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R-symmetry gauged 6D (1,0) supergravities free from
all local anomalies, with gauge groups G x Gr where
GR is the R-symmetry group and G is semisimple
with rank greater than one, and which have no
hypermultiplet singlets, are extremely rare. There
are three such models known in which the gauge
symmetry group is Gi x Gy x U(1)g, where the first
two factors are (Eg/Z3) x E7, G2 x E7 and F4 x Sp(9).
These are models with single tensor multiplet, and
hyperfermions in the (1,912), (14,56) and (52,18)
dimensional representations of G1 x Gy, respectively.
So far, it is not known if these models follow
from string theory. We highlight key properties of
these theories, and examine constraints which arise
from the consistency of the quantization of anomaly
coefficients formulated in their strongest form by
Monnier and Moore. Assuming that the gauged
models accommodate dyonic string excitations, we
find that these constraints are satisfied only by the
model with the F4 x Sp(9) x U(1)r symmetry. We also
discuss aspects of dyonic strings and potential caveats
they may pose in applying the stated consistency
conditions to the R-symmetry gauged models.

1. Introduction

The work described herein is on a subject in which
Michael has made magnificent contributions. Let us
also remember that his advocacy of supermembranes
and eleven dimensions (11D) prior to their wide
acceptance, is in the annals of physics. He has
related amusing anecdotes about the era prior to this
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acceptance. One of us (ES) has this one to add: In an Aspen Conference in 1987, in a conversation
on supermembranes and 11D, a very distinguished colleague said that ‘in Cambridge meeting
there were 5 h of talk on the subject, this must be a Thatcherian plot to destroy the British physics’!
Asked about 11D supergravity, he replied , ‘it is a curiosity’!

In the spirit of exploring some other ‘curiosities’, here we aim at drawing attention to a class of
supergravities in six dimensions (6D) that are free from all local anomalies in a rather remarkable
fashion. To begin with, let us recall that the requirement of anomaly freedom has considerably
constraining consequences for supergravity theories. The gauge groups and matter content
are restricted, and on-shell supersymmetry, in the presence of the Green-Schwarz anomaly
counterterm, requires the introduction of an infinite tower of higher derivative couplings. While
this is not expected to fix uniquely an effective theory of quantum supergravity [1-4], it may
nonetheless provide a framework for a ‘o’-deformation” program in which extra consistency
requirements, including those arising from global anomalies, may restrict further the effective
theory. If consistent such theories exist, in principle, they may offer viable spots in a region
outside the string lamp post in a search for UV completeness. In fact, even in 10D it would be
instructive to determine if and how the o’ deformation approach runs into problems unless it
is uniquely determined by string theory. If all roads lead to string theory that too would be a
valuable outcome in this program, providing more evidence for what is referred to as the ‘string
lamp post principle’ [5,6].

In this note, as mentioned above, we draw attention to a class of 6D supergravities which are
remarkably anomaly free, and yet it is not known if they can be embedded into string theory.
These are U(1)r gauged supergravities with specific gauge groups, and from the string theory
perspective unusual hypermatter content. The qualification ‘remarkable’ is due to the fact that
R-symmetry gauged 6D (1, 0) supergravities free from all local anomalies, and with gauge groups
G x Ggr, where Gg is the R-symmetry group and G is semisimple with rank greater than one,
and without any hypermultiplet singlets, are extremely rare; see for example [7]. By contrast,
there is a huge number of anomaly free ungauged 6D (1,0) supergravi’cies1 one can construct
directly, and a very large class that can be embedded, indeed directly be obtained from, string
theory; see for example [8]. One can also find several R-symmetry gauged models in which
there are several hypermultiplet singlets, and gauge group G that involves a number of U(1)
factors [7,9].

If we insist on semisimple gauge groups and exclude hyperfermion singlets, then there are
only three anomaly free gauged 6D (1,0) supergravities known so far. They have the gauge
symmetry G1 x Gy x U(1)r where the last factor is the gauged R-symmetry group, and the
first two factors are (Eg/Z3) x E7 [10], G2 x E7 [11] and F4 x Sp(9) [7]. These are models with
a single tensor multiplet, and hyperfermions in the (1,912), (14,56) and (52,18) dimensional
representations of G; x Gy, respectively. The embedding of these theories in string theory is not
known.2 In particular, the (Eg/Z3) x E7 x U(1)r model contains a representation of E7 beyond the
fundamental and adjoint what normally one encounters in string theory constructions. Neither
R-symmetry gauging, nor such representations seem to arise in string/F theory constructions.’
Another landmark of these models is that they come with a positive definite potential
proportional to the exponential function of the dilaton, even in the absence of the hypermultiplets.
This has significant consequences. For example, these models do not admit maximally symmetric
6D space-time vacua, but rather Minkowskig X 52 with a monopole configuration on $2 [12].

IThere is a crucial difference between gauging of R-symmetry compared to gauging of non-R-symmetries. Here, we shall
reserve the word ‘gauged’ to mean ‘R-symmetry gauged’.

2If one considers strictly the U(1)r gauged theory with nr =1 and no other gauge sector and hypermatter [12], it has been
shown [13] to follow from pure Type I supergravity in 10D, on a non-compact hyperboloid #,, times S! and a consistent
chiral truncation. However, the inclusion and origin the Yang-Mills hypermatter remains an open problem.

31t has been suggested in [14] that higher Kac-Moody level string worldsheet algebras may lead to such representations but
this matter is far from being settled.
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In its simplest form, such gauged supergravities seem to have attractive features for cosmology
(see, for example, [15-19]). The presence of the potential also has interesting consequences for
the important question of whether dyonic string excitations are supported by the theory. While
some encouraging results have been obtained in that direction [20-22], much remains to be
investigated.

The GS mechanism ensures the cancellation of local anomalies. Demanding the absence
of possible global anomalies, on the other hand, can impose additional constraints. Such
anomalies can arise from different aspects of the data furnished by the local anomaly free
theory, and they can be rather difficult to compute. The best understood global anomaly
has to do with large gauge transformations not connected to the identity. The models in
question are free from these anomalies. Other global considerations, motivated in part by lessons
learned from the F-theory construction of anomaly free 6D theories [23], have led to additional
constraints.

To begin with, Seiberg & Taylor [24], employed the properties of the dyonic charge lattice
and the Dirac quantization conditions they must satisfy, to deduce the consequences for the
coefficients of the anomaly polynomial. They observed that these coefficients form a sublattice
of dyonic string charge lattice, and that the consistency requires that this can be extended
to a unimodular (self-dual) lattice. A stronger condition was put forward relatively recently
by Monnier et al. [25] who assumed that a consistent supergravity theory may be put on an
arbitrary spin manifold and that any smooth gauge field configurations should be allowed in
the supergravity ‘path integral’, referring to this assumption as the ‘generalized completeness
hypothesis’. They find a constraint which states that the anomaly coefficients for the gauge group
G should be an element of 2H*(BG; Z) ® As where BG is the classifying space of the gauge group
G, and Ag is the unimodular string charge lattice.

Monnier & Moore [26,27] have further argued that these constraints are necessary but not
sufficient for the cancellation of all anomalies, local and global, and proposed the necessary and
sufficient conditions. They do so by requiring that the Green-Schwarz anomaly counterterm is
globally well defined, and show that this leads to the requirement that for any given Green-
Schwartz counterterm, there must exist a certain 7D spin topological field theory that is trivial.
These authors arrive at a proposition in [26] which states the conditions that need to be satisfied
for the 6D theory to be free from all anomalies, in the case of connected gauge groups. Assuming
that the theories under consideration here support dyonic string excitations, we will take this
proposition as a basis for testing the consistency of these theories. We will see that the model
based on (Eg/Z3) x E7 x U(1)R satisfies the weaker set of constraints mentioned above, but not
all the conditions of the stronger criterion of Monnier and Moore, and that the model based on
Fy x Sp(9) x U(1)g remarkably satisfies them all.

The paper is organized as follows. In the next section, we shall describe the anomaly freedom
aspects of the class of models being considered here. In §3, we recall the structure of the bosonic
field equations, discuss the issue of higher derivative corrections, and survey the key properties
of the few known dyonic string solutions. In §4, we summarize the Monnier—Park constraints,
and in §5, we study these constraints for the models at hand. In the conclusions, we discuss the
possible caveats in the interpretation of our results, and the appendix contain useful formula for
the anomalies of the models under consideration, and in particular, we provide more details for
the ones based on F4 x Sp(9) x U(1)r gauge group.

2. U(1)z gauged anomaly free models

We shall focus on U(1)r gauged 6D N = (1,0) supergravities coupled to one tensor multiplet,
vector multiples associated with group G=Gj x G2 x U(1)r, and (half)hypermultiplets
transforming in (R1, Rp)g representation of G; x G, with the subscript denoting the U(1)g charge
of hyperfermions. The gravitino, dilatino and gauginos have unit U(1)g charge. The three models
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we shall consider have the gauge groups and hyperfermion contents [7,10,11]

(A) (E¢/Z3) x E7 x U(1)r (1,912)0 2.1
(B) Gy x E7 x U(1)r (14,56)9 (2.2)
and ©) F4 x Sp(9) x U(1)r (52,18)o. (2.3)

The perturbative gravitational, gauge and mixed anomalies are encoded in an 8-form
anomaly polynomial Ig, and they are cancelled by Green-Schwarz mechanism that exploits its
factorization as

1 0 1
18=§9aﬂyayﬁ and _Qaﬂ=<1 0), (2.4)
where
yoo L (Lewre i (2ur) 420 P2 (2.5)
16m2 \ 2 "\ T '

r=1,2 labels the group G; x G,. Here, F; is the field strength of the rth component of the gauge
group, F denotes the U(1)r field strength, tr is the trace in the fundamental representation, and
summation over r is understood,* and A, is normalization factor which is fixed by demanding that
the smallest topological charge of an embedded SU(2) instanton is 1 [31]. These factors, which are
equal to the Dynkin indices of the fundamental representations, are listed below for the groups
needed here.

G Ey Eg Fy Gy Sp(9)
A 12 6 6 2 1 (2.6)

The vectors (a,b;,c) in the space R!"! should belong to an integral lattice, referred to as the
anomaly lattice. For the three models, we are considering, these vectors are [7,10,11]

(A a=2,-2), be=(1,3), by =(3,-9), c=(2,18), 2.7)
(B) 1=(2,2), by = (3,15), by =(3,1), c= (2, —?) (2.8)
and ©) 1=(2,-2),  bi=(2,-10),  by= (1, %) . c=(219). (2.9)

Note that in models (A) and (C), the anomaly polynomial starts with —tr (R%)2, while in the model
(B) it starts with +tr (R?)?. The anomaly polynomials for models (A) [10,21], (B) [11] and (C) [7]
are provided in the appendix.

For groups with a non-trivial sixth homotopy group, there may be global anomalies associated
with large gauge transformations not connected to the identity. Among the gauge groups of the
three models above, only Gy has a non-trivial such homotopy group given by 7¢(G2) = Z3. In that
case, the vanishing of the global anomaly requires that [32]

Gy 1-4) nrdr=0mod3, (2.10)
R

where 7 is the number of (half)hypermultiplets transforming in the representation R of Go,
and dp is defined by trrF* = dg (tr F2)2. Since ny4 = % x 56 and dig = % for model (B), the global
anomaly is absent [11].

3. Supersymmetry, bosonic field equations and dyonic strings

In order to highlight the issues that arise in the context of finding dyonic string solutions of the
U(1)r gauged theory, here we shall review the bosonic field equations, with the assumptions that

4There exists the identity (tr F?)/1 = (Tr F2)/(2h"), where Tr is the trace in the adjoint representation and 1" is the dual Coexeter
number. A is in fact the index of the fundamental representation of group G.
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the hyperscalar fields are set to zero in these equations. We start by introducing a metric Gyg, and
S0O(1, 1) invariant tensor £2,4 in terms of 2-orthogonal vectors ¢, and j, as follows:

Gop =ealp +jojp,  Pup = —Culp + jajp,

1
e =—=("%, =€), jo=—(e7%, ¢e%). 3.1
o \/Q( ) Je \/i( )
They satisfy e-e=—1,j-j=1 and e-j=0 where the inner product is with respect to 2% =
(Qaﬁ)_l. It is also convenient to introduce the notation

1 20y 2b%
v = an‘ and v := (Tll, Tzz' 26"‘) , (3.2)

where i =1,2,3 labels the group G1 x Gz x U(1)g. Then, (2.5) can be written as

1
“= = 1en2 (UL trR% + VS trF2> (3.3)
where vg tr F2 = v*F2, The constant vectors v can be directly read of from (2.7), (2.8) and (2.9).
Since dY"‘ 0, one can locally define the assoc1ated Chern-Simons form through Y* =dI"®. The

3-form field strength is then defined as®
H*=dB* 4+ &' I'%, withdl'® =167°Y¢, (3.4)

where &' is the ‘inverse string tension’.

If we set v} =0, and either vi1 =0 or vi2 =0, then a classically locally supersymmetric and
gauge-invariant action exists for arbitrary vi1 or viz [33]. If we switch on both v simultaneously,
local supersymmetric field equations of motion have also been constructed, but anomalies in
gauge transformation and local supersymmetry arise [34,35]. This is to be expected, since Green—
Schwarz counterterms required for the cancellation of one-loop anomalies are present, and
therefore the classical and one-loop quantum effects are mixed. The Green-Schwartz counterterm
also requires that the parameters vi and v% are turned on, and fixes vl.l, and vl.z in terms of a single
dimensionful parameter o’. Furthermore, supersymmetry is now broken already at order ¢/, since
R and F have the same dimension, and arise in the field equations already at order o’.

For v =0, the bosonic field equations with hypermultiplet scalars set to zero, and in Einstein
frame, take the form [34,36,37]

(GaﬂHﬁ ) Q2up HP, (3.5)
a' D (xe - v;Fj) =2v/2a v¥ Gop « HP AF;, (3.6)
1
Ryy = 8,98v9 + Gop(H® 'Hﬂ)lw +2v2d'e- vj tr <(Fz‘2)uv - Sg;w 7> + V — (e U)7 Sy
(3.7)
and V,dt¢= B o jvitrF5 — 36 fp H* . HF + WA (3.8)

with self explanatory meaning of the notations H* - H?, (Fz),w and F2. It follows from (3.5) and
(3.4) that

d x (GaﬁHﬂ) =167 24p Y? and dH® =167 Y. (3.9)

Thus QaﬂYﬂ and Y are the electric and magnetic sources, respectively. Note also that
xe- H=—e- H belongs to the supergravity multiplet, and »j- H=j-H is in the single tensor
multiplet. We also see from (3.6) that there are terms proportional to @ that break the gauge

5We use the notation and conventions of [25] to large extent. One particular exception is that we take e - H to belong to the
supergravity multiplet, rather than the tensor multiplet. This is in accordance with the conventions of [34]. We also redefine
o' by a factor of 1672 for convenience in notation. We thank Hao-Yuan Chang for pointing out certain errors in such factors
in an earlier version of this paper.
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invariance. Therefore, these equations should be treated as order «’ equations, and thus letting
H— dBin (3.6),and H-H — dB - (dB + 2a'T") in (3.7) and (3.8).

Turning on v} breaks supersymmetry even at order o’. This phenomenon has been well
studied in particular in 10D [1] and it is known that restoring supersymmetry at order o’
requires the addition of a Riemann curvature-squared term into the action roughly by letting,
schematically, o’ F2 - o'(R? + F2). In the ungauged 6D theory, similar phenomenon occurs, and
such terms have been considered in [38] in the context of heterotic-heterotic string duality, and in
[39], in the context of constructing Killing spinors.

Considering the gauged supergravities, while a Noether procedure has not been carried out
completely as yet for the full system at order o/, taking into account [40], we expect the following
result in the absence of hypermultiplet®

1 1 1
sz/ {ZR(w)* L — 2 #dp ndy — 5Gop + (dB) A (dBP 4 2a' I'P) + 167%a’ 2B A YP

_ %a/e- (thr * R(w) A R(w) + vj tr x F; AFi) — ﬁ (e
where the ellipses are yet to be determined H = dB and dilaton-dependent terms.” A similar action
for the ungauged theory in string frame, albeit in a non-manifestly SO(1, 1) invariant form, was
given in [38]. In obtaining the field equations from this action, the duality equation (3.5) is to be
imposed after the variation of the action. With this in mind, it can be checked that this action
gives the equations of motion (3.6)~(3.9), if v} is set to zero. The inclusion of vf effects will
clearly introduce higher derivative terms in the Einstein’s and dilaton field equations, though the
consequences for the other field equations remain to be investigated, since the Noether procedure
for the full system at order o’ has not been established as yet. As for the term [ 243B% A Y# in
the above action, naturally it plays a crucial role in the discussion of Dirac quantization of dyonic
string charges, as we shall see later.

Turning to the action (3.10), the requirement that the gauge kinetic terms are ghost-free
imposes the constraints e - v; > 0 [37,41,42]. These kinetic terms for models A, B and C are given by

.u)—1*1+--.}, (3.10)

/

A: —% (€7 —3¢¥) tr « Fo A Fg
!
— (7 43 tr wFy AFy =20 (7 = 9) « FL AT,
7
B: —3% (79 =5e?)tr «Fo AFy
o 20/
BET (3€_¢ — e‘/’) tr x F; A Fy — 3 (3€_¢ + 19e¢) * F1 A Fq
/
and C: —% (67 +5e?)tr «F4 AFy
!
~ 5 (27— ) tr wFy AFo —a (267 —19¢%) w Py A Py, (3.11)

It is easy to check that the positivity condition for these kinetic terms are satisfied for
(A): >3, (B): ¢?>5 and (O): e %>1Y. (3.12)

The perturbative results are reliable for sufficiently negative values of ¢, while the lower bounds
on e~ ¥ stated above correspond to the strong Yang-Mills coupling regime. It is also clear that
there are a number of values for ¢ where some of the Yang-Mills couplings vanish. As discussed
in detail in [38], these are points where phase transitions are expected to occur.

n path integral considerations, the convenient normalization of the topological term is 5a'$2,4B* A Y?, which can be
®In path integral iderations, th ient lization of the topological term is a’€2.5B* A Y?, which b
achieved by suitable rescalings of fields and parameters [25].

7In the absence of U(1)r gauging and if v§ =0, then such terms would be accounted for by shifting the spin connection

occurring in the Riem? term by torsion as w — w — %H .
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The last terms in Einstein and dilaton field equations above involve a potential function,
and arise as a consequence of the U(1)r gauging, and that they are absent in the ungauged
6D models, even if the gauge groups include ‘external” U(1) factors. These terms clearly have
significant impact on the structure of the vacuum as well as the non-perturbative exact solutions.
For example, it is easy to check that these terms forbid Minkowskig and (A)dS vacuum solutions.

As for dyonic string solutions of U(1)r gauge theory, to our best knowledge, few solutions
exist to equations in which only the classically exactly supersymmetric supergravity equations are
solved. The action with v =0, vi2 = 0[33] has been used to obtain the dyonic solutions mentioned
above. Here, B = B! which represents the combination of the 2-forms residing in supergravity and
single tensor multiplet, and therefore it is free from (anti)self duality condition. The action which
can be read off from (3.10) by taking vf =0, vl.2 =0, B2=0 and setting B! =B, vl =, takes the
form8

1 1 1 1 1
S:/ (ZR*IL_ E*d(ﬂ/\dQD_ Ee_2¢ *GAG— Ea/e—(ﬂvitr *Fi/\Fi_ %etﬂ*ﬂ>’ (313)

where G =dB! + &'I"!|,, —. The solution found for the resulting equations has only the following
non-vanishing fields [20], and it takes the form

40P
ds? = czdx"dxu + a2dr* + 12 <012 + 022 + % 032> ,

G="Poy Aoy A o3 —u(r)d>x A dr

Q P\~
and F=koi Aoy, €= <Qo + —2) (Po + 7) ’ (3.14)
r r

where a,b, ¢, u are functions of r which can be found in [20], k, Py, Qo, P, Q are constants, g is the
U(1)r coupling constant, o; are left-invariant one-forms on the 3-sphere satisfying do; = — %e,’jkaj N
ok. The solution also requires that’

4P = k(1 — 2kg), (3.15)

which is a condition not arising in the ungauged 6D theory, and it has 1/4 of the 6D
supersymmetry. It is asymptotic to a cone over (Minkowski); x squashed S3, as opposed to the
expected maximally symmetric known vacuum solution given by Minkowskis x S? [12], and the
dilaton blows up asymptotically [20]. The near horizon limit of the gauged dyonic string is given
by AdS;x squashed S® with fraction of supersymmetry increased from 1/4 to 1/2. A dyonic
string solution of the U(1)r gauged theory in which an additional U(1) gauge field residing in E7 is
activated was found in [21], under the assumptions that are similar to those of [20] outlined above.
In particular, 1/4 supersymmetry also arises and again the dilaton blows up asymptotically.

4. Constraints on anomaly coefficients

The factorization of the anomaly polynomial has been shown to imply that [23]
a-a, a-b, and b, -bs € Z forallr,s, 4.1)

where the products are in R"! with metric £2,4. The condition above can be checked explicitly for
all three models studied here. The fact that the anomaly coefficients belong to an integral lattice is
not sufficient for the consistency of the theory. To elaborate further on this point, it is convenient

8We have let ¢ — —¢/+/2 in the results of [33].
“Note that upon letting A, — A,, /g, this condition becomes 4P =k(1 — k(a')™").
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to first re-express the form Y* appearing in the Bianchi identity dH* = in terms of characteristic
forms, applied to the models considered here taking the form [25,27]

YY = %a"‘pl — b+ % e (c1)%, 4.2)

where pj, ¢ and c; are the Chern-Weyl representatives of the indicated cohomology classes
defined as
Fi

= E. (4.3)

1 2 1 /1 o
p1=8n72t1‘R , ng_&tiz ()\'frtrrF ) and C1
It is then argued in [25] that the string charge defined by the integral [ x, Y, where ¥y is any
integral 4-cycle, must be cancelled by background self-dual strings. Consequently, it is argued
that this charge must yield an element of the unimodular string charge lattice Ag, and this ‘string
quantization condition’ is explicitly stated as!”

/ Y € As. (4.4)
Xy

The fact that Ag is a unimodular, equivalently self-dual, lattice can be seen from basic arguments
that can be found, for example, in [24,25].

The completeness hypothesis was taken a step further by Monnier et al. [25] who assumed that
a consistent supergravity theory may be put on an arbitrary spin manifold and that any smooth
gauge field configurations should be allowed in the supergravity ‘path integral’. The strategy
employed in [25] is then to assume the generalized completeness hypothesis and obtain strong
constraints by evaluating (4.4) on suitable chosen space-times M and gauge bundles. In particular,
taking M = CP?, and evaluating (4.4) along a suitable 4-cycle, they derive the condition (applied
to the groups considered here) [25]

a, by, %c € Ag, Ag unimodular. (4.5)
A special case of this condition was derived earlier by Seiberg & Taylor [24] in the form
b, € Ag, Agunimodular. (4.6)

by demanding consistency of the theory by means of Dirac quantization of charges, once it is
compactified on various spaces, such as T2, T* and CP?. It was also argued that the presence or
absence of the Abelian factors in the gauge group does not effect their results, which depends
only on the non-Abelian part of the gauge group.

In [25], it has also been shown that the constraint (4.5) is equivalent to the statement [25]

aedAs, beHYBG;Z)x As, Asunimodular, (4.7)

where BG is the classifying space of the universal cover of the semisimple part of the gauge
group G. The bilinear form b in our case, where G = ), G, x U(1)g with r =1, 2, can be written as

b=EPvK @ (4.8)
r

Here, K, is the canonically normalized Killing form,! with respect to which, the length squared
of the longest simple root is 2 (for U(1), the root length squared is 1). It has also been shown that
this is equivalent to the statement that b is an even Ag-valued bilinear form when restricted to the

19The anomaly coefficients are measured in units of o’ which we set equal to one.

"Here, we use standard math convention in which K, is unit matrix of dimension spanning the rank of the underlying Lie
algebra, upon its restriction to the Cartan subalgebra.
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coroot lattice [25]. Specifically, (4.7) implies for any x, y inside the coroot lattice,
%b(x,x)eAS, and b(x,y)e As forx#y. 4.9)

Taking into account the global structure of the gauge group, the condition (4.7) has been
strengthen to [25]

ae As, %[’ € H*(BG;Z) x As, As unimodular. (4.10)

which leads to conditions similar to (4.9) with x, y now belonging to the cocharacter lattice. For a
detailed description of various lattices of G, see [43]. We only emphasize the following key aspects
here. There is a general relation among the coroot lattice, cocharacter lattice and the coweight
lattice for a given semisimple Lie algebra g [43,44]

Acoroot C Acocharacter C Acoweight. (4’11)

These inclusions are determined by the global structure of the group G. Specifically, [43,44]

Acocharacter Acoweight

=m(G) and ———— =Z(G), (4.12)

A coroot Acocharacter

where 71(G) is the first homotopy group of G and Z(G) denotes the centre of G. For connected Lie
groups, H*(BG; Z) is torsion free. For disconnected groups, there could potentially be a torsion
class whose coefficient should be quantized in terms of the string charge lattice [26].

As mentioned in the introduction, Monnier and Moore extended the above considerations
and arrived at a stronger criterion by seeking the conditions under which the Green-Schwartz
counterterm is well defined. This leads to the requirement for the existence of a topologically
trivial field theory in 7D, referred to as Wu—-Chern-Simons theory, and a set of conditions for
the 6D theory to be free from all anomalies. Applied to the cases under consideration, where the
gauge groups are connected, the proposition states that given string charge lattice Ag, and the
anomaly polynomial Ag, and 4-form Y as defined in (4.2), assume that [26]

1. Ag=3YAY; (4.13)
2. Agis unimodular; (4.14)
3. be2H*BG; As); (4.15)
4. ae€ Agis a characteristic element; (4.16)
5. 23P"(BG) =0, 4.17)

where .(278 pln(BG) = 0 is the spin cobordism group associated with Lie group G. Then all anomalies
of the 6D theory, local and global, cancel. The ways in which this proposition extends (4.7)
are as follows. Firstly, the derivation of the third condition does not rely on the generalized
completeness hypothesis. Furthermore, the fourth condition states not only that a € As but it is

also a characteristic element. Finally, the fifth condition clearly goes beyond what is required
in (4.7).

5. Application of the consistency conditions

Monnier and Moore also tacitly assumes that string defects are included whenever they are
necessary to satisfy the tadpole condition, and that their worldsheet anomalies cancel the
boundary contributions to the anomaly of the supergravity theory through the anomaly inflow
mechanism, as has been stated in [26]. Very recently, [30] proposed that using the gravitational and
gauge anomaly inflow on the probe string, one can compute the worldsheet gravitational central
charge and the gauge group’s current algebra level depending on the string charge and the bulk
anomaly coefficients. (For earlier work in this context, see [28,29].) The requirement that the left-
moving central charge should be large enough to allow the unitary representations of the current
algebra for a given level imposes a constraint on the allowed gauge group content. However, the
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fact that the near horizon limit of the gauged dyonic string is given by 1/2 BPS AdSz x squashed
S3 suggests that the IR CFT of the probe string coupled to the gauged supergravity should be
a two-dimensional /' =2 CFT, in contrast to [30] where the worldsheet IR CFT is described by
a (0,4) CFT. Thus one cannot directly apply the result of [30] here before a careful study on the
low energy dynamics of the probe string is carried out. Altogether, whether the tacit assumptions
made as prelude to the Monnier—-Moore proposition are satisfied by the U(1)r gauged 6D (1,0)
supergravities is not entirely clear, and remain to be investigated. Nonetheless, we shall at least
assume that suitably behaved dyonic string solutions exist and proceed below with the analysis
of the consequences of the above proposition for these models.

To begin with, condition 1 is obviously satisfied by models A, B and C. Next, we look at
condition 5. To this end, we note that!?

2P (BGy) =0, 25P"(BF)=0, 2;P"(BE)=0, 257" (BSp(9))=0,
Spin BE,

Q 226 = s, 1
7 ( Z3 ) } G1)

where Dj is yet to be determined group of exponent 6. Since it is not known yet whether Dj is
trivial or not, we shall examine the other conditions required by the proposition in the case of
model A which has the symmetry (E¢/Z3) x E7 x U(1)r. As for models B and C, given the results
(5.1), they pass the fifth condition of the proposition.

For the convenience of further discussion, we introduce the notation

M(x,y) = (;i ;5) (5.2)

where x, y are R"! vectors and the product is defined with respect to $244. The fact that string
charge lattice Ag is unimodular implies that —detM(x,y) must be a square of a positive integer
for any x, y € As.

In using the relations (4.11), it is also useful to note that as far as the non-Abelian groups
appearing in models A, B and C are concerned, 71(G) = 1 and Z(G) =1 for all, except that

m(Ee¢/Z3) =173, Z(E¢)=7Z3, Z(E7)=1Zy and Z(Sp(9))="17Z. (5.3)

In the following, we will test constraints stated in the proposition for models A, B and C, though,
we will also see if only the weaker constraints (4.5) and/or (4.10) are satisfied in some cases.

(@) The (Es/Z3) x E; x U(1)g invariant model

We first compute —detM(x, ) for x,y being any two distinct R'"! vectors among a, bg, by, %C. The
result is given by

— detM(a,bs) =8>, —detM(a,by)=12%, —detM(a, 1c) =202,
— detM(be, by) =182, —detM(bs, 0) =62, —detM(b7, 1c) =362, (5.4)

therefore the anomaly coefficients in this model are compatible with the second condition of the
proposition, namely with (4.14), that the anomaly coefficients lie on a unimodular string charge
lattice. To verify that the lattice is indeed unimodular, we proceed by choosing as a basis of a
unimodular charge lattice

e1=(1,0) and e, =(0,1), (5.5)

and observe that the anomaly coefficients can be recast as linear combination of e, e; with integer
coefficients. Note that this lattice is even.

Next, we inspect the anomaly coefficients against the stronger constraint (4.10). In order to
do so, we need to evaluate the bilinear form b on the cocharacter lattice of Eg x E7 x U(1)g.

12We are very grateful to I. Garcia-Etxebarria and M. Montero, for explaining to us their results for Q;pi"(BG) for G,
(unpublished), F4, E¢ and E7, and E¢/Z3 (unpublished).
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In the model with gauged (Es/Z3) x Ey x U(1)r symmetry, E¢s appears only in the adjoint
representation. Therefore, a vector v on the Eg cocharacter lattice should satisfy

2l — 17,75, (5.6)

where h;, i=1,...6 are generators of Cartan subalgebra (in the Cartan—Weyl basis) of E¢ in the
adjoint representation. Clearly, such v lies in the coweight lattice of E4 spanned by @, that obey
> i(@m)i(tn)i = 8yun, for simple roots labelled by r,,. Using the definition of coweights t@;,, we can
evaluate the bilinear form Kg on the coweight lattice and obtain

4 5 6 4 2 3

5 10 12 8 4 6

.o 116 12 18 12 6 9
Ké(wr,ws)—g 4 8 12 10 5 6|’ (5.7)

2 4 6 5 4 3

3 6 9 6 3 6

which is equal to the inverse of the Eq Cartan matrix. This happens to be so because Lie algebra
of Eg is simply laced and thus the length squared of every simple root equals 2, implying the
coweight vector coincides with the fundamental weight vector. From the expression above, we
single out a particular element K¢ (201, 1) whose product with bg leads to the following vector
on R

be = 3beKe(t1, 1) = 3be. (5.8)

This gives —detM(a, l~76) = (%)Z, which means that 56 and a cannot belong to the same unimodular
lattice. Thus, the third condition of the proposition, namely (4.15), is not satisfied.

(b) The £; x Gy x U(1)p invariant model

Similar to the previous case, we first investigate whether the anomaly coefficients can be
embedded in a unimodular lattice, by computing —detM(x, y) for x, y being any two distinct R
vectors among a, by, by, %c. It turns out that

— detM(a, by) =247, —detM(a,by)=4%, —detM(a, 30)=(%)?,
— detM(by, by) =422, —detM(by, 5c) =342, —detM(by, 5c) =202 (5.9)
As —detM(a, %c) is not given by a positive integer squared, the anomaly coefficients a, by, b7, %c

cannot all belong to a unimodular lattice, thus violating the second condition of the proposition,
namely (4.14).

(c) The F4 x Sp(9) x U(1)p invariant model

For this model, we obtain —detM(x,y) for x,y being any two distinct R! vectors among
a,by, by, %c as

— detM(a,by) =16%, —detM(a, bo)=3%, —detM(a, 1c) =212,
— detM(by, bo) =112, —detM(by, 1c) =292, —detM(by, 1c) =92, (5.10)

which shows that the necessary condition for the lattice Ag being unimodular is satisfied. To
establish that it is indeed unimodular, we proceed as follows. We choose the following basis for a
unimodular charge lattice

e1=(2,0) and e =(1,3), (5.11)

Next, we observe that the anomaly coefficients in this model can be expressed as linear
combinations of e1, e; with integer coefficients. This shows that condition (4.5) is indeed satisfied.
Note also that the lattice here is odd, since e; - eo = 1. Furthermore, in this model, the group
F4 appears only in the adjoint representation, whereas the hypermultiplet carries also the
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fundamental representation of Sp(9). One should also note that since the hyperfermions are singlet
under U(1)g, it is not possible to form an identity by combining a centre element of Sp(9) with an
element of Ll(l)R.13 Since Z(F4) and m1(F4) are all trivial, the coroot, cocharacter and coweight
lattices are equivalent (4.12), the third condition of the proposition (4.15) reduces to the condition
(4.5), which we have shown above to be satisfied.

We now move on to discuss the stronger constraint imposed on Sp(9). We recall that Z(Sp(9)) =
Zy and m1(Sp(9)) = 1. Thus the cocharacter lattice is different from coweight lattice but coincides
with the coroot lattice. Indeed the transformation matrix from the standard coroot basis to the
standard cocharacter basis is given by the unimodular matrix

o= (5.12)

[ I W G
NINDNDNDNMNDNMNDNDDN P
W W WWWWwN -
T O O N O NN S I e
U1 U1 O1 U1 U1 = W N =
OO Ul WN -
NN U=
QOO NI Uk WN =
NO 0O NI O U1 = W IN =

Thus again, the third condition of the proposition (4.15) becomes equivalent to the condition (4.5)
already shown to be satisfied by the explicit construction of the string charge lattice basis given
in (5.11). Using (5.11) as the basis, an element on the charge lattice can be parameterized as

x=02n+m, %m), m,n € Z. (5.13)

Thus one can easily show that
a-x=x-x mod?2. (5.14)

spin

Given also that 2,7 (BG) =0 for G =F4 x 5p(9) x U(1)g,** we see that all the conditions of the
proposition, namely (4.13)—(4.17) are satisfied, and therefore this model is free from all anomalies.

6. Conclusion

We have highlighted the significance of R-symmetry gauging in 6D, N =(1,0) supergravity,
and focused on three such models that stand out in their accommodation of Green-Schwarz
mechanism for the cancellation of all local anomalies in a non-trivial way. We have examined
constraints imposed on the anomaly coefficients that are associated with the factorized anomaly
polynomials in these models, as proposed in their strongest form by Monnier & Moore [26].
Adopting the assumptions made by these authors, we have found that only model C, based
on the gauge group F4 x Sp(9) x U(1)R, satisfies all the conditions required for freedom from
all anomalies, local and global. We have also seen that model A based on the gauge group
(Ee/Z3) x E7 x U(1)gr does have a unimodular lattice, thus satisfying the weaker version of the
consistency conditions on the anomaly coefficients [24], but it fails the stronger conditions of
[25,26].

A word of caution is appropriate in applying the Monnier-Moore criteria to the R-symmetry
gauged 6D supergravities for the following reason. It is assumed that dyonic strings with proper
behaviour that give well defined string charge lattice exist. On the other hand, the existence of
dyonic string excitations in these models are yet to be firmly established. The task is primarily
complicated by the fact that the U(1)r gauging gives rise to a potential function which effects in
a significant way the solution space, and in particular the asymptotic behaviour. The potential
comes with an inverse power of &', and certain dyonic string solutions in the presence of a
3This is different from the U(2) example studied in [25], where element of the cocharacter lattice is formed by combining a
centre element of SU(2) with an element of the remaining U(1).

14See [45] for .Q;pm(BH), where co-bordism groups have also been used in constraining varieties of models of physical interest.
In the latter context, see also [46,47].
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potential, and in which the anomaly coefficients v2 (arising in the source term in the 2-form
field equation) are set to zero, [20,21] require a relation among the parameters not seen in the
usual dyonic string solutions of the ungauged 6D supergravities. Search and in depth study
of the dyonic strings solutions of R-symmetry gauged 6D (1,0) supergravities is needed before
a robust conclusion can be reached with regard to their global anomalies. In particular, the
consequences for the existence of a worldsheet theory, and the attendant inflaw anomalies
require scrutiny, as they may impose yet further constraints on the consistency of the anomaly
coefficients, as has been found to be the case for certain ungauged 6D supergravities with minimal
supersymmetry [30].

Notwithstanding the caveat mentioned, we conclude by noting that it is still remarkable
that the R-symmetry gauged model with F4 x Sp(9) x U(1)r satisfies all the constraints of the
Monnier-Moore proposition, which are most stringent ones known as yet. As such, it certainly
deserves a closer look, to address further questions such as their place in the arena of swampland
conjectures, even though, being conjectures, they are not as firm as the requirement of anomaly
freedom so far. It would also be interesting to explore the dyonic string solutions and the charges
they are allowed to carry, which can serve as a consistency check to the proposed charge lattice
(5.11) implying that the minimal charge carried by a purely electric string (labelled by e; (5.11))
is twice as big as that of a purely magnetic string (labelled by 2e; —e; (5.11)). A study of o’
corrections due to supersymmetry, likely combined with other considerations such as unitarity
and causality, may shed some light on the UV completion of the theory, if such a completion
exists at all. Finally, it would be interesting to explore the application of the model to cosmology,
as it may yield significantly different results compared to those of standard string cosmology, in
view of the positive potential afforded by the R-symmetry gauging.
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Appendix A. The anomaly polynomials

The fields that contribute to gravitational, gauge and mixed anomalies in nt=1, A =(1,0)
supergravity with gauge group G =G1 x Gp x U(1)g in 6D are as follows:

Vrp, x2, M and v, (A1)

with chiralities denoted by +. The fermions are symplectic Majorana Weyl, the index A=1,2
labels the SO(2)r C Sp(1)r fundamental, I labels the adjoint representation of the group G, and
(aa") label the representation content of the hyperfermions under G; x G.

(a) The (Es/Zs3) x E; x U(1)g model

From [10], we have

1 1 1
1_ 2, o2 A2 2
Y = o2 (trR + 3’ch6-1— 2’crl—"7+41-"1>

(A2)

1 3
and y2=—16? (trRZ—trF§+ EtrF%-%P%).
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The computation of the anomaly polynomial can be found in [10] where the details of the
computation are spelled out.’® The generators of the gauge group are taken to be Hermitian,
and the strength of the U(1)g coupling constant to be unity, i.e. D,, =9, — iA,,. It should be noted
that the normalizations in Y are taken differently in various papers. However, following [25], we
take them to be 1/(1672), motivated by the fact that this is the appropriate normalization in the
integrals | 5, Y discussed in §4, in which these integrals are related to Chern-Weyl classes. The
freedom to do so stems from the fact that the anomaly coefficients are fixed in terms of o’ which
we can normalize appropriately, and set equal to one, after having done so.

(b) The Gy x E; x U(1)z model
From [11], we have
1 1 2 1.2 2
Y= Ton? trR +3trF +§trF7+4F1
1 1 76 (A3)
2 2 2, 1 2
and Y= Ten? (trR + 15tr F5 + 6trF7 3 —F )

The details of the computations for this anomaly polynomial are provided in [11], where the
generators of the gauge group are taken to be anti-Hermitian while here we are employing
Hermitian generators. The U(1)gr covariant derivative D,, = d,, — iA,, is assumed.

(c) The F4 x Sp(9) x U(1)p model
From the data provided in [7], we find
Yie L (arR4 202420 +4P
Tonz \TN T 3hatatrfoah

A4
d 2 1 2 10 2 2 B9
an Y = ~T6n2 trR +?trF trFg —38F7 ).

As hyperinos transform as (52,18)9 under Fj x Sp(9), and are neutral under U(1)g, the
contributions to the gravitation, gauge and mixed anomalies to the anomaly polynomial are

43 2 19 10
_—t R*— — (trR? —FtrR® + —Fj, A5
P(vi) 360 288 ( ) 6 *t3 (A5)
1 1 1 2
P(x)=—( —trR* + — (rR?) | - ZF2&rR2 — ZF%, A6
(0 (360r +288( )) 6177 T3 (A6
Py = — 152 x 18) (o trRY + - (trRz) L (18TrF2 +52trF2) tr R?
2 360 288 276 4 K
1.2 4 4\ 1 2, 12
-5%3 (18TrF4 +52trFy) — 5 XATr R (A7)

1 1 2
— Loapd b 2 P R
and P()) = (52+171+1)(360trR + 288 (trR ) + 6F1 tr R“ + 31—"1)

1 1 2
+ TR R 4 TR R + 2 (T F 4+ TR +4F T +4F TtE,  (A9)

where Tr and tr denote the traces in the adjoint and fundamental representations, respectively.
Here, the group generators are taken to be Hermitian, and for U(1) we have D,, =9, — iA,, and

15Gee also [21], where few typos were corrected in the expressions for the individual contributions to the anomaly polynomial,
without any effect on the total and, of course, its factorization.
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F4,Fg, Fq are associated with F4 x Sp(9) x U(1)r. Using the relations
5 2
2 2 4 2
TF =3, TrF=_ (rF3) (A9)

and
2
TF3=20trF3,  TrFy=26trFj+3 (wF3) (A 10)

the sum Ig becomes

2
ly=—(trR?)" + 34F tr R? + 152 F} — 4tr F} trR? — tr F3 tr R

20 2 2
— = (e P?) +2 (trF2) —6trFatr F2 + 12 F2 tr F2 + 80 F2 tr F2. (A 11)
9 4 9 4 9 1 4 1 9

Arranging this data into a 4 x 4 matrix, it has rank 2, and it factorizes as in (A 4).
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