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ABSTRACT
The Conservation Effects Assessment Project (CEAP) is a survey intended to quan-
tify soil and nutrient loss on cropland. Estimates of the quantiles of CEAP response
variables are published. Previous work develops a procedure for predicting small
area quantiles based on a mixed effects quantile regression model. The conditional
density function of the response given covariates and area random effects is ap-
proximated with the linearly interpolated generalized Pareto distribution (LIGPD).
Empirical Bayes is used for prediction and a parametric bootstrap procedure is de-
veloped for mean squared error estimation. In this work, we develop two extensions
of the LIGPD-based small area quantile prediction procedure. One extension allows
for zero-inflated data. The second extension accounts for an informative sample de-
sign. We apply the procedures to predict quantiles of the distribution of percolation
(a CEAP response variable) in Kansas counties.
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1. Introduction

Small area estimation procedures traditionally make use of fully parametric mod-
els (Battese, Harter, and Fuller, 1988). When analyzing data, evidence of nonlinearity,
nonconstant variances, or outliers can make the problem of specifying an appropriate
parametric form a challenging task. To address challenges in parametric modeling,
several semiparametric small area estimation procedures have been proposed. Op-
somer et al. (2008) use penalized spline regression for small area estimation. Sinha
and Rao (2010) consider outlier-robust estimation. Chambers and Tzavidis (2006) use
M-quantile regression. See Rao and Molina (2015) for further background on the wide
range of models used for small area estimation.

Berg and Lee (2019a) develop a small area procedure for estimating quantiles
based on the semiparametric mixed effects quantile regression model of Jang and Wang
(2015). The model of Jang and Wang (2015) approximates the conditional distribu-
tion of the response given a covariate and a random effect using a distribution that
they term the linearly interpolated generalized Pareto dentisy (LIGPD). The name
for the approximate density function (LIGPD) refers to the two main aspects of the
approach. First, for a fine grid of interior quantiles, the LIGPD approximates the quan-
tile function corresponding to the distribution of the response given a covariate using
linear interpolation (LI). Second, an extreme value distribution, namely the general-
ized Pareto distribution (GPD), is used to model the distribution of the response for
quantile levels that exceed the lower and upper bounds of the interior grid. We define
these two aspects of the LIGPD of Jang and Wang (2015) more precisely in Section
1.2. Jang and Wang (2015) use Bayesian methods to conduct inference for the param-
eters of the LIGPD model. Berg and Lee (2019a) adopt the LIGPD model for small
area estimation. Their interest in using the LIGPD for small area estimation stems
from a survey called the Convservation Effects Assessment Project (CEAP), which is
intended to measure different types of erosion. A preliminary analysis of the CEAP
data indicated that finding a single parametric form to describe the distributions of
all CEAP response variables of interest is difficult. As a consequence, semi-parametric
procedures are of interst. Further, the CEAP survey publishes estimates of the quan-
tiles of distributions of erosion variables, which makes an estimation procedure based
on quantile regression attractive. While Jang and Wang (2015) use Bayesian methods
for inference and focus on estimating the quantile regression coefficients, Berg and Lee
(2019a) define a frequentist estimation procedure, an empirical Bayes predictor, and
a parametric bootstrap MSE estimator. Section 1.2 defines the Berg and Lee (2019a)
procedure in more detail. Berg and Lee (2019a) restrict attention to a continuous re-
sponse variable and assume that the sample design is noninformative for the specified
model.

We consider two extensions of the LIGPD SAE procedure developed in Berg and
Lee (2019a). The first is an extension to zero-inflated data. The second is an extension
to an informative sample design.

Existing small area estimation procedures for zero-inflated data utilize fully
parametric models. Pfeffermann, Terryn, and Moura (2008) and Chandra and Sud
(2012) consider linear mixed effects models for the non-zero component of the zero-
inflated distribution. To ensure that the support of the distribution for the nonzero
component is positive, Dreassi, Petrucci, and Rocco (2014) and Lyu (2018) consider
gamma and lognormal distributions, respectively, for the positive component. Outside
the context of small area estimation, quantile regression procedures for zero-inflated
data build on the concept underlying Tobit regression. Such quantile regression pro-
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cedures for zero-inflated data typically assume that the observed response variable
is a truncated version of a partially observed variable with support on the real line
(Powell, 1986; Buchinsky and Hahn, 1998). The partially observed variable is assumed
to satisfy a standard quantile regression model. We specify a zero-inflated quantile re-
gression model for small area estimation in the spirit of Dreassi, Petrucci, and Rocco
(2014) and Lyu (2018). We assume that the positive component of the model satisfies
a modification of the quantile regression model of Berg and Lee (2019a). We assume
a logistic mixed effects model for the probability of observing a zero.

Numerous small area procedures for an informative sample design have been
developed. You and Rao (2002) use inverse selection probabilities as weights. Verrett,
Rao, and Hidiroglou (2015) propose an augmented model. Pfeffermann and Sverchkov
(2007) exploit relationships between the sample distribution, the sample complement
distribution, and the survey weights. We adapt the approach of Pfeffermann and Sver-
chkov (2007) to the quantile regression framework. To our knowledge, this is the first
work to consider estimation of small area quantiles when the sample design is infor-
mative for the small area model.

1.1. Overview of CEAP Survey Data

Our interest in small area estimation for zero-inflated data under a complex sample
design stems partly from a survey called the Conservation Effects Assessment Project
(CEAP). The CEAP survey uses a multi-phase design. The first phase is a longitudi-
nal survey called the National Resources Inventory (NRI) that collects information on
agriculture and natural resources through visual interpretation of aerial photographs
of sampled segments. The CEAP survey collects more detailed information for a sub-
set of NRI locations through farmer interviews. Primary response variables in CEAP
are measures of soil and nutrient loss that result from processing farmer interview
data through a computer model called the Agricultural Policy Environmental Ex-
tender (APEX). Berg and Lee (2019a) analyze several CEAP response variables for
Wisconsin. The model of Berg and Lee (2019a) is not appropriate for data with a large
proportion of zeros. Their model, for example, would not be well suited to the perco-
lation variable for Kansas, where approximately 12% of the sampled values are equal
to zero. Berg and Lee (2019a) also assume that the sample design is noninformative
for the specified model, an assumption that we examine more rigorously in this paper.

1.2. Overview of LIGPD Small Area Procedure

We provide an overview of the LIGPD model and estimation procedure used in
Berg and Lee (2019a). Further detail is provided in Berg and Lee (2019a) and in the
supplementary document (Berg and Lee, 2019b). A sample of ni elements is selected
from the population of Ni elements for area i, where i = 1, . . . , D. Let yij denote the
variable of interest for unit j in area i, and assume yij is observed only for sampled
elements. We assume that a vector of covariates xij is available for all Ni elements in
the population. Parameters of interest are quantiles of {yij : j = 1, . . . , Ni}.

The LIGPD model and estimator of Berg and Lee (2019a) begins with specifica-
tion of a mixed effects quantile regression model. Let bi ∼ N(0, σ2

b ) denote a normally
distributed random effect for area i with mean 0 and variance σ2

b . Assume the condi-

tional distribution of yij given bi is absolutely continuous. Denote the τth quantile of
the conditional distribution of yij given xij and bi by qij(τ). Specifically, qij(τ) satis-
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fies P (yij ≤ qij(τ) | bi,xij) = τ . The model underlying the LIGPD is a mixed effects
quantile regression model. The model assumes that qij(τ) satisfies

qij(τ) = x′ijβ(τ) + bi, (1)

and that x′ijβ(τ) ≤ x′ijβ(τ + δ) for δ ≥ 0. The critical assumption in (1) is that the
area random effect bi is constant across quantile levels. Because the area random effect
is fixed across quantile levels, qij(τ) is nondecreasing in τ for fixed (i, j) as long as
x′ijβ(τ) ≤ x′ijβ(τ + δ) for δ ≥ 0.

The LIGPD of Jang and Wang (2015) defines an approximation to the density
of the conditional distribution of yij given xij and bi, denoted as fY (y | xij , bi,θ). The
approximation for the density derives from the assumed quantile regression model (1).
The quantile function and the density function are related by

fY (qij(τ) | xij , bi,θ) = lim
h→0

h

qij(τ + h)− qij(τ)
. (2)

As explained in Jang and Wang (2015), the relationship (2) motivates the LIGPD
approximation for fY (y | xij , bi) for a grid of interior quantiles. For extreme values,
the conditional distribution of yij given xij and bi is assumed to have a generalized
Pareto distribution. We now define the LIGPD approximation precisely. Let 0 < τ1 <
· · · < τK < 1 partition (0, 1) into K + 1 evenly spaced subintervals. We use as our
basis for inference the approximate density function defined in Jang and Wang (2015)
by

fY (y |xij , bi,θ) = I[y < qij(τ1)]τ1f`(y | ρ`, ξ`) (3)

+ I[y ≥ qij(τK)](1− τK)fu(y | ρu, ξu)

+

K−1∑
k=1

I[qij(τk) ≤ y < qij(τk+1)]
τk+1 − τk

qij(τk+1)− qij(τk)
,

where the vector of fixed parameters to be estimated is θ = (β′K , σ
′
b, ρ`, ξ`, ρu, ξu)′,

βK = (β(τ1)′, . . . ,β(τK)′)′, and fs(y | ρs, ξs) for s = `, u are densities of generalized
Pareto distributions defined as in Jang and Wang (2015) and in Berg and Lee (2019a).
For interior quantiles, the LIGPD approximates the density function as a piecewise
constant function on the intervals [x′ijβ(τj),x

′
ijβ(τj+1)] for j = 1, . . . , J − 1. By the

relationship (2), the approximation for the density function as a piece-wise constant
function corresponds to an approximation for the CDF using linear interpolation. The
approximation for the quantile function through linear interpolation is the inverse of
the approximation for the CDF.

Using the LIGPD for small area estimation requires predicting the area random
effect bi. An approximation for the conditional distribution of bi given the data corre-
sponding to (3) is given by

fb|y(bi | yi1, . . . , yini
;θ) =

∏ni

j=1 f(yij |xij , bi,θ)fb(bi | σ2
b )∫∞

−∞
∏ni

j=1 f(yij |xij , bi,θ)fb(bi | σ2
b )dbi

, (4)

where fb(bi | σ2
b ) is the density function of a normal distribution with mean zero

and variance σ2
b , and yi = (yi1, . . . , yini

)′. The density function (4) allows defining a
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Bayes (minimum MSE) predictor of the area random effect bi. Specifically, the Bayes
predictor of bi (for squared error loss) is given by

E[bi | yi;θ] =

∫∞
−∞

∏ni

j=1 bif(yij |xij , bi,θ)fb(bi | σ2
b )dbi∫∞

−∞
∏ni

j=1 f(yij |xij , bi,θ)fb(bi | σ2
b )dbi

. (5)

With the predictor (5) of bi, a predictor of qij(τ) is q̃ij(τ) = x′ijβ(τi) + E[bi | yi;θ].
The set of {q̃ij(τk) : k = 1, . . . ,K; j = 1, . . . , Ni} defines an approximation for the
distribution of the population of yij for j = 1, . . . , Ni. The predictor q̃ij(τ) requires an
estimate of the unknown β(τk) for k = 1, . . . ,K.

Berg and Lee (2019a) define an iterative procedure to estimate β(τk). We summarize
the critical aspects of the estimation procedure and refer the reader to Berg and Lee
(2019a) and to the supplementary material (Berg and Lee, 2019b) for details. The
two critical components of the estimation procedure involve (1) the use of Koenker’s
check function to estimate the quantile regression coefficients and (2) the use of the
distribution (4) to estimate σ2

b and to predict bi. Koenker’s check function (Koenker,
2004) is defined as

ρτ (u) = u(τ − I[u < 0]). (6)

Koenker’s check function is a standard objective function for estimating quantiles
because qij(τ) = argminaE[ρτ (yij−a) | xij , bi]. The estimation procedure of Berg and
Lee (2019a) alternates between optimization of Koenker’s check function to estimate
βK and use of the distribution (4) to estimate σ2

b and to predict bi. The estimates
of the parameters of the extreme value distribution are obtained using a procedure
recommended in Jang and Wang (2015). Note that the estimates of the parameters
of the extreme value distribution are required for the LIGPD approximation but are
not explicitly part of the specified quantile regression model (1). In this sense, the
estimates of the extreme value distribution are less central than the estimates of βK
and σ2

b . We define the estimator of the extreme value distribution that we use for
zero-inflated data precisely in Section 2.

Given estimates β̂(τk) and σ̂2
b , one can construct predictors of small area parameters.

A predictor of qij(τk) is given by

q̂ij(τk) = x′ijβ̂(τk) + E[bi | yi, θ̂],

where β̂(τk) is the estimator of β(τk). The {q̂ij(τk) : j = 1, . . . , Ni; k = 1, . . . ,K} ap-
proximates the distribution of {yij : j = 1, . . . , Ni}. We use {q̂ij(τk) : j = 1, . . . , Ni; k =
1, . . . ,K} to define small area predictors, as in Berg and Lee (2019a). Define a predictor

of the τth population quantile for area i by

q̂i(τ) = min{q̂ij(τk) : F̂yi(q̂ij(τk)) ≥ τ ; j = 1, . . . , Ni; k = 1, . . . ,K}, (7)

where F̂yi(t) = (NiK)−1
∑Ni

j=1

∑K
k=1 I[q̂ij(τk) ≤ t].

1.3. Outline

We extend the LIGPD model and estimation procedure outlined in Section 1.2 to zero-
inflated data and an informative sample design. In Section 2, we describe the extension

5



to zero-inflated data. In Section 3, we describe the extension to the informative sample
design. In Section 4, we illustrate the procedures using the variable percolation for
Kansas.

2. Zero-Inflated Model and Estimation Procedure

We modify the LIGPD model and estimation procedure of Section 1.2 for a case
in which the support of yij is [0,∞). As discussed in Section 1, several examples in
which small area estimates of a zero-inflated variable are of interest exist in small area
estimaton (SAE) literature. For instance, yij may be grape production as in Dreassi
at al. (2013) or yij may be sheet and rill erosion as in Lyu (2018). In Section 2.1,
we describe the extension of the LIGPD model to accommodate zero-inflated data.
In Section 2.2, we describe the procedure to estimate the parameters of the zero-
inflated model. Section 2.3 proposes a bootstrap MSE estimator. The procedures are
modifications of the estimation and bootstrap MSE estimation methods defined in
Berg and Lee (2019a).

Before describing the procedures in detail, we note that the method described in
Section 2 is one of many possible ways to accommodate zero-inflated, positive data.
We adopt the approach described below for two main reasons. First, the approach
allows us to remain within the framework of modeling quantiles. Second, the estimation
procedures require only minor modifications to the procedures in Berg and Lee (2019a).

2.1. Zero-Inflated Mixed Effects Quantile Regression Model

Assume the support of the response variable yij is [0,∞). As for Section 1.2, assume
yij is observed for a sample Ai of ni elements in area i. Assume a vector of covariates
(x′ij , z

′
ij)
′ is available for the full population of Ni elements in area i. The parameters

of interest are quantiles of {yij : j = 1, . . . , Ni}.
We specify a model with two components. One component is for the probability

that yij is zero. We refer to this component as the binary component. The second
component is a model for the quantile of the conditional distribution given that yij > 0.
We first define the model for the binary component and then define the model for the
positive component. Finally, we explain how these two models combine to form a
model for the quantile of the conditional distribution of yij given the covariates and
area random effects.

First, we define the model for the binary component. Assume

P (yij = 0 | ui, zij) = (1 + exp(z′ijγ + ui))
−1exp(z′ijγ + ui), (8)

where ui ∼ N(0, σ2
u). The model (8) is a standard mixed effects logistic regression

model for I[yij = 0]. We advise the reader to make note that the model (8) is a model
for the probability of observing a zero, and P (yij > 0 | ui, zij) = 1−P (yij = 0 | ui, zij).

Next, we define the model for the positive component. Define qposij(τ) to be the

τth quantile of the conditional distribution of yij given yij > 0. Specifically, qposij(τ)
satisfies P (yij ≤ qposij(τ) | yij > 0, bi,xij) = τ . We define a quantile regression model
for qposij that is a modification of the model (1) to respect the restricted sample space
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for yij > 0. Define a model for qposij(τ) by

qposij(τ) = x′ijβ(τ)exp(bi), (9)

where x′ijβ(τ+δ) ≥ xijβ(τ) for δ > 0, x′ijβ(τ) > 0 for all τ ∈ (0, 1), and bi ∼ N(0, σ2
b ).

Finally, we combine (8) and (9) to define a model the τth quantile of the

conditional distribution of yij given xij , bi, zij , and ui. Precisely, the τth quantile of the
conditional distribution of yij , denoted qij(τ), satisfies P (yij ≤ qij(τ) | xij , bi, zij , ui) =
τ . The models (8) and (9) induce a model for qij(τ). It is the induced model for qij(τ)
that we would like to use for small area prediction. The key idea to deriving the
induced model for qij(τ) is the observation that for τ > P (yij = 0 | ui, zij), qij(τ) has
the same functional form as qposij(τ) but with shifted quantile levels. To derive the
model for qij(τ), let t > 0 satisfy P (yij ≤ t | bi, ui,xij , zij) = τ . Observe that

τ = P (yij = 0 | bi, ui,xij , zij) + P (yij ≤ t | yij > 0, bi, ui,xij , zij)P (yij > 0 | bi, ui,xij , zij),
= P (yij = 0 | ui, zij) + τ∗P (yij > 0 | ui, zij),

where qposij(τ
∗) = t. Solving for τ∗ gives

τ∗ =
τ − P (yij = 0 | ui, zij)
1− P (yij = 0 | ui, zij)

. (10)

Then,

qij(τ) =

{
0 if τ ≤ P (yij = 0 | ui, zij)
qposij

(
τ−P (yij=0|ui,zij)
1−P (yij=0|ui,zij)

)
if τ > P (yij = 0 | ui, zij).

(11)

As a remark on the model for the positive component, one can consider alternatives to
the model (9) for the quantile of the conditional distribution given that yij is positive.
For instance, a different approach is to use a transformation of yij for yij > 0, as in
Berg and Lee (2019a). The relationship (11) holds for any qposij(τ) > 0. In the data
analysis of Section 4, we consider an expansion of the model (9).

To construct small area predictors according to the distribution (11), we require
estimates of the model parameters. In the estimation procedure defined below, we
first estimate qposij(τ) and P (yij = 0 | ui, zij). We then predict finite population
quantiles of yij according to (11). Details of the estimation and prediction procedures
are defined in Section 2.2.

2.2. Estimation Procedure for Zero-Inflated Model

The estimation procedure consists of three main steps. We first estimate the pa-
rameters of the model for qposij(τ). We then estimate the probability of a zero. Finally,
we combine the predictor of qposij(τ) with the predictor of the probability of a zero to
obtain predictors of population quantiles.

2.2.1. Estimator of Positive Component

We use the LIGPD of (Jang and Wang, 2015) to approximate the conditional
density function for yij given that yij > 0. The approximation is analogous to the
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approach outlined in Section 1.2, except that we use the LIGPD to approximate the
conditional density of yij given that yij > 0. Define a sequence of quantile levels by
τk = k(K+1)−1 for k = 1, . . . ,K, where K →∞ as D →∞. The approximate density
function for the conditional distribution of yij given yij > 0 and bi is defined by

fY (y | yij > 0,xij , bi,θ) = I[y < qposij(τ1)]τ1f`(y | ρ`, ξ`)
+ I[y ≥ qposij(τK)](1− τK)fu(y | ρu, ξu) (12)

+

K−1∑
k=1

I[qposij(τk) ≤ y < qposij(τk+1)]
τk+1 − τk

qposij(τk+1)− qposij(τk)
,

where θ = (β′K , σ
2
b , ρ`, ξ`, ρu, ξu)′, βK = (β(τ1)′, . . . ,β(τK)′)′ is the vector of fixed pa-

rameters to be estimated, I[·] is the indicator function that is equal to 1 if the argument
is true and zero otherwise, and fs(y | ρs, ξs) for s = `, u are densities of generalized
Pareto distributions defined as follows. Letting uij = 0.5(x′ijβ(τK) +x′ijβ(τK−1)) and

`ij = 0.5(x′ijβ(τ1) + x′ijβ(τ2)),

fu(y | ρu, ξu) =
1− 0.5(τK−1 + τK)

1− τK
g(y − uij | ρu, ξu), (13)

and

f`(y | ρ`, ξ`) =
0.5(τ1 + τ2)

τ1
g(−y + `ij | ρ`, ξ`), (14)

where

g(y | ρs, ξs) =

{
ρ−1
s (1 + ξsy/ρs)

−(1+1/ξs), ξs 6= 0

ρ−1
s exp(−y/ρs), ξs = 0,

(15)

for s = `, u with y > 0 for ξ ≥ 0, and 0 ≤ y < −ρ/ξ for ξ < 0. The function (15) is
a density function of a generalized Pareto distribution. The multipliers defining (13)
and (14) are derived in Jang and Wang (2015), and we summarize the motivation in
Jang and Wang (2015) for these multipliers for internal consistency. We consider the
density for the upper extreme value distribution, fu, recognizing that the motivation
for f` is completely analogous. By the definition of uij ,

P (Y > y | Y > uij ,xij , bi, uij > 0) =
FY (y | xij , bi, y > 0)− 0.5(τK−1 + τK)

1− 0.5(τK−1 + τK)
. (16)

Taking derivatives of both sides with respect to y gives (1 − τK)fu(y | ρu, ξu) = [1 −
0.5(τK−1 + τK)]−1fY (y | xij , bi, y > 0). Under the assumption that the generalized
Pareto distribution describes the conditional distribution of yij for yij > uij , g(y−uij |
ρu, ξu) = fY (y | xij , bi, y > 0)[1−(τK−1+τK)/2]−1. The form for fu follows from setting
(1− τK)fu(yij | xij , bi, y > 0) = [1− (τK−1 + τK)/2]g(y − uij | ρu, ξu).

Before proceeding with the prediction and estimation procedure, we add a brief
comment on the relationship between the model and the LIGPD approximation, par-
ticularly the role of the generalized Pareto distribution. The assumed model for the
positive component is defined in (9). The density function (12) is an approximation
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that provides a tool for defining predictors and estimators. The extreme value dis-
tributions are adapted from Berg and Lee (2019a) and from Jang and Wang (2015).
Conceptually, the extreme value distribution for the lower tail can be improved for
the case of zero-inflated data. We retain the estimator defined in step 3 of Section
2.2.1 largely for simplicity. Based on past experiments with different estimators of the
extreme value distribution, we expect the choice of the extreme value distribution to
have little impact on the efficiency of the predictors.

We recognize that the use of the same notation for θ in the model for the zero-
inflated response that we use in Section 1.2 is a slight abuse of notation. We use the
same notation θ in defining the model for qposij(τk) that we use in defining the general
LIGPD in Section 1.2 for simplicity. We recognize that the θ in (12) is different from
the θ for the unconditional distribution of Section 1.2.

An important distribution used to define estimators and predictors is the conditional
distribution of bi given the data. An expression for the conditional distribution of bi
given the data corresponding to the LIGPD is

fb|ypos(bi | yposi;θ) =

∏
{j∈Ai:yij>0} fY (yij | yij > 0,xij , bi,θ)φ(bi/σb)dbi∫∞

−∞
∏
{j∈Ai:yij>0} fY (yij | yij > 0,xij , bi,θ)φ(bi/σb)dbi

, (17)

where φ is the density function of a standard normal distribution, and yposi = {yij :
j ∈ Ai, yij > 0}. If the area has no sampled units, then the conditional density of bi
is that of a normal distribution with mean zero and variance σ2

b . One can calculate
expectations with respect to (17) to obtain Bayes predictors under squared error loss.
For an integrable function h(·), the Bayes preditor of h(bi) for squared error loss is
defined as

E[h(bi) | yposi;θ] =

∫∞
−∞

∏
{j∈Ai:yij>0} h(bi)fY (yij | yij > 0,xij , bi,θ)φ(bi/σb)dbi∫∞

−∞
∏
{j∈Ai:yij>0} fY (yij | yij > 0,xij , bi,θ)φ(bi/σb)dbi

.

(18)

In particular, for h(b) = exp(b), we obtain the Bayes predictor of exp(bi). The Bayes
predictor of qposij(τ) for squared error loss corresponding to the approximate density
function (12) and the model (9) is

qBij (τ) = x′ijβ(τ)E[exp(bi) | yposi;θ]. (19)

A predictor of the form (19) will provide the basis of the small area predictors for zero-
inflated data. However, the predictor (19) is unattainable because (19) is a function
of the unknown θ.

We next define an estimator of θ. The estimator is a modification of the iterative
estimation procedure used in Berg and Lee (2019a) to account for the zero-inflated
nature of the data. The iteration involves optimization of Koenker’s check function
(6) and calculation of conditional moments according to (17).

Begin with the initial estimator θ̂
(0)

defined in Appendix 1. For m = 1, 2, . . . ,M ,
alternate between the following steps.
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(1) Define the updated estimator of σ2
b by

σ̂
2(m)
b = (D − p)−1

D∑
i=1

E[b2i | yposi; θ̂
(m−1)

], (20)

where p is the dimension of xij . Define predictors of bi and exp(bi) in the mth

step by

b̂
(m)
i = E[bi | yposi; θ̂

(m−1)
], and ê

(m)
bi = E[exp(bi) | yposi, θ̂

(m−1)
].

To approximate the integrals defining the conditional expectations, we use a
Riemann sum, as described in Berg and Lee (2019a). The motivation for the

estimator σ̂
2(m)
b is from the EM algorithm for a linear mixed effects model with

normally distributed random terms (Searle, Casella, and McCulloch, 1992, pg.
300).

(2) We use the method of Koenker and Ng (2005) to update the estimator of βK to
maintain the monotonicity restriction. The motivation for the estimator of β(τk)
is that for known bi, x

′
ijβ(τ) = argminaE[ρτ (yijexp(−bi)−a) | yij > 0, bi], where

ρτ (u) is the check function defined in (6). The estimates of β(τj) are obtained
sequentially to enforce the monotonicity condition. First, define

β̂
(m)

(τ1) = argminβ

D∑
i=1

∑
{j∈Ai:yij>0}

ρτ1(yijexp(−b̂(m)
i )− x′ijβ), (21)

subject to the restriction that x′ijβ̂
(m)

(τ1) > c0, where c0 is a specified constant.
For k = 2, . . . ,K, define

β̂
(m)

(τk) = argminβ

D∑
i=1

∑
{j∈Ai:yij>0}

ρτk(yijexp(−b̂(m)
i )− x′ijβ) (22)

subject to the restriction that x′ijβ̂
(m)

(τk) ≥ x′ijβ̂
(m)

(τk−1) for j = 1, . . . , Ni

and i = 1, . . . , D. To enforce the monotonicity restrictions, we implement the
constrained optimization method of Koenker and Ng (2005) using the method
fn in the R function rq.

(3) Next, we estimate ρs and ξs for s = `, u, the parameters of the generalized Pareto
density. The estimators are minor modifications of the procedures used in Jang
and Wang (2015) to account for the zero-inflated nature of the data. Specifically,

ρ̂
(m)
` = 0.5(τ1 + τ2)

D∑
i=1

∑
{j∈Ai:yij>0}

q̂
(m)
ij (τ2)− q̂(m)

ij (τ1)

n(τ2 − τ1)
, (23)

ρ̂(m)
u = [1− 0.5(τK + τK−1)]

D∑
i=1

∑
{j∈Ai:yij>0}

q̂
(m)
ij (τK)− q̂(m)

ij (τK−1)

n(τK − τK−1)
,

where q̂
(m)
ij (τk) = x′ijβ̂

(m)
(τk)ê

(m)
bi , and n =

∑D
i=1

∑ni

j=1 I[yij > 0]. Holding ρ̂
(m)
`
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and ρ̂
(m)
u fixed, the estimator of ξs is the maximum likelihood estimator using only

{yij < ˆ̀(m)
ij } for s = ` and {yij > û

(m)
ij } for s = u, where ˆ̀(m)

ij = 0.5(x′ijβ̂
(m)

(τ1)+

x′ijβ̂
(m)

(τ2))ê
(m)
bi and û

(m)
ij = 0.5(x′ijβ̂

(m)
(τK) + x′ijβ̂

(m)
(τK−1))ê

(m)
bi . Precisely,

ξ̂
(m)
` = argmaxξ

∏
{(ij):0<yij<ˆ̀(m)

ij }

g(−(yij − ˆ̀(m)
ij )) | ρ̂(m)

` , ξ), (24)

and

ξ̂(m)
u = argmaxξ

∏
{(ij):yij>û(m)

ij >0}

g(yij − û(m)
ij | ρ̂

(m)
u , ξ). (25)

Let θ̂ = ((β̂K)′, σ̂2
b , ρ̂`, ξ̂`, ρ̂u, ξ̂u)′ denote the estimator of θ obtained in the final step

of the iteration.

2.2.2. Estimator of Binary Component

One can use standard software to estimate the parameters of the logistic mixed
effects model (8). To estimate σ2

u and γ, we use a Laplace approximation, as imple-
mented in the R function glmer. Let σ̂2

u and γ̂ be the resulting estimates of σ2
u and γ.

We use penalized quasi-likelihood (Breslow and Clayton, 1993), as implemented with
the predict method for glmer objects to predict ui, and we let ûi be the resulting
predictor. We then define a predictor of the probability that yij is zero by

p̂z(ûi, zij) = (1 + exp(z′ijγ̂ + ûi))
−1exp(z′ijγ̂ + ûi). (26)

2.2.3. Predictors of Quantiles

Given estimates of parameters θ, γ, and σ2
u, as well as predictors of ui and exp(bi),

the next step is to construct small area predictors. The small area prediction procedure
involves two main steps. First, we define an approximation for the population. The
approximation for the population is similar in structure to the method of Berg and
Lee (2019a), except that the unconditional distribution (11) is used to accommodate
the zero-inflated nature of the data. The second step is to use the approximation for
the population to define estimates of small area quantiles.

The details of the two steps of the small area prediction procedure are as follows.

For i = 1, . . . , D, j = 1, . . . , Ni, and k = 1, . . . ,K, define a predictor of the τth
k

conditional quantile for yij > 0 by

q̂posij(τk) = E[exp(bi) | yposi, θ̂]x′ijβ̂(τk),

where the expectation is approximated using the Riemann sum defined in Berg and
Lee (2019a). Then, define a predictor of the unconditional quantile by

q̂ij(τ) =

{
0 if τ ≤ p̂z(ûi, zij)
q̂posij

(
τ−p̂z(ûi,zij)
1−p̂z(ûi,zij)

)
if τ > p̂z(ûi, zij).

(27)

11



The {q̂ij(τk) : i = 1, . . . , D; j = 1, . . . , Ni; k = 1, . . . ,K} defines an approximation for

the population. We define a predictor of the τth population quantile by

q̂i(τ) = min{q̂ij(τk) : F̂yi(q̂ij(τk)) ≥ τ ; j = 1, . . . , Ni; k = 1, . . . ,K}, (28)

where F̂yi(t) = (NiK)−1
∑Ni

j=1

∑K
k=1 I[q̂ij(τk) ≤ t].

2.3. Bootstrap MSE Estimation

We modify the parametric bootstrap MSE estimator of Berg and Lee (2019a)
to account for the zero-inflated nature of the data. The main idea of the bootstrap
simulation procedure is to use the probability integral transform to simulate from
the conditional distribution of yij given xij and bi. First, a b∗i is generated from the
estimated marginal distribution of bi. Then, linear interpolation is used to approximate
the quantile function corresponding to the conditional distribution of yij given xij and
b∗i . The probability integral transform is then used to simulate a new variable, y∗ij from
this linear approximation to the conditional quantile function. Finally, the estimation
procedure is repeated using the original sample and the new simulated y∗ij .

To define a bootstrap MSE estimator, repeat the following steps for t = 1, . . . , T .

(1) First, generate a bootstrap approximation for the population. Generate b
∗(t)
i ∼

N(0, σ̂2
b ), and define q

∗(t)
posij(τk) = x′ijβ̂(τk)exp(b

∗(t)
i ) . Generate u

∗(t)
i ∼ N(0, σ̂2

u),

and define p̂
∗(t)
zij = exp(z′ijγ̂ + u

∗(t)
i )(exp(z′ijγ̂ + u

∗(t)
i ) + 1)−1. Define

q
∗(t)
ij (τk) =

0 if τ ≤ p̂∗(t)zij

q̂posij

(
τ−p̂∗(t)zij

1−p̂∗(t)zij

)
if τ > p̂

∗(t)
zij .

(29)

Define a bootstrap version of the τth population quantile by

q
∗(t)
i (τ) = min{q∗(t)ij (τk) : F̂ ∗(t)yi (q

∗(t)
ij (τk)) ≥ τ ; j = 1, . . . , Ni; k = 1, . . . ,K},

(30)

where F̂
∗(t)
yi (t) = (NiK)−1

∑Ni

j=1

∑K
k=1 I[q

∗(t)
ij (τk) ≤ t].

(2) Generate a bootstrap sample as follows. Generate v
∗(t)
ij

iid∼ Unif(0, 1) for i =

1, . . . , D, and j = 1, . . . , Ni. Define y
∗(t)
ij = y∗ij(θ̂, b

∗(t)
i , v

∗(t)
ij ) by

y
∗(t)
ij =


q
∗(t)
ij (τk∗(t)

ij
) + (v

∗(t)
ij − τk∗(t)

ij
)

(
q
∗(t)
ij (τ

k
∗(t)
ij

+1
)−q∗(t)ij (τ

k
∗(t)
ij

)

τ
k
∗(t)
ij

+1
−τ

k
∗(t)
ij

)
, p̂

∗(t)
zij < v

∗(t)
ij < τK

0, v
∗(t)
ij ≤ p̂

∗(t)
zij

q
∗(t)
ij (τK), v

∗(t)
ij ≥ τK ,

(31)

where k
∗(t)
ij = max{k : τk ≤ v

∗(t)
ij }. Define the bootstrap sample to be {y∗(t)ij :

(i, j) ∈ A}, where A denotes the original sample. Note that the operation in the
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first line of (31) defines a linear interpolation of the estimated quantile function.

(3) Repeat the estimation procedure of Section 2 using {y∗(t)ij : (i, j) ∈ A} to obtain

q̂
∗(t)
i (τ). As in Berg and Lee (2019a), we simplify the estimation procedure to

reduce the computational burden. Rather than estimate the quantile regression
coefficients sequentially to enforce the monotonicity constraint, as in (49)-(50),
we simultaneously minimize Koenker’s check function for all quantile levels and
then sort the estimates of the quantiles to obtain a nondecreasing quantile func-
tion (Chernozhukov, Fernandez-Val, and Galichon, 2009) for element (i, j). A
more specific definition of the rearrangement operation is defined following (46)
of Appendix 2.

Define the bootstrap MSE estimator for q̂i(τ) by

ˆMSEi(τ) =
1

T

T∑
t=1

(q̂
∗(t)
i (τ)− q∗(t)i (τ))2. (32)

The bootstrap MSE estimator is similar to bootstrap MSE estimators for small
area predictors for parametric models developed in Lahiri et al. (2007) and in Hall

and Maiti (2006). The MSE estimator (32) is an estimator of E[(q̂
∗(t)
i (τ)− q∗(t)i (τ))2]

and does not account for a possible bias of the estimator of the leading term due to
estimating θ. In a simulation study, Berg and Lee (2019a) evaluate the quality of an
MSE estimator similar to (32) for the quantile regression model with no modification
for zero-inflated data. Because the MSE estimator (32) is similar in structure to the
MSE estimator of Berg and Lee (2019a), we do not present further simulation results
here. Instead, we focus on an application of (32) to the data presented in Section 4 in
this manuscript.

3. Modification for an Informative Design

The development of Section 2 assumes that the sample design is noninformative
for the quantile regression model. In this section, we consider an informative sample
design. Assume all areas are included in the sample, and assume that a subset of ele-
ments is selected from area i. Let πij = P (Iij = 1 | yij ,xij , zij , bi, ui), where Iij is the
sample inclusion indicator for element (i, j). We adapt the approach of Pfeffermann
and Sverchkov (2007) to the quantile regression setting in order to modify the predic-
tors to account for unequal selection probabilities. Pfeffermann and Sverchkov (2007)
develop small area predictors for a fully parametric model under an informative sam-
ple design. Their approach exploits relationships between the sample distribution and
the sample complement distribution. They construct predictors relative to the popula-
tion distribution using estimates of the parameters of the sample distribution. For the
fully parametric model considered in Pfeffermann and Sverchkov (2007), a closed form
expression for the small area predictor is available. For the quantile regression model,
a closed-form expression relating the sample distribution to the sample complement
distribution is not available. Nonetheless, the basic idea of the Pfeffermann and Sver-
chkov (2007) approach applies easily to the quantile regression framework. Below, we
use importance sampling to simulate from the sample complement distribution.

13



3.1. Procedure to Account for Informative Design

First, we introduce the definitions of the population, sample, and sample complement
distributions more formally. Let fp(yij | bi,xij , ui, zij) be the density/mass function
corresponding to the population distribution of yij . Let fs(yij | bi,xij , ui, zij) = fp(yij |
bi,xij , ui, zij , Iij = 1) denote the corresponding sample distribution. From Pfeffermann
and Sverchkov (2007; also see Kim and Yu, 2011 for a related result in the context of
nonignorable nonresponse), the sample complement distribution is of the form

fc(yij | bi, ui,xij , zij) ∝ Es[π−1
ij (1− πij) | yij ,xij , zij , bi, ui]fs(yij | bi,xij , ui, zij),

(33)

where Es[·] denotes expectation with respect to the sample distribution, and fc(yij |
bi, ui,xij , zij) = fp(yij | bi,xij , ui, zij , Iij = 0). (We refer the reader to Pfeffermann
and Sverchkov (2007) for further background on the concepts of the sample distribution
and the sample complement distribution.)

We obtain estimates of fs(yij | bi,xij , ui, zij) and of Es[π
−1
ij (1 − πij) |

yij ,xij , zij , bi, ui] using the sample data. We use the quantile regression procedure
defined in Section 2 to obtain an estimate of the quantiles of the distribution of
fs(yij | bi,xij , ui, zij). Let q̂ij(τk) for k = 1, . . . ,K be the estimated quantiles based on
the sample for evenly spaced quantile levels, obtained using the procedure of Section
2. Denote the estimate of Es[π

−1
ij (1− πij) | yij ,xij , zij , bi, ui] based on the sample by

ω̂ij(yij) = Es[π
−1
ij (1− πij) | yij ,xij , zij , bi, ui]. (34)

A variety of models and procedures may be used to obtain the estimates ω̂ij(yij).
We use a weight model similar to that of Pfeffermann and Sverchkov (2007). In this
section, we first define the method to simulate from the population distribution for an
arbitrary definition of ω̂ij(yij). We then define the procedure that we use to estimate
Es[π

−1
ij (1− πij) | yij ,xij , zij , bi, ui].

We simulate from the population distribution using the relationship (33). Let
q̂ij(τk) for k = 1, . . . ,K be the estimated quantiles based on the sample for evenly
spaced quantile levels, obtained using the procedure of Section 2. Let ω̂ij(yij) be an
estimate of Es[π

−1
ij (1−πij) | yij ,xij , zij , bi, ui] based on the sample. Define a simulated

population by sampling from {q̂ij(τk) : k = 1 . . . ,K} with probabilities proportional
to ω̂ij(q̂ij(τk)). For r = 1, . . . , R, let

q̃
(r)
ij =

{
q̂ij(τk) with probability ω̂ij(q̂ij(τk))∑K

k=1 ω̂ij(q̂ij(τk))
if (i, j) /∈ A

q̂ij(τk) with probability K−1 if (i, j) ∈ A.
(35)

The {q̃(r)
ij : i = 1, . . . , D; j = 1, . . . , Ni; r = 1, . . . , R} defines an approximation for the

population. We define a predictor of the τth population quantile by

q̂i(τ) = min{q̂ij(τk) : F̂ (R)
yi (q̂ij(τk)) ≥ τ ; j = 1, . . . , Ni; r = 1, . . . , R}, (36)

where F̂
(R)
yi (q̂ij(τk)) = (NiR)−1

∑Ni

j=1

∑R
r=1 I[q̃

(r)
ij ≤ t]. This simulation procedure is es-

sentially the “weighted bootstrap method” defined in Section 3.2 of Smith and Gelfand
(1992). The quantile regression model lends itself naturally to a procedure such as (35)
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to simulate from the sample complement distribution. Because the quantile estimates
are already computed, one only needs to obtain the importance weight ω̂ij(q̂ij(τk)).

Implementation of (35) and (36) requires a model for Es[π
−1
ij (1 − πij) |

xij , zij , yij , bi, ui]. We assume

Es[π
−1
ij (1− πij) | xij , zij , yij , bi, ui] = exp(α0 + x̃′ijα1 + yijα2 + δi), (37)

where δi ∼ N(0, σ2
δ ), and x̃ij may contain elements of xij or zij . To estimate Es[π

−1
ij (1−

πij) | xij , zij , yij , bi, ui] we use a working model defined by

log(π−1
ij (1− πij)) = α0 + x̃′ijα1 + yijα2 + δi + rij , i = 1, . . . , D; j ∈ Ai, (38)

where δi ∼ N(0, σ2
δ ), and rij ∼ N(0, σ2

r ). The model (38) is implicitly specified condi-
tional on Iij = 1 (i.e., a sample distribution model) and is defined only for sampled
elements. Because we require an estimate of the mean of π−1

ij (1 − πij) with respect

to the sample distribution as defined in (37), we can estimate the parameters of the
model (38) using only the sample data, as in Pfeffermann and Sverchkov (2007). We
estimate α0, α1, α2, and σ2

δ using restricted maximum likelihood (REML) applied to
the sample data. We denote the REML estimates by α̂0, α̂1, α̂2, and σ̂2

δ . We define

the estimator of Es[π
−1
ij (1− πij) | xij , zij , y, bi, ui] by

ω̂ij(y) = exp(α̂0 + x̃ijα̂1 + yα̂2 + δ̂i),

where δ̂i is the EBLUP of δi. As mentioned above, other possible models for πij are
possible. We use the model (38) primarily for mathematical simplicity. The model (38)
is similar to that of Pfeffermann and Sverchkov (2007), which has been vetted in the
literature, and permits a computationally simple estimation procedure.

3.2. Simulation Study for Informative Sampling Modification

We conduct a limited simulation study to vet the modification for the informative
sample design. The aim of the simulation is to verify that the modification for infor-
mative sampling reduces a bias in the predictor that ignores the survey weights when
the sample design is informative for the specified model.

To focus attention on the informative sampling procedure, we do not use a zero-
inflated model for the simulation. We use one of the simulation models from Berg and
Lee (2019a). The simulation model is defined by

yij = β0 + β1xij + bi + eij , (39)

where xij
iid∼ N(0, 1), β0 = −1.5, β1 = 0.5, bi ∼ N(0, 0.5), and eij = (1 + 0.1xij)(e

∗
ij −

2)/2, and e∗ij ∼ χ2
(2). We generate D = 60 areas with (Ni, ni) = (143, 5) for 20 areas,

(Ni, ni) = (286, 10) for 20 areas, and (Ni, ni) = (571, 20) for 20 areas. The MC sample
size for each simulation is 200. The population quantile is qi(τ) = min{yij : Fyi(yij) ≥
τ : j = 1, . . . , Ni}, where Fyi(y) = N−1

i

∑Ni

j=1 I[yij ≤ y].
A sample is selected using systematic probability proportional to size sampling. The
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inclusion probability for element j in area i is

πij =
nizij∑Ni

j=1 zij
, (40)

where

log(zij) = −yij/3 + β0/3 + β1xij/3 + ui/15. (41)

Table 1 contains the average Monte Carlo (MC) MSE and average MC bias of two
predictors, where the average is across areas of the same sample size. The predictor
denoted “SRS” is the predictor of Berg and Lee (2019a), which ignores the unequal se-
lection probabilities. The predictor denoted “Inf” uses the modification (35) to account
for the informative design. The bias for the SRS procedure that ignores the weights is
negative because the probability of selection increases as yij decreases. Incorporating
the survey weights through the procedure of Section 3.1 reduces the average MC MSE
and absolute average MC bias of the predictor.

τ Criterion Predictor ni = 5 ni = 10 ni = 20
0.25 MSE SRS 0.0403 0.0229 0.0166
0.25 MSE Inf 0.0316 0.0146 0.0077
0.25 Bias SRS -0.0954 -0.0935 -0.0965
0.25 Bias Inf -0.0166 -0.0145 -0.0174
0.50 MSE SRS 0.0636 0.0453 0.0387
0.50 MSE Inf 0.0349 0.0173 0.0095
0.50 Bias SRS -0.1740 -0.1720 -0.1756
0.50 Bias Inf -0.0322 -0.0301 -0.0338
0.75 MSE SRS 0.1656 0.1446 0.1352
0.75 MSE Inf 0.0546 0.0316 0.0204
0.75 Bias SRS -0.3442 -0.3472 -0.3508
0.75 Bias Inf -0.0654 -0.0686 -0.0725

Table 1. Comparison of MC bias and MC MSE for LIGPD predictors. SRS: predictors ignoring sampling

weights. Inf: predictors that incorporate the modification for informative sampling defined in Section 3.1.

4. Illustration for Kansas CEAP Data

We illustrate the procedures using data collected from the 2003-2006 CEAP surveys
in Kansas. We consider the response variable, percolation. Approximately 12% of the
sampled values of percolation are zero for Kansas. A preliminary analysis shows that
the conditional distribution of the percolation variable given the covariates that we
considered violates the assumptions of simple parametric models, such as the linear
mixed effects model (Battese, Harter, and Fuller, 1988) and the lognormal mixed
effects model (Berg and Chandra, 2014). Therefore, the percolation variable provides
a realistic candidate for demonstrating the quantile regression procedures.

We apply the procedures of Sections 2-3 above to obtain county level predictors
of the quantiles of the percolation variable for Kansas. We use M = 2 steps of the
iterative estimation procedure and T = 100 bootstrap samples. For the informative
sampling modification, we use R = 100 to obtain a simulated approximation for the
population. As a covariate, we use a rainfall erosion index (RFACT). The covariate
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RFACT is defined geographically, as in Wischmeier and Smith (1978, pg. 11), for the
full population. We obtain the RFACT from the NRI survey data. For this illustration,
we treat the NRI as a population.

4.1. Model and Estimators for CEAP Data Analysis

The rainfall factor is used as the univariate covariate in all components of the
model. We consider an extension of the model (9) for the CEAP data analysis. The
extended model for the conditional quantile of yij given that yij > 0 is

qposij(τ) = xηijβ(τ)exp(bi), (42)

where xij is the rainfall factor, and the power η is constant across quantile levels. We
chose to expand the model to include the power η after exploratory work indicated a
nonlinear association between xij and yij for yij > 0. We provide an overview of the
estimator of η in this section and relegate details to Appendix 2.

To estimate η, we add a step to the iterative estimation procedure defined in Section
2.2.1. After step 3 of Section 2.2.1, we implement the following step 4:

4. Define

L̃(m)(η) =

∫ ∞
−∞

∏
{j∈Ai:yij>0}

fY (yij | yij > 0, xηij , bi, θ̂
(m)

)φ(bi/σ̂
(m)
b )dbi,

and define η̂(m) = argmaxηL̃
(m)(η).

The objective function, L̃(m), has an interpretation similar to a profile likelihood. We

replace xij with xη̂
(m−1)

ij when implementing steps 1-3 of the procedure with estimated

η. In each step m of the iteration, we restrict xη̂
(m−1)

ij β̂(m)(τ) such that xη̂
(m−1)

ij β̂(m)(τ)

is nondecreasing in τ and xη̂
(m−1)

ij β̂(m)(τ) > 0.001. We use 0.001 as the lower bound
because 0.001 is the smallest possible nonzero value for percolation. In the model
for the probability of a zero, zij = (1, xij)

′. In the model for the survey weights,
x̃ij = (1, xij)

′. For the bootstrap, we use the simulation procedure defined in Sec-

tion 2.2 with q
∗(t)
posij(τk) = xη̂ij β̂(τ), where η̂ is the final estimator of η. We esti-

mate η for each bootstrap sample, and define a bootstrap standard error for η̂ as√
(B − 1)−1

∑B
b=1(η̂(b) − η̄)2, where η̂(b) is the estimate of η obtained in bootstrap

sample b, and η̄ = B−1
∑B

b=1 η̂
(b).

4.2. Results for CEAP Data Analysis

The rainfall factor is positively correlated with percolation. Among units with a
positive value for percolation, the correlation between the rainfall factor and percola-
tion is 0.49, and the variance of percolation tends to increase with the rainfall factor.
The estimate of the slope for the rainfall factor in the model for the probability that
percolation is zero is γ̂ = −0.0139, with a standard error of 0.0035. The estimate of
η is η̂ = 1.075, and the bootstrap standard error is 0.014. An approximate t−statistic
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for the null hypothesis that η = 1 is given by

t =
η̂ − 1√

(B − 1)−1
∑B

b=1(η̂(b) − η̄)2

= 5.4, (43)

suggesting that η differs significantly from 1.
In Figure 1, county level estimates of the quartiles and the median are plotted

along with normal theory 95% prediction intervals. The prediction intervals are cal-
culated for the predictors that ignore the sampling weights. The intervals are defined

as q̂i(τ)± 1.96

√
ˆMSEi(τ), where ˆMSEi(τ) is defined in (32), and the lower interval

endpoint is truncated at zero. The solid lines correspond to the procedure that ignores
the sampling weights. The estimates that account for the sample design, as described
in Section 3, are depicted with a dashed line.

Figure 1. Black: predictors of quartiles and the median based on the zero-inflated quantile regression model.

Top left: 25 percentile. Top right: median. Bottom: 75 percentile. Solid black line: predictors do not use sampling

weights. Dashed black line: predictors incorporate the sampling weights through the preocedure of Section 3.1.
Green and red: upper and lower endpoints of 95% prediction intervals.

For this data set, the estimates that account for the informative sample design
are nearly indistinguishable from the estimates that ignore the survey weights. Figure 2
shows the estimates for the informative design plotted on the horizontal axis with the
corresponding estimates that ignore the sampling weights plotted on the vertical axis.
The two sets of estimates nearly lie on the 45 degree line through the origin.
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Figure 2. Comparison of predictors that incorporate the modification for informative sampling (x-axis) to

predictors that do not use the sampling weights (y-axis). Top left: 25 percentiles. Top right: median. Bottom:
75 percentile.

Figure 3 contains square roots of the estimated MSEs plotted against the sample
sizes for the areas. The variation in the widths of the intervals is due partly to variation
in the sample sizes. The use of the multiplicative lognormal distribution for bi in (42)
also contributes to the variation in the estimated root MSEs. The estimated MSEs
from a model with an additive normal random effect show less variation than the
estimated MSEs in Figure 3. Because the additive normal model does not preserve the
parameter space for the zero-inflated data, we prefer the multiplicative model (42).

Figure 3. Estimated root mean squared errors plotted against county sample sizes. Estimated mean squared

errors are defined in (32).

.

We also compare the estimates with estimated η to the estimates with η = 1. The
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absolute differences between the predictions obtained from the model with estimated
η and the predictions from the model with η = 1 are less than the estimated standard
errors of the predictors with η = 1 for all but one area. We present results for estimated
η because the t−statistic defined in (43) indicates that η 6= 1. For this data set,
estimating η is of little practical significance.

5. Summary and Future Work

We develop two extensions to the mixed effects quantile regression small area
procedure outlined in Section 1.2. One extension accommodates zero-inflated data.
The second extension accounts for an informative sample design. To illustrate the
procedures, we obtain predictors of quantiles of percolation for Kansas counties, using
data from CEAP.

For this data analysis, incorporating the survey weights has only a minor effect
on the estimates and estimated root mean squared errors. For this reason, we prefer
the simpler predictors that do not use the sampling weights. In other applications, the
effects of the sampling weights on the predictors may be important. For such situations,
a mean squared error estimator that accounts for the modification for informative
sampling would be desirable. Extending the bootstrap procedure of Pfeffermann and
Sverchkov (2007) to estimation of quantiles is an area for future work.

For several counties, the estimated root mean squared errors are undesirably large.
Expanding the model to incorporate additional covariates or spatial dependence is
a possible future direction. A different approach for modeling the zero-inflated data
would be to use a censored quantile regression model, as discussed in Section 1.

Appendix 1: Initial Estimators

We define an initial estimator of b = (b1, . . . , bD)′ by

b̂
(0)

= argminb

D∑
i=1

∑
{j∈Ai:yij>0}

ρ0.5(log(yij)− bi), (44)

where −
∑D−1

i=1 b̂
(0)
i = b̂

(0)
D . Let V̂1(b̂

(0)
1 ), . . . , V̂D−1(b̂

(0)
D−1) be estimates of the variance of

the asymptotic distribution of (b̂
(0)
1 , . . . , b̂

(0)
D−1), estimated with the option se = "ker"

in the R function summary.rq. To define an initial estimator of σ2
b , define the area-level

Fay-Herriot model,

b̂
(0)
i = bi + ai, (45)

where ai has a distribution with mean 0 and variance V̂i{b̂(0)
i }, and bi has a distribution

with mean 0 and variance σ2
b for i = 1, . . . , D − 1. The initial estimate of σ2

b , denoted

by σ̂
2(0)
b , is obtained by applying the estimation procedure of Wang, Fuller, and Qu

(2008) to the area level model (45). The preliminary estimate of β(τk) for k = 1, . . . ,K
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is defined by

β̂
(0)

(τk) = argminβ

D∑
i=1

∑
{j∈Ai:yij>0}

ρτk(yij/exp(b̂
(0)
i )− x′ijβ). (46)

We rearrange {x′ijβ̂
(0)

(τk) : k = 1, . . . ,K} for every (i, j) to obtain a nondecreasing
quantile function (Chernozhukov, Fernandez-Val, and Galichon, 2009). The estimate

q̂
(0)
ij (τk) is the kth order statistic of {x′ijβ̂

(0)
(τk)exp(b̂

(0)
i ) : k = 1, . . . ,K}. Given the

initial estimates of the quantile function, we use the procedure in Step 3 of Section

2.2 to obtain estimates ρ̂
(0)
s and ξ̂

(0)
s for s = `, u.

Appendix 2: Details on Estimation of the Power η for the CEAP Data
Analysis

Define an initial estimator of θ as in Appendix 2. Define an initial estimator of η as
η̂(0) = argmaxηL̃

(0)(η), where

L̃(0)(η) =

∫ ∞
−∞

∏
{j∈Ai:yij>0}

fY (yij | yij > 0, xηij , bi, θ̂
(0)

)φ(bi/σ̂
(0)
b )dbi.

For m = 1, . . . ,M , repeat the following:

(1) Define the updated estimator of σ2
b by

σ̂
2(m)
b = (D − 1)−1

D∑
i=1

E[b2i | yposi; θ̂
(m−1)

]. (47)

Define a predictor of bi in the mth step by

b̂
(m)
i = E[bi | yposi; θ̂

(m−1)
].

Also, define ê
(m)
bi = E[exp(bi) | yposi, θ̂

(m−1)
]. The conditional expectation for

estimated η is defined as

E[h(bi) | yposi;θ] =

∫∞
−∞

∏
{j∈Ai:yij>0} h(bi)fY (yij | yij > 0, xη̂

(m−1)

ij , bi, θ̂
(m−1)

)φ(bi/σ̂
(m−1)
b )dbi∫∞

−∞
∏
{j∈Ai:yij>0} fY (yij | yij > 0, xη̂

(m−1)

ij , bi, θ̂
(m−1)

)φ(bi/σ̂
(m−1)
b )dbi

.

(48)

To approximate the integrals defining the conditional expectations, we use the
Riemann sum described in Appendix 1.

(2) We use the method of Koenker and Ng (2005) to update the estimator of βK to
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maintain the monotonicity restriction. First, define

β̂(m)(τ1) = argminβ

D∑
i=1

∑
{j∈Ai:yij>0}

ρτ[1](yijexp(−b̂(m)
i )− xη̂

(m−1)

ij β), (49)

subject to the restriction that xη̂
(m−1)

ij β̂(m)(τ1) > c0, where c0 is a specified con-
stant. For k = 2, . . . ,K, define

β̂(m)(τk) = argminβ

D∑
i=1

∑
{j∈Ai:yij>0}

ρτk(yijexp(−b̂(m)
i )− xη̂

(m−1)

ij β) (50)

subject to the restriction that xη̂
(m−1)

ij β̂(m)(τk) ≥ xη̂
(m−1)

ij β̂(m)(τk−1) for j =
1, . . . , Ni and i = 1, . . . , D. To enforce the monotonicity restrictions, we im-
plement the constrained optimization method of Koenker and Ng (2005) using
the method fn in the R function rq.

(3) We modify the method of Jang and Wang (2015) to estimate ρs and ξs for
s = `, u. Specifically,

ρ̂
(m)
` = 0.5(τ1 + τ2)

D∑
i=1

∑
{j∈Ai:yij>0}

q̂
(m)
ij (τ2)− q̂(m)

ij (τ1)

n(τ2 − τ1)
, (51)

ρ̂(m)
u = [1− 0.5(τK + τK−1)]

D∑
i=1

∑
{j∈Ai:yij>0}

q̂
(m)
ij (τK)− q̂(m)

ij (τK−1)

n(τK − τK−1)
,

where q̂
(m)
ij (τk) = xη̂

(m−1)

ij β̂(m)(τk)ê
(m)
bi , and n =

∑D
i=1

∑ni

j=1 I[yij > 0]. Holding

ρ̂
(m)
` and ρ̂

(m)
u fixed, the estimator of ξs is the maximum likelihood estimator

using only {yij < ˆ̀(m)
ij } for s = ` and {yij > û

(m)
ij } for s = u, where ˆ̀(m)

ij =

0.5(xη̂
(m−1)

ij β̂(m)(τ1) + xη̂
(m−1)

ij β̂(m)(τ2))ê
(m)
bi and û

(m)
ij = 0.5(xη̂

(m−1)

ij β̂(m)(τK) +

xη̂
(m−1)

ij β̂(m)(τK−1))ê
(m)
bi . Precisely,

ξ̂
(m)
` = argmaxξ

∏
{(ij):0<yij<ˆ̀(m)

ij }

g(−(yij − ˆ̀(m)
ij )) | ρ̂(m)

` , ξ), (52)

and

ξ̂(m)
u = argmaxξ

∏
{(ij):yij>û(m)

ij >0}

g(yij − û(m)
ij | ρ̂

(m)
u , ξ). (53)

(4) Define an updated estimator of η as η̂(m) = argmaxηL̃
(m)(η), where

L̃(m)(η) =

∫ ∞
−∞

∏
{j∈Ai:yij>0}

fY (yij | yij > 0, xηij , bi, θ̂
(m)

)φ(bi/σ̂
(m)
b )dbi.
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