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Abstract—Nowadays most mobile devices are equipped with
advanced sensors, enabling the measurement of information
about surrounding environment or social settings. The ubiquity
of mobile devices makes them the perfect platform for massive
data collection, which motivates the emergence of mobile crowd-
sensing paradigm. However, due to the inherent noisy nature
of the sensing process and the limited capability of low-cost
commodity sensors, crowdsensed information tends to be less
reliable compared with sensing results through dedicated sensing
hardware, and multiple crowdsensing sources may conflict with
each other. Thus, it is important to resolve conflicts in the
collected data and discover the underlying truth. Traditional
truth discovery approaches usually estimate the reliability of data
sources and predict the truth value based on source reliability.
However, recent data poisoning attacks greatly degrade the per-
formance of existing truth discovery algorithms, where attackers
aim to maximize the utility loss. In this paper, we investigate
the data poisoning attacks on truth discovery and propose a
robust approach against such attacks through additional source
estimation and source filtering before data aggregation. Based
on real-world data, we simulate our approach and evaluate its
performance under data poisoning attacks, demonstrating the
robustness of our approach.

I. INTRODUCTION

Nowadays, mobile devices have become an indispensable
part of our daily life. With their advanced sensing capabilities
and ubiquitous presence, they could collect massive informa-
tion about surrounding environments and social settings [1],
[2]. This motivates the emergence of mobile crowdsensing,
which employs a large group of mobile users to perform
sensing tasks at low cost and extracts the collected information
to measure, map, analyze, estimate or infer any processes
of common interest [3]–[8]. For example, in crowdsourced
spectrum sensing [9], mobile users can provide the spectrum
sensory data with their mobile devices to estimate spectrum
availability for dynamic spectrum access [10], [11].

However, multiple data sources usually provide conflicting
information about the sensing object due to the inherent
noisy nature of the sensing process. The introduced noises
and errors could be caused by low calibration of sensors,
sensor quality, lack of human attention, and even intended
deception. Thus, in order to fully utilize the information in
mobile crowdsensing, it is important to recover the truth from
the noisy sensory data. A naive way to recover the truth is
taking the average of the sensory data or through majority
voting. However, in such methods, the credibility of the source

is not differentiated and each source contributes equally to
the final result. Considering varying credibility across crowd
sensors, it is desirable to estimate source reliability and use it
as the weight to calculate a weighted sum of sensing results.
However, the reliability of the source in mobile crowdsensing
is usually unknown a prior. This makes reliability estimation
a critical and challenging part for truth discovery. Based
on the intuition that the reliability of the source is closely
relevant with the accuracy of its sensing results, most truth
discovery protocols update the reliability and the truth through
an iterative process. There exists tremendous work regarding
truth discovery [12]–[19] or reliability-based data aggregation
[20]–[22] based on the iterative method.

The openness of the crowdsensing platform makes it an
easy target for attackers. An attacker can easily manipulate the
sensing results by hiring some malicious workers to submit
poisoned data at a low cost, widely known as data poisoning
attack. Such data poisoning attack is usually formulated as a
bi-level optimization problem, whose objective is to maximize
the utility loss [23]–[25]. Although the truth discovery process
could provide some level of defense through assigning the
malicious workers with low weights to reduce their impacts
on the final estimated truth, the attacks could still distort
the final result. Thus, in order to guarantee the advantage
of crowdsensing system, it is necessary to design additional
methods to defend against such data poisoning attacks.

In our paper, we focus on data poisoning attacks on truth
discovery and propose a robust approach against such attacks.
We consider Conflict Resolution on Heterogeneous data truth
discovery algorithm (CRH) [19], and formulate an a bi-level
optimization problem for data poisoning attacks on CRH,
where malicious attackers collude to maximize the utility
loss of the truth discovery. Then we propose our approach to
defend against such attacks on truth discovery by designing
additional source evaluation and source filtering method. The
first step of our approach is to estimate the error bias and
variance of each source, which indicate the error level of the
workers. Then we remove those workers whose error level
is higher than a pre-defined threshold value, and use the
remaining data for the truth discovery process. We simulate
our approach on real-world data and the simulation result
demonstrates the robustness of the proposed approach.

In summary, our contributions in this paper are:
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1) We consider an optimal data poisoning attack strategy
in truth discovery system, where malicious workers
aim to maximize the utility loss of truth discovery to
render the estimated truth useless. We formulate such
data poisoning attack strategy as a bi-level optimization
problem.

2) We propose a robust truth discovery algorithm, which
integrates source evaluation and source filtering process
into the CRH method. The source evaluation estimates
the error bias and variance of the sources, and the source
filtering process uses the estimated bias and variance as
the criteria to remove unreliable sources.

3) We conduct experiments on real-world data. Our sim-
ulation results show that our approach could provide
accurate and reliable results in the presence of data
poisoning attacks.

In the remaining parts of our paper, we firstly describe the
problem setting and formulate the truth discovery problem
as an optimization problem in Section II. In Section III, we
consider an optimal data poisoning attacks model. Then we
propose our robust approach against such attacks in Section
IV. In Section V, we conduct an experiment based on real-
world data, and evaluate our simulation. In Section VI and
Section VII, we describe some related works and conclude
our paper.

II. PROBLEM STATEMENT

A. Problem Setting

In this paper, we consider a general crowdsensing frame-
work with two parties: mobile users and the server. Mobile
users work as workers to provide sensory data on the objects
within the object set N . We use vki to denote the sensory
data on the ith object from the kth worker. Among the
mobile users, we assume that there are normal workers and
malicious workers. The malicious workers could manipulate
their sensory data in order to achieve their attack goal, which
is usually known as data poisoning attack. In Section III,
we will describe such attack with respect to the attack goal,
attackers’ knowledge, the attackers’ capability and their attack
strategy. Here we use K andM to denote the normal worker
set and the malicious worker set respectively. The server
collects all the data {vki }k∈K∪M,i∈N from workers and aims
to estimate the ground truth of the objects and the qualities
of the workers. We use v∗i , v̂

∗
i , and wk to denote the ground

truth of the ith object, the estimated truth of the ith object,
and the assigned weight to the kth worker respectively.
Throughout this paper, we assume that the normal workers

sense data independently and we only focus on the setting
where the sensory data is continuous.

B. Truth Discovery

After receiving all the sensory data {vki }k∈K∪M,i∈N , the
server estimates the truth {v̂∗i }i∈N among the conflicting
information. Following [19], [26]–[28], here we model such

truth discovery problem as an optimization problem described
as:

argmin
{wk},{v̂∗

i }

∑
k∈K∪M

wk

∑
i∈N

d(vki , v̂
∗
i ), (1a)

s.t. δ({wk}k∈K∪M) = 1, (1b)

where d(vki , v̂
∗
i ) refers to the Euclidean distance between

the estimated truth v̂∗i and the observation vki : d(v
k
i , v̂

∗
i ) =

(vki − v̂∗i )
2, and δ({wk}k∈K∪M) is the regularization function

reflecting the distribution of {wk}k∈K∪M. Here, we follow
the widely adopted truth discovery method CRH proposed in
[19], where the regularization function is defined by:

δ({wk}k∈K∪M) =
∑

k∈K∪M

exp(−wk). (2)

In order to solve the optimization problem, the iterative
method is commonly used, where the estimated truth and
assigned weights are updated alternatively. More details on
the CRH truth discovery algorithm are shown in Algorithm 1.

Algorithm 1 CRH Truth Discovery Algorithm

Input: {vki }k∈K∪M,i∈N
1: wk ← 1;
2: repeat
3: for i ∈ N do
4: Compute v̂∗i =

∑
k∈K∪M vk

i wk∑
k∈K∪M wk

;
5: end for
6: for k ∈ K ∪M do
7: Compute wk = − log

∑
i∈N (vk

i −v̂∗
i )

2∑
k∈K∪M

∑
i∈N (vk

i −v̂∗
i )

2 ;
8: end for
9: until results converge

Output: {v̂∗i }i∈N and {wk}k∈K∪M

III. DATA POISONING ATTACKS

In this section, we introduce the attack model including the
attacker’s goal, adversarial knowledge, adversarial capability,
and the data poisoning attack strategy.

Attackers’ goal. The attacker aims to maximize the error
of the truth discovery result in order to render the estimated
truth useless, which is usually called availability attack.
Specifically, the attackers’ goal is to maximize the distance
between the estimated truth from truth discovery algorithm
before and after the attacks. We use {ṽ∗i } to denote the
estimated truth without malicious workers involved. We could
formulate the attackers’ goal as a maximization problem:

max
{vj

i }j∈M

∑
i∈N

(
v̂∗i − ṽ∗i

)2
.

Adversarial knowledge. We assume that the attackers
could have access to all the observations {vki }i∈N ,k∈K from
the normal workers. The attackers could obtain this informa-
tion by eavesdropping the communication between the normal
workers and the server. Besides, the attackers have complete
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knowledge about the truth discovery algorithm including how
the server updates the weight and estimates the truth values.

Adversarial capability. The capability of the attackers is
limited by the malicious worker ratio, which could be defined
by ρ = |M|/|M ∪ K|. Usually, the malicious worker ratio
is small because in reality the attackers could only hire a
small fraction of malicious workers. According to the previous
works [23], the ratio is no higher than 20%.

Data poisoning attack strategy. According to the attack-
ers’ goal and their knowledge, we could formulate the data
poisoning attacks as a bi-level optimization problem [29]:

max
{vj

i }j∈M

∑
i∈N

(
v̂∗i − ṽ∗i

)2
, (3a)

s.t. vji ∈ [min
k
{vki },max

k
{vki }], j ∈M, (3b)

{v̂∗i } = argmin
∑

k∈K∪M

wk

∑
i∈N

d(vki , v̂
∗
i ),

s.t.
∑

k∈K∪M

exp(−wk) = 1, (3c)

{ṽ∗i } = argmin
∑
k∈K

wk

∑
i∈N

d(vki , ṽ
∗
i ),

s.t.
∑
k∈K

exp(−wk) = 1. (3d)

Constraints (3b) ensure that the poisoned data is located
within the normal range to avoid detection. Note that in [24],
[25], the authors use a similar bi-level optimization problem to
formulate data poisoning attack strategy on truth discovery but
they focus on categorical data, which is different from ours. To
solve the bi-level optimization problem, we use the gradient-
based method to search for the optimal solution, where the
gradient of the objective function with respect to vji is defined
by:

∇vj
i
f = 2 · (v̂∗i − ṽ∗i ) ·

wj∑
k∈K∪M wk

. (4)

The details of the data poisoning attack algorithm are given
in Algorithm 2.

IV. ROBUST TRUTH DISCOVERY AGAINST DATA
POISONING ATTACKS

In Algorithm 2, there are two steps in each iteration: (1)
truth discovery to update the estimated truth and the assigned
weight, and (2) the poisoned data update. In the poisoned data
update, the sign of the gradient is determined by v̂∗i − ṽ∗i .
If the v̂∗i is larger than ṽ∗i , the update will increase the
value of poisoned data, and such value increase will have a
positive feedback on the truth discovery process and make
the estimated truth v̂∗i larger. Therefore, as the result of
the data poisoning attacks, the poisoned data {vji }i∈N ,j∈M
from malicious workers deviate from the truth and reach the
boundary (mink{vki } or maxk{vki }) in order to maximize the
utility loss. For each observation vki , we could divide it into
two components including ground truth and error:

vki = v∗i + eki . (5)

It means that as the result of data poisoning attacks, the
poisoned data would have large error part eki .

The general idea of our approach is to remove the data from
those workers with large error before the data aggregation. In
our approach, the server firstly estimates the bias bk and the
variance σ2

k of data error from each worker, where

bk =
1

|N |
∑
i∈N

eki and σ2
k =

1

|N |
∑
i∈N

(eki − bk)
2
. (6)

Then the server removes those workers with large error level
defined by b2k + σ2

k, which measures the expected euclidean
distance between the sensory data and the ground truth, and
finally uses the remaining data for truth discovery.

Algorithm 2 Data Poisoning Attack Algorithm

Input: {vki }i∈N ,k∈K
1: Initialize {vji }i∈N ,j∈M;
2: wk ← 1;
3: Compute {ṽ∗i } by Algorithm 1 with input {vki }i∈N ,k∈K;
4: repeat
5: repeat
6: for i ∈ N do
7: Compute v̂∗i =

∑
k∈K∪M vk

i wk∑
k∈K∪M wk

;
8: end for
9: for k ∈ K ∪M do

10: Compute wk = − log
∑

i∈N (vk
i −v̂∗

i )
2∑

k∈K∪M
∑

i∈N (vk
i −v̂∗

i )
2 ;

11: end for
12: until results converge
13: for j ∈M do
14: for i ∈ N do
15: Compute vji ← vji + 2 · (v̂∗i − ṽ∗i ) ·

wj∑
k∈K∪M wk

;
16: end for
17: end for
18: until results converge
Output: {vji }i∈N ,j∈M

A. Source Evaluation
The server firstly estimates the bias {bk}k∈K∪M based on

the collected data {vki }i∈N ,k∈K∪M. Although we could not
obtain the error eki due to the unknown ground truth, we could
obtain the difference γ(k, j) between any two biases by:

γ(k, j) = bk − bj =
1

|N |
∑
i∈N

(vki − vji ). (7)

In order to estimate the bias {bk}k∈K∪M, we formulate a loss
minimization problem:

min
{bk}k∈K∪M

∑
k∈K∪M

∑
j∈K∪M

(
bk − bj − γ(k, j)

)2

, (8a)

s.t.
∑

k∈K∪M

bk = 0, (8b)

where the objective refers to the loss measuring the distance
between the estimated parameters {bk}k∈K∪M and the obser-
vation {γ(k, j)}k∈K∪M,j∈K∪M.
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Next, we estimate the variance {σ2
k}k∈K∪M based on the

estimated bias. Similarly, since we do not know the ground
truth, we could not obtain the variance of error directly, but
we could obtain the sum of any two variances as follows:

β(k, j) = σ2
k + σ2

j

=
1

|N |
∑
i∈N

(eki − bk)
2
+

1

|N |
∑
i∈N

(eji − bj)
2

=
1

|N |
∑
i∈N

(eki − bk − eji + bj)
2
− 2 · cov(eki , e

j
i )

=
1

|N |
∑
i∈N

(vki − vji )
2
− 2 · cov(eki , e

j
i ).

(9)

Assume that normal workers sense data independently, we
have cov(eki , e

j
i ) ≈ 0. Thus, we have:

β(k, j) ≈ σ2
k + σ2

j =
1

|N |
∑
i∈N

(vki − vji )
2
. (10)

In order to estimate the variance of error, we also formulate
a loss minimization problem:

min
{σ2

k}k∈K∪M

∑
k∈K∪M

∑
j∈K∪M

(
σ2
k + σ2

j − β(k, j)

)2

, (11a)

s.t. |K ∪M|
∑

k∈K∪M

σ2
k =

∑
k∈K∪M

∑
j∈K∪M

β(k, j). (11b)

We could solve the optimization problems (8) and (11) by
using Lagrange multiplier method, and then get the estimated
error bias {bk}k∈K∪M and variance {σ2

k}k∈K∪M.

B. Threshold-Based Source Filtering

After the source evaluation, the server could estimate the
error bias and variance of each worker. Intuitively, we remove
those data sources with high error level in order to avoid the
impacts of the poisoned data. We could set up a threshold T ,
and remove those workers whose error level b2k+σ2

k is higher
than the threshold T . We will discuss the choice of threshold
value in our simulation. More details on the threshold-based
source filtering are given in Algorithm 3.

Algorithm 3 Source Filtering Algorithm

Input: {bk}k∈K∪M, {σ2
k}k∈K∪M, T , and K ∪M

1: Initialize P = ∅;
2: for k ∈ K ∪M do
3: if b2k + σ2

k < T then
3: P ← P ∪ {k};
4: end if
5: end for

Output: selected worker set P

C. The Final Algorithm

In this section, we give an overview of our approach.
The inputs of our approach are all sensory data from both
normal workers and malicious workers. We firstly evaluate the

workers by estimating the error bias and variance (by solving
problems (8) and (11)). Then we use the source filtering
mechanism (Algorithm 3) to remove the malicious sources
and get the selected source set P . Then the truth discovery
algorithm works on the selected data to get the estimated truth.
More details on our approach are shown in Algorithm 4.

Algorithm 4 Robust Truth Discovery Algorithm

Input: {vki }i∈N ,k∈K∪M
1: Compute {bk}k∈K∪M and {σ2

k}k∈K∪M;
2: P ← Algorithm 3;
3: Initialize wk;
4: repeat
5: for i ∈ N do
6: Compute v̂∗i =

∑
k∈P vk

i wk∑
k∈P wk

;
7: end for
8: for k ∈ P do
9: Compute wk = − log

∑
i∈N (vk

i −v̂∗
i )

2∑
k∈P

∑
i∈N (vk

i −v̂∗
i )

2 ;
10: end for
11: until results converge
Output: {v̂∗i }i∈N

V. EXPERIMENTAL EVALUATION

In this section, we simulate our approach (Algorithm 4) and
present the simulation results to show the robustness of our
work.

A. Simulation Setup
In our experiments, we use MATLAB to simulate our

approach based on real-world data.
1) Dataset: Our simulation is based on real-world data:

weather data [30]. The weather dataset describes the weather
information in 30 major USA cities, thus we have 30 sensing
objects (|N | = 30). Each data entry includes temperature,
humidity, weather condition. The weather data is collected
from 16 weather websites, thus there are 16 data sources. We
assume these 16 data sources are normal workers (|K| = 16).
In our simulation, we only focus on the temperature data.

2) Malicious Worker Simulation: In order to test the ro-
bustness of our approach in the presence of attackers, we
need to simulate some malicious workers in addition to the
16 normal workers. These malicious workers would follow
the optimal data poisoning strategy (Algorithm 4) to update
their poisoned data. In this simulation, we need to control the
malicious worker ratio ρ = |M|/|M ∪ K|. As we discuss
before, the ratio ρ should be less than 20%, thus we set
|M| = {0, 1, 2, 3, 4} in our simulation.
3) Performance Metrics: In the simulation, the perfor-

mance metric is root mean square (RMS) value:

RMS =

√
1

|N |
∑
i∈N

(v̂∗i − v∗i )
2 (12)

which measures the distance between the estimated truth and
the ground truth. The larger the RMS value is, the utility of
the algorithm is smaller.
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Fig. 1: Comparison between traditional truth discovery and
our approach under data poisoning attack.
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Fig. 2: The affect of various threshold values on our approach.

4) Baseline Algorithms: The baseline algorithm is
truth discovery algorithm (Algorithm 1 with input
{vki }i∈N ,k∈K∪M). We compare our approach with the
baseline algorithm under the data poisoning setting
(Algorithm 2). By comparing the baseline algorithm,
we could prove the robustness of our approach.

B. Simulation Results

In this part, we evaluate the robustness of our approach by
comparing the baseline algorithm in terms of accuracy (RMS
value).

1) Malicious Worker Ratio: We firstly evaluate the ro-
bustness of our approach under the settings with different
malicious worker ratios. Since the ratio is usually less than
20% due to attackers’ limited capability, we change the
number of malicious workers from 0 to 4 in our simulation.
In this simulation, we fix the threshold value T to be 5. The
evaluation results are plotted in Figure 1. Figure 1 shows
that with more malicious workers involved, the accuracy of
the truth discovery algorithm will decrease. Furthermore, our
approach could defend against the data poisoning attacks and
the accuracy of our approach is even better than that one
without attack (malicious worker ratio = 0%). Even though
there is no attacker, there are also some normal workers with
low quality. Our approach could remove those workers, which
would decrease the utility of truth discovery algorithm. Thus,
our approach is robust against both attacks and the impact
from the data of low quality.

2) Threshold Value: Here we evaluate the robustness of our
approach when we change the threshold value T used in our

approach. In this simulation, we fix the malicious worker ratio
to be 20%. The threshold value is important since it decides
which data should be removed. As shown in Figure 2, when
the threshold value is small, the utility of our approach is low
(even lower than the utility after attack). The small threshold
value enables our algorithm to remove both malicious workers
and some workers of good quality, thus the algorithm has
poor performance. When we choose the threshold value within
[3, 20], our approach has better utility than the traditional
method, demonstrating our robustness against attacks. When
we set the threshold to be 50, our approach has the same
result as the truth discovery under data poisoning attacks since
with high threshold value, our approach loses the capability
to remove those malicious workers.

VI. RELATED WORK

There have been tremendous research efforts on truth
discovery. Some work considers a semi-supervised method by
utilizing the available labeled truth to guide source reliability
estimation and truth inference [31]–[33]. However, the ground
truth is usually difficult to obtain in practice and thus we
have to use unsupervised method to estimate the truth. In
unsupervised settings, the truth discovery problem is modeled
as an optimization problem [19], [26]–[28]. They solve the
optimization problem by an iterative method [12], [14], [15],
where truth estimation and weight estimation are conducted
iteratively until the results converge. There are also some
work considering a probabilistic graphical model [16], [17],
[34]. In addition, reputation-based data aggregation has also
been investigated to discover the truth value with different
discriminant functions [20], [22].

It is commonly believed that truth discovery algorithms
or reliability based data aggregation methods are robust to
the impact from unreliable data or attacks. However, some
attack scenarios could still greatly disturb the truth value.
In [21], a collusion attack has been proposed to disturb the
truth discovery result, and an new initialization method is
used to defend such collusion attacks. In [24] considering
categorical data, an optimal data poisoning attacks strategy in
truth discovery is proposed to maximize the attack utility and
disguise the malicious workers as normal workers. Besides,
there are also some works focusing on data poisoning attacks
or the countermeasures in crowdsensing application [35]–[38]
and machine learning [23], [39]–[41].

VII. CONCLUSION

In this paper, we have investigated the data poisoning
attacks on truth discovery process and proposed a robust
approach to such attacks. We have analyzed the impacts of
data poisoning attacks and demonstrated that existing truth
discovery processes could suffer from high utility losses from
such attacks. To mitigate the impacts and improve the utility
of the truth discovery results, we have designed a robust truth
discovery approach that filters out malicious sources before
fusing the sensing results. Simulations have been conducted
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on real-world data to demonstrate the robustness of our
approach.
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