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Abstract—The Quality of Service (QoS) in Mobile Edge Computing (MEC) systems is significantly dependent on the application
offloading and placement decisions. Due to the movement of users in MEC networks, an optimal application placement might turn into
the least efficient placement in few minutes. Thus, it is crucial to take the dynamics of the system into account when designing
application placement mechanisms. On the other hand, energy consumption of servers is a significant component of the cost of
services in MEC systems and must also be considered in the design of the mechanisms. In this paper, we model the problem of
energy-aware application placement in edge computing systems as a multi-stage stochastic program. The objective is to maximize the
QoS of the system while taking into account the limited energy budget of the edge servers. To solve the problem, we design a novel
parallel Sample Average Approximation (SAA) algorithm. We conduct an extensive experimental analysis to evaluate the performance

of the proposed algorithm using real-world trace data.

Index Terms—Mobile edge computing, energy-aware application placement, quality of service, multi-stage stochastic programming,

sample average approximation, parallel algorithms.

1 INTRODUCTION

TODAY, mobile devices are the primary tools for many
applications in several domains such as communica-
tion, commerce, health, and entertainment. The increasing
utilization of mobile devices necessitates coping with many
of their limitations with respect to the processing power,
memory size, disk capacity, and battery life [1]. Among all
the technologies that were developed to alleviate these limi-
tations of mobile devices, Mobile Cloud Computing (MCC)
has received a significant attention [2], [3]. MCC enables the
users of mobile devices to run some of their applications on
the resource-rich servers available from clouds and data-
centers. In MCC, the response time is a very important
performance measure which is negatively impacted by the
distance between mobile users and the cloud servers.

Mobile Edge Computing (MEC) [4], [5], [6], [7] has been
recently introduced with the aim of reducing the response
time of mobile applications. In MEC, some servers are
located at the edge of mobile networks providing services
to mobile users with a lower latency than in the case of
the servers located in data centers. This has made MEC
an attractive infrastructure for many applications, such as
machine learning [8], [9], [10], vehicular computing [11], and
Internet of Things (IoT) [12], [13].

One of the major challenges in MEC systems is how to ef-
ficiently place the mobile applications on edge servers. Due
to the mobility of users, inefficient application placement
might result in poor Quality of Service (QoS).
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In the last decade, the increased awareness of the en-
vironmental impacts of the energy consumption has mo-
tivated researchers to address energy consumption in dis-
tributed systems from different perspectives [11], [14], [15],
[16]. In MEC systems, energy consumption of edge servers
is an extremely important factor that has to be taken into
account when placing applications on servers. Edge servers
are expected to operate at a higher operating cost compared
to the cloud servers, due to the fact that the cost per
operation is highly dependent on the scale. It might not
be quite easy to reduce the investment costs, but given the
fact that energy consumption accounts for about 25% of the
operating costs of cloud data centers [17], optimizing the
energy consumption would be a promising way to reduce
the operating costs. The share of the energy costs in the
operating costs of the edge servers is expected to be higher
than that of cloud data centers.

In order to reduce the energy consumption in a comput-
ing system, physical resources must be utilized efficiently.
Therefore, the efficiency of application placement is a de-
terminant factor in managing the energy consumption, and
as a result the operating cost. Therefore, the application
placement problem can be defined as follows. Given a set
of heterogeneous edge servers and a set of user requests
for executing applications, determine an assignment of ap-
plications to servers that maximizes the QoS for all users
and takes into account the mobility of users, the energy
budget and the availability of computational resources at
the servers.

When it comes to developing efficient mechanisms for
the application placement problem, it is crucial to take the
mobility of users into account. An optimal placement based
on the current location of users might turn into an extremely
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inefficient placement in few minutes due to the mobility
of users across the network. Also, it might not be efficient
to frequently relocate an application to a different server
based on the location of the user. Since the future location
of users is a nondeterministic parameter, an efficient appli-
cation placement mechanism should be capable of taking
this uncertainty into account when placing applications on
servers.

In this paper, we develop a multi-stage stochastic pro-
gramming method for the energy-aware application place-
ment problem in MEC systems. Our objective is to maximize
the total QoS of the system, while taking the energy budget
of the edge servers into account. Our proposed method also
takes the dynamics of the network into account when mak-
ing placement decisions. To solve the problem efficiently,
we design a parallel Sample Average Approximation (SAA)
algorithm and perform an extensive experimental analysis
using real-world data to evaluate the performance of the
proposed method.

1.1  Our Contributions

This paper is an extension of our previous work on stochas-
tic optimization of task placement in MEC systems [18]. In
our previous work, we developed a multi-stage stochastic
programming method for the application placement prob-
lem in MEC systems where the objective is to minimize
the total cost, including, computation, communication, and
relocation cost. In this paper, our aim is to maximize the
total QoS of the system, i.e., the sum of the QoS of individual
users who receive service. Here, the QoS of a user is defined
based on the latency, that is, the QoS is inversely propor-
tional to the distance between the user and the server that
provides the service, and directly proportional to the size
of the served request. Furthermore, we consider the limited
energy budget of the edge servers, while in our previous
work we took into account only the capacities of the edge
servers’ computational resources. We model the energy-
aware application placement problem in edge computing
systems as a multi-stage stochastic program, where each
stage represents a time slot, and the location of users might
change between time slots. The stochastic programming
approach allows us to take the dynamics of the location
of users into account when making application placement
decisions. This is a significant issue in the design of efficient
application placement methods in edge computing systems,
and to the best of our knowledge, this is the first work on
energy-aware resource allocation in MEC systems that takes
into account the dynamics of the network in the decision
making process.

In this paper, we consider two metrics in the objective
of our proposed multi-stage stochastic model. We aim at
maximizing the total QoS of the system, while taking the
total relocation cost into account. Therefore, the first stage
objective of the proposed model only considers the total QoS
of the system, while the recourse function incorporates both
the total QoS and the relocation cost.

As a constraint, we consider the energy budget of
servers, that is, a server cannot be loaded beyond its energy
budget. Exact evaluation of the recourse function (i.e., the
cost of execution in the future time slots) in multi-stage
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stochastic optimization problems is very complex due to the
large number of scenarios that have to be considered [19],
[20].

To solve the multi-stage stochastic application placement
problem, we use the Sample Average Approximation (SAA)
method which is a promising approach for tackling the
complexity caused by the number of scenarios. Having to
solve multiple subproblems in the SAA method motivated
us to leverage the computational power of multi-core sys-
tems and design a parallel SAA-based algorithm which
obtains solutions to the multi-stage stochastic application
placement problem in a reasonable amount of time. We also
design a greedy algorithm to solve the integer optimization
problem that needs to be solved in each of the phases of the
proposed SAA-based parallel algorithm. This allows solving
the problem in a reasonable amount of time. To evaluate
the performance of the proposed algorithm, we conduct an
extensive experimental analysis using real-world data.

1.2 Organization

The rest of the paper is organized as follows. In Section 2,
we review the related work. In Section 3, we define the
energy-aware application placement problem and formulate
it as a multi-stage stochastic program. In Section 4, we
present a parallel greedy SAA-based algorithm for solving
the problem. In Section 5, we describe the experimental
setup and discuss the experimental results. In Section 6,
we conclude the paper and suggest possible directions for
future work.

2 RELATED WORK

There exists several approaches for solving the application
placement problem in cloud computing [21], [22], but they
are not directly applicable in the context of MEC. The
application placement problem in MEC has to consider
several issues that were not present in the data-center or
cloud computing settings. In MEC, mobile users may move
to different locations after the initial application placement.
Thus, an optimal application placement decision made at
the time of receiving a request may not remain optimal
for the whole duration of user’s application execution. In
addition to this, the availability of servers’ resources may
change over time. Therefore, an efficient application place-
ment algorithm must be adaptive to this dynamic setting.
When it comes to performance metrics, the cost of ser-
vices [23], [24], [25], the energy consumption [26], [27], [28],
[29], and the quality of service [30], [31] are the most impor-
tant metrics. Researchers have proposed various approaches
for energy-aware resource allocation in cloud computing
systems [32], [33], [34]. Some researchers also proposed
task/workload consolidation techniques to reduce the en-
ergy consumption in cloud systems [35], [36]. Minimizing
the total number of active servers is also a strategy for op-
timizing the energy consumption [37]. Readers can refer to
Beloglazov et al. [38] and Hameed et al. [39] for more details
discussions on energy-efficient cloud computing systems.
Researchers have tackled the dynamic nature of the
MEC systems, which stems mainly from the mobility of
users, using different approaches. Some researchers develop
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methods which do not require any information from future
mobility of users [40], [41]. They first divide the long-term
optimization problem into a series of one-shot problems,
and focus on developing efficient algorithms to solve one-
shot problems.

There are many nondeterministic parameters in edge
computing systems which need to be taken into account in
the design of an efficient application placement mechanism.
Due to the movement of users in MEC networks, an optimal
application placement might turn into the least efficient
placement in few minutes. Thus, it is crucial to take into
account the dynamic nature of the system when designing
application placement mechanisms.

Markov Decision Processes (MDP) have been used by
several researchers to model uncertainties in application
placement problems in MEC. Wang et al. [42] presented
an online algorithm for application placement in the con-
text of MEC. They modeled the problem as an MDP and
reduced the state space of the problem by deriving a new
MDP model in which states are defined only based on the
distance between users and servers. The authors showed
that the distance-based MDP is a good approximation to
the original problem. For one-dimensional mobility spaces,
their proposed algorithm provides the optimal solution,
while for two-dimensional spaces it gives a near optimal
solution. Adopting a similar approach, Urgaonkar et al. [43]
modeled the application placement problem as an MDP. To
reduce the state space of the problem, they converted the
problem into two independent MDP problems with separate
state spaces. Then, they designed an online algorithm for
the new problem that is provably cost-optimal. None of the
MDP-based solutions presented above consider the energy
budget of the servers when making allocation decisions.

Most variants of the MDP problems are known to be P-
complete, that is, it is not possible to design highly efficient
parallel algorithms to solve them unless all problems in P
have such highly efficient parallel solutions [44]. This fact
hinders the design of efficient parallel algorithms for finding
quality solutions for the application placement problem
modelled as an MDP, and the possibility of having fast
MDP-based algorithms for solving the application place-
ment problem. In this paper, we design a novel algorithm
for solving the application placement problem that is not
based on MDPs and is fast and suitable for parallelization,
being able to exploit the huge computing power offered
by the current and future multi-core computer systems.
Furthermore, our proposed algorithm takes into account the
energy budget of the edge servers when making placement
decisions.

3 THE ENERGY-AWARE APPLICATION PLACE-
MENT PROBLEM IN MEC: MULTI-STAGE STOCHAS-
TIC PROGRAMMING FORMULATION

The MEC system considered here consists of a set of M edge
servers, S = {51, 52, ..., S}, which provides services to a
set of N users, Y = {Uy,Us,...,Un}. The network model
for the MEC system is shown in Figure 1. Our model is
analogous to the network model considered in [45], except
that it does not include cloud servers. In our model, edge
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Fig. 1: MEC Network model.

server S; is co-located with a base station and is char-
acterized by its computational capacity, ();, expressed in
terms of the maximum number of unit-size containers that
the server can host. The unit-size containers have a fixed
resource configuration which is determined by the provider.
User U; requests to offload and execute an application (a
single container) on the edge servers via 4G/5G/WiFi access
networks. We assume that all towers are accessible to all
users in the network. The size R; of user U;’s requested
container is expressed in terms of the equivalent number
of unit-size containers needed to complete the application.
User U, also specifies the time 7; needed to complete the
execution of the application on a container of size R;. We
assume that each created container only serves the request
from one user.

We consider a discrete time slotted system and assume
that the placement decisions are made at periodic intervals
that are called time slots. The location of a user is specified
by its coordinates in a two-dimensional grid of cells. The
locations of users do not change during one time slot, but
a user can change its location between two time slots, that
is, it can move into any of the neighboring cells or stay in
the same cell. Our aim is to maximize the total QoS of the
system while taking into account the energy budget and the
computational capacities of the edge servers. We formulate
the problem as a multi-stage integer stochastic program. The
notation we use in our formulation is provided in Table 1.

The objective of the multi-stage stochastic application
placement problem is to maximize the quality of service of
the system which is defined as the sum of the QoS of indi-
vidual users who receive services while taking the relocation
cost into account. Here we define the QoS, based on two
important factors that determine the latency, the distance
between user and server, and the size of the request. A
user whose request is assigned to a nearby edge server is
expected to have low latency, therefore experiencing a high
QoS. Also, a large size request results in higher communica-
tion latency. Thus, the quality of service that user U; receives
from server S; in time slot ¢ is defined as,

v R;
ij

M

where, dfj is the distance between user U; and server S,
in time slot ¢, and «y is a regulatory parameter. In other
words, the quality of service QoSj; that user U; receives
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Fig. 2: Energy-aware application placement: two placements with different values for AEU and QoS.

from server S; in time slot ¢ is inversely proportional to
the distance between the user and the server that provides
the service, and directly proportional with the size of the
request. Here, we assume that the distance between users
and servers is the Manhattan distance. Therefore, if user U;
is located in cell (ay,b,) and server S; is located in cell
(as, bs) in time slot ¢, then the distance between the user
and the sever is given by, |a, — as| + [by, — bs|.

The relocation cost, denoted by p;; is associated with
changing the assignment of a user’s request from server S/
to server S; during the execution. Therefore, if the user’s re-
quest is completely fulfilled by a single server, no relocation
cost is incurred. The relocation cost is proportional to the
distance between servers, which is the Manhattan distance.
The locations of users in the current slot, ¢, are known at

TABLE 1: Notation

u Set of users, {U1,Us,...,UN}.

S Set of servers, {S1,S2,...,Sm}

T Set of time slots, {1,2,...,7}.

I3 Set of scenarios on the movement of users.
AEU Average energy utilization of the system.

QoSf]. Quality of service that user U; receives from server S;
in time slot ¢.

E; Energy budget of server S;.

€ij The amount of energy utilized by the request from
user U; when it runs on server S;.

o Constant coefficient in the calculation of ;;.

Q; Computational capacity of server S;.

R; Size of container requested by user U;.

Ti Time to complete U;’s application on a container
of size R;.

dﬁ S Distance between user U; and server S; in time slot ¢.

pjlj Relocation cost associated with changing the

assignment of a user’s request from server S;/
to server Sj;.
¥ Constant coefficient in the calculation of QoS;.f it

E¢[.] Expected value of the recourse function over
scenarios on the movement of users.

Z45 Binary variable, it is 1 if the request of user U;
is assigned to server S;, 0 otherwise.

Xt Vector of binary decision variables z? ..

yfj,]. Binary variable, it is 1 if the application of user U;

is relocated from server S;/ to server S; in time
slot t, 0 otherwise.
y? Vector of binary decision variables y; .

ci (Xt Y?)  Objective function for time slot .

the beginning of the slot, while the locations of users in the
future time slots are not known.

We denote the energy budget of server S; by Ej;. The
amount of energy utilized by the request from user U; when
it runs on server S; is denoted by ¢;; and is given by,
g - R,

Qj
where o is a regulatory constant coefficient. According to
Equation (2), the amount of energy consumed by each server
is proportional to the utilization of computational resources
(i.e., R;/Q;). The servers are heterogeneous in terms of their
energy budget and the computation capacity.

Figures (2a) and (2b) show an edge system with two
different task placements. In these figures, users are repre-
sented by circles, where the radius of circles is proportional
to the size of their requests, R;. Also, there are three edge
servers which are represented by rectangles. A line connect-
ing a user to an edge server represents the placement of that
user’s application on the edge server. In this example, for
the sake of simplicity, servers are assumed to be identical in
terms of their energy budgets as well as their computation
capacities. Let’s assume that each server has an energy
budget of 10 units, and a capacity of 30 containers. The
requests of users range from 2 to 10 containers. We also
set v = 10 and o = 20. We define the Average Energy
Utilization (AEU) of the system as,

Licu Yjes B i 5
= ©)

where, x;; is a binary variable which is 1 if the request of
user Uj; is assigned to server S, and 0, otherwise.

In Figure (2a), the amount of energy utilized by Server a
is given by, 22(2 + 4 + 3) = 6. Since the energy budget
of this server is 10, its energy utilization is 0.6. We can
similarly compute the energy utilization of the other two
servers, which is 0.93 and 0.6 for Server b and ¢, respectively.
Therefore, the average energy utilization corresponding to
this task placement is 0.71. For this placement, the QoS
of Server a is, 10(2 + 3 + 3) = 50. The QoS of Server b
and ¢ is 80 and 60, respectively. Therefore, the total QoS
of the application placement in Figure (2a) is 190. The
task placement of Figure (2b) is more efficient in terms of

@)

€ij =

AEU =
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both AEU and QoS with the values of 0.93 and 206.67,
respectively.

In this paper, we develop a multi-stage stochastic pro-
gramming model of the energy-aware application place-
ment problem in MEC. In this model, the variables giving
the assignments of users’ requests in the current stage are
the first stage variables which are decided before the real-
ization of the uncertain parameters (i.e., location of users
in the future stages) becomes known. The objective is to
make the first stage decisions in a way that the sum of
QoS at the first stage and the expected objective function
value of the recourse costs (i.e., QoS minus relocation costs
in future stages) is maximized [20]. The objective function
of the application placement problem for time slot ¢ is given
by:

axt vy =y (1R
ij

ieU jeS

xfg - Z Pj’j 'yfjfj 4)
j'eS

where X' and Y are the vectors of binary decision vari-
ables x; and yj;;, respectively. The decision variables are
defined as follows: (i) xﬁj is 1 if the request of user U;
is assigned to server S; in time slot ¢, and 0, otherwise;
and (ii) ygj, ; is 1 if the application of user U; is relocated
from server S to server S; in time slot ¢, and 0, otherwise.
Therefore, the multi-stage stochastic application placement
problem for time slot t is formulated as the following
stochastic program:

V'Ri T / ’
max Yy o al HE[ Y (XN Y] )
9 7,]

i€l j€S t=t+1
subject to:

oc-R; :
Z o, w; <E; VjeS ©)
ield J
Sali <1 Vieud eft,...,7) @
jes
iy <aly VieUjeStelitloty @

z}; +x§jfl — 1<y,
VieU,jeS,jeSte{t+1,....7} j#7
)

t t . . ./
T,y €10,1 VieU,je€8,j€SteT  (10)

The objective function (5) is to maximize the total quality
of service in the first stage, and the recourse cost which
is the expected value of the total quality of service minus
the relocation cost in the future stages. Here, E¢[.| is the
expected value of the recourse function over scenarios on
the movement of users (£), and 7 is the time horizon for
which the objective function is defined. Here, 7 = min;cs 7.
Constraint (6) prevents loading a server beyond its energy
budget. Based on this constraint, the capacity of the servers
is controlled by their available energy budget, therefore
we do not need a separate capacity constraint for it. Con-
straint (7) ensures that the request of a user is assigned to at
most one server during each time slot. Constraint (8) guar-
antees that processing of a user’s request is not interrupted
in the system. Constraint (9) ensures that when a relocation
happens the decision variables are set accordingly. Con-
straint (10) ensures that the decision variables are binary.
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The main challenge in solving multi-stage stochastic
programs is to obtain the expected value of the recourse
costs. In discrete optimization problems, the complexity of
the multi-stage stochastic programs is highly dependent
on the number of considered scenarios. It might be pos-
sible to obtain the optimal solution of the problem when
there is a limited number of scenarios. But with a large
number of scenarios it is practically impossible to solve
the problem in a reasonable amount of time. Simulation-
based methods have been widely used as efficient methods
for estimating the expected value of the recourse costs in
multi-stage stochastic programs. In this paper, we employ
the Sample Average Approximation (SAA) method [19], [20]
which is a Monte Carlo simulation-based approach to obtain
a reliable estimation of the expected value of the recourse
cost function.

4 PARALLEL SAA-BASED APPLICATION PLACE-
MENT ALGORITHM

The proposed model for the energy-aware application place-
ment problem is a multi-stage stochastic program with an
integer recourse function. The most critical part of multi-
stage stochastic programs is the way that recourse costs
are exactly evaluated or approximately estimated. Obvi-
ously, due to its high computational complexity, multi-
dimensional integration of the recourse function is not a
feasible option for an exact evaluation of recourse costs
in programs with integer recourse. On the other hand,
in multi-stage stochastic programs with integer recourse,
optimizing the expected recourse costs is of high complex-
ity, because the functions are highly non-convex and not
continuous [20].

The SAA method has received a considerable attention
as an efficient method for solving multi-stage stochastic
programs [19], [20], [46], [47], [48]. SAA is a Monte Carlo
simulation-based approach to solving stochastic discrete op-
timization problems. The basic idea of the SAA algorithm is
to approximate the recourse function by the sample average
function, where the samples are independent and identically
distributed (iid) and include a constant number of scenarios.

The SAA procedure is given in Algorithm 1. This pro-
cedure is applied in each stage (time slot) ¢. All the pa-

Algorithm 1 SAA algorithm

{Executed every time slot ¢}
1: Generate H independent scenario samples, each of size L,
(ked{l,...,H})
2: fork=1to H do
Solve the deterministic equivalent problem
corresponding to each sample.
end for
Generate a sulfficiently large sample of size L', L' > L.
fork =1to H do
Evaluate the candidate solutions obtained in line (3)
by solving the deterministic equivalent problem
corresponding to the sample of size L', while
the current stage variables are fixed to their
values obtained in line (3).
8: end for
9: Out of H candidate solutions, choose the one that has
the largest estimated objective value.

W
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Algorithm 2 PG-SAA: Parallel Greedy SAA-based applica-
tion placement algorithm

{Executed every time slot ¢}
1: Generate H independent scenario samples

(ke {1,...,H}), each of size L.
2: for k =1 to H do in parallel
3: fori=1to N do
4: for{=1to L do
5: Create graph G;(V, E) for user U; under
scenario /.
6: Use Dijkstra’s algorithm to find the shortest
paths between vertices S} and vertex D in
graph G;(V, E) for scenario .
7: fj[ < cost of the shortest paths.
8: end for
9: for]—ltono
10: wk = L3 u)
11: end for

12: end for B

13: Call G-MAP (W*) to obtain the placement.

14 Record the optimal solution as (X**, Y1)

15: end for

16: Generate a sufficiently large sample of size L', L' > L.
17: for k = 1 to H do in parallel

18: fori=1to N do

19: for¢! =1to L' do

20: Create graph G;(V, E) for user U; under
scenario ¢'.

21: Use Dijkstra’s algorithm to find the shortest

paths between vertex S;» and dummy
vertex D in graph G (V 'E) for scenario /.

22: wfje < cost of the shortest paths.

23: end for

24: forj=1to M dlo )

25: wfj = 1 ZL/ 1 wsz

26: end for

27: end for

28: Z" « objective value corresponding to sample k.
29: end for

30: Z* «+— maXge{1,...,H} VA B
31: Allocate users’ requests to servers according to X*' corre-
sponding to Z*.

rameters for the current stage are known, while some of
the parameters in future stages are not known but follow
a certain probability distribution. The first step of the SAA
algorithm is to generate H samples, each including L in-
dependent scenarios. We denote by &, := (&,...,&;) the
history of the scenarios for the location of users from time
slot t up to time slot 7. These samples will be used to
estimate the recourse function. The next step (lines 2-4)
is to solve the deterministic equivalent problem for each
sample out of the H samples, resulting in H candidate
solutions. Then, a sample with L’ scenarios (L' > L)
is generated to evaluate the candidate solutions (line 5). In
the next step (lines 6-8), candidate solutions are evaluated
using the generated sample. Finally, the selected solution
is the solution with the largest objective value among the
evaluated candidates (line 9).

In multi-stage stochastic programs, the total number
of scenarios grows exponentially with the number of
stages [46]. Therefore, the efficiency of SAA requiring a large
number of scenarios for accurately estimating the recourse
function is negatively affected as the number of stages in-
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Fig. 3: Graph G;(V, E) used for computing the assignment
of user Uj;.

creases. Shapiro [46] proved bounds on the required number
of scenarios in SAA for multi-stage stochastic programs. His
analysis is based on the assumption that distribution of the
stochastic parameters in different stages are independent.
In the application placement problem in MEC, it is crucial
to obtain a quality solution very fast. The SAA algorithm
for this problem requires solving optimally multiple Integer
Programs (IP) using commercial optimization solvers which
might take a considerable amount of time. In this paper, we
design a fast parallel SAA-based greedy algorithm to solve the
multi-stage stochastic program corresponding to the energy-
aware application placement problem.

The basic idea in the proposed parallel SAA-based algo-
rithm for solving the energy-aware application placement
problem is to evaluate the candidate solutions in parallel
and use a greedy procedure to solve the deterministic equiv-
alent problems corresponding to each sample. The parallel
greedy SAA-based application placement algorithm, called
PG-SAA, is given in Algorithm 2.

First, PG-SAA generates H samples, each including L
independent scenarios for the location of users in the up-
coming stages (line 1). The next step (lines 2-15) is to
solve the deterministic equivalent problem corresponding
to each sample. This step is executed in parallel and the
output consists of H candidate solutions for the application
placement in the current stage. The objective function of the
deterministic equivalent problem corresponding to each sample

is as follows:
- 7 R k t
zL = max { E E .
Xkt Ykt
€U JES U

72 Z ct’ th th g[t’)}

I=1t=t+1

1)

where, X*t and Y*! are the vectors of decision variables.
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To solve these IP problems approximately, we design a
greedy heuristic which is based on the idea of evaluating the
expected recourse function of each user independently. The
first step of this procedure (line 5) creates a graph G;(V, E)
for each user U;, where V is the set of vertices composed
of vertices corresponding to the set of servers replicated for
each stage up to stage 7, and FE is the set of edges. Figure 3
shows the graph G,(V, E) for the assignment of user U;’s
request. We denote the vertex in G; corresponding to server
S; in stage ¢, by S, and the dummy vertex by D. The weight
of the edge between server S} and Sﬁ'l represents the
expected relocation cost from server j to j/ minus QOS:;,“
when the request of user U; is executed on server §; in
stage ¢ and then it is executed on server S in stage ¢ + 1.
There is no relocation cost if the application of a user is
executed on the same server in two consecutive time slots.
Also, the weights of edges to the dummy vertex D are zero.
Let I';; denote the expected value of the shortest path from
vertices S’ (current stage) to the dummy vertex D over all
the considered scenarios. Then we have,

L T
1 Y ’
RS SR

I=1t'=t+1

(12)

Therefore, the expected recourse functions are obtained
by finding the M shortest paths from vertices S to vertex D
and selecting the minimum one among them. The shortest
paths are computed using Dijkstra’s algorithm (line 6 of
PG-SAA). Under unlimited energy budget, the request of
user U; will be placed on the server which has the minimum
value of the shortest path among all the servers. Due to
the limited energy budget of servers, it might not be fea-
sible to assign each user to a server as determined by the
shortest paths. For this reason, we need to find a refined
assignment that takes into account the energy budget of
each server. To do that, we consider solving an associated
assignment problem for sample k, where the objective is to
maximize the total assignment weights. This corresponds
to the objective of the deterministic equivalent problem
given in Equation (11). We define the expected value of the
assignment weights associated with executing the request of

user U; on server S; for sample k as,
_ 7R
wfy = —— — Ty (13)

di;

Therefore, the associated Maximal Assignment Prob-
lem (MAP) for sample k is formulated as follows,

—k .k

m}z}x Z Z W55 (14)

€U jES
subject to:
ag - RZ .

ieu J
dak <1 Vieu (16)
jES
oy, €{0,1} VielU,jesS (17)

The objective function (14) of this model is to maximize
the total assignment weights. Constraint (15) ensures that

http://dx.doi.org/10.1109/TPDS.2019.2950937

7

the energy budget of each server is not violated, con-
straint (16) guarantees that each user is assigned to at most
one server, and constraint (17) defines the binary variables.

The MAP problem is an NP-hard problem [49], that is, no
algorithm is able to find the optimal solution in polynomial
time, unless P=NP.

Theorem 1. MAP is NP-hard in the strong sense.

Proof: First, let us ignore the index k£ of samples,
because the problems associated with samples are solved
independently. Let us also consider a special case of MAP
called MAP-| in which for each user, the weights are the
same for all the servers, ie.,, w; = w;; = -+ = wW;p. We
define C'; = QiEj Therefore, the MAP-I problem is,

o

i€U jeS

subject to:
> Ri-x; <C; VjeS (19)
ieU
dai; <1 Vieu (20)
jES
zij €{0,1} VieU,jeS 1)

MAP-I is equivalent to the 0-1 Multiple Knapsack Prob-
lem MKP, where w; is the profit of assigning item ¢ to
knapsack j (executing request of user U; on server S;). Also,
Cj is equivalent to the capacity of knapsack j. The objective
of MKP is to assign items (requests) to knapsacks (servers)
such that the total profit (weights) is maximized, while the
capacity constraint is not violated. MKP is NP-hard in the
strong sense [50]. Therefore, MAP-I is strongly NP-hard, and
since MAP-I is a special case of MAP, we conclude that MAP
is NP-hard in the strong sense. O

Existing algorithms for MKP are not directly applicable
to MAP, because in MKP the profit of items (w;) is inde-
pendent of the knapsacks. In contrast, we have wfj in MAP.
Therefore, to solve the MAP problem in a reasonable amount
of time, we develop a fast greedy algorithm. We call this
algorithm G-MAP and is presented in Algorithm 3. We will
briefly describe the details of this algorithm later in this
section.

PG-SAA, calls G-MAP to obtain a feasible assignment for
the current stage (line 13), where Wk is the vector of wfj,
that is, the expected value of the assignment weights for
sample k. Next, PG-SAA records the candidate solutions
obtained for each sample k as (X*¢, Y*:t).

Next, PG-SAA generates a sample with L’ scenarios
(L’ > L) to evaluate the candidate solutions (line 16).
Then, the candidate solutions are evaluated using the gen-
erated sample (lines 17-29). The evaluation models are also
solved in parallel for the [ samples. The objective function
of the deterministic equivalent of the evaluation model is
formulated as follows:

apf = (XPL YR+

L’ T
1 ’ ’
T2 2 (XM YR g)

l=1t'=t+1

(22)
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Fig. 4: Graph G(V, E) used when evaluating the candidate
solutions.

where, Xt and Y* are the vectors of solutions recorded
in line 14. For the evaluation step (lines 17-29), PG-SAA uses
a similar procedure to that used for obtaining the candidate
solutions with some minor changes. The main difference
between the two procedures is that for the evaluation step,
we do not need to calculate the shortest paths for all users-
servers combinations. Here, we create a new graph for
user U; denoted by G}(V, E). As shown in Figure 4, there is
only one node in the first stage which represents the server
that was assigned to user U; at time slot ¢ based on the
candidate solution. Therefore, PG-SAA executes Dijkstra’s
algorithm for the server that is assigned to each user in the
current stage (ff’f = 1), where Sj- is the server assigned
to user U; according to the candidate solution recorded
in line 14. It should be noted that the feasibility of this
assignment was already guaranteed because this solution
is obtained by the G-MAP algorithm. Finally, the best so-
lution is the solution with the maximum value among the
evaluated candidates (lines 30-31):

(X*,Y*) € argmax (., H}{éﬁ}t()_(k’t,f/k’t) 1o (23)

We now describe briefly the G-MAP algorithm given in
Algorithm 3. The aim of this algorithm is to find a feasible
assignment of users’ requests to servers taking the energy
budget into account. The basic idea of this algorithm is to
prioritize users based on their expected contributions to the
objective and the amount of energy consumed to satisfy
their requests. For this purpose, we define ®; metric as,

$, = max

24
jEF 0 - R; @4)

where, I is the feasibility set of servers based on their
available energy budget. We also define a new variable for
the energy budget of servers denoted by £’. First, G-MAP
sets the value of E’ to the total available energy budget £
for server S;. Here, we denote the set of unvisited users
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Algorithm 3 G-MAP algorithm

: Input: ’LIJZ']', Ej, Q]', Ri, ag.
E;«+ E; VYje{l,...,M}
U+ {1,...,N}
F={1,...M}
X<+0_
: while U # () do
for alliin U do

ji — —1
9: b, +0
10: for all jin F' do
11: if 74 > ®iand Ej > ot then

Ji<J

13: q% <
14: end if
15: end for
16: end for
17: t = argmax,;{P;}
18: if j; # —1 then

PN AR

Wy
o-R;

19: x; 1

20: Ej + B} —ogk-
21: if £/, <0 then
22: F+ F\ {5}
23: end if

24: end if

5. U=0U\{}
26: end while

by U. Also, we put all the servers in the feasibility set (F),
due to the assumption that all servers are able to provide
services according to their free capacity. The initial value of
vector X is also set to zero. G-MAP repeats the following
steps (lines 6-26) until all the users are visited. In lines 7-17,
the algorithm finds the user with the maximum value of ®;,
taking the energy requirement of its request into account.
Then, it assigns the user with the maximum value of ®; to
the associated server (j;) and updates the energy budget of
that server (lines 19-20). In lines 21-23, if the server exceeds
its energy budget, then it is excluded from the feasibility set.
Also, the visited user is removed from the set of unvisited
users (line 25).

Now, we determine the runtime complexity of PG-SAA.
Determining the assignments for each user under each
scenario using Dijkstra’s algorithm (Algorithm 2, lines 5
to 7) takes O(M?72). The G-MAP algorithm takes O(M N?).
Evaluating each of the I solutions on the new larger sample
(L) for each user under each scenario (Algorithm 2, lines 20
to 22) takes O(M?272). Therefore, the total runtime complex-
ity assuming a parallel computing system with H proces-
sors, is O(NLM?72 + MN? + NL'M?7?). Since L' >> L,
the complexity of the proposed algorithm with H processors
is OIMN? + NL'M?7?).

5 EXPERIMENTAL ANALYSIS

To evaluate the performance of the proposed application
placement algorithm, we perform an extensive experimental
analysis using real-world trace data. We aim at evaluating
the quality of solutions and the running times of the pro-
posed PG-SAA algorithm for problem instances of different
sizes.
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Fig. 5: Distribution of users and servers in the network

5.1 Experimental setup

We perform our analysis using a real-world data set of cab
mobility traces collected in San Francisco [51] to capture
distribution of demands as well as the mobility of users
across the network. Figure 5 shows the map of the area
partitioned in a two-dimensional grid of 20 x 20 cells in
an area of San Francisco with the highest number of trace
records. The map is created based on the trace data of 20
taxi cabs. Darker (red in color) regions represent areas with
a high number of trace records. For our experiments, we
only consider the dense areas, that is, areas with a small
number of trace records are excluded from our analysis.

In our analysis, we consider that the edge servers are
co-located with antenna towers. The locations of the towers
are taken from [52]. We choose five base-stations registered
with Verizon Wireless Co. that are shown by pointers in
Figure 5. We choose Dell PowerEdge R740 Rock Server as
the edge servers. The configuration of the servers are shown
in Table 2.

In order to ensure high quality services, we define the
unit-size container according to the computational capacity
of a single core, and at most one container is allocated to
a core. Therefore, the computation capacity, (;, of a server
is equivalent to the number of CPU cores. According to a
survey on data centers energy consumption [53], the idle
power of an edge server accounts for 60% of the full state
power. Thus, in our setting, the energy budget of a server (in
Joules) for a time slot is: F; = 0.4 x 495W x 120s = 23,760],
where 120s represents the length of the time slots considered
in the experiments.

We assume that if a core is utilized, it requires full power.
Therefore, the power of each core is obtained by dividing
the total power of a server by the number of cores. Based on
this assumption the power of each core of the PowerEdge
R740 Rock servers is 20.625 W. We use the dataset in [54]
on smartphones, to set the size of the containers requested
by users. This dataset has about 1 million records, and we
draw a random sample from it to obtain the users’ requests.
A sample of this dataset is shown in Table 3. In the table,
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TABLE 2: Configuration of servers

Model Dell PowerEdge R740 Rack Server
Model Intel® Xeon® Gold 6240
Frequenc 2.4GHz

CPU Cac%e Y 35.75M
Cores 24

RAM 32GB

Power 495W

TABLE 3: Mobile applications sample data

UUID CPU freq. (GHz) Total_CPU (%) #Cores
1461792776014 | 2.4 60.029762 3
1461792780433 | 2.4 55.32268 3
1461792785058 | 2.4 4.946742 1
1461792790505 | 2.4 14.84594 1

Total CPU represents the average utilization among four
cores. Because the dataset gives the utilization with respect
to four cores, we determine the number of cores necessary
to host a container associated with the request of a user,
by multiplying the Total_CPU by 4. As an example, for the
request with UUID: 1461792776014, the number of cores is
60.029762% x 4 ~ 3.

Here, we assume that when a container is allocated to
multiple cores, all the cores are fully utilized. Therefore,
the utilization rate of a server can be simply obtained by
dividing the allocated cores by the total number of cores.

The relocation costs are computed as 3d;;, where 3 is
a constant factor and d;; is the distance between server S
and server S;,. We use the haversine formula to calculate
the distance between two points in the network using their
longitudes and latitudes. We use the center point of each
cell for the location of users in that cell. Here, we set 3 to 10.
We also set v = 100 and o = 23,760. We set the sample
size and the number of scenarios in the SAA algorithm to
H =10, L = 20, and L' = 50. All programs implementing
the algorithms are compiled using GCC version 4.8.5 and ex-
ecuted on a 64-core 2.4 GHz dual-processor AMD Opteron
system with 512 GB of RAM and Red Hat Enterprise Linux
Server as the operating system. The proposed parallel algo-
rithm is implemented using OpenMP. For the experiments
involving CPLEX we use the CPLEX 12 solver provided
by IBM ILOG CPLEX optimization studio for academics
initiative [55]. Each experiment is performed five times and
the analysis is performed based on the average value of the
metrics. For the execution time analysis, we use the error bar
histograms showing the standard deviation of the execution
time among the five runs.

5.2 Scenario generation model

In our scenario generation model, we use the real-world
data set of cab mobility traces in San Francisco. We use
this data to extract the parameters necessary to generate
the mobility scenarios of users. We develop our scenario
generation model using the mobility traces of 20 taxi cabs.
We record the location of each taxi cab every two minutes,
which represents the length of the time slot in our analysis.
For our experiments, we consider that users are located
within a two-dimensional grid of 20 x 20 cells in an area
of San Francisco that has the highest number of records,
that is, areas with small number of records are excluded
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Fig. 6: Scenario generation model: an illustrative example
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Fig. 7: An example of users’ mobility model

from our analysis. The frequency of records in a cell is used
as a probabilistic parameter to distribute users across the
network in the first time slot. To determine the probability
that a user moves from cell A to cell B within a time slot,
we consider the number of movements from cell A to cell
B divided by the total number of departures from cell A.
Figure 7 shows the movement probability from the cell
marked with X to other cells as a heat map. We observe
in this example, that with the highest probability a user will
stay in the same cell in the next time slot, and that is more
probable that the user goes to the top or left cells.

We denote by & := (&,...,&) the history of the
scenarios for the location of users from time slot ¢ up to
time slot 7.

Figures 6a and 6b show an example of our scenario gen-
eration method. In this example, there are three edge servers
(represented as rectangles) and ten users (represented as
circles) that are randomly distributed in a grid of 6 x 6 cells.
These figures show two scenarios for three time slots. It is
observed that the location of the servers is the same for all

time slots. Also, the locations of users in the current time
slot (t = 0) is the same for all the scenarios. The locations
of users in the second time slot (t = 2) are dependent on
their locations in the preceding time slot (¢ = 1) in the
same scenario. In these figures, the radius of a circle is
proportional to the size of the user’s request. Since in our
formulation the total QoS of the system is a function of
the size of requests and the distance of users from the host
server, it is crucial to consider the location of users during
the planning time frame. The probability of moving from
cell A to cell B is extracted from the cab mobility traces, that
is, the number of movements from cell A to cell B divided
by the total number of departures from cell A.

5.3 Experimental results

We perform the experimental analysis on two classes of
instances. First, we present the experimental results for the
class of small size instances where each instance consists of
up to 100 users. Our aim is to evaluate the performance of
our proposed algorithm by comparing it with that obtained
by using the CPLEX solver to solve the optimization prob-
lems in the SAA algorithm. For this set of experiments, we
run our algorithm using one core (i.e., serial). The second
class of instances in our analysis consists of large instances
with the number of users ranging from 1000 to 4000. CPLEX
cannot solve problem instances of such sizes in a reasonable
amount of time. Our aim for this class of instances is to
analyze the scalability of our proposed parallel algorithm. In
this set of experiments, we run our algorithm using multiple
cores ranging from 2 to 64 and compare the execution time
with that of the serial execution of the algorithm.
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Fig. 8: PG-SAA vs. C-SAA performance for various numbers of users, N.

5.3.1 Results for small-scale instances

First, we compare the quality of solutions obtained by the
PG-SAA to that of the solutions obtained by using the
CPLEX solver to solve the optimization problems in the
SAA algorithm.

Due to the large execution time required by CPLEX for
solving the subproblems in the SAA-based algorithm, we
consider here only small sizes for the application place-
ment problem instances. To provide a fair comparison, we
execute PG-SAA and the CPLEX-based SAA algorithm by
considering the same samples. In the following, we denote
by C-SAA the CPLEX-based SAA algorithm. To characterize
the quality of the solutions we define the relative objective
ratio (ROR) as follows:

7C—SAA _ 7PG—SAA

ROR = (25)

7C—SAA
where ZFPG=544 g the objective value determined by the
PG-SAA and Z¢~544 is the objective value determined by
the CPLEX-based SAA algorithm, C-SAA.

We also perform a set of experiments to investigate the
demand satisfaction obtained by the two solution methods.
In order to do this, we define the Request Satisfaction Ratio
(RSR) as the percentage of users that receive services from
the network, that is

Dicu Zjes i, j
N

where x; ; is the binary variable and is 1 if the request of
user Uj is execute on server S;, and 0 otherwise.

The objective ratio, request satisfaction ratio, and execu-
tion times obtained for the small instances are presented
in Figure 8. Because of the small size of the instances
considered here, we execute PG-SAA on only one core. This
is because the benefits of parallelization are not observed for
such small instances. We will execute PG-SAA on multiple
cores for the next set of experiments involving large-scale
instances of the application placement problem.

Figure 8a shows the objective ratio obtained for the small
instances. The solutions obtained by PG-SAA for these types
of instances are within the range of 0.2 and 0.8 compared to
the solution obtained by the C-SAA algorithm which is an
acceptable range. We do not observe any significant increase
in the objective ratio with the increase in the number of
users.

RSR = (26)

In Figure 8b, we observe that the request satisfaction
ratio obtained by the PG-SAA method is very close to that
of C-SAA for all sizes of instances. We observe that in some
instances the request satisfaction ratio of PG-SAA is higher
than that of C-SAA. This observation is justified by the fact
that based on our definition and formulation, a higher RSR
would not necessarily result in a higher QoS. Therefore,
solutions obtained by C-SAA may not satisfy requests that
would negatively affect QoS.

Figure 8c shows the execution times of C-SAA and PG-
SAA algorithms for the small instances. We observe that
even for such small instances, the PG-SAA is very competi-
tive in terms of the execution time. While the PG-SAA takes
less than one second to solve problems with less than 100
users, the execution time of the C-SAA for instances with
100 users is greater than 100 seconds.

5.3.2 Results for large-scale instances

In the next set of experiments, we investigate the perfor-
mance of PG-SAA on large-scale instances of the applica-
tion placement problem. We run the PG-SAA algorithm on
instances with different number of users ranging from 1000
to 4000.

The execution times for these large size instances are
presented in Figure 9 We use the label “Serial” to denote the
execution of the PG-SAA on only one core. We observe that
the running time of the PG-SAA on only one core (serial
execution) is still within a reasonable range for problem
instances with up to 1000 users, but for larger instances the
serial version of PG-SAA takes a considerable amount of
time to solve the problem. The PG-SAA performs very well
in terms of the running time when executed on multiple
cores. The small execution time of PG-SAA for large scale
instances makes PG-SAA very suitable for deployment in
mobile edge computing systems.

In Section 4, we showed that the number of time slots (7)
is a determinant factor in the runtime complexity of PG-
SAA. Here, we perform an analysis to experimentally in-
vestigate how the running time of our algorithm is affected
by this parameter. We perform the analysis by running the
parallel algorithm on 16 cores as well as its serial version.
The results of this analysis are shown in Figure 10. We
observe that for both instances with 1000 users (Figure 10a)
and 4000 users (Figure 10b), the increase in the running time
of the serial algorithm is linear but more significant than the
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Fig. 10: PG-SAA: Effects of 7 on the execution time for systems with 1000 and 4000 users.

that of the parallel algorithm when executed on 16 cores.
This observation implies that the parallel algorithm can
estimate very efficiently the expected value of the recourse
function for problem instances with 4000 users and up to 20
time slots.

5.4 Discussion

In MEC systems, the mobility of users might significantly
affect the QoS, and must be taken into account to have an ef-
ficient application placement. In this experimental analysis,
we showed how the proposed method can be employed in a
scenario driven by real-world data on the mobility of users.
To apply our proposed method in real-world scenarios,
one only needs know the current location of users and the
historical data on the mobility of users. The mobility of users
in future time slots can be modeled using the historical data
traces. The mobility model is independent of our proposed
method and would be obtained from the available historical
data from the considered geographical area. Therefore, our
method is applicable to virtually any geographical area and
time period as long as there are no significant changes in the
structure and the population of the area that could affect the
prediction from historical data.

The experimental analysis shows that the proposed
SAA-based parallel algorithm can efficiently solve large-
scale instances of the energy-aware application placement
problem in MEC systems. Comparing the results obtained
by PG-SAA with those of C-SAA based on the ROR metric
shows that the solutions obtained by PG-SAA are fairly

close to the solutions obtained by the CPLEX solver. But
when it comes to the execution time, PG-SAA can solve
instances of size up to 4000 users within 2 seconds, while C-
SAA requires 100 seconds to solve a much smaller instance
with 100 users. Our experimental analysis on the perfor-
mance of the parallel algorithm for large-scale instances also
shows that the proposed algorithm scales reasonably well
with the size of instances on systems with large number of
cores.

6 CONCLUSION

We addressed the energy-aware application placement
problem in mobile edge computing systems. To take into
account the mobility of users, a challenging issue in the
resource management of MEC systems, we formulated the
problem as a multi-stage stochastic program. We designed
a parallel greedy SAA-based algorithm for solving the ap-
plication placement problem and performed an extensive
experimental analysis to investigate its performance us-
ing real-world trace data. The results of the experimental
analysis showed that the proposed algorithm is able to
obtain very good quality solutions for the problem. The
proposed algorithm requires a very small execution time
when executed on large multi-core systems, making it very
suitable for deployment on current and future mobile edge
computing systems.

As future work, we plan to employ the proposed ap-
proach on the design of algorithms for other challenging
stochastic problems in the management of mobile edge
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computing systems. Such problems include task offloading
and resource provisioning, where the mobility of users is an
important factor affecting the offloading and provisioning
decisions. We also plan to employ a risk-based optimization
approach to address the quality of service in MEC systems
considering the movement of users.
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