zero in these equations. We start by introducing a metric Gαβ , and

SO(1, 1) invariant tensor Ωαβ in terms of Ω-orthogonal vectors ea and jα as follows:

Gαβ = eαeβ + jα jβ , Ωαβ = −eαeβ + jα jβ ,

eα = 1√
2

(
e−ϕ , −eϕ

)
, jα = 1√

2

(
e−ϕ , eϕ

)
. (3.1)

They satisfy e · e = −1, j · j = 1 and e · j = 0 where the inner product is with respect to Ωαβ =
(Ωαβ )−1. It is also convenient to introduce the notation

vα
L := 1

2
aα and vα

i :=
(

2bα
1

λ1
,

2bα
2

λ2
, 2cα

)
, (3.2)

where i = 1, 2, 3 labels the group G1 × G2 × U(1)R. Then, (2.5) can be written as

Yα = 1

16π2

(
vα

L tr R2 + vα
i tr F2

i

)
, (3.3)

where vα
3 tr F2 ≡ vαF2. The constant vectors vα

i can be directly read of from (2.7), (2.8) and (2.9).

Since dYα = 0, one can locally define the associated Chern–Simons form through Yα = dΓ α . The

3-form field strength is then defined as5

Hα = dBα + α′ Γ α , with dΓ α = 16π2Yα , (3.4)

where α′ is the ‘inverse string tension’.

If we set vα
L = 0, and either v1

i = 0 or v2
i = 0, then a classically locally supersymmetric and

gauge-invariant action exists for arbitrary v1
i or v2

i [33]. If we switch on both vα
i simultaneously,

local supersymmetric field equations of motion have also been constructed, but anomalies in

gauge transformation and local supersymmetry arise [34,35]. This is to be expected, since Green–

Schwarz counterterms required for the cancellation of one-loop anomalies are present, and

therefore the classical and one-loop quantum effects are mixed. The Green–Schwartz counterterm

also requires that the parameters v1
L and v2

L are turned on, and fixes v1
i , and v2

i in terms of a single

dimensionful parameter α′. Furthermore, supersymmetry is now broken already at order α′, since

R and F have the same dimension, and arise in the field equations already at order α′.
For vα

L = 0, the bosonic field equations with hypermultiplet scalars set to zero, and in Einstein

frame, take the form [34,36,37]



(

GαβHβ
)

= Ωαβ Hβ , (3.5)

α′ D (
 e · vi Fi) = 2
√

2α′ vα
i Gαβ 
 Hβ ∧ Fi, (3.6)

Rµν = ∂µϕ∂νϕ + Gαβ (Hα · Hβ )µν + 2
√

2 α′ e · vi tr

(
(F2

i )µν − 1

8
gµνF2

i

)
+ 1

8
√

2

1

α′ (e · v)−1 gµν

(3.7)

and ∇µ∂µϕ = − 1√
2

α′ j · vi tr F2
i − 2

3
eα jβ Hα · Hβ + 1

4
√

2

1

α′
j · v

(e · v)2
, (3.8)

with self explanatory meaning of the notations Hα · Hβ , (F2)µν and F2. It follows from (3.5) and

(3.4) that

d 

(

GαβHβ
)

= 16π2α′ Ωαβ Yβ and dHα = 16π2α′ Yα . (3.9)

Thus ΩαβYβ and Yα are the electric and magnetic sources, respectively. Note also that


e · H = −e · H belongs to the supergravity multiplet, and 
j · H = j · H is in the single tensor

multiplet. We also see from (3.6) that there are terms proportional to α′2 that break the gauge

5We use the notation and conventions of [25] to large extent. One particular exception is that we take e · H to belong to the
supergravity multiplet, rather than the tensor multiplet. This is in accordance with the conventions of [34]. We also redefine
α′ by a factor of 16π2 for convenience in notation. We thank Hao–Yuan Chang for pointing out certain errors in such factors
in an earlier version of this paper.
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invariance. Therefore, these equations should be treated as order α′ equations, and thus letting

H → dB in (3.6), and H · H → dB · (dB + 2α′Γ ) in (3.7) and (3.8).

Turning on vα
L breaks supersymmetry even at order α′. This phenomenon has been well

studied in particular in 10D [1] and it is known that restoring supersymmetry at order α′

requires the addition of a Riemann curvature-squared term into the action roughly by letting,

schematically, α′F2 → α′(R2 + F2). In the ungauged 6D theory, similar phenomenon occurs, and

such terms have been considered in [38] in the context of heterotic–heterotic string duality, and in

[39], in the context of constructing Killing spinors.

Considering the gauged supergravities, while a Noether procedure has not been carried out

completely as yet for the full system at order α′, taking into account [40], we expect the following

result in the absence of hypermultiplet6

S =
∫ {

1

4
R(ω) 
 1 − 1

4

 dϕ ∧ dϕ − 1

2
Gαβ 
 (dBα) ∧ (dBβ + 2α′ Γ β ) + 16π2α′ ΩαβBα ∧ Yβ

− 1√
2

α′ e ·
(
vL tr 
 R(ω) ∧ R(ω) + vi tr 
 Fi ∧ Fi

)
− 1

8
√

2α′ (e · v)−1 
 1 + · · ·
}

, (3.10)

where the ellipses are yet to be determined H = dB and dilaton-dependent terms.7 A similar action

for the ungauged theory in string frame, albeit in a non-manifestly SO(1, 1) invariant form, was

given in [38]. In obtaining the field equations from this action, the duality equation (3.5) is to be

imposed after the variation of the action. With this in mind, it can be checked that this action

gives the equations of motion (3.6)–(3.9), if vα
L is set to zero. The inclusion of vα

L effects will

clearly introduce higher derivative terms in the Einstein’s and dilaton field equations, though the

consequences for the other field equations remain to be investigated, since the Noether procedure

for the full system at order α′ has not been established as yet. As for the term
∫

ΩαβBα ∧ Yβ in

the above action, naturally it plays a crucial role in the discussion of Dirac quantization of dyonic

string charges, as we shall see later.

Turning to the action (3.10), the requirement that the gauge kinetic terms are ghost-free

imposes the constraints e · vi > 0 [37,41,42]. These kinetic terms for models A, B and C are given by

A : −α′

6

(
e−ϕ − 3eϕ

)
tr 
 F6 ∧ F6

− α′

4

(
e−ϕ + 3eϕ

)
tr 
 F7 ∧ F7 − 2α′ (e−ϕ − 9eϕ

)

 F1 ∧ F1,

B : −3α′

2

(
e−ϕ − 5eϕ

)
tr 
 F2 ∧ F2

− α′

12

(
3e−ϕ − eϕ

)
tr 
 F7 ∧ F7 − 2α′

3

(
3e−ϕ + 19eϕ

)

 F1 ∧ F1

and C : −α′

3

(
e−ϕ + 5eϕ

)
tr 
 F4 ∧ F4

− α′

2

(
2e−ϕ − eϕ

)
tr 
 F9 ∧ F9 − α′ (2e−ϕ − 19eϕ

)

 F1 ∧ F1. (3.11)

It is easy to check that the positivity condition for these kinetic terms are satisfied for

(A) : e−ϕ > 3, (B) : e−2ϕ > 5 and (C) : e−2ϕ > 19
2 . (3.12)

The perturbative results are reliable for sufficiently negative values of ϕ, while the lower bounds

on e−ϕ stated above correspond to the strong Yang–Mills coupling regime. It is also clear that

there are a number of values for ϕ where some of the Yang–Mills couplings vanish. As discussed

in detail in [38], these are points where phase transitions are expected to occur.

6In path integral considerations, the convenient normalization of the topological term is 1
2 α′Ωαβ Bα ∧ Yβ , which can be

achieved by suitable rescalings of fields and parameters [25].

7In the absence of U(1)R gauging and if vα
2 = 0, then such terms would be accounted for by shifting the spin connection

occurring in the Riem2 term by torsion as ω → ω − 1
2 H.
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The last terms in Einstein and dilaton field equations above involve a potential function,

and arise as a consequence of the U(1)R gauging, and that they are absent in the ungauged

6D models, even if the gauge groups include ‘external’ U(1) factors. These terms clearly have

significant impact on the structure of the vacuum as well as the non-perturbative exact solutions.

For example, it is easy to check that these terms forbid Minkowski6 and (A)dS vacuum solutions.

As for dyonic string solutions of U(1)R gauge theory, to our best knowledge, few solutions

exist to equations in which only the classically exactly supersymmetric supergravity equations are

solved. The action with vα
L = 0, v2

i = 0 [33] has been used to obtain the dyonic solutions mentioned

above. Here, B = B1 which represents the combination of the 2-forms residing in supergravity and

single tensor multiplet, and therefore it is free from (anti)self duality condition. The action which

can be read off from (3.10) by taking vα
L = 0, v2

i = 0, B2 = 0 and setting B1 ≡ B, v1 ≡ v, takes the

form8

S =
∫ (

1

4
R 
 1 − 1

4

 dϕ ∧ dϕ − 1

2
e−2ϕ 
 G ∧ G − 1

2
α′e−ϕvi tr 
 Fi ∧ Fi − 1

8α′v
eϕ 
 1

)
, (3.13)

where G = dB1 + α′Γ 1|vL=0. The solution found for the resulting equations has only the following

non-vanishing fields [20], and it takes the form

ds2 = c2dxµdxµ + a2dr2 + b2

(
σ 2

1 + σ 2
2 + 4gP

k
σ 2

3

)
,

G = Pσ1 ∧ σ2 ∧ σ3 − u(r) d2x ∧ dr

and F = k σ1 ∧ σ2, e2ϕ =
(

Q0 + Q

r2

) (
P0 + P

r2

)−1

, (3.14)

where a, b, c, u are functions of r which can be found in [20], k, P0, Q0, P, Q are constants, g is the

U(1)R coupling constant, σi are left-invariant one-forms on the 3-sphere satisfying dσi = − 1
2 εijkσj ∧

σk. The solution also requires that9

4gP = k(1 − 2kg), (3.15)

which is a condition not arising in the ungauged 6D theory, and it has 1/4 of the 6D

supersymmetry. It is asymptotic to a cone over (Minkowski)2× squashed S3, as opposed to the

expected maximally symmetric known vacuum solution given by Minkowski4 × S2 [12], and the

dilaton blows up asymptotically [20]. The near horizon limit of the gauged dyonic string is given

by AdS3× squashed S3 with fraction of supersymmetry increased from 1/4 to 1/2. A dyonic

string solution of the U(1)R gauged theory in which an additional U(1) gauge field residing in E7 is

activated was found in [21], under the assumptions that are similar to those of [20] outlined above.

In particular, 1/4 supersymmetry also arises and again the dilaton blows up asymptotically.

4. Constraints on anomaly coefficients
The factorization of the anomaly polynomial has been shown to imply that [23]

a · a, a · br and br · bs ∈ Z for all r, s, (4.1)

where the products are in R
1,1 with metric Ωαβ . The condition above can be checked explicitly for

all three models studied here. The fact that the anomaly coefficients belong to an integral lattice is

not sufficient for the consistency of the theory. To elaborate further on this point, it is convenient

8We have let ϕ → −ϕ/
√

2 in the results of [33].

9Note that upon letting Aµ → Aµ/g, this condition becomes 4P = k(1 − k(α′)−1).
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to first re-express the form Yα appearing in the Bianchi identity dHα = in terms of characteristic

forms, applied to the models considered here taking the form [25,27]

Yα = 1
4 aαp1 − bα

r cr
2 + 1

2 cα (c1)2, (4.2)

where p1, c2 and c1 are the Chern–Weyl representatives of the indicated cohomology classes

defined as

p1 = 1

8π2
tr R2, cr

2 = − 1

8π2

(
1

λr
trr F2

)
and c1 = F1

2π
. (4.3)

It is then argued in [25] that the string charge defined by the integral
∫
Σ4

Y, where Σ4 is any

integral 4-cycle, must be cancelled by background self-dual strings. Consequently, it is argued

that this charge must yield an element of the unimodular string charge lattice ΛS, and this ‘string

quantization condition’ is explicitly stated as10

∫

Σ4

Y ∈ ΛS. (4.4)

The fact that ΛS is a unimodular, equivalently self-dual, lattice can be seen from basic arguments

that can be found, for example, in [24,25].

The completeness hypothesis was taken a step further by Monnier et al. [25] who assumed that

a consistent supergravity theory may be put on an arbitrary spin manifold and that any smooth

gauge field configurations should be allowed in the supergravity ‘path integral’. The strategy

employed in [25] is then to assume the generalized completeness hypothesis and obtain strong

constraints by evaluating (4.4) on suitable chosen space–times M and gauge bundles. In particular,

taking M = CP3, and evaluating (4.4) along a suitable 4-cycle, they derive the condition (applied

to the groups considered here) [25]

a, br,
1
2 c ∈ ΛS, ΛS unimodular. (4.5)

A special case of this condition was derived earlier by Seiberg & Taylor [24] in the form

br ∈ ΛS, ΛS unimodular. (4.6)

by demanding consistency of the theory by means of Dirac quantization of charges, once it is

compactified on various spaces, such as T2, T4 and CP2. It was also argued that the presence or

absence of the Abelian factors in the gauge group does not effect their results, which depends

only on the non-Abelian part of the gauge group.

In [25], it has also been shown that the constraint (4.5) is equivalent to the statement [25]

a ∈ ΛS, 1
2 b ∈ H4(BG̃; Z) × ΛS, ΛS unimodular, (4.7)

where BG̃ is the classifying space of the universal cover of the semisimple part of the gauge

group G. The bilinear form b in our case, where G =
⊗

r Gr × U(1)R with r = 1, 2, can be written as

b =
⊕

r

brKr ⊕ c. (4.8)

Here, Kr is the canonically normalized Killing form,11 with respect to which, the length squared

of the longest simple root is 2 (for U(1), the root length squared is 1). It has also been shown that

this is equivalent to the statement that b is an even ΛS-valued bilinear form when restricted to the

10The anomaly coefficients are measured in units of α′ which we set equal to one.

11Here, we use standard math convention in which Kr is unit matrix of dimension spanning the rank of the underlying Lie
algebra, upon its restriction to the Cartan subalgebra.
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coroot lattice [25]. Specifically, (4.7) implies for any x, y inside the coroot lattice,

1
2 b(x, x) ∈ ΛS, and b(x, y) ∈ ΛS for x �= y. (4.9)

Taking into account the global structure of the gauge group, the condition (4.7) has been

strengthen to [25]

a ∈ ΛS, 1
2 b ∈ H4(BG; Z) × ΛS, ΛS unimodular. (4.10)

which leads to conditions similar to (4.9) with x, y now belonging to the cocharacter lattice. For a

detailed description of various lattices of G, see [43]. We only emphasize the following key aspects

here. There is a general relation among the coroot lattice, cocharacter lattice and the coweight

lattice for a given semisimple Lie algebra g [43,44]

Λcoroot ⊆ Λcocharacter ⊆ Λcoweight. (4.11)

These inclusions are determined by the global structure of the group G. Specifically, [43,44]

Λcocharacter

Λcoroot
= π1(G) and

Λcoweight

Λcocharacter
= Z(G), (4.12)

where π1(G) is the first homotopy group of G and Z(G) denotes the centre of G. For connected Lie

groups, H4(BG; Z) is torsion free. For disconnected groups, there could potentially be a torsion

class whose coefficient should be quantized in terms of the string charge lattice [26].

As mentioned in the introduction, Monnier and Moore extended the above considerations

and arrived at a stronger criterion by seeking the conditions under which the Green–Schwartz

counterterm is well defined. This leads to the requirement for the existence of a topologically

trivial field theory in 7D, referred to as Wu–Chern–Simons theory, and a set of conditions for

the 6D theory to be free from all anomalies. Applied to the cases under consideration, where the

gauge groups are connected, the proposition states that given string charge lattice ΛS, and the

anomaly polynomial A8, and 4-form Y as defined in (4.2), assume that [26]

1. A8 = 1
2 Y ∧ Y; (4.13)

2. ΛS is unimodular; (4.14)

3. b ∈ 2H4(BG; ΛS); (4.15)

4. a ∈ ΛS is a characteristic element; (4.16)

5. Ω
Spin
7 (BG) = 0, (4.17)

where Ω
Spin
7 (BG) = 0 is the spin cobordism group associated with Lie group G. Then all anomalies

of the 6D theory, local and global, cancel. The ways in which this proposition extends (4.7)

are as follows. Firstly, the derivation of the third condition does not rely on the generalized

completeness hypothesis. Furthermore, the fourth condition states not only that a ∈ ΛS but it is

also a characteristic element. Finally, the fifth condition clearly goes beyond what is required

in (4.7).

5. Application of the consistency conditions
Monnier and Moore also tacitly assumes that string defects are included whenever they are

necessary to satisfy the tadpole condition, and that their worldsheet anomalies cancel the

boundary contributions to the anomaly of the supergravity theory through the anomaly inflow

mechanism, as has been stated in [26]. Very recently, [30] proposed that using the gravitational and

gauge anomaly inflow on the probe string, one can compute the worldsheet gravitational central

charge and the gauge group’s current algebra level depending on the string charge and the bulk

anomaly coefficients. (For earlier work in this context, see [28,29].) The requirement that the left-

moving central charge should be large enough to allow the unitary representations of the current

algebra for a given level imposes a constraint on the allowed gauge group content. However, the
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fact that the near horizon limit of the gauged dyonic string is given by 1/2 BPS AdS3 × squashed

S3 suggests that the IR CFT of the probe string coupled to the gauged supergravity should be

a two-dimensional N = 2 CFT, in contrast to [30] where the worldsheet IR CFT is described by

a (0,4) CFT. Thus one cannot directly apply the result of [30] here before a careful study on the

low energy dynamics of the probe string is carried out. Altogether, whether the tacit assumptions

made as prelude to the Monnier–Moore proposition are satisfied by the U(1)R gauged 6D (1, 0)

supergravities is not entirely clear, and remain to be investigated. Nonetheless, we shall at least

assume that suitably behaved dyonic string solutions exist and proceed below with the analysis

of the consequences of the above proposition for these models.

To begin with, condition 1 is obviously satisfied by models A, B and C. Next, we look at

condition 5. To this end, we note that12

Ω
Spin
7 (BG2) = 0, Ω

Spin
7 (BF4) = 0, Ω

Spin
7 (BE7) = 0, Ω

Spin
7 (BSp(9)) = 0,

Ω
Spin
7

(
BE6

Z3

)
= D3, (5.1)

where D3 is yet to be determined group of exponent 6. Since it is not known yet whether D3 is

trivial or not, we shall examine the other conditions required by the proposition in the case of

model A which has the symmetry (E6/Z3) × E7 × U(1)R. As for models B and C, given the results

(5.1), they pass the fifth condition of the proposition.

For the convenience of further discussion, we introduce the notation

M(x, y) =
(

x · x x · y

y · x y · y

)
, (5.2)

where x, y are R
1,1 vectors and the product is defined with respect to Ωαβ . The fact that string

charge lattice ΛS is unimodular implies that −detM(x, y) must be a square of a positive integer

for any x, y ∈ ΛS.

In using the relations (4.11), it is also useful to note that as far as the non-Abelian groups

appearing in models A, B and C are concerned, π1(G) =1 and Z(G) =1 for all, except that

π1(E6/Z3) = Z3, Z(E6) = Z3, Z(E7) = Z2 and Z(Sp(9)) = Z2. (5.3)

In the following, we will test constraints stated in the proposition for models A, B and C, though,

we will also see if only the weaker constraints (4.5) and/or (4.10) are satisfied in some cases.

(a) The (E6/Z3) × E7 × U(1)R invariant model

We first compute −detM(x, y) for x, y being any two distinct R
1,1 vectors among a, b6, b7, 1

2 c. The

result is given by

− detM(a, b6) = 82, −detM(a, b7) = 122, −detM(a, 1
2 c) = 202,

− detM(b6, b7) = 182, −detM(b6, 1
2 c) = 62, −detM(b7, 1

2 c) = 362. (5.4)

therefore the anomaly coefficients in this model are compatible with the second condition of the

proposition, namely with (4.14), that the anomaly coefficients lie on a unimodular string charge

lattice. To verify that the lattice is indeed unimodular, we proceed by choosing as a basis of a

unimodular charge lattice

e1 = (1, 0) and e2 = (0, 1), (5.5)

and observe that the anomaly coefficients can be recast as linear combination of e1, e2 with integer

coefficients. Note that this lattice is even.

Next, we inspect the anomaly coefficients against the stronger constraint (4.10). In order to

do so, we need to evaluate the bilinear form b on the cocharacter lattice of E6 × E7 × U(1)R.

12We are very grateful to I. García–Etxebarria and M. Montero, for explaining to us their results for Ω
Spin
7 (BG) for G2

(unpublished), F4, E6 and E7, and E6/Z3 (unpublished).
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In the model with gauged (E6/Z3) × E7 × U(1)R symmetry, E6 appears only in the adjoint

representation. Therefore, a vector v on the E6 cocharacter lattice should satisfy

e2π ivihi =178×78, (5.6)

where hi, i = 1, . . . 6 are generators of Cartan subalgebra (in the Cartan–Weyl basis) of E6 in the

adjoint representation. Clearly, such v lies in the coweight lattice of E6 spanned by w̌m that obey∑
i(w̌m)i(rn)i = δmn, for simple roots labelled by rn. Using the definition of coweights w̌m, we can

evaluate the bilinear form K6 on the coweight lattice and obtain

K6(w̌r, w̌s) = 1

3

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4 5 6 4 2 3

5 10 12 8 4 6

6 12 18 12 6 9

4 8 12 10 5 6

2 4 6 5 4 3

3 6 9 6 3 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5.7)

which is equal to the inverse of the E6 Cartan matrix. This happens to be so because Lie algebra

of E6 is simply laced and thus the length squared of every simple root equals 2, implying the

coweight vector coincides with the fundamental weight vector. From the expression above, we

single out a particular element K6(w̌1, w̌1) whose product with b6 leads to the following vector

on R
1,1

b̃6 = 1
2 b6K6(w̌1, w̌1) = 2

3 b6. (5.8)

This gives −detM(a, b̃6) = ( 16
3 )2, which means that b̃6 and a cannot belong to the same unimodular

lattice. Thus, the third condition of the proposition, namely (4.15), is not satisfied.

(b) The E7 × G2 × U(1)R invariant model

Similar to the previous case, we first investigate whether the anomaly coefficients can be

embedded in a unimodular lattice, by computing −detM(x, y) for x, y being any two distinct R
1,1

vectors among a, b2, b7, 1
2 c. It turns out that

− detM(a, b2) = 242, −detM(a, b7) = 42, −detM(a, 1
2 c) = ( 44

3 )2,

− detM(b2, b7) = 422, −detM(b2, 1
2 c) = 342, −detM(b7, 1

2 c) = 202. (5.9)

As −detM(a, 1
2 c) is not given by a positive integer squared, the anomaly coefficients a, b2, b7, 1

2 c

cannot all belong to a unimodular lattice, thus violating the second condition of the proposition,

namely (4.14).

(c) The F4 × Sp(9) × U(1)R invariant model

For this model, we obtain −detM(x, y) for x, y being any two distinct R
1,1 vectors among

a, b4, b9, 1
2 c as

− detM(a, b4) = 162, −detM(a, b9) = 32, −detM(a, 1
2 c) = 212,

− detM(b4, b9) = 112, −detM(b4, 1
2 c) = 292, −detM(b9, 1

2 c) = 92, (5.10)

which shows that the necessary condition for the lattice ΛS being unimodular is satisfied. To

establish that it is indeed unimodular, we proceed as follows. We choose the following basis for a

unimodular charge lattice

e1 = (2, 0) and e2 = (1, 1
2 ), (5.11)

Next, we observe that the anomaly coefficients in this model can be expressed as linear

combinations of e1, e2 with integer coefficients. This shows that condition (4.5) is indeed satisfied.

Note also that the lattice here is odd, since e2 · e2 = 1. Furthermore, in this model, the group

F4 appears only in the adjoint representation, whereas the hypermultiplet carries also the
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fundamental representation of Sp(9). One should also note that since the hyperfermions are singlet

under U(1)R, it is not possible to form an identity by combining a centre element of Sp(9) with an

element of U(1)R.13 Since Z(F4) and π1(F4) are all trivial, the coroot, cocharacter and coweight

lattices are equivalent (4.12), the third condition of the proposition (4.15) reduces to the condition

(4.5), which we have shown above to be satisfied.

We now move on to discuss the stronger constraint imposed on Sp(9). We recall that Z(Sp(9)) =
Z2 and π1(Sp(9)) =1. Thus the cocharacter lattice is different from coweight lattice but coincides

with the coroot lattice. Indeed the transformation matrix from the standard coroot basis to the

standard cocharacter basis is given by the unimodular matrix

T9 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2
1 2 3 3 3 3 3 3 3
1 2 3 4 4 4 4 4 4
1 2 3 4 5 5 5 5 5
1 2 3 4 5 6 6 6 6
1 2 3 4 5 6 7 7 7
1 2 3 4 5 6 7 8 8
1 2 3 4 5 6 7 8 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.12)

Thus again, the third condition of the proposition (4.15) becomes equivalent to the condition (4.5)

already shown to be satisfied by the explicit construction of the string charge lattice basis given

in (5.11). Using (5.11) as the basis, an element on the charge lattice can be parameterized as

x = (2n + m, 1
2 m), m, n ∈ Z. (5.13)

Thus one can easily show that

a · x = x · x mod 2. (5.14)

Given also that Ω
spin
7 (BG) = 0 for G = F4 × Sp(9) × U(1)R,14 we see that all the conditions of the

proposition, namely (4.13)–(4.17) are satisfied, and therefore this model is free from all anomalies.

6. Conclusion
We have highlighted the significance of R-symmetry gauging in 6D,N = (1, 0) supergravity,

and focused on three such models that stand out in their accommodation of Green–Schwarz

mechanism for the cancellation of all local anomalies in a non-trivial way. We have examined

constraints imposed on the anomaly coefficients that are associated with the factorized anomaly

polynomials in these models, as proposed in their strongest form by Monnier & Moore [26].

Adopting the assumptions made by these authors, we have found that only model C, based

on the gauge group F4 × Sp(9) × U(1)R, satisfies all the conditions required for freedom from

all anomalies, local and global. We have also seen that model A based on the gauge group

(E6/Z3) × E7 × U(1)R does have a unimodular lattice, thus satisfying the weaker version of the

consistency conditions on the anomaly coefficients [24], but it fails the stronger conditions of

[25,26].

A word of caution is appropriate in applying the Monnier–Moore criteria to the R-symmetry

gauged 6D supergravities for the following reason. It is assumed that dyonic strings with proper

behaviour that give well defined string charge lattice exist. On the other hand, the existence of

dyonic string excitations in these models are yet to be firmly established. The task is primarily

complicated by the fact that the U(1)R gauging gives rise to a potential function which effects in

a significant way the solution space, and in particular the asymptotic behaviour. The potential

comes with an inverse power of α′, and certain dyonic string solutions in the presence of a

13This is different from the U(2) example studied in [25], where element of the cocharacter lattice is formed by combining a
centre element of SU(2) with an element of the remaining U(1).

14See [45] for Ω
spin
7 (BF4), where co-bordism groups have also been used in constraining varieties of models of physical interest.

In the latter context, see also [46,47].
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potential, and in which the anomaly coefficients v2
α (arising in the source term in the 2-form

field equation) are set to zero, [20,21] require a relation among the parameters not seen in the

usual dyonic string solutions of the ungauged 6D supergravities. Search and in depth study

of the dyonic strings solutions of R-symmetry gauged 6D (1, 0) supergravities is needed before

a robust conclusion can be reached with regard to their global anomalies. In particular, the

consequences for the existence of a worldsheet theory, and the attendant inflaw anomalies

require scrutiny, as they may impose yet further constraints on the consistency of the anomaly

coefficients, as has been found to be the case for certain ungauged 6D supergravities with minimal

supersymmetry [30].

Notwithstanding the caveat mentioned, we conclude by noting that it is still remarkable

that the R-symmetry gauged model with F4 × Sp(9) × U(1)R satisfies all the constraints of the

Monnier–Moore proposition, which are most stringent ones known as yet. As such, it certainly

deserves a closer look, to address further questions such as their place in the arena of swampland

conjectures, even though, being conjectures, they are not as firm as the requirement of anomaly

freedom so far. It would also be interesting to explore the dyonic string solutions and the charges

they are allowed to carry, which can serve as a consistency check to the proposed charge lattice

(5.11) implying that the minimal charge carried by a purely electric string (labelled by e1 (5.11))

is twice as big as that of a purely magnetic string (labelled by 2e2 − e1 (5.11)). A study of α′

corrections due to supersymmetry, likely combined with other considerations such as unitarity

and causality, may shed some light on the UV completion of the theory, if such a completion

exists at all. Finally, it would be interesting to explore the application of the model to cosmology,

as it may yield significantly different results compared to those of standard string cosmology, in

view of the positive potential afforded by the R-symmetry gauging.
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Appendix A. The anomaly polynomials
The fields that contribute to gravitational, gauge and mixed anomalies in nT = 1, N = (1, 0)

supergravity with gauge group G = G1 × G2 × U(1)R in 6D are as follows:

ψµA+, χA
− , λIA

+ and ψaa′
− , (A 1)

with chiralities denoted by ±. The fermions are symplectic Majorana Weyl, the index A = 1, 2

labels the SO(2)R ⊂ Sp(1)R fundamental, I labels the adjoint representation of the group G, and

(aa′) label the representation content of the hyperfermions under G1 × G2.

(a) The (E6/Z3) × E7 × U(1)R model

From [10], we have

Y1 = 1

16π2

(
tr R2 + 1

3
tr F2

6 + 1

2
tr F2

7 + 4F2
1

)

and Y2 = − 1

16π2

(
tr R2 − tr F2

6 + 3

2
tr F2

7 − 36F2
1

)
.

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(A 2)
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The computation of the anomaly polynomial can be found in [10] where the details of the

computation are spelled out.15 The generators of the gauge group are taken to be Hermitian,

and the strength of the U(1)R coupling constant to be unity, i.e. Dµ = ∂µ − iAµ. It should be noted

that the normalizations in Yα are taken differently in various papers. However, following [25], we

take them to be 1/(16π2), motivated by the fact that this is the appropriate normalization in the

integrals
∫
Σ4

Y discussed in §4, in which these integrals are related to Chern–Weyl classes. The

freedom to do so stems from the fact that the anomaly coefficients are fixed in terms of α′ which

we can normalize appropriately, and set equal to one, after having done so.

(b) The G2 × E7 × U(1)R model

From [11], we have

Y1 = 1

16π2

(
tr R2 + 3tr F2

2 + 1

2
tr F2

7 + 4F2
1

)

and Y2 = 1

16π2

(
tr R2 + 15tr F2

2 + 1

6
tr F2

7 − 76

3
F2

1

)
.

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(A 3)

The details of the computations for this anomaly polynomial are provided in [11], where the

generators of the gauge group are taken to be anti-Hermitian while here we are employing

Hermitian generators. The U(1)R covariant derivative Dµ = ∂µ − iAµ is assumed.

(c) The F4 × Sp(9) × U(1)R model

From the data provided in [7], we find

Y1 = 1

16π2

(
tr R2 + 2

3
tr F2

4 + 2 tr F2
9 + 4 F2

1

)

and Y2 = − 1

16π2

(
tr R2 + 10

3
tr F2

4 − tr F2
9 − 38 F2

1

)
.

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

(A 4)

As hyperinos transform as (52, 18)0 under F4 × Sp(9), and are neutral under U(1)R, the

contributions to the gravitation, gauge and mixed anomalies to the anomaly polynomial are

P(ψµ) = 245

360
tr R4 − 43

288

(
tr R2

)2
− 19

6
F2

1 tr R2 + 10

3
F4

1, (A 5)

P(χ ) = −
(

1

360
tr R4 + 1

288

(
tr R2

)2
)

− 1

6
F2

1 tr R2 − 2

3
F4

1, (A 6)

P(ψaa′
) = −1

2
(52 × 18)

(
1

360
tr R4 + 1

288

(
tr R2

)2
)

− 1

2
× 1

6

(
18 Tr F2

4 + 52 tr F2
9

)
tr R2

− 1

2
× 2

3

(
18 Tr F4

4 + 52 tr F4
9

)
− 1

2
× 4 Tr F2

4tr F2
9 (A 7)

and P(λ) = (52 + 171 + 1)

(
1

360
tr R4 + 1

288

(
tr R2

)2
+ 1

6
F2

1 tr R2 + 2

3
F4

1

)

+ 1

6
Tr F2

4 tr R2 + 1

6
Tr F2

9 tr R2 + 2

3

(
Tr F4

4 + Tr F4
9

)
+ 4 F2

1 Tr F2
4 + 4 F2

1 Tr F2
9, (A 8)

where Tr and tr denote the traces in the adjoint and fundamental representations, respectively.

Here, the group generators are taken to be Hermitian, and for U(1) we have Dµ = ∂µ − iAµ, and

15See also [21], where few typos were corrected in the expressions for the individual contributions to the anomaly polynomial,
without any effect on the total and, of course, its factorization.
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F4, F9, F1 are associated with F4 × Sp(9) × U(1)R. Using the relations

Tr F2
4 = 3 tr F2

4, Tr F4
4 = 5

12

(
tr F2

4

)2
(A 9)

and

Tr F2
9 = 20 tr F2

9, Tr F4
9 = 26 tr F4

9 + 3
(

tr F2
9

)2
, (A 10)

the sum I8 becomes

I8 = −
(

tr R2
)2

+ 34F2
1 tr R2 + 152 F4

1 − 4 tr F2
4 tr R2 − tr F2

9 tr R2

− 20

9

(
tr F2

4

)2
+ 2

(
tr F2

9

)2
− 6 tr F2

4 tr F2
9 + 12 F2

1 tr F2
4 + 80 F2

1 tr F2
9. (A 11)

Arranging this data into a 4 × 4 matrix, it has rank 2, and it factorizes as in (A 4).
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