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Abstract. While embracing various machine learning techniques to
make effective decisions in the big data era, preserving the privacy of
sensitive data poses significant challenges. In this paper, we develop
a privacy-preserving distributed machine learning algorithm to address
this issue. Given the assumption that each data provider owns a dataset
with different sample size, our goal is to learn a common classifier over
the union of all the local datasets in a distributed way without leaking
any sensitive information of the data samples. Such an algorithm needs to
jointly consider efficient distributed learning and effective privacy preser-
vation. In the proposed algorithm, we extend stochastic alternating direc-
tion method of multipliers (ADMM) in a distributed setting to do dis-
tributed learning. For preserving privacy during the iterative process,
we combine differential privacy and stochastic ADMM together. In par-
ticular, we propose a novel stochastic ADMM based privacy-preserving
distributed machine learning (PS-ADMM) algorithm by perturbing the
updating gradients, that provide differential privacy guarantee and have
a low computational cost. We theoretically demonstrate the convergence
rate and utility bound of our proposed PS-ADMM under strongly convex
objective. Through our experiments performed on real-world datasets, we
show that PS-ADMM outperforms other differentially private ADMM
algorithms under the same differential privacy guarantee.
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1 Introduction

Recently, with rapid advances in sensing technologies, we are witnessing a deluge
of data [20,21]. Statistical analysis of this data has paved the way for the
development of machine learning that brings valuable benefits to society, such as
more intelligent autopilot technology and higher medical quality, among others.
The enormous data generated from such various applications is scattered around
different places, and it increasingly becomes difficult for a single machine to
process such giant data. Hence, the centralized model can no longer efficiently
process this data [2,3]. Apart from the limitations on processing, this data draws
detailed pictures of people’s lives and involves highly sensitive information. So the
data owners might be reluctant to share their data for analysis. Therefore, with
the rise in the volume of data being generated, there is a critical need of privacy-
preserving machine learning algorithms that can both cater the processing and
privacy needs.

To address the above issues, we develop a privacy-preserving machine learn-
ing algorithm that processes data in a distributed manner while providing pri-
vacy guarantee for each training sample. One of the promise applications is the
health domain. For example, in health monitoring applications multiple hospitals
collaborate to provide constructive diagnosis to the patients. Hospitals have a
large number of cases, and the data analysis of these cases helps doctors to make
an accurate diagnosis and offer early treatment plans. Thus, multiple hospitals
could collaboratively train a classifier through a central server that can help in
prognosis and diagnosing diseases early. However, such medical cases may con-
tains sensitive information about the patients and each hospital cannot share
its patients’ cases with other hospitals. Hence, the key challenge is to effectively
conduct medical research while preserving the privacy of the patients in the anal-
ysis. Concisely, this problem is a distributed machine learning problem where
data is collected from multiple data providers and each data sample’s privacy
needs to be guaranteed during the optimization.

One of the promising solutions for such distributed machine learning prob-
lems is alternating direction method of multipliers (ADMM) [4,14,15]. ADMM
enables distributed learning by decomposing a large-scale optimization into
smaller subproblems and each subproblem is easy to solve in a distributed and
parallel way. Each data provider uses its own private data to train a local classi-
fier and the central server averages all of the local classifiers and broadcasts the
result to the data providers. These steps iterate several times until the server and
users have a high-performance model. Through this decomposition and coordi-
nation procedure of ADMM, the distributed learning problem achieves effective
results. However, when both the number of features and the size of dataset are
large, the computational burden of using ADMM is heavy [17]. Recently Zhang
et al. propose a novel ADMM algorithm called SCAS-ADMM, which achieves
lower computational burden by employing stochastic variance reduced gradient
(SVRG) [13] as an inexact solver for subproblems. Zhang et al. considered the
SCAS-ADMM in the centralized scenario [23]. We investigate on the SCAS-
ADMM in distributed machine learning scenario to obtain a low computational
cost per iteration, without compromising the privacy of data samples.
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Beyond effectively solving the distributed machine learning problem, the data
privacy is the critical concern in such analyses since the private information per-
taining to the datasets should not to be shared and kept private. But the privacy
concerns are still inherent during the communication between the data providers
and the central server. As each data provider needs to share the local model
trained over the sensitive raw data at each iteration, an adversary could infer
the sensitive information from the shared model as described in [8]. Therefore,
we use differential privacy [6,7], a de facto notion for privacy that offers strong
privacy guarantees, to tackle the privacy concerns and protect disclosed privacy
from the model parameters during the iterative procedure. Differential privacy
guarantees privacy by measuring the change in the outcome of the algorithm
as the presence or absence of a single data entry in the original dataset does
not explicitly change the outcome. In this work we investigate on collectively
considering differential privacy and distributed machine learning to get effective
results in the analysis, with low computation burden and without compromising
the privacy of the data owners. In the existing literature, there are some research
efforts integrating ADMM into private distributed learning. Zhang et al. devel-
oped a dual perturbation based on ADMM [22], in which they add noise to the
dual variables of decentralized ADMM and only provide privacy guarantee of a
single data provider per iteration, but their decentralized algorithm needs robust
network topology and does not guarantee utility and privacy when considering
all nodes during the whole training procedure. Guo et al. proposed another app-
roach for preserving privacy in ADMM in [10], which incorporate secure compu-
tation and distributed noise generation in the asynchronous ADMM algorithm.
Though privacy during communication can be preserved, their scheme suffers
from poor communication and computation costs because of the encryption and
decryption over huge datasets.

To address these challenges, we propose a novel stochastic ADMM based
privacy-preserving distributed machine learning (PS-ADMM) algorithm in this
paper, which jointly considers the distributed learning setting and differential
privacy. In PS-ADMM, we employ differential privacy to stochastic ADMM algo-
rithm with the objective of protecting the privacy of data samples and achieving
distributed learning over multiple data providers. Different from the approach
proposed in [22], we propose to extend the stochastic ADMM in a distributed
setting to deal with the computational burden of local computation at each data
provider, and add differential privacy based noise to the updating gradients dur-
ing local computation procedure. We utilize the moments accountant method
[1] to analyze the privacy guarantee of PS-ADMM, and we also provide the con-
vergence rate and utility bound of PS-ADMM. The major contributions of this
paper are listed as follows.

– We design a novel stochastic ADMM based privacy-preserving distributed
machine learning algorithm called PS-ADMM, where we investigate the
SCAS-ADMM algorithm in a distributed setting and perturb the gradient
updates with Gaussian noise to further improve the computational efficiency
and provide differential privacy guarantee.
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– Compared to the existing research in [22] that only considers privacy guar-
antee at each iteration, we consider the entire iterative procedure and adopt
moments accountant method to provide a tighter differential privacy guaran-
tee for PS-ADMM.

– We theoretically analyze and prove the convergence and utility bound of the
proposed algorithm PS-ADMM.

– We show that the proposed PS-ADMM outperforms other differentially pri-
vate ADMM algorithms under the same differential privacy guarantee by
conducting PS-ADMM over real-world data.

The remainder of this paper is organized as follows. Section 2 presents the
problem statement, preliminaries and associated privacy concerns. We propose
our differentially private algorithm PS-ADMM in Sect. 3. This is followed by
our theoretical analysis of convergence and utility bound in Sect. 4. Detailed
simulations and comparisons are presented in Sect. 5. Section 6 concludes the
whole paper.

2 Problem Statement and Preliminaries

In this section, we describe the problem statement in Sect. 2.1, introduce the
preliminaries of ADMM and differential privacy in Sect. 2.2. The overview of the
distributed SCAS-ADMM algorithm is presented in Sect. 2.3 and the privacy
concerns of the distributed ADMM based solution are presented in Sect. 2.4.

2.1 Problem Statement

Fig. 1. System architecture

As shown in Fig. 1, we consider a star network topology consisting of a set
of data providers N = {1, · · · , N} and a central server, where multiple data
providers have the ability to communicate with the server and the server is
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responsible for aggregation and message passing. Here, each data provider pos-
sesses a private dataset Di = {(aim, yim)}M

m=1 consisting of feature vector aim

from a data universe X , and yim ∈ Y that is a label we aim to predict from aim.
The objective of our problem is to build a classifier over the aggregated sensitive
dataset ∪i∈N {Di} from data providers through a distributed manner, where the
classifier can be obtained by minimizing a regularized empirical risk minimiza-
tion problem (ERM) [9]. The regularized empirical risk minimization problem is
to learn a classifier x over a convex set C ⊆ R

p, which can be formulated as

min
x∈C

N∑

i=1

1
M

M∑

m=1

lim[x, (aim, yim)] + g(x), (1)

where lim(·) : X ×Y ×C → R is a loss function of provider i for each data sample
(aim, yim) and g(x) is a convex regularizer to prevent overfitting. In this paper,
we assume the loss function lim(·) is convex, G-Lipschitz and has Lm-Lipschitz
continuous gradient. Note that our algorithm is not limited to the classification
problem since the convergence and privacy analysis are still valid.

The above ERM problem (1) can be minimized by ADMM, which is a prac-
tical distributed scheme that can be applied to large-scale machine learning
algorithms. Since the goal is to build a classifier with sensitive data, privacy
concerns inherent in the training procedure need to be addressed while solving
the ERM problem.

2.2 Preliminaries

Distributed Machine Learning with ADMM. In order to solve the problem
in (1) with ADMM method [4], the ERM problem in (1) can be reformulated as
consensus formulation [18] by introducing a global variable z ∈ R

p as

min
xi,z∈C

i=1,...,N

N∑

i=1

fi(xi) + g(z) (2)

s.t. xi − z = 0, ∀i = 1, ..., N. (3)

In (2), fi(xi) = 1
M

∑M
m=1 lim[xi, (aim, yim)] is the i-th data provider’s loss func-

tion due to dataset Di, and xi is the local classifier of the i-th data provider.
Since the objective function in (2) is already decoupled, each data provider only
needs to optimize a subproblem, i.e., empirical risk minimization problem over
its local dataset. The constraints (3) enforce that all the local classifiers reach
consensus finally. Apparently, the problem above is equivalent to the problem
in (1).
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Let λ ∈ R
p denote the Lagrange dual variable, and ρ > 0 be a pre-defined

penalty parameter. The standard ADMM consists of the following iterations

xk+1
i = arg min

xi

fi(xi) + (xi − zk)T λk
i +

ρ

2
‖xi − zk‖2, (4)

zk+1 = arg min
z

g(z) +
N∑

i=1

(−zT λk
i +

ρ

2
‖xk+1

i − z‖2), (5)

λk+1
i = λk

i + ρ(xk+1
i − zk+1), (6)

where ‖ · ‖ denotes l2 norm.
The entire procedure illustrates the exchange of information between data

providers and the central server. It is obvious that the classifier xk+1
i can be

locally updated for each party. This is because the whole problem has been
divided into N subproblems which can be solved in parallel. Each party broad-
casts xk+1

i it owns to the central server. Then, the central server solves subprob-
lems (5) and (6) and gets zk+1 and then dual variable λk+1

i . Finally, the optimal
parameter can be obtained after several iterations.

Differential Privacy. Differential privacy [7] is a widely-adopted privacy
notion, which can be used to quantify the privacy risk of each individual record
in a dataset. Mathematically, differential privacy is defined as follows

Definition 1. A randomized algorithm A is (ε, δ)-differentially private if for all
datasets D,D′ ∈ D that differ in a single element and for all s ∈ Ω, where Ω is
the output space of A, we have

Pr(A(D) = s) ≤ eεPr(A(D′) = s) + δ.

Differential privacy concentrates on the output distribution of a mechanism when
there exists the participation of an individual. Smaller values of ε mean stronger
privacy guarantees of A. The most common mechanism for achieving differential
privacy is Gaussian Mechanism [6].

Definition 2. Consider a function q : D → Rp whose l2-sensitivity is Δ2(q) =
supD∼D′‖q(D) − q(D′)‖. The Gaussian Mechanism is defined as: M(D, q, ε) =
q(D) + N (0, σ2Ip) where N (0, σ2Ip) is a zero mean isotropic Gaussian Dis-

tribution with σ ≥
√

2 ln(1.25/δ)Δ2(q)

ε . Then, the Gaussian mechanism preserves
(ε, δ)-differential privacy.

2.3 Distributed Stochastic ADMM

Traditional ADMM [4,22] is quite computationally expensive when we have large
size of the dataset, since solving subproblem (4) needs to visit all the M data
points at each iteration. In this paper, we extend the stochastic ADMM (SCAS-
ADMM [23]) into a distributed setting to highly reduce the computation cost.
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Algorithm 1. Distributed Stochastic ADMM
1: Algorithm of the i-th data provider:

2: Input: Dataset Di = {(aim, yim)}M
m=1, initialize x0

i for all agents i, ζ = 2η −
4η

1−2ηvL
, ξ = 4η

1−2ηvL
.

3: for k = 0, 1, · · · , K − 1 do
4: Compute ûi = ∇fi(x

k
i ) = 1

M

∑M
m=1 ∇lim(xk

i );

ṽi = xk
i ;

v0
i = ṽi;

5: for s = 1, · · · , S − 1 do
6: Randomly pick a data point (aims , yims) ∈ Di;
7: gs

i = ∇lims(vs
i ) − ∇lims(ṽi) + ûi + λk

i + ρ(vs
i − zk)

8: vs+1
i = vs

i − ηgs
i ;

9: v̂s+1
i =

ζv s
i +ξv s+1

i
2η

;
10: end for
11: xk+1

i = 1
s

∑S−1
s=0 v̂s+1

i ;

12: Send xk+1
i to the central server;

13: end for
14: Algorithm of the central server:

15: Initialize z0, λ0
i and broadcast them to the providers;

16: for k = 0, 1, · · · , K − 1 do
17: zk+1 = arg minz g(z) +

∑N
i=1(−zT λk

i + ρ
2
‖xk+1

i − z‖2);

18: λk+1
i = λk

i + ρ(xk+1
i − zk+1);

19: end for
20: Output: {xK

i }N
i=1, zK ;

Since distributed SCAS-ADMM just needs to utilize several data points at each
iteration to achieve distributed learning, it is quite computation efficient1.

Before stating the details of distributed stochastic ADMM, we first define
the following functions

Li(xi) = fi(xi) + g(zk) + (xi − zk)T λk
i +

ρ

2
‖xi − zk‖2,

L̂im(xi) = lim(xi) + g(zk) + (xi − zk)T λk
i +

ρ

2
‖xi − zk‖2.

The following Lemma shows the convexity of above functions.

Lemma 1. If fi(·) is μf -strongly convex, and lim(·) is convex, G-Lipschitz and
has Lm-Lipschitz continuous gradient, then we have fi(x) is vf -smooth, where
vf = maxm Lm, and Li(x) is both vL-smooth and μL-strongly convex. Moreover,
L̂im(xi) is vL-smooth.

Proof. See Appendix A.1.

The details of distributed stochastic ADMM are summarized in Algorithm
1. To be specific, after receiving updated variable zk and λk

i from the server,

1 The specific results of computation cost and memory cost refer to [23].
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each data provider updates its local variable xk+1
i at iteration k by optimizing

subproblem (4) through the SVRG method [13]. At the beginning of each iter-
ation k, the gradient ûi = ∇fi(xk

i ) = 1
M

∑M
m=1 ∇lim(xk

i ) is computed using a
past parameter estimate xk

i . For each inner iteration s, the approximate gra-
dient gs

i = ∇lims(vs
i ) − ∇lims(ṽi) + ûi + λk

i + ρ(vs
i − zk) is used to itera-

tively update vs+1
i with a step size η. And then, we adopt the convex combi-

nation to improve the convergence rate. Hence, the subproblem (4) reduces to
xk+1

i = 1
s

∑S−1
s=0 v̂s+1

i . Then, all the data providers broadcast their xk+1
i to the

central server which computes zk+1 and λk+1
i . The whole procedure ends when

the number of iterations exceeds a maximum value K. However, while there
is no direct exchange of data among data providers, the sequence of iterations
broadcasted by a provider may reveal sensitive information through the output
of the local learning.

2.4 Privacy Concerns

In our problem setting, there is no need to send the dataset stored at each data
provider to the central server directly, while the risk of information leakage still
exists. We assume that an adversary can eavesdrop all communications between
data providers and the server. In some cases, the adversary using model inversion
attack [8] may be able to obtain sensitive information about the private data
points of the training dataset by observing the local learning parameter from the
provider at iteration k and the final output model parameters of the distributed
algorithm. To mitigate this risk, we develop a differentially private algorithm
that provides differential privacy for all of the intermediate parameters. If the
adversary collects all the intermediate computational results of a provider during
communications with the server and the final output of the algorithm, the privacy
of local data points at each data provider is still protected.

3 Distributed Stochastic ADMM with Differential
Privacy

In this section, we propose our novel algorithm PS-ADMM, which integrates
differential privacy into distributed stochastic ADMM. In order to provide dif-
ferential privacy in distributed stochastic ADMM algorithm, we use the noisy
gradient that adds Gaussian noise to the gradient updates of subproblem (4). To
analyze the privacy guarantee of PS-ADMM, we consider the moments accoun-
tant method [1] of computing privacy loss during a iterative process, which is
shown in Theorem 1.

Theorem 1. There exist constants c1 and c2 such that given the sampling prob-
ability q = l/M and the number of steps K, for any ε < c1q

2K and for the
G-Lipschitz loss function, a differentially private stochastic gradient algorithm
with batch size l that injects Gaussian Noise with standard deviation Gσ to the
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Algorithm 2. Differentially Private Stochastic ADMM (PS-ADMM)
1: Algorithm of the i-th data provider:

2: Input: Dataset Di = {(aim, yim)}M
m=1, initialize x0

i for all agents i, ζ = 2η −
4η

1−2ηvL
, ξ = 4η

1−2ηvL
.

3: for k = 0, 1, · · · , K − 1 do
4: Compute ûi = ∇fi(x

k
i ) = 1

M

∑M
m=1 ∇lim(xk

i );

ṽi = xk
i ;

v0
i = ṽi;

5: for s = 1, · · · , S − 1 do
6: Generate Gaussian noise: θs

k ∼ N (0, (σ2)s
kIp);

7: Randomly pick a data point (aims , yims) ∈ Di;
8: gs

i = ∇lims(vs
i ) − ∇lims(ṽi) + ûi + λk

i + ρ(vs
i − zk) + θs

k

9: vs+1
i = vs

i − ηgs
i ;

10: v̂s+1
i =

ζv s
i +ξv s+1

i
2η

;
11: end for
12: xk+1

i = 1
s

∑S−1
s=0 v̂s+1

i ;

13: Send xk+1
i to the central server;

14: end for
15: Algorithm of the central server:

16: Initialize z0, λ0
i and broadcast them to the providers;

17: for k = 0, 1, · · · , K − 1 do
18: zk+1 = arg minz g(z) +

∑N
i=1(−zT λk

i + ρ
2
‖xk+1

i − z‖2);

19: λk+1
i = λk

i + ρ(xk+1
i − zk+1);

20: end for
21: Output: {xK

i }N
i=1, zK ;

gradients, is (ε, δ)-differentially private for any δ > 0, if we choose

σ ≥ c2
q
√

K log(1/δ)
ε

. (8)

The differentially private stochastic ADMM (PS-ADMM) is shown in Algo-
rithm 2. Details of PS-ADMM are summarized as follows: At iteration k, each
data provider utilizes the SVRG method to solve subproblem (4) in order to
obtain the local classifier xk+1

i . For the inner iteration s at this iteration, the i-
th data provider generates a zero mean Gaussian noise θs

k with variance (σ2)s
k to

perturb the approximate gradient gs
i , and by averaging v̂s+1

i of all S inner itera-
tions, the i-th data provider gets a differential private local classifier xk+1

i . Dur-
ing the iteration of SVRG method, we adopt the convex combination to increase
the convergence rate. In addition, we employ the iteration average to improve the
convergence of ADMM. And then data providers send all differentially private
{xk+1

i }N
i=1 to the server. The server will update zk+1 and {λk+1

i }N
i=1 by solving

subproblems (5) and (6) after receiving all of the local parameters{xk+1
i }N

i=1.
Next, each data provider updates its private local parameter by using updated
variable zk+1 and {λk+1

i }N
i=1 from the central server. The iterative process will
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continue until reaching K rounds of communication between server and data
provider.

During this iterative process, the shared local classifiers {xk+1
i }N

i=1 may reveal
sensitive information about local dataset Di of data provider i. Thus, we need
to show that PS-ADMM guarantees differential privacy with local classifiers
{xk+1

i }N
i=1. Since we use Gaussian mechanism to add noise, we should give the

l2 sensitivity estimation of the approximate gradient gs
i at first. According to

[19], the sensitivity of gs
i is Δ2 ≤ 3G, where G is the lipschitz constant of loss

function lim(·). The following theorem shows that our algorithm provides (ε, δ)-
differential privacy2.

Theorem 2. For ε ≤ c1
KS
M2 and δ ∈ (0, 1), and the noise θs

k is sampled from
zero mean Gaussian distribution with variance

(σ2)s
k = c

G2KS ln(1/δ)
M2ε2

,

then, PS-ADMM algorithm satisfies (ε, δ)-differential privacy, where c1 and c
are some constants.

In a distributed and iterative algorithm, the output of the algorithm includes
all of exchanged intermediate results and the end result. Since the adversary may
perform inference by using all intermediate results, the privacy leakage accumu-
lates over time through the iterative process. Different from the prior study in
[22], where the privacy leakage is only bounded at a single iteration, our pro-
posed differentially private algorithm PS-ADMM provides (ε, δ)-differential pri-
vacy guarantee for all of the intermediate results exchanged during the iterative
procedure and the end result.

4 Convergence Analysis

In this section, we discuss the convergence and the utility bound of the proposed
PS-ADMM algorithm. To define the convergence and utility bound, we will use
the following criterion

E[P (u) − P (u∗) +
N∑

i=1

τi‖xi − z‖] ∀τi > 0, (9)

which is the same as the variational inequality used in [16] and [12]. In criterion
(9), u = {x1;x2; ...;xN ;z} and P (u) =

∑N
i=1 fi(xi)+g(z), and u∗ is the optimal

solution of problem 2.
Similar to most iterative distributed optimization algorithms [11], distributed

stochastic ADMM only converges in a probabilistic sense when the number of
iterations K → ∞. Therefore, we can now prove the following expected subop-
timality of the proposed algorithm according to the criterion (9).
2 The proof of Theorem 2 is very similar to the B.2 in [19]. Due to the space limitation,

we omit the detail of it.
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Theorem 3 (Convergence). If fi(x) is μf -strongly convex, τi > 0 and η

satisfies 0 < η ≤ 1
2vL

, 0 < η ≤ 4μL−4ρ−3μf

8v2
L+2μfvL

, 1 − ρξ
2 − μfξ

4 + 4η2v2
LS

1−2ηvL
≤ Sημf

2 , the
expected suboptimality of PS-ADMM is bounded after K iterations

E

{
P (uk+1) − P (u∗) +

N∑

i=1

τi‖x̂i − ẑ‖
}

≤
N∑

i=1

{
μf

4K
‖x0

i − x∗
i ‖2 +

ρ

2K
‖z0 − z∗‖2 +

1
2ρK

(‖λ0
i ‖2 + τ2

i )

}

+
2η

1 − 2ηvL

pKS ln(1/δ)
M2ε2

, (10)

where P (u) =
∑N

i=1 fi(x̂i) + g(ẑ), x̂i = 1
K

∑K−1
k=0 xk+1

i and ẑ = 1
K

∑K−1
k=0 zk+1

and (x∗
i ,z

∗) is the optimal solution.

Proof. See Appendix A.3.

As K increases, the first term in (10) decreases, though the second term in (10)
increases. Then, the minimized suboptimality of the proposed algorithm exists
as we choose an optimal K. Hence, the following theorem gives the utility bound
when choosing an optimal K.

Theorem 4 (Utility Bound). If fi(x) is μf -strongly convex, τi > 0 and
S = O( vf

μf
) is sufficiently large, and η satisfies condition in Theorem 3, then the

utility bound of PS-ADMM is bounded if we choose K = O
(

Mε
G

√
μf

vfp ln(1/δ)

)
,

E

{
P (û) − P (u∗) +

N∑

i=1

τi‖x̂i − ẑ‖
}

≤ O

(
NG

Mε

√
p ln(1/δ)vf

μf

)
,

where P (u) =
∑N

i=1 fi(x̂i) + g(ẑ), x̂i = 1
K

∑K−1
k=0 xk+1

i and ẑ = 1
K

∑K−1
k=0 zk+1

and (x∗
i ,z

∗) is the optimal solution.

Proof. See Appendix A.4.

5 Performance Analysis

We conduct simulations on the same dataset as [22], i.e, the Adult dataset from
UCI Machine Learning Repository [5], which contains 48,842 samples with 14
features like age, sex, education, etc. The goal is to predict whether the annual
income is more than 50k or not. Before the simulation, we preprocess the data by
normalizing all numerical attributes such that l2-norm is at most 1 and transform
the label {>50k,≤50k} to {+1,−1}. We separate the whole dataset for training
and testing (the ratio is around 70%:30%). And for training samples, we separate
them into five parts representing five data providers (N = 5). Consistent with
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Fig. 2. The convergence comparison for different privacy budgets ε. (Color figure
online)

Fig. 3. The accuracy comparison for different privacy budgets ε. (Color figure online)

[22], we use the logistic loss l(z) = log(1 + exp(z)). And N data providers
collaboratively solve the following regularized logistic regression

min
x

N∑

i=1

1
M

M∑

m=1

log(1 + exp(−yimxT aim)) + R‖x‖2.

We inspect the convergence and accuracy of our approach by comparing
with the dual variable perturbation (DVP-ADMM) method adopted in [22].
The convergence is measured by expected loss defined by 1

M

∑N
i=1

∑M
m=1 log(1+

exp(−yimxT
i,kaim)). The accuracy is defined by classification error rate over test-

ing dataset. For the DVP-ADMM algorithm, the parameters are the same as in
settings of [22].
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For each parameter setting, we conduct 20 independent runs of the algorithm.
For each time, both the mean and standard deviation of the expected loss and
the accuracy are recorded. The smaller the standard deviation is, the greater
is the stability of the algorithm. In all experiments, we set the regularization
coefficient R = 0.0001, and δ = 0.001.

Figures 2 and 3 compare our approach with DVP-ADMM method and the
non-private algorithm for expected loss and testing accuracy under different
privacy budgets. The non-private algorithm here is a stochastic ADMM without
adding noise. As the number of iterations increases, we see that our approach
(red) has achieved much less expected loss and higher testing accuracy than
DVP-ADMM (blue) for all three cases of privacy budget ε. Hence, our method
can outperform DVP-ADMM (blue) significantly. However, the excepted loss
does not always monotonically decrease as too much noise introduced in PS-
ADMM affects the convergence, especially when ε is small. While privacy budget
ε is large enough (e.g., ε = 0.5), it follows the same trend as non-private ADMM
and still outperforms DVP-ADMM.

6 Conclusions

In this paper, we proposed a novel algorithm called PS-ADMM by extending
SCAS-ADMM into a distributed setting and adding differentially private Gaus-
sian noise to the gradient updates. Thus, the sensitive information stored in
the training dataset at each data provider can be protected against an adver-
sary who can eavesdrop the communications between the data provider and the
server. The convergence and utility bound of PS-ADMM have been analyzed
theoretically. We empirically demonstrate that PS-ADMM outperforms other
differentially private ADMM algorithms under the same privacy guarantee.
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A Appendix

The approximate gradient gs
i can be written as gs

i = bs
i + qs

i , where

bs
i = ∇lims(vs

i ) − ∇lims(ṽi) + ûi + θs
i ,

qs
i = λk

i + ρ(vs
i − zk).



270 J. Ding et al.

A.1 Proof of Lemma 1

Proof. Since each lim(x) is convex, G-Lipschitz and has Lm-Lipschitz continuous
gradient, for any x1 and x2, there exists Lm > 0 such that

lim(x1) ≤ lim(x2) + (x2 − x1)T ∇lim(x2) +
Lm

2
‖x2 − x1‖2.

We can see that fi(x) is vf -smooth, with fi(x1) ≤ fi(x2)+(x2−x1)T ∇fi(x1)+
vf

2 ‖x2 − x1‖2, where vf = maxm Lm. Then, we can have

‖∇Li(x1) − ∇Li(x2)‖ = ‖∇fi(x1) − ∇fi(x2) + ρ(x1 − x2)‖
≤ ‖∇fi(x1) − ∇fi(x2)‖ + ‖ρ(x1 − x2)‖ ≤ (vf + ρ)‖x1 − x2‖ ≤ vL‖x1 − x2‖,

where we let vL ≥ vf + ρ. Thus, Li(x) and L̂m(x) are vL-smooth. Moreover, it
is obvious to see that Li(x) is μL-strongly convex with μL ≤ μf + ρ.

A.2 Basic Lemmas

Lemma 2. The variance of gs
i satisfies

E(‖gs
i ‖2) ≤ 2E(‖∇L̂ims(vs

i ) − ∇L̂ims(ṽi)‖2) + 4‖∇Li(vs
i )‖2 + 4(σ2)s

kp

≤ 4v2
L(‖vs

i − xi‖2 + ‖ṽi − xi‖2) + 4‖∇Li(vs
i )‖2 + 4(σ2)s

kp.

Proof. Notice that

gs
i = bs

i + qs
i

= ∇lims(vs
i ) − ∇lims(ṽi) + ûi + qs

i + θs
i

= ∇lims(vs
i ) + qs

i − ∇lims(ṽi) − q̂i + ûi + q̂i + θs
i

= ∇L̂ims(vs
i ) − ∇L̂ims(ṽi) + ∇Li(ṽi) + θs

i .

Hence, the variance of gs
i can be bounded as

E(‖gs
i ‖2) = E‖∇L̂ims(vs

i ) − ∇L̂ims(ṽi) + ∇Li(ṽi) + θs
i ‖2

≤ 2E(‖∇L̂ims(vs
i ) − ∇L̂ims(ṽi) − (∇Li(v

s
i ) − ∇Li(ṽi)‖2)) + 2E‖∇Li(v

s
i ) + θs

i ‖2

≤ 2E(‖∇L̂ims(vs
i ) − ∇L̂ims(ṽi)‖2) + 2E‖∇Li(v

s
i ) + θs

i ‖2

≤ 2E(‖∇L̂ims(vs
i ) − ∇L̂ims(ṽi)‖2) + 4‖∇Li(v

s
i )‖2 + 4E‖θs

i ‖2

≤ 2v2
L‖vs

i − ṽi‖2 + 4‖∇Li(v
s
i )‖2 + 4(σ2)s

kp

≤ 4v2
L(‖vs

i − xi‖2 + ‖ṽi − xi‖2) + 4‖∇Li(v
s
i )‖2 + 4(σ2)s

kp,

where the first inequality uses ‖a+b‖2 ≤ 2‖a‖2+2‖b‖2 and the second inequality
uses E‖xi − Exi‖2 = E‖xi‖2 − ‖Exi‖2 ≤ E‖xi‖2.
Lemma 3. For 0 < η < 1

2vL
, we have

‖∇Li(vs
i )‖2 ≤ 1

η − 2η2vL
{Li(vs

i ) − E[Li(vs+1
i )]}

+
ηvL

1 − 2ηvL
E(‖∇L̂ims(vs

i ) − ∇L̂ims(ṽi)‖2 + 2(σ2)s
kp).
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Proof.

Li(vs+1
i ) ≤ Li(vs

i ) + (vs+1
i − vs

i )
T ∇Li(vs

i ) +
vL

2
‖vs+1

i − vs
i ‖2.

Taking expectation on both sides, we obtain

E[Li(vs+1
i )] ≤ Li(vs

i ) − η∇‖Li(vs
i )‖2 +

η2vL

2
E(‖gs

i ‖2)
≤ Li(vs

i ) − η∇‖Li(vs
i )‖2 + η2vL[E(‖∇L̂ims(vs

i ) − ∇L̂ims(ṽi)‖2)
+ 2‖∇Li(vs

i )‖2 + 2(σ2)s
kp].

Then, we have

(η − 2η2vL)‖∇Li(vs
i )‖2 ≤Li(vs

i ) − E[Li(vs+1
i )]

+ η2vLE(‖∇L̂ims(vs
i ) − ∇L̂ims(ṽi)‖2 + 2(σ2)s

kp).

By choosing η < 1/(2vL), we get

‖∇Li(vs
i )‖2 ≤ 1

η − 2η2vL
{Li(vs

i ) − E[Li(vs+1
i )]}

+
ηvL

1 − 2ηvL
E(‖∇L̂ims(vs

i ) − ∇L̂ims(ṽi)‖2 + 2(σ2)s
kp).

Lemma 4.

E‖vs+1
i − xi‖2 + 2η(vs

i − xi)T ∇Li(vs
i ) +

4η

1 − 2ηvL
(E[Li(vs+1

i )] − Li(xi))

≤ ‖vs
i − xi‖2 +

2η2

1 − 2ηvL
E‖∇L̂ims(vs

i ) + ∇L̂ims(ṽi)‖2

+
4η

1 − 2ηvL
[Li(vs

i ) − Li(xi)] +
2η2

1 − 2ηvL
(σ2)s

kp.

Proof. We have E(bs
i ) = ∇fi(vs

i ) and this leads to

E‖vs+1
i − xi‖2 ≤ ‖vs

i − xi‖2 − 2η(vs
i − xi)T

E(gs
i ) + η2

E(‖gs
i ‖2)

≤ ‖vs
i − xi‖2 − 2η(vs

i − xi)T
E(∇fi(vs

i ) + qs
i ) + η2

E(‖gs
i ‖2)

≤ ‖vs
i − xi‖2 − 2η(vs

i − xi)T ∇Li(vs
i ) + η2

E(‖gs
i ‖2).

Then, we have

E‖vs+1
i − xi‖2 + 2η(vs

i − xi)T ∇Li(vs
i )

≤ ‖vs
i − xi‖2 + 2η2

E(‖∇L̂ims(vs
i ) − ∇L̂ims(ṽi)‖2) + 4η2‖∇Li(vs

i )‖2
+ 4η2(σ2)s

kp.
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According to Lemma 3, we obtain

E‖vs+1
i − xi‖2 + 2η(vs

i − xi)T ∇Li(vs
i ) +

4η

1 − 2ηvL
(E[Li(vs+1

i )] − Li(xi))

≤ ‖vs
i − xi‖2 +

2η2

1 − 2ηvL
E‖∇L̂ims(vs

i ) + ∇L̂ims(ṽi)‖2

+
4η

1 − 2ηvL
[Li(vs

i ) − Li(xi)] +
2η2

1 − 2ηvL
(σ2)s

kp.

Lemma 5.

g(zk+1) − g(z) −
N∑

i=1

(zk+1 − z)T αk+1
i

≤ ρ

2
(‖zk − z‖2 − ‖zk+1 − zk‖2 − ‖zk+1 − z‖2)

where αk+1
i = λk

i + ρ(xk+1
i − zk).

Proof. By deriving the optimal conditions of the minimization problem in (5),
we have

g(zk+1) − g(z) ≤ −(zk+1 − z)T
N∑

i=1

[−λk
i + ρ(xk+1

i − zk+1)].

Then, by using the notation αk+1
i = λk

i + ρ(xk+1
i − zk), we obtain

g(zk+1) − g(z) −
N∑

i=1

(zk+1 − z)T αk+1
i ≤ ρ(zk − zk+1)T (zk+1 − z))

≤ ρ

2
(‖zk − z‖2 − ‖zk+1 − zk‖2 − ‖zk+1 − z‖2).

Lemma 6.

(αk+1
i − αi)T [−(xk+1

i − zk+1)]

≤ 1
2ρ

(‖λk
i − αi‖2 − ‖λk+1

i − αi‖2) +
ρ

2
‖zk − zk+1‖2

where αk+1
i = λk

i + ρ(xk+1
i − zk).

Proof.

(αk+1
i − αi)T [−(xk+1

i − zk+1)] =
1
ρ
(αk+1

i − αi)T (λk
i − λk+1

i )

=
1
2ρ

(‖αk+1
i − λk+1

i ‖2 − ‖αk+1
i − λk

i ‖2 + ‖λk
i − αi‖2 − ‖λk+1

i − αi‖2)

≤ 1
2ρ

(‖λk
i − αi‖2 − ‖λk+1

i − αi‖2) +
ρ

2
‖zk − zk+1‖2.
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Lemma 7. Assume fi(·) be μf -strongly convex, and let xk+1
i , zk and λk

i be
generated by the proposed algorithm. For η satisfies 0 < η ≤ 1

2vL
, 0 < η ≤

4μL−4ρ−3μf

8v2
L+2μfvL

, 1 − ρξ
2 − μf ξ

4 + 4η2v2
LS

1−2ηvL
≤ Sημf

2 , the following holds if

E[fi(xk+1
i ) − fi(xi) + (xk+1

i − xi)T αk+1
i ] ≤ μf

4
[‖xk

i − xi‖2 − ‖xk+1
i − xi‖2]

+
2η

1 − 2ηvL
(σ2)s

kp

where αk+1
i = λk

i + ρ(xk+1
i − zk).

Proof. Using Lemma 4 and the strong convexity of Li(vi), we have

E‖vs+1
i − xi‖2 + ζ(vs

i − xi)T ∇Li(vs
i ) + ξ(E[Li(vs+1

i )] − Li(xi))

+
μLξ

2
‖vs

i − xi‖2

≤ 2η2

1 − 2ηvL
[E‖∇L̂ims(vs

i ) + ∇L̂ims(ṽi)‖2 + (σ2)s
kp] + ‖vs

i − xi‖2,

where ζ = 2η − 4η
1−2ηvL

, ξ = 4η
1−2ηvL

.
Then, we obtain

(1 − ρξ

2
− μfξ

4
)E‖vs+1

i − xi‖2 + ζ[fi(vs
i ) − fi(xi) + (vs

i − xi)T qs
i

+
μf

4
‖vs

i − xi‖2] + ξE[fi(vs+1
i ) − fi(xi) + (vs+1

i − xi)T qs+1
i

+
μf

4
‖vs+1

i − xi‖2]

≤ (1 +
4η2v2

L

1 − 2ηvL
− μLξ

2
− μfζ

4
)‖vs

i − xi‖2 +
4η2v2

L

1 − 2ηvL
‖ṽi − xi‖2

+
2η2

1 − 2ηvL
(σ2)s

kp,

where we apply Lemma 2 and Li(vs
i )−Li(xi) = fi(vs

i )−fi(xi)+(vs
i −xi)T qs

i −
ρ
2‖vs

i − xi‖2 to obtain the inequality. Hence, we choose η ≤ 4μL−4ρ−3μf

8v2
L+2μfvL

so that

1 − ρξ
2 − μfξ

4 ≥ 1 + 4η2v2
L

1−2ηvL
− μLξ

2 − μfζ
4 . We take v̂s+1

i = ζvs
i+ξvs+1

i

2η and we
know that fi(vs

i ) − fi(xi) + (vs
i − xi)T qs

i is convex in vs
i . By using the Jensen’s

inequality, we have

(1 − ρξ

2
− μfξ

4
)E‖vs+1

i − xi‖2

+ 2ηE[fi(v̂s+1
i ) − fi(xi) + (v̂s+1

i − xi)T q̂s+1
i +

μf

4
‖v̂s+1

i − xi‖2]

≤ (1 − ρξ

2
− μfξ

4
)‖vs

i − xi‖2 +
4η2v2

L

1 − 2ηvL
‖ṽi − xi‖2 +

2η2

1 − 2ηvL
(σ2)s

kp,
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where q̂s+1
i = λk

i + ρ(v̂s+1
i − zk). Summing from s = 0, 1, 2, ..., S − 1 and using

xk+1
i = 1

s

∑S−1
s=0 v̂s+1

i , we obtain

2SηE[fi(xk+1
i ) − fi(xi) + (xk+1

i − xi)T αk+1
i +

μf

4
‖xk+1

i − xi‖2]

≤ 2η2S

1 − 2ηvL
(σ2)s

kp + (1 − ρξ

2
− μfξ

4
+

4η2v2
LS

1 − 2ηvL
)‖xk

i − xi‖2,

where αk+1
i = λk

i + ρ(xk+1
i − zk).

Thus, we have

E[fi(xk+1
i ) − fi(xi) + (xk+1

i − xi)T αk+1
i ]

≤ 1
2Sη

(1 − ρξ

2
− μfξ

4
+

4η2v2
LS

1 − 2ηvL
)‖xk

i − xi‖2 − μf

4
E‖xk+1

i − xi‖2

+
2η

1 − 2ηvL
(σ2)s

kp

≤ μf

4
[‖xk

i − xi‖2 − ‖xk+1
i − xi‖2] +

2η

1 − 2ηvL
(σ2)s

kp,

where we assume 1 − ρξ
2 − μf ξ

4 + 4η2v2
LS

1−2ηvL
≤ Sημf

2 .

A.3 Proof of Theorem 3

Proof. Combining Lemmas 7, 5 and 6 together and using the convergence crite-
rion (9), we let wk+1

i = (xk+1
i ;zk+1;αk+1

i ), and ŵi = 1
K

∑K−1
k=0 wk+1

i . For any
w = (xi;z;λi), we have

E[P (uk+1) − P (u) +
N∑

i=1

(wk+1 − w)T F (wk+1)]

≤ E

{
N∑

i=1

fi(xk+1
i ) + g(zk+1) −

N∑

i=1

fi(xi) − g(z)

+
N∑

i=1

⎛

⎝
xk+1

i − xi

zk+1 − z

αk+1
i − αi

⎞

⎠
T ⎛

⎝
αk+1

i

−αk+1
i

−(xk+1
i − zk+1)

⎞

⎠
}

≤
N∑

i=1

{
μf

4
[‖xk

i − xi‖2 − ‖xk+1
i − xi‖2] +

ρ

2
(‖zk − z‖2 − ‖zk+1 − z‖2)

+
1
2ρ

(‖λk
i − αi‖2 − ‖λk+1

i − αi‖2) +
2η

1 − 2ηvL
(σ2)s

kp

}
,

where F (w) =

⎛

⎝
αi

−αi

−(xi − z)

⎞

⎠.
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Summing the inequality over k = 0, 1, 2, ...,K − 1 and using the Jensen’s
inequality, we get

E

{
P (ûk+1) − P (u) +

N∑

i=1

(ŵi − w)T F (ŵi)

}

≤ 1
K

K−1∑

k=0

{
E[P (xk+1,zk+1) − P (x,z) +

N∑

i=1

(wk+1
i − w)T F (wk+1

i )]

}

≤
N∑

i=1

{
μf

4K
‖x0

i − xi‖2 +
ρ

2K
‖z0 − z‖2 +

1
2ρK

‖λ0
i − αi‖2

}

+
2η

1 − 2ηvL

pG2KS ln(1/δ)
M2ε2

,

where P (û) =
∑N

i=1 fi(x̂i) + g(ẑ), x̂i = 1
K

∑K−1
k=0 xk+1

i and ẑ = 1
K

∑K−1
k=0 zk+1.

If we take x = x∗,z = z∗, and αi = τi
x̂i−ẑ

‖x̂i−ẑ‖ , we have

E

{
P (ûk+1) − P (u∗) +

N∑

i=1

τi‖x̂i − ẑ‖
}

≤
N∑

i=1

{
μf

4K
‖x0

i − x∗
i ‖2 +

ρ

2K
‖z0 − z∗‖2 +

1
2ρK

(‖λ0
i ‖2 + τ2

i )

}

+
2η

1 − 2ηvL

pG2KS ln(1/δ)
M2ε2

.

A.4 Proof of Theorem 4

By choosing η, which satisfies condition in Theorem 3, and S = O( vf

μf
), we can

make A = μf

4 ‖x0
i − x∗

i ‖2 + ρ
2‖z0 − z∗‖2 + 1

2ρ (‖λ0
i ‖2 + τ2

i ) a constant.
Then, we have

E

{
P (ûk+1) − P (u∗) +

N∑

i=1

τi‖x̂i − ẑ‖
}

≤ NA

K
+ O

(
NpG2K ln(1/δ)vf

M2ε2μf

)
.

Thus, if we choose K = O
(

Mε
G

√
μf

vfp ln(1/δ)

)
, we have

E

{
P (ûk+1) − P (u∗) +

N∑

i=1

τi‖x̂i − ẑ‖
}

≤ O

(
NG

Mε

√
p ln(1/δ)vf

μf

)
.

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
October 2016, pp. 308–318 (2016)



276 J. Ding et al.

2. Bekkerman, R., Bilenko, M., Langford, J.: Scaling Up Machine Learning: Parallel
and Distributed Approaches. Cambridge University Press, Cambridge (2011)

3. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical
Methods. Prentice Hall, Englewood Cliffs (1989)

4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1), 1–122 (2011)

5. Dheeru, D., Taniskidou, E.K.: UCI machine learning repository (2017). http://
archive.ics.uci.edu/ml

6. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

7. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

8. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, October
2015, pp. 1322–1333 (2015)

9. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning.
Springer Series in Statistics. Springer, New York (2001). https://doi.org/10.1007/
978-0-387-21606-5

10. Guo, Y., Gong, Y.: Practical collaborative learning for crowdsensing in the internet
of things with differential privacy. In: IEEE Conference on Communications and
Network Security (CNS), Beijing, May 2018, pp. 1–9 (2018)

11. Han, S., Topcu, U., Pappas, G.J.: Differentially private distributed constrained
optimization. IEEE Trans. Autom. Control 62(1), 50–64 (2017)

12. He, B., Yuan, X.: On the O(1/n) convergence rate of the Douglas-Rachford alter-
nating direction method. SIAM J. Numer. Anal. 50(2), 700–709 (2012)

13. Johnson, R., Zhang, T.: Accelerating stochastic gradient descent using predictive
variance reduction. In: Advances in Neural Information Processing Systems, Lake
Tahoe, December 2013, pp. 315–323 (2013)

14. Liu, L., Han, Z.: Multi-block ADMM for big data optimization in smart grid.
In: International Conference on Computing, Networking and Communications
(ICNC), Anaheim, February 2015, pp. 556–561 (2015)

15. Nguyen, H., Khodaei, A., Han, Z.: A big data scale algorithm for optimal scheduling
of integrated microgrids. IEEE Trans. Smart Grid 9(1), 274–282 (2016)

16. Ouyang, H., He, N., Tran, L., Gray, A.: Stochastic alternating direction method
of multipliers. In: International Conference on Machine Learning, Atlanta, June
2013, pp. 80–88 (2013)

17. Qin, Z., Goldfarb, D.: Structured sparsity via alternating direction methods. J.
Mach. Learn. Res. 13(1), 1435–1468 (2012)

18. Schizas, I.D., Ribeiro, A., Giannakis, G.B.: Consensus in ad hoc wsns with noisy
links - Part I: distributed estimation of deterministic signals. IEEE Trans. Sig.
Process. 56(1), 350–364 (2008)

19. Wang, D., Ye, M., Xu, J.: Differentially private empirical risk minimization revis-
ited: faster and more general. In: Advances in Neural Information Processing Sys-
tems, Long Beach, December 2017, pp. 2722–2731 (2017)

20. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

21. Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE Trans.
Knowl. Data Eng. 26(1), 97–107 (2014)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-0-387-21606-5


Distributed Stochastic ADMM with Differential Privacy 277

22. Zhang, T., Zhu, Q.: A dual perturbation approach for differential private ADMM-
based distributed empirical risk minimization. In: Proceedings of the ACM Work-
shop on Artificial Intelligence and Security, Vienna, October 2016, pp. 129–137
(2016)

23. Zhao, S., Li, W., Zhou, Z.: Scalable stochastic alternating direction method of
multipliers. arXiv preprint arXiv:1502.03529 (2015)

http://arxiv.org/abs/1502.03529

	Stochastic ADMM Based Distributed Machine Learning with Differential Privacy
	1 Introduction
	2 Problem Statement and Preliminaries
	2.1 Problem Statement
	2.2 Preliminaries
	2.3 Distributed Stochastic ADMM
	2.4 Privacy Concerns

	3 Distributed Stochastic ADMM with Differential Privacy
	4 Convergence Analysis
	5 Performance Analysis
	6 Conclusions
	A Appendix
	A.1 Proof of Lemma 1
	A.2 Basic Lemmas
	A.3 Proof of Theorem 3
	A.4 Proof of Theorem 4

	References




