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Abstract—To provide intelligent and personalized services on
smart devices, machine learning techniques have been widely
used to learn from data, identify patterns, and make automated
decisions. Machine learning processes typically require a large
amount of representative data that are often collected through
crowdsourcing from end users. However, user data could be
sensitive in nature, and training machine learning models on these
data may expose sensitive information of users, violating their
privacy. Moreover, to meet the increasing demand of personalized
services, these learned models should capture their individual
characteristics. This paper proposes a privacy-preserving ap-
proach for learning effective personalized models on distributed
user data while guaranteeing the differential privacy of user
data. Practical issues in a distributed learning system such as
user heterogeneity are considered in the proposed approach. In
addition, the convergence property and privacy guarantee of the
proposed approach are rigorously analyzed. Experimental results
on realistic mobile sensing data demonstrate that the proposed
approach is robust to user heterogeneity and offers a good trade-
off between accuracy and privacy.

I. INTRODUCTION

MART devices equipped with sensing, communications,
computing, and/or control capabilities, such as smart-
phones, wearable devices, and in-vehicle sensing devices, are
becoming extremely popular nowadays. These devices gener-
ate, collect, store and analyze an unprecedented amount of data
as they interact with the physical world, which can provide
intelligent and personalized services to people. For instance,
smart watches can record their users’ physical activities and
mental conditions for health monitoring at any time, and smart
insoles can track the body temperature, motion and heart rate
of their users to help them stay injury-free and run better.
For these smart devices to provide intelligent services,
machine learning techniques need to be applied to learn
powerful predictive models on the collected data. A common
practice to learn predictive models from these crowdsourced
data is to first collect data from all devices in a cloud server
and then train a global model. However, it may be risky
to store the privacy-sensitive data in a cloud server which
may not be fully trustworthy. Moreover, as the data volume
increases, the cost and latency of uploading all the raw data
to a distant cloud server increase as well. On the other hand,
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a device may choose to learn a local model on its own data
without sharing data with other devices. Such local models
often perform poorly due to the limited training data size.
Hence, how to benefit from data sharing without violating user
privacy in learning predictive models from distributed data is a
challenge. Federated learning [1] has been proposed recently
as a promising approach to solve the challenge. In federated
learning, all devices update the global model downloaded from
the cloud server with their own data and only send the updates
back to the server for aggregation. By sharing only the learned
updates rather than the raw data, federated learning both
achieves high communication efficiency and reduces privacy
risks while obtaining effective predictive models.

Although promising, there remain several issues in applying
federated learning to the real world. First of all, the model
obtained through federated learning is a shared model that
extracts the common knowledge of all participants without
capturing personal inclinations [2]. For instance, when learn-
ing the sentiment of users on their personal messages, a single
global model cannot capture such differences, since the same
word from different users may convey different sentiments
due to various personal opinions and language using habits.
However, since people with close relationships are likely to
have similar habits, it will be beneficial to allow the learning
tasks of all users to learn from each other based on their
relationships. Also known as multi-task learning, this kind
of method allows personalized models to be learned, which
could both benefit from the collective data and keep personal
characteristics. Second, in a federated learning system with
lots of participants, the device heterogeneity has a large impact
on the learning efficiency. The network condition, data size
and computation capability of different devices are different
and even time-varying, which may result in the delay, dropout
or poor quality of the updates. Third, federated learning does
not provide a rigorous privacy guarantee for participants. The
aggregation server in federated learning is assumed to be fully
trusted to coordinate the training. However, the server can
easily violate the privacy of participants by observing their
updates as shown in recent attacks [3], [4].

To address the aforementioned issues, we propose a novel
federated learning scheme that provides an effective personal-
ized model for each participant under the device heterogeneity
while guaranteeing differential privacy of their data. In our
proposed scheme, the personalized model of a participant is
learned based on not only its own local data but also the shared
updates computed from other participants’ data. We provide
differential privacy guarantee for shared updates by adding
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certain amounts of noises before releasing them. At the heart
of our scheme is a new iterative algorithm that solves the
multi-task learning optimization problem in a distributed and
privacy-preserving way. The iterative algorithm can learn op-
timal personalized models and the relationship between them
simultaneously. Since the algorithm is an iterative process and
would consume the privacy budget at each iteration, we further
use moments accountant to characterize the end-to-end privacy
loss after multiple iterations.

In summary, the main contributions of this paper are as
follows.

o To our knowledge, this is the first work that rigorously
analyzes the personalized federated learning with differ-
ential privacy in a heterogeneous IoT setting.

o We propose a novel differentially private federated learn-
ing scheme for collaboratively training multiple personal-
ized machine learning models from the data stored across
smart devices in IoT.

e We perform rigorous privacy analysis considering the
heterogeneity of the IoT devices and convergence analysis
for our proposed approach.

« We conduct extensive evaluations based on real-world
datasets, verify the effectiveness of the proposed ap-
proach, and observe the trade-off among model accuracy
and privacy empirically.

The rest of the paper is organized as follows: We first
describe the preliminaries in Section II and problem setting
in Section III. Then we develop a distributed learning scheme
to achieve personalized federated learning with differential
privacy guarantee in Section IV. Next, we analyze the conver-
gence rate of the proposed solution in Section V. The privacy
analysis of the proposed solution is provided in Section VI,
and numerical results are provided in Section VII. Finally,
related literature is reviewed in Section VIII, and conclusions
are made in Section IX.

II. PRELIMINARIES

In this section, we first briefly describe the basics of
moments accountant and their properties. The basic idea of
moments accountant is to bound the privacy loss by bounding
the log moment of the privacy loss. For neighboring databases
A and A’, the randomized mechanism M and auxiliary input
au, the privacy loss incurred by observing o is defined as:

P.[M(au, A) = o] )
P M(au, A") = o] )

2(0; M, au, A, A") := log <

Here, we take the privacy loss z(0; M, au, A, A’) as a random
variable because the mechanism M is randomized.

Accordingly, given the randomized mechanism M and
any positive integer -, the y-th moment of the privacy loss
am (y; au, A, A’) is defined as the log of the moment gener-
ating function evaluated at :

pm (s au, A, A =
log Eqaq(a) [exp(v2(0; M, au, A, A'))].

Then, the moments accountant is defined as the upper bound
of um(v; au, A, A’) over all possible auxiliary information au
and neighboring databases A and A’ as

— . .
() - max, pm (s au, A, A')

Two important properties of moments accountant are pro-
vided below, which will be used compute the moments ac-
countant of an adaptive mechanism and convert the moments
accountant into a differential privacy guarantee.

Theorem 1 (Composability [5]). Suppose that an adap-
tive mechanism M. consists of a sequence of randomized
mechanisms(Mq, Mg, - -+, My) where M; takes the dataset
A and the output of M;_1 as its inputs. If the moments
accountant of M; is pm,(y), Vi € [k], then for any positive
integer vy and any output (01, ,0k_1),

k
P (V) = > 1, (),
i=1

where o; for i < k is the output of mechanism M; and
My, () is conditioned on these k — 1 outputs.

Theorem 2 (Tail bound [6]). For any € > 0, mechanism M
is (€, 9)-differentially private for

§ = minexp(ppm(y) = 7e)-

III. PROBLEM SETTING

We consider a federated learning system as shown in
Figure 1. In the system, a group of smart devices (a.k.a., users

/ T\

Device 1

Cloud Server

Device 2 Device m

Figure 1: The overall architecture of federated learning sys-
tems.

or participants) senses the physical world continuously and
stores the collected data in their local databases. Each device
has some embedded computing capabilities capable of training
a local model. A cloud server will coordinate the collaboration
among devices to improve their models from others’ data.
Let m denote the total number of devices in the system,
each needing to learn a personalized model. Each device ¢ has
a local training dataset A; = (X, y:), where the i-th column
of the matrix X; denotes a feature vector Xi € R, and the

2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on August 11,2020 at 22:49:13 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.2991416, IEEE Internet of

Things Journal

i-th element of the vector y; denotes the corresponding label
y! that takes continuous value for regression problems and
categorical value for classification problems. Let n; be the
total number of training samples in device ¢’s database, and
therefore X; € R4*™_ We assume that the feature vector
|Ixi|la < 1 which can be enforced through normalization.
Denote by w; € R? the model parameters of device ¢ and by
W = [wy,..., W] € R¥*™ the collective model parameters
of all devices. We use n := Zle n: to denote the total
number of all data points and represent the overall feature
data matrix as X := diag(Xy,---,X,,) € R™¥" Then
the personalized federated learning can be formulated as the
following multi-task learning problem [7]:

min P(W,Q) ZZ@ (wixi yi) + Atr(WQTWT)
t=1 i=1
st. >0, tr(Q)=1, (1)

where Q2 € R™*™ is the task covariance matrix that models
the relationship between different devices, A > 0 is the
regularization parameter, and ¢;(-) is the convex loss func-
tion corresponding to device t’s learning task. In the above
optimization problem, the first term of the objective function
measures the empirical loss of all training samples, and the
second term measures the learning task relationship between
devices. Note that P(W, Q) is jointly convex with respect to
‘W and 2 under our assumptions as proved in [8].

IV. PRIVACY-PRESERVING DISTRIBUTED FRAMEWORK

In this section, we propose a distributed framework to solve
problem (1) with rigorous privacy guarantee. We first describe
the threat model and design goals and then propose a privacy-
preserving algorithm to solve the problem.

A. Threat Model and Design Goals

We assume the information sent through the network is
well-protected during the transmission and the adversary here
can be the “honest-but-curious” central server or users in the
system. By observing the received updates, it is possible for
the server or malicious users to recover the training data
using model inversion attack [3] or infer whether a sample
is in the training dataset with membership inference attack
[4]. The goal of our design is to ensure that the server or
malicious users cannot learn much additional information of
user samples from the received messages under any auxiliary
information and attack. We design our privacy-preserving
algorithm in the framework of differential privacy (DP) [9].
A differentially private algorithm provides a strong guarantee
that the presence of an individual record in the dataset will not
significantly change the output of the algorithm. Specifically,
we use the notion of (e,d)-DP, which is suitable for the
iterative algorithm due to its composability property.

In this paper, we achieve (¢,0)-DP for each user using
Gaussian mechanism [9], which provides privacy guarantee
through adding Gaussian noise to the uploaded local update.
The size of noise is calibrated by the update’s sensitivity which
captures how much a single individual’s data changes the

3

value of this update in the worst case. Given any function
f : Rl — R with Ly-sensitivity s, the Gaussian mechanism
on fis M(A) := f(A) + N(0,s707), where N(0, s707) is
a normal distribution with mean 0 and standard variance syo.
It has been proved in [9] that the Gaussian mechanism M

achieves (¢, 9)-DP if 0 > 1/2log (1.25/6)/e with € € (0,1).

B. Proposed Privacy-Preserving Scheme

Although it is hard to optimize all the unknown variables
of problem (1) simultaneously, problem (1) can be solved by
an alternating optimization procedure [8] since the objective
is separable with respect to W and €. Specifically, we
alternatively update W with fixed €2 and then update €2 with
fixed W until convergence. In what follows, we present the
details of these two steps.

1) Optimize Q with Fixed W: When W is fixed, the cor-
responding subproblem becomes to minimize the following:

m&n P(Q) = Mr(WQTWT)

(2)
st. Q=0,tr(Q) =1,
which has an analytical solution 2* [8], i.e.,
TxA7V1/2
Q= —(W W) . 3)
w(WTW)172)

We can see that 2* can be computed from the latest W
without requiring any user data, so this step can be preformed
efficiently on the server.

2) Optimize W with Fixed 2: When € is fixed, the
subproblem becomes:
ZZ& wix gD+ tr(WQTWT). 4)

t=1 i=1

min P(W
w
Since the overall dataset {.A4;}7, is distributed across devices,
a distributed and parallel algorlthm without requiring expen-

sive raw data transfer is highly desirable.

Towards that goal, we use the block dual coordinate descent
considering the fact that the dual of P(W) has a better
separability property. By taking the conjugate dual of P(W),
we obtain the following dual problem:

m ne
e

t=1i=1

1 2

mlnD 4)\||X04HQ, (5)
where @ € R™ is a column vector of all dual variables
with the (32'_ 11 n, + 4)-th element o} corresponding to the
training sample (x%,y:), ¢; is the conjugate function of /;,
ie., {;(—«a) = max,{—av — £(v)}, and Q@ := Q @ Lixq €
R™dxmd We assume that £} is convex and differentiable with
|6'(2)| <1 for all .

Due to the convexity of problem (4), we have P(W*) =
D(a*), and hence the optimal primal variables can be derived
from the optimal dual variables as

= —QX 6
w(a) o X e, (6)
where w(a) € R™ is a column vector formed by concate-
nating m blocks of primal variables, with the ¢-th block vector
w; () being the primal variable of device t.
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In the following, we develop an iterative search algorithm
to solve the dual problem (5). Specifically, given the current
solution ¢ and w, we define the following sub-problem for
device t at each iteration:

nt
gl;ngf(Aat;wt,at) = ZE:(—af; — Aal)
‘ i=1

P XA+ DX Aa} ()

where a; € R™ is the ¢-th block vector of « representing
the dual variables of device ¢, Q; € R4¥4 refers to the t-th
diagonal block of €2, and 8 > 0 is the correction parameter.
Note that in the traditional block dual coordinate descent,
each local update minimizes the global objective based on
all updated coordinates. However, in our approach, each local
update minimizes the local objective based on the previous
values of local coordinates, which can be executed in parallel
and decrease the training efficiency. To compensate for such
differences, the correction parameter S needs to be chose
carefully to ensure the sum of the local objectives of all devices
approximately equal to the global objective D.

Algorithm 1 Privacy-Preserving Algorithm

Input: Datasets {A;,t = 1,...,m}, aggregation parameter
¢ € (0,1], correction parameter (3, inner global iteration
number K, and outer global iteration number H.

Initialize: o < 0, w < 0, and 2 < (1/m)L

1: for h=1to H do
22 for k=1to K do

3 for all devices t = 1,--- ,m in parallel do

4 Aai < argming,, Gl (Aay; wy, ap);

5: oy — o + EAay;

6: Aat — Aat + bt;

7 Auy + EXAay + pys

8 return Au; to the server;

9

: end for B
10: update w <~ w + 55 QAu in the server;
11: send the updated block w; back to device t;

12:  end for

1
13:  update Q < _wrw)z

tr(WTW)2)
send the block €2; back to device t;
14: end for

with the most recent W and

Algorithm 1 outlines our privacy-preserving scheme using
Gaussian mechanism. Our algorithm contains two parts: (i)
update W (line 2-12); and (ii) update €2 (line 13). In part
(1), each device first solves its own local subproblem (7) and
uploads its local update Au; to the server. Then the server
concatenates all Au; as Au and updates the global parameters
W, which are sent back to the corresponding device. In part
(i), the server updates €2 using the most recent W and sends
the block result €2, to the corresponding device. This process
iterates multiple rounds until convergence. The noise vectors
b; and p; in line 6 and line 7 are drawn independently from the
Gaussian distributions N0, s30%) and NV(0, s303) and used to
achieve (e, d1)-DP and (e5.02)-DP, respectively. Here, s; and
so represent the Lo-sensitivity of Aay and Auy, respectively.

Note that H is the number of outer global iterations and K is
number of inner global iterations, which should be determined
beforehand.

In this paper, we consider a heterogeneous setting where
devices have different network conditions, computation capa-
bilities and battery capacities. As described in Algorithm 1,
devices need to compute and share their local updates for
many iterations. During this process, devices may drop out
if they run out of their resources (e.g. running out of power
or getting disconnected from the network), which is named
as node dropping. In this case, dropped devices are unable to
share their computation results to the server. Here, we assume
that a device will not always drop out, which means the device
will recover and re-join the training process if it dropped out
before. Besides, at each global iteration (either inner or outer
global iteration), devices perform multiple local iterations in
a given time period before sending their computation results
to the server. However, as devices have different computation
capabilities, they will perform different numbers of local iter-
ations. We name this phenomenon as device variability. In the
following, we provide the rigorous analysis of the convergence
rate and the privacy loss of our algorithm, considering the node
dropping and device variablity.

V. CONVERGENCE ANALYSIS

In this section, we analyze the convergence properties of our
proposed Algorithm 1. Since problem (1) is jointly convex
with respect to W and (2, the alternating optimization is
guaranteed to converge to the optimal solution. As it is easy to
optimize €2 given W, we focus on analyzing the convergence
of updating W in the rest of this section. Following the
discussion of device heterogeneity, we first introduce an ap-
proximation parameter to quantify the quality of each update.

Definition 1 (Quality of Update). At each iteration k, we
define the quality measurement of the solution calculated by
device t to its subproblem as:

k_ G (Dafiwh of) — G (Aagiwi, af)

915 - 9 (8)
G/ (0;wh, af) — G/ (Aaj; wi, af)

where 0F € [0,1] and Ao is the exact minimizer of
Gl (Aak;wk, ak). 0F = 0 refers that the update is the exact
solution, and 0¥ = 1 indicates that the update of model t
makes no progress at iteration k.

According to Definition 1, if a device drops out at iteration
k, then 6) = 1, otherwise 6 € [0,1). Since a device will not
always drop out, we have the probability of node dropping
for any device P(0F = 1) < Pz With 0 < prax < 1. In
addition, due to the device variability, at iteration k, the local
updates of devices will have different qualities. Generally, if a
device has the computation capability to perform more local
iterations, it will achieve higher quality of update. Here, in
Assumption 1, we assume that the update of each device at
each iteration will be more accurate than the previous one
on average, which is a customary assumption for gradient
descent-based algorithms [7].
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Assumption 1. Let 7, = (o*, a*~1 ... al) be a vector of

previous dual variables until iteration k and the expectation
of OF under previous values be ©F = E(0F|T},). We assume
that B(OF | Ty, 0F < 1) < Opax with 0 < Oy < 1.

Based on Assumption 1, we derive Theorem 3 and The-
orem 4 which characterize the convergence of our privacy-
preserving algorithm with respect to smooth and non-smooth
loss functions, respectively. Before that, we first introduce
some lemmas used for both smooth and non-smooth cases.

To make the local dual objective approximate to the global
dual objective with respect to varying Ay, we choose (3 as
follows:

Lemma 1. For any dual variable o« € R"™ and the change of it
Aa = (Aay, - ,Aay,)T, aggregation parameter € € (0,1]
and correction parameter [3, when

2
[ Xelg

f>Emax —————+——
"‘GR”Zt 1 HXtOéng

€))
it holds that
D(a+¢Aa) < (1-)D(a) +£) G/ (Aay; wy, o).
t=1
Proof: The proof is similar to the proof of Lemma 3 in
[10]. [ |
Here we choose 5 = &m to ensure that the inequality

(9) is always satisfied [10]. Next, we show that the expected
objective gap is bounded in Lemma 2 and Lemma 3.

Lemma 2. For the loss function £y with its conjugate function
¢* is convex and |;'| <1 and any s € (0, 1],

E[D(a*) = D(a* +£)  Aaf)|Ti] >
t=1
€1 - ZJt (10)
with
Glab) =300 Yo i (—af) + L(we(e) Xy, u7)
+wi (@) xjof,
L S)s 82
Jp = ATy — o2 = B X (uy — o)1,

where u; = 0l (Wthiv yi) and © = Pmaz+ (1 _pmax)@maw-
Proof: The proof is given in Appendix E. [ ]

Lemma 3. For the loss function £; with its conjugate function
¢* is convex and |;'| <1 and any s € (0, 1],

E[D(a*)=D(a*)|Ti] > (1-£)¢(1-6)sG(a*)+R, (11)
with
0, if Uy is (1/p)-smooth
R :=

G 5)5( 0©)s2L2B > n2,if 4, is L-Lipschitz
Here, G(a¥) = D(a”) — (—P(W(a¥))) and © = pras +
(1 _pmaI)Gmax-

Proof: The proof is given in Appendix F. ]

5

A. Convergence rate of smooth cases

Based on above lemmas, we obtain the convergence rate of
our privacy-preserving algorithm for smooth loss functions in
Theorem 3.

Theorem 3 (Convergence rate for smooth losses). Assume
the loss function ¢; is (1/p)-smooth such that €5 is p-strongly
convex and |0}'(2)| < 1 for all z. Under Assumption I, there
exist a constant s € (0,1) such that

1 n
“ U1 -o)s <€G) (12

will satisfy that E[D(a®) —D(a

(]- - pmax)@mar-

Proof: We first define the duality gap as G(a) = D(a) —
(=P(W(a))), and for each sub-problem (7), we choose
the correction parameter 5 and the aggregation parameter &
according to Lemma 1. To prove Theorem 3 and 4, we first
show that E[D(a*) — D(a**1)|Z;] has a lower bound in
Lemma 3 since

*) < eg. Here, © := ppaz+

E[D(a"™) — D(a*)|Ti] = D(a*) — D(a”)
— E[D(a*) — D(ath)|Z;].  (13)
Now we derive the upper bound of E[D(a**1)—D(a*)|Z4]

based on above theorems and Equation (13). Following proof
is similar to the proof of Theorem 1 in [7]. Since

E[D(a"*!) - D(e")|Ti]
< D(at) - D(a’) - (1 - §)&(1 - B)sGla) - R
< (1-(1-8E(1~0)s)(D(ef) ~D(a*)) — R, (14)
by recursively applying above inequality, we arrive at
a1t — D(a* — R —
B DT < ~ e e,
+((1 - (1-€¢1-0)s)"H(D(a’) - D(e")). (15)

If the loss function ¢; is (1/4)-smooth, R = 0 by Lemma 3.
Therefore if we denote by €f, = D(a*) —D(a*) we have that

Ele6|Ti] < (1 (1= €)E(1 - ©)s)) ety

<nexp—k(1—£)E(1 - 0)s. (16)

Here we have (D(a’) — D(a*)) < n by Lemma 10 in [11].
Then, the right hand side will be smaller than some eq if

b2 e (%)

Now Theorem 3 follows. |

7)

B. Convergence rate of non-smooth cases

Here, we derive the convergence rate of our privacy-
preserving algorithm for non-smooth loss functions in The-
orem 4.
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Theorem 4 (Convergence rate for non-smooth losses). Assume
the loss function 0y is L-Lipschitz. Under Assumption 1 when

1 2mL? > n?
K > Ko+ {(1 —H(1-0) max (1, EY )-‘,
2 4mL? Yy n?
Fo=hot {(1_5)(1_@)( AnZe ”ﬂ’

ko > max (0’ [(1 —&)(1-0)log (BPlo) D(a*))b’

mL2>" n? /2 n?
it holds that E(D(&) — D(a*)) < eg at the averaged
iterate o = K%KO Zkl,{:KoH af. Here, © = pyas + (1 —
pmaaz)e)maa:'

Proof: The proof of Theorem 4 is similar to the proof
of Theorem 3. According to Lemma 2 and Lemma 3, when

the loss function ¢; is L-Lipschitz, we follow the derivation
of Lemma Theorem 9 in [11] and finally obtain that when

K> Ko+ { 2L75 3y w
A(1=&)(1 — O)neq

2 AL2BY n?
Ko > ko + [(1 “ o _@)( pve 1)—‘,
a®) — D(a*
to 2 mas (0, (1 - 961 - ) 1og TEATIN ),

it holds that E(D(@) — D(a*)) < ep at the averaged
iterate &@ = L= Y g, ,; @, Then Theorem 4 follows
by plugging in parameters 3 > mé. ]

VI. PRIVACY ANALYSIS

In this section, we rigorously analyze the end-to-end privacy
guarantee of our personalized federated learning scheme. For a
mechanism that achieves (¢, d)-DP, the corresponding privacy
loss will be bounded by e with probability at least 1 — .
The composability property of differential privacy enables us
to account the privacy loss for each access to the training
data and accumulate this cost for the whole training process.
Recently, some advanced composition theorems ([6], [9], [12]-
[14]) have been proposed to achieve tighter analysis of the
privacy loss for multiple iterations.

Assume that each iteration of Algorithm 1 is (e,0)-
differentially private. When using the composability property,
Algorithm 1 is (K¢, K ¢)-differential private after K iterations.
However, by the strong composition theorem presented in [12]
and [13], Algorithm 1 will be (e+/K log 1/§, K0)-differential
private, and this bound can be further tightened by combin-
ing with the privacy amplification theorem proposed in [14]
which makes the composed mechanism to be (O(ge), O(gd))-
differentially private if the training data at each iteration is
a random sample from the dataset with sampling probability
q. Recently, a stronger method known as moments accountant
has been proposed in [6], which saves a 4/log 1/ factor of
the € part and K¢ factor of the § part. In the following, we
analyze the privacy loss of our algorithm using the moments
accountant.

The application of moments accountant to our proposed
scheme is not straightforward. Due to the device variability,

6

some devices will run more local iterations (where data is ran-
domly sampled to perform updating at each local iteration) so
that more data are accessed at a global iteration, and thus more
privacy is leaked. Besides, due to the node dropping, dropped
devices are unable to upload their computation results to the
server at a certain global iteration and thus no privacy loss
occurred at that global iteration. In order to count the overall
privacy loss, we let ¢ denote the data sampling probability at
each global iteration, which captures the sampling probability
of data after multiple local iterations for each device. Then
we let p denote the node active probability which equals to
1 — P(9F = 1) where P(#F = 1) represents the probability
of node dropping. We first account the privacy loss incurred
at each global iteration. Before that, we analyze the Lo-
sensitivity of Ay and Au, that calibrate the size of Gaussian
noises added to them. To calculate the sensitivities, we first
show that the local objective is strongly convex.

Corollary 1. If (* is convex and differentiable with |(*'(z)| <
1 for all z, then function argminp,, Gl (Aay, A) is S
strongly convex.

2X

Proof: The proof is given in Appendix A. [ ]

Based on Corollary 1, we can estimate the Lo-sensitivity

of Aay; and Auy, whose values are given in Corollary 2 and
Corollary 3, respectively.

Corollary 2. If (* is convex and differentiable with |¢*'(z)| <
1 for all z, the La-sensitivity of argminp,, Qtﬂ(Aat; Wi, Otp)
is at most ﬂiu (8A + ).

Proof: The proof is given in Appendix B. [ ]

Corollary 3. When Aoy is known, the Lo-sensitivity of Auy
is at most 2&||Aat]|2.

Proof: The proof is given in Appendix C. [ ]
Next, using the results in Corollary 2 and Corollary 3, we
account the privacy loss incurred at each global iteration in
Lemma 4. First, we obtain the moments accountant of each
global iteration of Algorithm 1, as given in Corollary 4.

Corollary 4. If 01 > 1 and the data sampling probability
qg< ﬁ. Then, for any integer v € (0,07 In m%) each global
iteration of Algorithm 1 satisfies

1 +1) @+ 3.3/ 3
< (0] .
KM .o (,Y) = 20_% (1 7 q)o_% + (q Y /01)
Proof: The proof is given in Appendix D. [ ]

Lemma 4 (Per-iteration privacy loss). Assume s1 and so are
the sensitivity of Aoy and Auy respectively, 61 = 6 = 0 €
(0,1), and €1, €2 € (0,1). Given the data sampling probability
q, Algorithm 1 is (\/q?€? + €3,0)-DP for device t at each

global iteration if
@/QIH% ,/2lnl‘525
012 ———, 022 ———.
€1

€2
Proof: We compute the moments accountant of each
iteration of our algorithm according to the definitions and
then obtain the moments accountant for the whole algorithm
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by Theorem 1. Finally, we can derive the privacy guarantee
of our algorithm by converting the moments accountant to a
(¢, 0)-differentially privacy guarantee according to Theorem 2.

By Corollary 4, we have the moments accountant of iter-
ation k that is pa, (7) < qi—f + Z—g By Theorem 2, we
can convert paq, () into the differentially privacy guarantee
of each global iteration of our algorithm. Then, we have
following optimization problem to be solved.

log 6 = min(¢*?/of +~% /a5 — ve)
i

1
subject to v < o log(—), ~€ZT,
qo1
< > 1.
q= 160’17 o1 =

Given fixed o; and o and 6, if we could find some values of
€ >0, ¢g € (0,1) and a positive integer -y so that
¢ 1
(=5 + —5)7* < cove and logd > (co — 1)7e,
01 03
each iteration of Algorithm 1 can be (e, d)-differentially pri-
vate. The above two inequalities are equivalent to

log1/4 Co€
e(l —co) — % + ?1%
We can see that the positive integer ~y exists if 160(%(_1(/: g)) <

which is equivalent to the following condition

2 > 10g(1/0)(¢*/ot +1/03)
- 60(1 760) ’

It is easy to verify that there exists a constant c¢; such that
e = ¢ log(1/8)(¢*/o? +1/52).

Corollary 4 follows by plugging o1 = /21n (1.25/6) /€1 and
02 = +/21In(1.25/6) /€2 into above equality. [ |

Now, we account the privacy loss of the whole algorithm
given the node active probability p. We give the conclusion in
Theorem 5 in terms of a privacy guarantee for Algorithm 1,
which helps us to allocate the Gaussian noise directly.

Co€
@*/oi+1/03"

Theorem 5 (End-to-end privacy loss). There exist constants
c1 and cy so that given the node active probability p and the
number of global iteration K, for any € < c1p*K, Algorithm
1 is (e, 6)-differential private for any 6 > 0 if we choose

C2p\/(q2 +7r2)Klog (1/9)

2 2)K log (1
ooz o @ TP TE U]
€

o1 >

where the parameter 1 refers to the ratio of privacy budgets
at step 6 and step 7, i.e. e = re; with r > 0.

Proof: Assume each iteration of Algorithm 1 is (e, 0)-
differentially private, and the iteration number is K. Given
the node active probability p, we have that Algorithm 1 is
(epV'K , §)-differentially private using the moments accoun-
tant. Then the result follows by an application of Lemma 4
with €5 being represented by e; = re;. [ |

7

VII. EVALUATION

In this section, we evaluate our approach against device
heterogeneity and different privacy budgets. We first show
the convergence properties of our approach, and then study
the impact of device heterogeneity and the trade-off between
accuracy and privacy.

A. Experimental Setting

We evaluate our approach on the HAR dataset (Human
Activity Recognition Using Smartphones Data Set) [15]. It
is collected by monitoring six different activities (walking,
walking upstairs, walking downstairs, sitting, standing and lay-
ing) of 30 individuals, using the accelerometer and gyroscope
embedded in the mobile phone. The dataset includes 10299
instances in total with 561 features, and 210-306 instances per
individual. All data is normalized locally by l5-normalization.
We train models for each individual and predict between sitting
and other activities using 75% of the data for training and 25%
for testing.

We use the hinge loss £(u) = max(0,1 — yu) as the loss
function. It is L-Lipschitz, and its dual is £*(—a) = —ay with
ay € [0,1]. We use the Stochastic Dual Coordinate Ascent
(SDCA) as the local solver which selects one coordinate to
update randomly at each iteration [16]. Since SDCA samples
the data point with probability 1/n, at each iteration, the data
sampling probability ¢ is njzer/ne Where njie, is the local
iteration number of device ¢. The node active probability p =
1 — P(0% = 1) where P(0¥ = 1) is the probability of node
dropping of device ¢ at global iteration k.

We evaluate our approach in both homogeneous and hetero-
geneous scenarios. In the homogeneous scenario, the server
waits for all devices to upload their updates at each time, and
no device will drop out during the process. In the heteroge-
neous scenario, all devices have to upload their updates in a
fixed global clock cycle at each time, and each device will
drop out with a certain probability P(6F = 1). We simulate
the device variability via varying the local iteration numbers of
each device. We use 7 € [0, 1] to measure the device variability
level. The local iteration numbers of devices are uniformly
distributed between (1 — 7)npin and ny,i, where ny,y, is the
minimum number of local data points across devices. Besides,
in each scenario, we compare our approach with the baseline
approach, i.e., the non-private personalized federated learning
scheme, where no noise is added to the updates.

For each experiment, the number of inner global iterations
K is set as 2000 and the number of outer global iterations
H is set as 10. Besides, we use a 5-fold cross-validation to
choose the best hyperparameters A and . We train and test
all models for 10 times and report the average results.

B. Numerical Results

1) Convergence Properties of Our Approach: We evaluate
the convergence properties of our approach in both the ho-
mogeneous and heterogeneous scenarios considering device
variability and node dropping. In our approach, we achieve
(e, 0)-differential privacy for each user using Algorithm 1.
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Figure 2: Convergence properties of our approach: (a) homogeneous setting; (b) heterogeneous setting with device variability
(1 = 0.5); and (c) heterogeneous setting with device variability (7 = 0.5) and node dropping (P(f¥ = 1) = 0.2).

Specifically, we set ¢ = 8 and § = 10~ and calculate the
privacy budget of each global iteration € for each experiment.

We first compare the learning progress of our approach with
the baseline approach (i.e., the non-private personalized feder-
ated learning scheme) under homogeneous and heterogeneous
scenarios as shown in Figure 2. Specifically, Figure 2a shows
the change of the primal objective value with respect to the
overall running time (which is proportional to the iteration
number) in the homogeneous scenario. We can observe that
our approach will converge quickly. However, due to the
addition of random noise at each iteration in our approach,
it will only converge to a suboptimal value compared with
the non-private approach, which matches the intuition that
differential privacy guarantee comes with a utility loss. Similar
results are observed under the heterogeneous scenarios, which
are shown in Figure 2b (with device variability) and Figure 2c
(with both device variability and dropping).
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Figure 3: Impact of device variability.

2) Impact of Device Heterogeneity: In this set of experi-
ments, we evaluate the test error rate of the learned models
in our approach under different device heterogeneity settings.
We first study the impact of device variability by measuring
the test error rate with respect to different variability levels of
devices 7 as shown in Figure 3. As we can observe from
the figure, our approach is robust to the device variability
and the error rate of the learned model is almost stable even
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Figure 4: Impact of the drop-out of devices during the training.

when the variability level increases. In comparison, the non-
private baseline approach will be affected more by the device
variability. The reason is that in our approach, the randomness
introduced by the device variability reduces the size of noises
and thus eliminates the impact of privacy on the accuracy.

Then, we study the impact of node dropping by assigning
the probability P(#F = 1) to be a random number within [0, 1]
as shown in Figure 4. The results show that the error rate of
the learned models in our approach first decreases to 0.097
when P(AF = 1) = 0.2 and then increases as more nodes
start to drop out. In our approach, the randomness introduced
by the node dropping reduces the size of noises which means
the test error rate will decrease. According to the test error rate
of the baseline approach, the test error rate increases as the
probability of node dropping increases. Thus, there exists an
optimal point, i.e., when P(#F = 1) = 0.2, which generates
the minimum test error rate. We can see that node dropping
does not always make things worse but brings us benefits
sometimes. Therefore, sometimes extra dropping of updates
will be needed in order to achieve better accuracy of models
while preserving the privacy.

3) Trade-off between Accuracy and Privacy: In the last set
of experiments, we measure the error rate of learned models
corresponding to different privacy budgets, and in each case
we set 7 = 1 and P(6F = 1) as the optimal probability that
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Figure 5: Trade-off between accuracy and privacy.

minimizes the error rate. Here the privacy budget € indicates
the overall end-to-end privacy loss for one user and smaller ¢
implies higher privacy. As shown in Figure 5, by increasing the
value of € from 0.01 to 100 with § = 1073, the corresponding
test error rate keeps decreasing, matching the intuition that
higher privacy corresponds to lower utility.

VIII. RELATED WORK

Federated learning uses multiple devices to collaboratively
train a shared model in an iterative manner while keeping all
the data on devices. Specifically, all devices update a model
downloaded from a central server independently using their
own data and then upload the updates to the server to improve
the shared model. Most of the work in federated learning has
focused on the consensus problems [1], [2], [17]-[22] which
are aimed to learn one global model distributedly. In contrast,
we tackle the case where multiple personalized models are
trained collaboratively based on relationships among all par-
ticipants, which is known as multi-task learning.

Multi-task learning can be generally categorized into two
categories based on how they capture relationships amongst
tasks. The first category (e.g., [7], [8], [23], [24]) assumes
that the relationships are not known beforehand and can be
learned from the datasets of tasks. On the other hand, the
second category (e.g., [25], [26]) assumes that a clustered,
sparse, or low-rank structure between the tasks is known a
priori. In this paper, we focus on the first category, which is
more general and the relationships amongst tasks may not be
known beforehand in practice. Moreover, different from the
traditional multi-task learning approaches where all learning
tasks are performed on a single machine, we consider a
federated learning setting where learning tasks are performed
on different edge devices and a cloud server will coordinate
the learning process. Since devices are heterogeneous in
practice, the training process becomes much more complex
and challenging. Besides, some works recently studied the
problem of collaborative learning of personalized models,
however, they did not address any privacy issue [7], [24], [27].
Although some private and personalized learning scheme with
a fully decentralized architecture like [28] has been proposed,
the architecture with central servers will be more efficient

especially for applications that are large-scale and require high
system agility. Moreover, they did not consider the device
heterogeneity in the real world.

For a distributed system coordinated by a central server,
privacy issue arises when an ‘“honest-but-curious” server or
device has access to the data or models. There exist several
kinds of attacks in addition to the direct access of raw
data: reconstruction attacks which recover training data from
learned knowledge [3], model inversion attacks which create
adversarial example that resemble those used to create the
model based on the responses received from that model [29],
and membership inference attacks which determine if the
sample was a member of the training set through querying
the model [4].

Differential privacy [9] is especially effective in preventing
membership inference attacks and reconstruction attacks. The
differentially private approaches in machine learning can be
categorize according to the object it perturbs: one is to directly
add noises to the training data [30], another is to add noises
to output of training at each iteration or at the end [6]. But
many of these approaches are not designed for a distributed
system where data are stored on local devices. Therefore,
these privacy guarantees are achieved for the whole dataset
without including the personalized privacy concern. In this
paper, we make our distributed personalized learning process
to be differentially private by perturbing the output of training
at each iteration and achieve personalized differential privacy
for each user under the consideration of device heterogeneity
in the real world.

IX. CONCLUSION

In this paper, we have studied the problem of learning
multiple personalized classifiers collaboratively in a privacy-
preserving manner. We have considered privacy in the (¢, ¢)-
differential privacy model and provided a privacy-preserving
algorithms for the personalized federated learning. We bound
the privacy loss by exploiting the existing system uncertainty
caused by the device heterogeneity. The proposed approach is
robust to device heterogeneity and the perturbation of noises.
We have evaluated our approach on real mobile sensing data,
showing the impact of device heterogeneity and the trade-off
between privacy and accuracy.
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