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ABSTRACT
Data-intensive scalable computing (DISC) systems such as Google’s
MapReduce, Apache Hadoop, and Apache Spark are prevalent in
many production services. Despite their popularity, the quality of
DISC applications suffers due to a lack of exhaustive and automated
testing. Current practices of testing DISC applications are limited
to using a small random sample of the entire input dataset which
merely exposes any program faults. Unlike SQL queries, testing
DISC applications has new challenges due to a composition of both
dataflow and relational operators, and user-defined functions (UDF)
that could be arbitrarily long and complex.

To address this problem, we demonstrate a newwhite-box testing
framework called BigTest that takes an Apache Spark program as
input and automatically generates synthetic, concrete data for effec-
tive and efficient testing. BigTest combines the symbolic execution
of UDFs with the logical specifications of dataflow and relational
operators to explore all paths in a DISC application. Our exper-
iments show that BigTest is capable of generating test data that
can reveal up to 2X more faults than the entire data set with 194X
less testing time. We implement BigTest in a Java-based command
line tool with a pre-compile binary jar. It exposes a configuration
file in which a user can edit preferences, including the path of a
target program, the upper bound of loop exploration, and a choice
of theorem solver. The demonstration video of BigTest is avail-
able at https://youtu.be/OeHhoKiDYso and BigTest is available
at https://github.com/maligulzar/BigTest.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Cloud computing; • Information systems → MapR-
educe-based systems.
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1 INTRODUCTION
Data-intensive scalable computing (DISC) systems such as Mapre-
duce, Apache Hadoop [2], and Apache Spark [4] are popular today
in large-scale big data applications. The current development pro-
cess usually involves testing these applications on a small sample of
data locally. Not surprisingly, such sampling is unlikely to yield ade-
quate coverage, leading to errors in production. One way to address
this problem is to build exhaustive testing tools. However, this is
challenging for DISC applications. First, DISC applications consist
of both dataflow operators such as map, flatmap and relational
operators such as join and group-by. Second, unlike SQL queries
where the use of user-defined functions (UDFs) is rare, DISC appli-
cations usually involve complex UDFs written in a general-purpose
language such as C/C++, Java, or Scala which are susceptible to
software bugs.

We demonstrate a new white-box testing technique for DISC
applications called BigTest. BigTest first partitions a DISC program
into a list of dataflow operators and a set of corresponding UDFs
and performs symbolic execution on each extracted UDF in iso-
lation. It then combines the path conditions of individual UDFs
with the logical specifications of dataflow (or relational) operators
such as join, flatmap, and reduce. Such combined exploration is
more powerful than prior testing approaches [12, 13] that do not
analyze the internal semantics of UDFs and consider them simply
as uninterpreted functions.

The key contribution of BigTest comes from combining the in-
ternal semantics of user defined functions (UDFs) with the logical
specification of dataflow and relational operators. Additionally, it
models both the terminating and non-terminating cases for each
dataflow operator. For instance in join, BigTest considers both
non-terminating and terminating cases i.e., keys matching in the
left and the right table, and keys present in a one table only re-
spectively. During symbolic execution, BigTest explicitly models
unbounded collections created by flatmap and translates incremen-
tal aggregation logic in reduce into an iterative aggregator with
a for-loop. Our combined exploration naturally results in a new
notion of test coverage called Joint Dataflow and UDF (JDU) path
coverage [11]. The final set of JDU path constraints is transformed
into SMT queries and solved by an off-the-shelf theorem prover,
Z3 [7] or CVC4 [6], to produce a set of concrete input records.

In our experiments, BigTestmodels 67% more JDU paths than the
prior approach [12], thus revealing 2X more faults on average. We
also show that only a few data records (order of tens) are actually
required to achieve the same JDU coverage as the entire production
data, highlighting BigTest’s potential to minimize test data size
by 105 to 108X. This is also reflected in CPU time savings of 194X
on average, compared to testing code on the entire production
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Figure 1: An overview of BigTest’s approach on the motivating example. Red arrow represents the first terminating path with
corresponding path conditions in a grey box.

data. Furthermore, BigTest synthesizes concrete input records in
19 seconds on average for all remaining untested paths, further
increasing code coverage at interactive speed.

The full technical paper on this approach appeared at ESEC/FSE
2019 [11] and this paper describes BigTest’s user interface and in-
ternal implementation with a focus on tool demonstration. BigTest
is implemented in a Java-based command line tool. BigTest sup-
ports Scala Spark applications and can easily be extended to Java
and other DISC frameworks such as Hadoop MapReduce [2] and
Apache Flink [5]. The rest of the paper is organized as follows.
Section 2 highlights BigTest’s technical contributions. Section 3
describes implementation details. Section 4 demonstrates a usage
scenario. Section 5 describes evaluation settings and results. Sec-
tion 6 concludes the paper.

2 TECHNICAL APPROACH
We briefly describe BigTest’s main contributions below. The de-
tailed explanation of its approach is described in our full paper [11].
BigTest takes in an Apache Spark program written in Scala as an
input, generates a set of path constraints up to a given bound, and
constructs concrete test data using an off-the-shelf theorem prover.
Figure 1 illustrates BigTest in four steps.

2.1 Program Decomposition
A dataflow program is comprised of dataflow operators such as
map, group-by, and reduce and corresponding user defined func-
tions. These dataflow operators are implemented by over 700K lines
of code in Apache Spark which includes support for job schedul-
ing, fault tolerance, and data partitioning. Due to this complex
system-stack, the symbolic execution of these dataflow operators
is infeasible. Instead, BigTest abstracts Apache Spark framework’s
code in terms of clean logical specifications. We decompose a DISC
application into a dataflow skeleton and combine the symbolic
execution of individual UDFs with the logical specifications. This
process is illustrated in ➊ and ➋ of Figure 1.

As a first step, BigTest performs Abstract Syntax Tree (AST) anal-
ysis to extract each UDF into a separate Java class and performs
symbolic execution using Symbolic PathFinder (SPF) [14]. BigTest

also generates a configuration file required by SPF for symbolic exe-
cution and performs dependency analysis to include external classes
and methods referenced in the UDF. For aggregation operators, we
translate a corresponding UDF into an iterative representation with
a loop. For example, the UDF for reduce is an associative binary
function that is turned into a for-loop.

2.2 Path Constraint Generation
For each extracted UDF, we perform symbolic execution using
its Java class and the corresponding JPF file to construct a set of
path constraints and effects. BigTest captures path conditions and
effects from SPF through a custom listener. It plugs in the path
conditions and effects of a UDF into the logical specifications of an
operator to produce the complete path conditions for that operator,
as seen in ➊ and ➋ of Figure 1. The constraints of an operator
represent equivalence classes derived from the logical specifications
of that operator. These logical specifications reflect the semantics
of dataflow (and relational) operators and how they interact with
UDFs [11]. Finally, BigTest combines the path conditions of each
operator with the incoming constraints from its upstream operator.
Figure 1 shows the constraints from one such path.

2.3 Test Data Generation
BigTest rewrites each end-to-end path constraint into an SMT query
using relevant arithmetic and logical operators available in SMT.
For unsupported operations such as string split and isInteger,
BigTest introduces a library of SMT functions. It models individual
elements of an array up to a user defined bound K. BigTest executes
each SMT query separately and finds satisfying assignments (i.e.,
test inputs) to exercise a particular path.

3 IMPLEMENTATION
BigTest is a JVM-based command line tool that supports the sym-
bolic execution of dataflowprograms.We extend Symbolic PathFinder
(SPF) [14] with a symbolic dataset class containingmethods for each
dataflow operators such as map, reduce, and join. Each method
takes a symbolic representation of the corresponding UDF as the
only argument and programmatically integrates it with the logi-
cal specification of a dataflow operator. The return type of these
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1 sc.textFile("hdfs://registrar:9999/gradebook.log")
2 .map { line => val arr = line.split(",")
3 arr(1)
4 }
5 .map { l => val a = l.split(":")
6 (a(0), Integer.parseInt(a(1)))
7 }
8 .map { a => if (a._2 > 40)
9 ("Pass".concat(a._1), 1)
10 else
11 ("Fail".concat(a._1), 1)
12 }
13 .reduceByKey(_+_)
14 .filter ( v => v._2 <=2 && v._1.startsWith("Fail") )

Figure 2: A Spark program that identifies the courses with
less than two failing students.
methods is a symbolic dataset which contains the complete sym-
bolic representation including path constraints and effects until that
point of the program. This implementation is inspired by Apache
Spark’s resilient distributed dataset (RDD) [16]. BigTest requires a
conf file that includes a loop iteration bound and sample inputs
to each UDF. A user can use the pre-compiled jar file to invoke
BigTest.
java -jar BigTest.jar -enableBT <Program Directory>

First, BigTest reads the bytecode of the given program and trans-
lates it to Java source code with Java Decompiler (JAD) [3]. Using
Eclipse Java Development Toolkit (JDT) [1], it parses the abstract
syntax tree of Java source code and extracts corresponding UDFs,
creating a collection of Java classes. BigTest invokes extended SPF
on each UDF class to explore all paths in the UDF symbolically and
combines them with the logical specifications of dataflow operators.
It then constructs end-to-end path constraints of the entire pro-
gram in SMT2 Lib format and uses SMT solvers (CVC4 and Z3) to
find satisfying assignments. BigTest can easily be attached to other
theorem solvers as it stores path constraints in multiple SMT2 files
under \tmp\ or a specific directory name defined by a user in the
conf file.

4 DEMONSTRATION
In this section, we present a step-by-step demonstration of BigTest.
Suppose Alice writes a DISC application in Apache Spark to find
courses with fewer than two failing students. She uses the entire
university gradebook database which contains several years of
grading information spanning gigabytes. A sample row in this
dataset contains comma-separated fields of a course id, a final mark
in percentiles, year, a student id, a session name, and a major. Below
is a small sample of the gradebook data.

CS233:77,1994,80554313,F1994,CS,..
CS233:53,1994,80594911,F1994,EE,..
CS233:29,1994,30472981,F1994,BIO,.

To perform this analysis, Alice writes a program, as shown in
Figure 2. First, she loads the data from an HDFS storage using
Apache Spark’s textFile API in line 1. Once the data is loaded
in Spark, she uses a map operator to extract the course id and a
student’s mark from each row using a UDF (lines 2 to 4). In the
following map operation (lines 5 to 7), a string such as "CS233:77"
is transformed into a tuple of a string and an integer. In lines 8 to
11, Alice annotates the tuples with either a "Pass" or a "Fail" string

1 filter1 = "",1
2 map3 = "",1
3 map4 = "CS:123"
4 reduceByKey2 = {1,2,3,4}
5 map5 = "a,a"
6 K_BOUND = 2

Figure 3: A configuration file for the motivating example
based on the marks. For each course, she calculates the total sum of
passing and failing students using reduceByKey and then applies
filter to find the courses with fewer than two failing students
in line 14. This program has a total of 17 JDU paths, where 2 are
non-terminating and 15 are terminating paths.

Currently, Alice can test her program on the entire dataset which
may take a few hours to compute. However, in case of a test failure,
it is nearly impossible for her to identify the failing input record as
the input data contains several million records. Such technique is
neither efficient nor effective. As an alternate approach, she tests
her program using top 100 records from the input data. The program
produces an empty result without any failure since the test data
comprises passing students only. As a result, only 12 out of 17 JDU
paths are exercised, consequently missing three crash-inducing
cases emerging from statements such as Interger.parseInt. It is
critically important to cover such paths because, at large scale, a
crash-inducing record may crash the entire job and throw away
several hours of progress.

To run BigTest on her program, Alice first writes a configuration
file in the format shown in Figure 3. She writes K_BOUND=2 to limit
the symbolic exploration of unbounded loops and collections to
avoid path explosion. SPF requires sample input arguments to a
function before symbolically executing it. BigTest takes such input
arguments from Alice through conf file and passes them to SPF. A
UDF can be identified with its corresponding operator name fol-
lowed by the execution order number in reverse (similar to Spark’s
execution). Figure 3 shows the final configuration file. Alice invokes
BigTest’s command line tool using the following command.

java -jar BigTest.jar -enableBT /GradeAnalysis

Map4
Non-terminating:
PC: {l splitn 1 : isinteger && l = x2}
E: {x3_1 = l splitn 0 :, x3_2 = l splitn 1 : str.to.int }
Terminating:
PC: {l splitn 1 : notinteger} E: {}
PC: {l equals ""} E: {}
Map3
Non-terminating:
PC: {a_t2 <= 40 && a_t1 = x4_1 && a_t2 = x4_2}
E: {x5_1 = Fail str.++ a_t1, x5_2 = 1}
PC: {a_t2 > 40 && a_t1 = x4_1 && a_t2 = x4_2}
E: x5_1 = Pass str.++ a_t1, x5_2 = 1

Console Log 1

Alice can monitor the progress of BigTest by looking at the
console output log. BigTest logs progress with the number of paths
explored, the path constraints, and the effects at each operator level
until the final operator is reached. Console Log 1 shows the explored
paths from the second and third map operator. PC refers to a path
condition and E represents corresponding effect. For example, path
constraint l splitn 1 : notinteger represents a terminating
path emerging from Integer.parseInt at line 6 of Figure 2. Near
the end of the execution, Alice starts to see the entire program’s
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path constraints built on top of the individual path conditions of
underlying operators. A sample console log snippet of a final non-
terminating path constraint is shown below.

PC: {l1 splitn 1 : isinteger && a2l1 <= 40 && l2 splitn 1 :
isinteger && a2l1 <= 40 && a select 1 = arr[1] 1 <
arr_length && a select 0 = arr[0] && x7 < 2 && x8
str.substr 0 4 equals Fail }
E: {x7 = arr[1] + arr[0] && lp1 = l1 splitn 0 && a2l1 = lp1
splitn 1 : str.to.int && ...}

Console Log 2

For every final path of the program, BigTest calls an SMT solver
to produce a set of concrete input rows that Alice can use as a test
data for her unit test.

Path : 13
running CVC4 $>cvc4 --strings-exp --lang smt2 < /tmp/-966362206
line_1 () String ":41"
line_2 () String ":41"
line_3 () String ":0"
line_4 () String ":0"

Console Log 3

Alice copies the test data generated by BigTest for path 13 (see
Console Log 3) into a test data file and uses that file as input to
a unit test. Due to small size, Alice comfortably runs this test on
her local machine. Although the input does not contain any course
with less than two failing students, the test output includes one
row instead of zero. Upon further investigation, Alice identifies a
code fault where she mistakenly used ≤ instead of < (line 14 in
Figure 2). Similarly, BigTest generates test inputs such as empty
string or non-numeric string to reveal critical corner cases which
can lead to a program crash at lines 3 and 6 in Figure 2. Alice fixes
such cases through relevant exception handling and data filtering
to eliminate the possibility of costly runtime crashes.

5 RELATED WORK
BigTest is inspired by Li et al.’s representation of dataflow oper-
ators in their work Sedge [12]. They consider UDFs as black box
and encodes them into uninterpreted functions. By treating UDFs as
black-box, Sedge overlooks many code faults present in the UDFs as
UDFs are more prone to human error. Our full-scale evaluation [11]
shows that Sedge is unable to cover 78% of JDU paths revealing
only 50% of the faults compared to BigTest. Furthermore, it also
lacks support for commonly used aggregation operators such as
flatmap, reduce, and reducebyKey. Olston et al. suggested a sim-
ilar approach as Sedge and suffers from the same challenges [13].

Using dataflow queries in traditional software is not uncommon;
however, such queries rarely contain user-defined functions. Emmi
et al. perform concolic execution of a program embedded with an
SQL query by symbolically executing the program and using a set
of pre-defined rules for SQL queries [8]. Their approach is only
applicable to basic SQL operations e.g., SELECT...FROM...WHERE.
Several previous test generation approaches use symbolic execution
on traditional software [15]. However, as mentioned before, an off-
the-shelf symbolic execution tool is not suited for DISC applications
because it would symbolically execute the entire codebase of an
underlying DISC framework. Our prior work focused on automated
and interactive debugging [9, 10], while this work improves the
testing of DISC applications.

6 CONCLUSION
Efficient and effective testing of big data analytics is still in the
early stage of development. We demonstrate a novel tool for white-
box testing of big data analytics. BigTest takes an Apache Spark
application as an input and systematically explores the combined
behavior of both dataflow operators and the corresponding UDFs
to generate path constraints. It leverages off-the-shelf theorem
solvers to generate concrete test inputs from path constraints. In
our experiments, test data generated by BigTest reveals 2X more
faults than prior approaches while consuming 194X less CPU time,
on average, compared to testing on the entire dataset.
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