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ARTICLE INFO ABSTRACT

Several species of bacteria are able to modify their swimming behavior in response to chemical attractants or
repellents. Methods for the quantitative analysis of bacterial chemotaxis such as quantitative capillary assays are
tedious and time-consuming. Computer-based video analysis of swimming bacteria represents a valuable method
to directly assess their chemotactic response. Even though multiple studies have used this approach to elucidate
various aspects of bacterial chemotaxis, to date, no computer software for such analyses is freely available. Here,
we introduce TaxisPy, a Python-based software for the quantitative analysis of bacterial chemotaxis. The soft-
ware comes with an intuitive graphical user interface and can be accessed easily through Docker on any op-
erating system. Using a video of freely swimming cells as input, TaxisPy estimates the culture's average tumbling
frequency over time. We demonstrate the utility of the software by assessing the effect of different concentra-
tions of the attractant shikimate on the swimming behavior of Pseudomonas putida F1 and by capturing the

Keywords:

Cell tracking software
Quantitative chemotaxis
Video analysis software

adaptation process that Escherichia coli undergoes after being exposed to r-aspartate.

1. Introduction

Environmental conditions such as temperature, light intensity and
chemical composition influence the ability of an organism to grow,
reproduce and survive. Many bacteria have evolved intricate mechan-
isms to sense these and other external stimuli. These signals are pro-
cessed by the cell and directly affect the functioning of its motility
apparatus, thus leading to an informed displacement towards a bene-
ficial environment or away from unfavorable conditions. Chemotaxis
refers to a modification in the motility pattern of an organism in re-
sponse to a change in the chemical composition of its environment.
Motile bacteria utilize chemotaxis for a variety of purposes. For ex-
ample, bacteria move towards chemicals that serve as carbon and en-
ergy sources, nitrogen sources, and electron acceptors (Matilla and
Krell, 2017; Alexandre, 2010). Similarly, pathogenic and mutualistic
bacteria that associate with specific plants and animals use chemotaxis
to sense chemical signals released by their hosts (Matilla and Krell,
2018; Scharf et al., 2016). In addition, there is evidence that chemo-
tactic bacteria that are capable of degrading toxic xenobiotic pollutants
are more efficient at biodegradation than nonmotile or nonchemotactic
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bacteria (Parales et al., 2015). Flagellated bacteria such as Escherichia
coli and Pseudomonas putida swim in liquid environments by rotating
their helical flagella. A change in the swimming direction is achieved by
the intermittent change of the direction of flagellar rotation, which
leads to tumbles that usually last only a fraction of a second (Webre
et al., 2003). The swimming pattern of a cell can be quantitatively
characterized by its tumbling frequency (Alon et al., 1999; Pohl et al.,
2017). In the absence of chemical attractants, the swimming pattern of
motile bacteria is described as a “random walk”, which is characterized
by short periods of smooth swimming (often termed “runs”) and a high
tumbling frequency, with typical values of 0.44 changes of direction per
second for E. coli (Alon et al., 1999; Staropoli and Alon, 2000). After a
chemical attractant is sensed, chemotactic bacteria decrease their
tumbling frequency to values lower than 0.05 per second (Alon et al.,
1999). As a result, cells in a culture effectively swim towards higher
concentrations of the attractant following straight paths.

Over the last decades, qualitative and quantitative methods for the
study of bacterial chemotaxis have been developed. Some re-
presentative protocols include capillary assays (Pfeffer, 1884; Adler,
1969; Adler, 1973), chemical-in-plug assays (Tso and Adler, 1974) and
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Fig. 1. Software architecture. TaxisPy bundles several Python packages that together allow a computer-assisted, quantitative analysis of bacterial chemotaxis.
TaxisPy's user interface is based on Jupyter widgets and can be accessed from Jupyter Notebooks on any web browser, e.g., Google Chrome. TaxisPy's ability to
identify cells and generate trajectories is enabled by the Python package Trackpy (Allan et al., 2019). Pandas, Numpy and Scipy are additional packages that provide
TaxisPy with computational objects and functions required to store, filter and process the data generated by Trackpy. The Python packages DEAP (Fortin et al., 2012)
and Scoop (Hold-Geoffroy et al., 2014) are used to estimate parameter values for the identification of tumbles. All plotting routines are supported by Matplotlib.

computer-based video analyses of swimming cells (Berg and Brown,
1972). See Ditty and Parales (2015) for an overview of these methods.
While qualitative methods are fast and usually do not involve major
technical difficulties, quantitative methods such as the quantitative
capillary assay are tedious and time-consuming. Computer-based video
analysis of swimming bacteria represents a valuable method to directly
and quantitatively assess the chemotactic response of bacteria. Even
though multiple studies have used this approach to elucidate various
aspects of bacterial chemotaxis (Harwood et al., 1989; Alon et al., 1998;
Alon et al., 1999; Staropoli and Alon, 2000), to date, no computer
software for such analyses is freely available. Here, we introduce
TaxisPy, a Python-based software for the quantitative analysis of bac-
terial chemotaxis. The software comes with an intuitive graphical user
interface that is especially suited for users with limited programming
knowledge. It systematically addresses typical difficulties associated
with the customized use of cell tracking software such as filtering of
atypical cell trajectories and determination of parameter values for the
identification of tumbles. TaxisPy can be easily accessed through
Docker on any operating system.

2. Materials and methods
2.1. Bacterial strains, media composition and attractants

The responses of E. coli K12 strain RP437 [F thr-1 leuB6 his-4
metF159 thi-1 ara-14 lacY1 mtl-1 xyl-5 rpsL136 tonA31 tsx-78 eda-50]
(Parkinson, 1978) and Pseudomonas putida F1 (Finette et al., 1984;
Gibson et al., 1970) -both motile organisms used as models for studying

chemotactic behavior- to chemical attractants were examined in this
study. All cells were grown in Luria-Bertani medium (LB; Sambrook
et al., 1989) or minimal medium (MSB; Stanier et al., 1966) at 30 °Cin a
shaking incubator.

2.2. Behavioral assays

Pseudomonas putida cultures were grown for approximately 18 h in
minimal MSB medium containing 10 mM succinate at 30 °C. One hun-
dred microliters of the culture were sub-cultured into 15 mL minimal
MSB containing 10 mM succinate and 5 mM shikimate for induction of
chemotactic behavior towards aromatic acids (Luu et al., 2015). After
approximately 6h of growth, the cells were harvested at mid-ex-
ponential phase (ODgop = 0.4-0.6) by centrifugation at 5000 rpm for
10 min at room temperature. The cells were gently washed in 15 mL of
chemotaxis buffer (CB; 50 mM potassium phosphate buffer pH?7.0,
10 uM disodium EDTA, 0.05% glycerol) and re-centrifuged for 10 min
at 5000 rpm (Parales et al., 2000). Finally, the cells were resuspended in
15 mL of aerated CB. Cultures were diluted 2- to 3-fold with CB to limit
overlapping trajectories (Supplemental Information, Section 7.1). For
analysis of the swimming pattern of P. putida, 10 uL of the cell sus-
pension was placed on a glass slide (Fisher Scientific) and mixed with
1 puL of various concentrations of shikimate in CB to attain final con-
centrations of OuM, 10 M, 50 uM, 100 uM, and 1 mM. Two seconds
after the addition of the attractant, video recording was initiated. Re-
cording of the samples was performed with an Infinity Lite microscope
camera (Lumenera, Ottawa, ON, Canada) mounted to a Nikon eclipse
TE2000-S inverted microscope, using a magnification of 400 X. The
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swimming behavior was recorded for 1 min at a speed of 20.3 frames
per second using the software Infinity Capture 6.5.4. These videos were
then analyzed with TaxisPy as described below to estimate the tumbling
frequency of the cell populations.

Samples for analyzing the adaptation of E. coli after stimulation with
L-aspartate were generated using a different set-up. Cells were grown
overnight in LB medium before being harvested by centrifugation
(10,000 rpm, 1 min) and washed with an equal volume of MSB medium.
Cells were resuspended in an equal volume of MSB medium. Two
hundred microliters of washed culture were inoculated into 15 mL of
minimal MSB medium containing 12mM glucose. When the cultures
reached mid-exponential phase (ODggo = 0.4-0.6), 1 mL aliquots of
culture were harvested by centrifugation at 5000 rpm for 10 min at
room temperature and gently resuspended in 1 mL of CB. At regular
time intervals, 10 uL samples of E. coli were removed and observed with
a Nikon eclipse TE200-S inverted microscope at 400 X magnification.
Using the Infinity Lite mounted camera, 10 s videos were recorded at a
speed of 20.3 frames per second. The chemotactic response was in-
itiated by adding i-aspartate to the resuspended cultures at final con-
centration of 1 mM. To keep cells motile during the experiment, cells
were incubated at 30 °C in a shaking incubator (200 rpm). These videos
were then analyzed with TaxisPy as described below to estimate the
tumbling frequencies of the cell populations.

2.3. Software and general workflow

TaxisPy integrates several Python packages to enable the estimation
of the average tumbling frequency of bacteria in culture (Fig. 1). Its
intuitive graphical user interface is based on Jupyter widgets and
contains six different tabs (Fig. 2). In order to streamline its distribu-
tion, especially among users with limited programming knowledge,
TaxisPy can be accessed via a Docker image. Docker is a computer

Estimate Number of
Tumbles for each
Trajectory

Tumbling«

Frequency

Parameter
Determination

Estimate Tumbling
Frequency ‘—e Tumbling Frequencies

Journal of Microbiological Methods 175 (2020) 105918

program that performs operating-system-level virtualization and is used
to run software packages called containers. Containers bundle their
own application, tools, libraries and configuration files and are created
from images. Docker has been increasingly used to distribute software
across different operating systems, partly because it guarantees the
reproducibility of computational workflows performed within its con-
tainers (Beaulieu-Jones and Greene, 2017). This feature renders Docker
an appealing tool (Boettiger, 2015) to distribute a variety of
research software. Some recent examples include stochastic simulators
(Drawert et al.,, 2016), generators of bioinformatic workflows
(Hung et al., 2019) and tools for the mechanistic analysis of biochem-
ical networks (Valderrama-Gomez et al., 2020) among many others.
To download TaxisPy via Docker, four steps are required:

1. Install Docker on your computer. Docker is supported by all major
operating systems: Linux, MacOs and Windows. Refer to the in-
stallation instructions in the Supplemental Information (Section 3)
for further details.

2. Download the latest TaxisPy image by typing the following com-
mand in a terminal window (Mac, Linux) or command prompt
window (Microsoft Windows):

docker pull m1vg/taxispy

3. Start a Docker container to access TaxisPy by typing the following
command in the same window:

docker run -d -p 8888:8888 m1vg/taxispy
This command will create a container without the ability to read or

write files on the host computer (i.e., your computer). Files created
within the container will be lost after the container is stopped. In order
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Fig. 2. From a video recording to the bacterial tumbling frequency using TaxisPy. Five different tasks —represented by the blue rectangles— are involved in estimating
the tumbling frequency of bacteria in culture from a video of their swimming behavior. TaxisPy's user interface consists of six sequentially arranged tabs -represented
by the orange rectangles— that provide required functionalities to perform each one of these tasks. Even though several parameters are involved in various steps of the
analysis, TaxisPy provides necessary tools to identify appropriate values for those parameters. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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Fig. 3. Workflows supported by TaxisPy. Different workflows can be followed when working with TaxisPy. The most appropriate workflow will depend on the
availability of a set of frames, a user-provided training set, and values of key parameters for the identification of tumbling frequencies. A) If none of the latter is
available, the standard workflow (see also Fig. 2) should be followed. This workflow starts by splitting a given video into its constituting frames and ends by
estimating the average tumbling frequency. Refer to the tutorial contained in the TaxisPy Docker image under /Tutorial for a step by step description of the general
workflow. B) If a set of frames is already available, the first step of the standard workflow can be skipped, i.e., using the splitter. C) If a set of frames, along with a
training set are available, key parameter values for the determination of tumbling frequencies can be estimated after the frames have been loaded into TaxisPy and
cellular trajectories have been identified by the software. The training set can be either manually entered or conveniently loaded from an Excel (.xlsx) file —the file
should contain two columns, one with the header “Trajectory” and one with the header “Tumbles”. D) If frames, along with a training set and the resulting values for
key parameters are available, the average cellular tumbling frequency can be directly estimated by TaxisPy once the frames have been loaded into TaxisPy and
cellular trajectories have been identified by the software. This workflow involves the utilization of the tab File to load the frames into TaxisPy, the tabs Feature
Identification and Trajectories to automatically identify cellular trajectories, and the tab Tumbling Frequencies to estimate the average tumbling frequency.

to grant access to files on the host computer, the previous command
should be replaced by the following command:

docker run -d -p 8888:8888 —-mount type=bind, source=/
Users, target=/Documents/host mlvg/taxispy

Note that the lines of code above/below correspond to one single
command. Windows users should use:

docker run -d -p 8888:8888 —mount type=bind, source=//
c/Users, target=/Documents/host mlvg/taxispy

. Access TaxisPy by entering the following address in any internet
browser (e.g., Google Chrome):

http://localhost:8888/

Refer to additional instructions to start Docker containers as well as
frequently asked questions in the Supplemental Information (Sections 3
to 6).

Quantitatively characterizing bacterial swimming behavior of a
given culture by means of its tumbling frequency involves five con-
secutive steps, as shown in Fig. 2. First, a video registering freely
swimming cells is split into its constituting frames. Each frame re-
presents a snapshot of the culture at a given time point. Splitting can be
performed using the software FFmpeg (it supports a wide range of video
formats), for which a simple user interface is provided within the
TaxisPy Docker image; or by any other software designed for that
purpose. Then, cells present in each frame are located and swimming
trajectories identified by linking the position of individual cells through
subsequent frames. Within TaxisPy, this functionality is provided by
Trackpy 0.4.2 (Allan et al., 2019), a Python package that implements

feature-finding and linking algorithms originally introduced by Crocker
and Grier (1996). The next step consists of calculating the number of
tumbles for each trajectory. Previous reports have used motion prop-
erties of individual trajectories — e.g., acceleration and velocities— to
calculate the number of tumbles for each cellular trajectory. The un-
derlying idea is that a cell decreases its linear velocity and increases its
absolute acceleration below/above certain thresholds while tumbling.
Specific threshold values were empirically determined by the authors of
those studies (Berg and Brown, 1972; Sager et al., 1988; Harwood et al.,
1989; Amsler, 1996; Alon et al., 1998). It is clear that these values are a
function of a variety of biological (i.e., bacterial strain, growth condi-
tions, optical density, etc.) and technical (i.e., frame rate, signal
smoothing) factors, which restricts the utility of such thresholds to the
specific conditions for which they were estimated. To calculate the
number of tumbles for a given cellular trajectory, TaxisPy requires the
values for three key parameters: a threshold value for the absolute
acceleration and values for two parameters controlling the smoothing
of cellular trajectories: # Frames and # Smooth (see Table S1 in the
Supplemental Information). Optimal values for these parameters are
estimated based on a user-provided training set, so that the squared
difference between the observed and the calculated number of tumbles
is minimized. The condition-specific training set consists of a set of
cellular trajectories with known changes of direction, and its generation
is fully supported by various functionalities contained within TaxisPy. A
genetic algorithm, provided by the Python package DEAP (Fortin et al.,
2012), is used to solve the optimization problem required to estimate
key parameter values. The final step in the characterization of the
bacterial swimming behavior in a culture involves the determination of
its average tumbling frequency. This value is calculated by dividing the
total number of tumbles estimated for a set of trajectories over the total
duration of those trajectories. Alternatively, the tumbling frequency can
be calculated for each individual trajectory and an average over all
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trajectories can be used to estimate the average tumbling frequency of
the culture. TaxisPy offers the flexibility to select the desired calcula-
tion method. In this work, reported tumbling frequencies were calcu-
lated using the first method, which divides the total number of tumbles
over the total duration of all trajectories. In order to exclude anomalous
trajectories that might bias the average tumbling frequency calculated
for a set of trajectories, TaxisPy offers a series of filters to remove tra-
jectories of nonmotile cells, trajectories exhibiting a too high number of
tumbles (e.g., “stuck” cells that are trying to detach) or trajectories with
a linear velocity that is abnormally low.

Depending on the availability of a set of frames, a condition-specific
training set, and key parameter values for the identification of tumbling
frequencies, various workflows are possible when working with TaxisPy
(Fig. 3). There are two advantages associated with the ability to follow
different workflows. First, the results of a given motion analysis can be
quickly reproduced if a set of frames and values for key parameters are
provided (Fig. 3D). Second, the steps required to estimate the average
tumbling frequency from a video do not need to be executed in a single,
uninterrupted session. This allows multiple users to contribute to the
analysis of a given video (e.g., user 1 generates the training set, user 2
determines optimal parameter values, which are employed by user 3 to
calculate the average tumbling frequency) and allows the possibility to
resume the analysis at any stage (i.e., workflow B, C or D) if TaxisPy
unexpectedly crashes.

2.4. Key parameter values required by TaxisPy

A comprehensive list of all parameters required by TaxisPy, along
with a short description and nominal values is provided in Table S1 of
the Supplemental Information. Eleven key parameters are involved in
different stages of the analysis. These include parameters such as
Diameter and Min. Mass, which are used in the Feature Identification tab
and are directly passed to Trackpy (Allan et al., 2019) for the identi-
fication of individual cells in each frame. A nominal value of 25 pixels
for Diameter and 2000 for Min. Mass were used for all video analyses of
both P. putida and E. coli cultures. TaxisPy offers an intuitive way to
identify optimal values for these two parameters by visually inspecting
the ability of the software to correctly identify cells in three different
frames, corresponding to the first, middle, and last frame of a given set.
Cells identified in these frames are enclosed by a blue circle by TaxisPy.
Appropriate values for Diameter and Min. Mass will maximize the
number of cells correctly identified by TaxisPy. Refer to Section 7 in the
Supplemental Information for suggestions on optimal video acquisition
and image analysis.

A second group of key parameters consists of # Trajectories,
Trajectory # and # Chng. Dir. They refer to the number of trajectories
within a given user-defined training set, the ID of each trajectory and
the observed number of changes of direction or tumbles for each tra-
jectory, respectively. These parameters determine the training set that
is passed to the genetic algorithm implemented by DEAP (Fortin et al.,
2012). The solution of the optimization problem corresponds to optimal
values for the two parameters controlling the smoothing routine
(#Frames and #Smooth) and a value for the acceleration threshold (Acc.
Thrhld.), which are used to identify the number of tumbles of all cellular
trajectories. Briefly, a genetic algorithm is a heuristic search and opti-
mization technique inspired by natural evolution. First proposed by
John Holland (Holland, 1975), genetic algorithms have been success-
fully applied to a wide range of real-world problems of significant
complexity (McCall, 2005). They use a highly abstract version of the
evolutionary process to evolve solutions to a given optimization pro-
blem. It starts with a randomly generated population of artificial
“chromosomes” and carries out a process of fitness-based selection,
recombination and mutation to produce an offspring population. This
process is iterated for a certain number of generations. In our specific
context, an artificial chromosome corresponds to a numerical vector
containing values for the key parameters [# Frames, # Smooth,

Journal of Microbiological Methods 175 (2020) 105918

Acc.Thrhld] and its fitness is defined by the sum of squared differences
between the observed and the calculated number of tumbles for each
trajectory of the training set. The genetic algorithm implemented by
DEAP used a population size of 100 individuals (artificial chromo-
somes) and 5 generations. The initial population was generated at
random, using ranges for Acc. Thrhld of 0 to 1000 um/s? and #Frames
and #Smooth of 1 to 5. To increase variability within the population, we
applied a two-point crossover and gaussian mutation with mean of 0
and standard deviation of 0.2. The independent probability for each
attribute of the population to be mutated was 0.2. This configuration of
the genetic algorithm exhibited a good performance for the training sets
used in this study but can be customized if necessary. Population size,
number of generations and bounds of key parameters can be custo-
mized from the tab Parameter Determination. The training set used by
DEAP can be easily generated by the user employing the tabs Trajec-
tories and Visualization. Refer to Tables S2 to S6 in the Supplemental
Information for training sets used to identify the acceleration threshold
and smoothing parameters for the P. putida experiments and to Tables
S8 to S10 for training sets used for the E. coli experiments. Optimal
parameter values resulting from these training sets are summarized in
Table S7 for the P. putida videos and in Table S11 for E. coli.

An additional group of key parameters is located within the tab
Tumbling Frequencies. These parameters control the way TaxisPy filters
out anomalous trajectories and calculates average tumbling fre-
quencies. The parameters Dsplcmt, %, Velocity and Max. Chng. Dir. are
used to sort out short trajectories, trajectories of cells swimming with
too low linear velocities and trajectories exhibiting an excessive
number of turns, respectively. Nominal values of 10%, 4 um/s, and 10
tumbles were used to analyze all data presented in this study. Finally,
the parameter T. Int. (s) is used to specify the time intervals used by
TaxisPy to calculate the temporal evolution of the cellular tumbling
frequency. A value of 5s was used for the analysis of the P. putida ex-
periments, while a value of 10 s was used for E. coli.

3. Results

In order to demonstrate the utility of TaxisPy, the chemotactic re-
sponses of two different microorganisms after stimulation with che-
mical attractants were video recorded and analyzed. Using the frames
of the recorded videos as input, TaxisPy allowed the quantification of
the effect of shikimate on the tumbling frequency of P. putida and the
visualization of the adaptation process of E. coli after exposure to
1 mM r-aspartate. The following results were generated using parameter
values listed in Table S7 for P. putida F1 and Table S11 for E. coli. Refer
to ReadMe Notebooks contained in the Docker image under
/Ecoli_Aspartate and /Pseudomonas_Shikimate to reproduce individual
results.

3.1. Characterization of the chemotactic response of P. putida

P. putida F1 was exposed to four different concentrations of shiki-
mate. Chemotaxis buffer without shikimate was used as the control
condition. The response of the culture under each condition was video
recorded in triplicate for sixty seconds and TaxisPy was subsequently
used to calculate the average tumbling frequency under each condition
as described in the Methods section. Fig. 4 summarizes our findings. As
expected, the cellular tumbling frequency decreased from its basal
value of 0.42 tumbles/s under unstimulated conditions to a low value of
0.023 tumbles/s for a shikimate concentration of 1 mM.

The minimum average cellular tumbling frequency exhibited by sti-
mulated cultures within the first 20 s of each video was used in Fig. 4A
to assess the effect of different concentrations of shikimate on the
swimming pattern. This value was used instead of the average tumbling
frequency over the same period of time because it better captured the
reduction of the culture's tumbling frequency after exposure to the
chemical attractant. Note that the only difference between the minimum
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Fig. 4. Tumbling frequency of P. putida for different shikimate concentrations. A) Tumbling frequency exhibited by the cells as a function of the shikimate con-
centration. After stimulation with shikimate, the swimming pattern was characterized by the minimum average tumbling frequency exhibited by the cells during the
first 20 s and calculated using time intervals of 5s. For the control cultures (CB only), the swimming pattern was characterized by the average tumbling frequency
calculated for the first 20 s of each video. Refer to main text for details. The number of trajectories used to calculate tumbling frequencies for each video ranged from
257 to 23. Error bars represent one standard deviation of the cellular tumbling frequency calculated from three different videos. B) Temporal evolution of the
tumbling frequency of P. putida after exposure to 1 mM shikimate is represented by the blue solid line. Average frequencies were calculated using intervals of 5s; the
corresponding data point is placed at the end of each interval. The grey dashed line represents the number of cellular trajectories used by TaxisPy to calculate
reported average frequencies. The shaded blue area represents the first 20 s of the video used to determine the minimum average tumbling frequency. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

average tumbling frequency and the average tumbling frequency is the
time period and consequently the number of trajectories used for its
calculation. While the average tumbling frequency considers all de-
tected trajectories during the first 20 s, the minimum average tumbling
frequency involves the calculation of four different average tumbling
frequencies, which are calculated using trajectories detected in the time
ranges 0 < t <5s(f}),5 = t<10s(fy), 10 = t <15s(f3)and 15 =
t < 20 (f4). The minimum average tumbling frequency corresponds to
the minimum numerical value of all four frequencies: min(f;, fs, f3, f4).
This procedure is justified in Fig. 4B, where the temporal evolution of
the tumbling frequency after addition of 1 mM of shikimate is shown
(see four blue data points within the blue shaded area). While the
average tumbling frequency for the first 20s corresponds to 0.13
tumbles/s, the minimum average tumbling frequency within the same
period of time corresponds to 0.04 tumbles/s. Note that this tumbling
frequency was calculated using trajectories detected in the period of
time between 15 and 20 s. The origin of the discrepancy between these
two values can be attributed to temporal processes involved in the
diffusion of the chemical attractant in the culture's medium, as well as
to temporal processes involved in cellular sensing and response to the
chemical gradient. Note that the analysis was restricted to the initial
20s of the video instead of its total duration (see blue rectangle in
Fig. 4B). There are two reasons for this. The first one is related to the
adaptation process that the cellular sensing machinery undergoes and
the associated increase in the tumbling frequency. The second reason is
related to the steady decrease over time in the number of cellular tra-
jectories identified by TaxisPy, which compromises the representa-
tiveness of the tumbling frequencies calculated and potentially in-
creases the noise at later time points. This observation was consistent
over all recorded videos (see Fig. S1). For consistency, the tumbling
frequency for the control condition was also calculated over a period of
20s.

3.2. Visualizing the adaptation process of the chemotactic machinery of E.
coli

The two-component system controlling the chemotactic response of
E. coli is able to adapt to external stimuli (Macnab and Koshland, 1972;
Berg and Berg and Tedesco, 1975; Alon et al., 1999). Adaptation refers

to the temporal process by which the cellular tumbling frequency re-
turns to its pre-stimulation state. As a proof-of-concept and to demon-
strate the utility and versatility of TaxisPy in elucidating this process,
we stimulated an E. coli culture with 1 mM r-aspartate and videotaped
its swimming pattern at regular time intervals for 40 min. Each video
had a duration of 10s. Constituting frames of each video were first
extracted and subsequently analyzed using the functionalities provided
by TaxisPy. The average tumbling frequency for each video was cal-
culated using all trajectories detected in the whole duration of the
video, i.e., 10s. These data are graphically represented by the blue dots
in Fig. 5. Black dots in the same figure represent the tumbling frequency
of a control culture without the addition of the chemical attractant. The
idea of the minimum average tumbling frequency used to analyze the
chemotactic response of P. putida was not necessary here because the
adaptation process of the chemotactic machinery of E. coli to r-aspartate
takes several minutes. Additionally, temporal processes involved in the
diffusion of the chemical attractant in the medium are not expected to
be relevant in this case because the culture was kept in a shaking in-
cubator at 200 rpm during the experiment.

The expected cellular adaptation behavior is evident from the time
course of the tumbling frequency for the stimulated culture (blue solid
line in Fig. 5). As time goes by, the average tumbling frequency in-
creased from values lower than 0.05 tumbles/s during the first 10 min,
to reach a maximum value of 0.25 tumbles/s after 20 min. The adap-
tation process can be characterized by two parameters: the precision of
adaptation and the adaptation time (Alon et al., 1999). The first para-
meter is defined as the ratio between the average cellular tumbling
frequency of the unstimulated culture and that of the stimulated culture
after adaptation has been reached. The second parameter is defined as
the time where the tumbling frequency of stimulated cells rises to
halfway between its earliest measured value and its steady-state value.
For the specific system under analysis, the adaptation time was 15 min
and the precision of adaptation was 1.18.

4. Discussion

A major difficulty related to the customized use of cell tracking
software is the determination of key parameter values for the identifi-
cation of tumbles or changes of direction. In the past, such parameters
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Fig. 5. Adaptation of the chemotactic machinery of E. coli. L-aspartate (1 mM)
was added to an E. coli culture at time 0 and its swimming pattern videotaped
for 10s in regular time intervals over 40 min. Each video was subsequently
analyzed using TaxisPy to estimate the temporal evolution of the tumbling
frequency. These data points are represented by the blue dots. The tumbling
frequency of a control culture without attractant is represented by the black
dots. The grey dashed line represents the average cellular tumbling frequency of
the unstimulated culture (0.295 tumbles/s). Each data point was generated
from the analysis of 86 to 420 individual cellular trajectories. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

were empirically determined (Berg and Brown, 1972; Harwood et al.,
1989), which compromises the applicability of those parameters under
different conditions - e.g., different microorganisms or stimuli. TaxisPy
systematically addresses this issue by implementing various strategies
designed to guide the selection of relevant parameter values. For in-
stance, TaxisPy employs a genetic algorithm along with a condition-
specific training set to identify optimal values for three key parameters:
# Frames, # Smooth and Acc. Threshold. The first two parameters affect
the way that TaxisPy smooths cellular velocity data by calculating the
average from a number of frames (dictated by # Frames) a certain
number of times (determined by # Smooth). Noisy positional data tend
to require more smoothing cycles. TaxisPy analyzes the time course of
the absolute acceleration —which is calculated from the smoothed ve-
locity data- to identify tumbling events. We use the premise that a cell
decreases its linear velocity when tumbling and increases it again
thereafter. Thus, a change of direction or tumble is characterized by
two adjacent peaks in the time course of the absolute acceleration. To
avoid identifying normal fluctuations in the velocity during smooth
swimming as a tumble, the acceleration peaks are required to surpass a
threshold value dictated by Acc. Threshold. Since smoothing the velocity
data decreases the height of the peaks in the acceleration plot, high
values for # Frames and # Smooth are usually accompanied by low
values for Acc. Threshold and vice versa.

One of the motivations for the development of TaxisPy was to offer a
simple method for the quantitative analysis of bacterial chemotaxis.
Following the way paved by previous studies that implemented video-
based analysis of bacterial chemotaxis, we decided to base our method
on the analysis of cellular motion data for the identification of tumbling
frequencies. This led us to identify the necessity of condition-specific
values for some parameters —# Frames, # Smooth and Acc. Threshold—
and to develop features in TaxisPy for their identification. Even though
constructing training sets and identifying optimal parameter values
usually requires a couple of minutes, this procedure can become tedious
if a large number of videos needs to be processed. A promising ap-
proach for the “parameter-free” identification of tumbles is the analysis
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of cellular trajectories by multilayer neural networks (Lecun et al.,
1998; Ciregan et al., 2012). These networks could be first trained on a
large data set of cellular trajectories —each one of them labeled with the
number of tumbles— to then be used on new trajectories to estimate
their number of tumbles. An advantage of such an approach would be
that the model parameterization would be done just once and could be
then applied for various microorganisms under different conditions.
Paving the way towards this new approach, we are providing an initial
training set in the Supplementary File 1, which was manually extracted
and curated from the P. putida experiments and consists of over 700
cellular trajectories, each one provided with the number of observed
tumbles.

In this study, we used two different experimental set-ups to study
the bacterial chemotactic response. For P. putida, the temporal response
to shikimate pulses of varying concentration was measured on micro-
scope glass slides. Using the minimum tumbling frequency during the
first 20 s of each experiment, we were able to quantitatively capture the
effect of the shikimate concentration on the swimming behavior. As
expected, we observed a decrease in the tumbling frequency as the
concentration of shikimate was increased (Fig. 4A). Increasing the
shikimate concentration over 100 uM did not seem to have a further
effect on the chemotactic response of P. putida. Additionally, values
calculated for the tumbling frequency were within the same order of
magnitude as previous reports (Harwood et al., 1989), which validates
the computations performed by TaxisPy.

As mentioned in the results section and shown in Figs. 3B and S1,
the number of trajectories identified by TaxisPy consistently decreased
during the course of each experiment. This is potentially related to a
temperature or light-dependent taxis away from the observation field of
the microscope. An indirect support to this claim is provided by a report
by Paster and Ryu (2008), in which a tactic response was observed in E.
coli as a function of temperature gradients. The authors showed that at
temperatures below 31 °C, the response to thermal stimuli is similar to
the chemotactic response. However, at temperatures above 31 °C, some
cells showed an inverted response, switching from warm- to cold-
seeking behavior. Additional factors to be considered might be related
to oxygen depletion and the accompanied overall loss of bacterial
motility (Douarche et al., 2009) and with cellular migration towards the
nearest air/water interface due to aerotaxis (Taylor, 1983) and away
from the focus of the microscope. From a practical point of view, a
steady decrease in the number of cellular trajectories over time has two
implications. First, it suggests that the uncertainty of data extracted
from adaptation experiments performed on glass slides will increase
over time, since the number of trajectories used to calculate tumbling
frequencies will continuously decrease. Second, it poses a biological
constraint on the maximal length of the videos when the swimming
pattern is observed on a glass slide. In line with these observations, we
limited the analysis of each P. putida video to the first 20s.

In the case of E. coli, a different experimental set-up was followed.
Since the adaptation time exhibited by this microorganism under the
studied conditions is in the order of magnitude of minutes, the actual
adaptation process was conducted in an Eppendorf tube instead of on a
microscope slide. Samples were taken from the vessel, which was kept
under shaking conditions, and analyzed under the microscope for 10s.
In this way, we were able to estimate both the adaptation time and the
precision of adaptation. The estimated value for the adaptation time of
15min and the precision of adaptation of 1.18 are consistent with
previously reported values (Alon et al., 1999). These results serve as
further validation of our methods.

TaxisPy was designed for users with limited programming knowl-
edge. Its user interface provides necessary tools to split a video into its
constituting frames, identify cells in individual frames, link these to
obtain trajectories, filter anomalous trajectories and calculate tumbling
frequencies. Thanks to its convenient distribution through Docker, in-
tuitive user interface and biologically feasible results, TaxisPy re-
presents a valuable computational tool for the quantitative analysis of
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bacterial chemotaxis.
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