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DP-ADMM: ADMM-Based Distributed
Learning With Differential Privacy

Zonghao Huang, Rui Hu, Yuanxiong Guo , Eric Chan-Tin, and Yanmin Gong

Abstract—Alternating direction method of multipliers
(ADMM) is a widely used tool for machine learning in distri-
buted settings where a machine learning model is trained over
distributed data sources through an interactive process of local
computation and message passing. Such an iterative process
could cause privacy concerns of data owners. The goal of
this paper is to provide differential privacy for ADMM-based
distributed machine learning. Prior approaches on differentially
private ADMM exhibit low utility under high privacy guarantee
and assume the objective functions of the learning problems to
be smooth and strongly convex. To address these concerns, we
propose a novel differentially private ADMM-based distributed
learning algorithm called DP-ADMM, which combines an
approximate augmented Lagrangian function with time-varying
Gaussian noise addition in the iterative process to achieve higher
utility for general objective functions under the same differential
privacy guarantee. We also apply the moments accountant
method to analyze the end-to-end privacy loss. The theoretical
analysis shows that the DP-ADMM can be applied to a wider
class of distributed learning problems, is provably convergent,
and offers an explicit utility-privacy tradeoff. To our knowledge,
this is the first paper to provide explicit convergence and utility
properties for differentially private ADMM-based distributed
learning algorithms. The evaluation results demonstrate that
our approach can achieve good convergence and model accuracy
under high end-to-end differential privacy guarantee.

Index Terms—Machine learning, ADMM, distributed algo-
rithms, privacy, differential privacy, and moments accountant.

I. INTRODUCTION

D ISTRIBUTED machine learning is a widely adopted
approach due to the high demand of large-scale and

distributed data processing. It allows multiple entities to keep
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their datasets unexposed, and meanwhile to collaborate in
a common learning objective (usually formulated as a reg-
ularized empirical risk minimization problem) by iterative
local computation and message passing. Therefore, distributed
machine learning helps to reduce computational burden and
improves both robustness and scalability of data processing.
As pointed out in recent studies [1], [2], existing approaches
to decentralizing an optimization problem mainly consist of
subgradient-based algorithms [3], [4], alternating direction
method of multipliers (ADMM) based algorithms [5]–[8], and
composite of sub-gradient descent and ADMM [9]. It has
been shown that ADMM-based algorithms can converge at the
rate of O(1/t) while subgradient-based algorithms typically
converge at the rate of O(1/

√
t), where t is the number

of iterations [10]. Therefore, ADMM has become a popular
method for designing distributed versions of a machine learn-
ing algorithm [5], [8], [11], and our work focuses on ADMM-
based distributed learning.
With ADMM, the learning problem is divided into several

sub-problems solved by agents independently and locally, and
only intermediate parameters need to be shared. However,
the iterative process of ADMM involves privacy leakage,
and the adversary can obtain the sensitive information from
the shared model parameters as shown in [12], [13]. Thus,
we aim to limit the privacy leakage during the iterative
process of ADMM using differential privacy. Differential
privacy is a widely used privacy definition [14]–[16] and
can be guaranteed in ADMM through adding noise to the
exchanged messages. However, in existing studies on ADMM-
based distributed learning with differential privacy [1], [2],
[17]–[19], noise addition would disrupt the learning process
and severely degrade the performance of the trained model,
especially when large noise is needed to provide high privacy
protection. Besides, their privacy-preserving algorithms only
apply to the learning problems with both smoothness and
strongly convexity assumptions about the objective functions.
Such weaknesses and limitations motivate us to explore further
in this area.
In this paper, we mainly focus on using ADMM to enable

distributed learning while guaranteeing differential privacy,
and propose a novel differentially private ADMM-based dis-
tributed learning algorithm called DP-ADMM, which has
good convergence properties, low computational cost, and
an explicit and improved utility-privacy tradeoff, and can
be applied to a wide class of distributed learning problems.
The key algorithmic feature of DP-ADMM is the combina-
tion of an approximate augmented Lagrangian function and
time-varying Gaussian noise addition in the iterative process,
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which enables the algorithm to be noise-resilient and provably
convergent. The moments accountant method [20] is used
to analyze the end-to-end privacy guarantee of DP-ADMM.
We also rigorously analyze the convergence rate and utility
bound of our approach. To our knowledge, this is the first
paper to provide explicit convergence and utility properties
for differentially private ADMM-based distributed learning
algorithms.
The main contributions of this paper are summarized as

follows:
1) We design a novel differentially private ADMM-based

distributed learning algorithm called DP-ADMM, which
combines an approximate augmented Lagrangian func-
tion with time-varying Gaussian noise addition in the
iterative process to achieve higher utility for more gen-
eral objective functions than prior works under the same
differential privacy guarantee.

2) Different from previous studies providing only differ-
ential privacy guarantee for each iteration, we use the
moments accountant method to analyze the total privacy
loss and provide a tight end-to-end differential privacy
guarantee for DP-ADMM.

3) We provide rigorous convergence and utility analysis
of the proposed DP-ADMM. To our knowledge, this
is the first paper to provide explicit convergence and
utility properties for differentially private ADMM-based
distributed learning algorithms.

4) We conduct extensive simulations based on real-world
datasets to validate the effectiveness of DP-ADMM in
distributed learning settings.

The rest of the paper is organized as follows. In Section II,
we present our problem statement. In Section III, we describe
a differentially private standard ADMM-based algorithm and
propose our DP-ADMM. In Section IV and Section V, we the-
oretically analyze our privacy guarantee and convergence and
utility properties of DP-ADMM, respectively. The numerical
results of DP-ADMM based on real-world datasets are shown
in Section VI. Section VII discusses the related work, and
Section VIII concludes the paper.

II. PROBLEM STATEMENT

In this section, we first introduce the problem setting. Then
we present the standard ADMM-based distributed learning
algorithm and discuss the associated privacy concern. A sum-
mary of notations used in this paper is listed in Table I.

A. Problem Setting

We consider a set of agents [n] := {1, . . . , n} and a central
aggregator. Each agent i ∈ [n] has a private training dataset
Di := {(ai, j , bi, j ) : ∀ j ∈ [mi ]}, where mi is the number
of training samples in the dataset Di , ai, j ∈ Rd is the
d-dimensional data feature vector of the j -th training sample,
and bi, j ∈ R p is the corresponding p-dimensional data label.
In this paper, we consider a star network topology where each
agent can communicate with the central aggregator and the
aggregator is responsible for message passing and aggregation.
Note that our approach can be generalized to other network

TABLE I

LIST OF NOTATIONS

topologies where agents are connected with their neighbors
without a central aggregator, as discussed in [1], [2], [17].
The goal of our problem is to train a supervised learning

model on the aggregated dataset {Di }i∈[n], which enables
predicting a label for any new data feature vector. The learning
objective can be formulated as the following regularized
empirical risk minimization problem:

min
w

n∑

i=1

mi∑

j=1

1
mi

ℓ(ai, j , bi, j ,w)+ λR(w), (1)

where w ∈ Rd×p is the trained machine learning model, ℓ(·) :
Rd × R p × Rd×p → R is the loss function used to measure
the quality of the trained model, R(·) refers to the regularizer
function introduced to prevent overfitting, and λ > 0 is the
regularizer parameter controlling the impact of regularizer.
Note that the problem formulation (1) can represent a wide
range of machine learning tasks by choosing different loss
functions. For instance, the loss function of binary logistic
regression is:

ℓ(ai, j , bi, j ,w) = ln
(
1+ exp(−bi, jwᵀai, j )

)
, (2)

and the loss function of multi-class logistic regression is:

ℓ(ai, j , bi, j ,w) =
p∑

h=1

b(h)i, j ln
(∑p

l=1 exp(w
(l)ᵀ ai, j )

exp(w(h)ᵀ ai, j )

)
. (3)

In this paper, we assume that the loss function ℓ(·) and the
regularizer function R(·) are both convex but not necessarily
smooth. Throughout this paper, we use ℓ′(·) and R′(·) to
denote the sub-gradient of ℓ(·) and R(·) respectively. When we
consider smooth functions, we use ∇ℓ(·) and ∇R(·) instead.
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B. ADMM-Based Distributed Learning Algorithm

To apply ADMM, we re-formulate the problem (1) as:

min
{wi }i∈[n]

n∑

i=1

( mi∑

j=1

1
mi

ℓ(ai, j , bi, j ,wi )+
λ

n
R(wi )

)
, (4a)

s.t. wi = w, i = 1, . . . , n, (4b)

where wi ∈ Rd×p is the local model, and w ∈ Rd×p is the
global one. The objective function (4a) is decoupled and each
agent only needs to minimize the sub-problem associated with
its dataset. Constraints (4b) enforce that all the local models
reach consensus finally.
In standard ADMM, the augmented Lagrangian function

associated with the problem (4) is:

Lρ(w, {wi }i∈[n], {γ i }i∈[n]) =
n∑

i=1

Lρ,i (wi ,w, γ i ), (5)

where

Lρ,i (wi ,w, γ i ) =
mi∑

j=1

1
mi

ℓ(ai, j , bi, j ,wi )+
λ

n
R(wi )

−〈
γ i ,wi − w

〉 + ρ

2
∥wi − w∥2. (6)

In (6), {γ i }i∈[n] ∈ Rd×p×n are the dual variables associated
with constraints (4b) and ρ > 0 is the penalty parameter. The
standard ADMM solves the problem (4) in a Gauss-Seidel
manner by minimizing (5) w.r.t. {wi }i∈[n] and w alternatively
followed by a dual update of {γ i }i∈[n]. The ADMM-based
distributed algorithm is shown in Algorithm 1.

Algorithm 1 ADMM-Based Distributed Algorithm

1: Initialize w0, {w0
i }i∈[n], and {γ 0

i }i∈[n];
2: for k = 1, 2, . . . , t do
3: for i = 1, 2, . . . , n do
4: wk

i ← argminwi
Lρ,i (wi ,wk−1, γ k−1

i );
5: end for
6: wk ← 1

n
∑n

i=1 w
k
i − 1

n
∑n

i=1 γ k−1
i /ρ;

7: for i = 1, 2, . . . , n do
8: γ k

i ← γ k−1
i − ρ(wk

i − wk).
9: end for
10: end for

C. Privacy Concern

In Algorithm 1, the intermediate parameters {wk
i }i∈[n],k∈[t ]

need to be shared with the aggregator, which may reveal
the agents’ private information as demonstrated by model
inversion attacks [13]. Thus, we need to develop privacy-
preserving methods to control such information leakage. The
main goal of this paper is to provide privacy protection
against inference attacks from an adversary, who tries to infer
sensitive information about the agents’ private datasets from
the shared messages. We assume that the adversary can neither
intrude into the local datasets nor have access to the datasets
directly. The adversary could be an outsider who eavesdrops
the shared messages, or the honest-but-curious aggregator who

follows the protocol honestly but tends to infer the sensitive
information. We do not assume any trusted third party, thus
a privacy-preserving mechanism should be applied locally by
each agent to provide privacy protection.
In order to provide privacy guarantee against such attacks,

we define our privacy model formally by the notion of differ-
ential privacy [14]. Specifically, we adopt the (ϵ, δ)-differential
privacy defined as follows:
Definition 1 ((ϵ, δ)-Differential Privacy): A randomized

mechanism M is (ϵ, δ)-differentially private if for any two
neighbouring datasets D and D′ differing in only one tuple,
and for any subsets of outputs O ⊆ range(M):

Pr[M(D) ∈ O] ≤ eϵ · Pr[M(D′) ∈ O] + δ, (7)

which means, with probability of at least 1 − δ, the ratio of
the probability distributions for two neighboring datasets is
bounded by eϵ .
In Definition 1, the parameters δ and ϵ are privacy bud-

gets indicating the strength of privacy protection from the
mechanism. Smaller ϵ or δ indicates better privacy protection.
Gaussian mechanism is a common randomization method used
to guarantee (ϵ, δ)-differential privacy, where noise sampled
from normal distribution is added to the output. In this paper,
we use MN d,p(0, σ 2Id , σ 2Ip) to denote the matrix normal
distribution with variance σ 2.

III. ADMM WITH DIFFERENTIAL PRIVACY

In this section, we achieve differential privacy under the
framework of ADMM. First, we introduce an intuitive method
by directly combining standard ADMM and primal variable
perturbation (PVP) and discuss the weaknesses of this method.
Then we propose our new approach to achieving differential
privacy in ADMM with an improved utility-privacy tradeoff.

Algorithm 2 ADMM With PVP

1: Initialize w0, {w0
i }i∈[n], and {γ 0

i }i∈[n].
2: for k = 1, 2, . . . , t do
3: for i = 1, 2, . . . , n do
4: wk

i ← argminwi
Lρ,i (wi ,wk−1, γ k−1

i ).
5: w̃k

i ← wk
i +MN d,p(0, σ 2

i Id , σ
2
i Ip).

6: end for
7: wk ← 1

n

∑n
i=1 w̃

k
i − 1

n

∑n
i=1 γ k−1

i /ρ.
8: for i = 1, 2, . . . , n do
9: γ k

i ← γ k−1
i − ρ(w̃k

i − wk).
10: end for
11: end for

A. ADMM With Primal Variable Perturbation (PVP)

As described in Section II, we need to use a local privacy-
preserving mechanism in order to guarantee (ϵ, δ)-differential
privacy for each agent. An intuitive way to achieve this goal is
to combine the primal variable perturbation mechanism (PVP)
and standard ADMM directly as proposed in [17]. Specifically,
as given in Algorithm 2, at the k-th iteration, after obtaining
the local primal variable wk

i , we apply Gaussian mechanism
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Algorithm 3 DP-ADMM

1: Initialize w0, {w̃0
i }i∈[n], and {γ 0

i }i∈[n].
2: for k = 1, 2, . . . , t do
3: for i = 1, 2, . . . , n do
4: wk

i ← argminwi
L̂ρ,k,i (wi , w̃

k−1
i ,wk−1, γ k−1

i ).
5: ξ ki ← MN d,p(0, σ 2

i,k Id , σ
2
i,k Ip).

6: w̃k
i ← wk

i + ξ ki .
7: end for
8: wk ← 1

n

∑n
i=1 w̃

k
i − 1

n

∑n
i=1 γ k−1

i /ρ.
9: for i = 1, 2, . . . , n do
10: γ k

i ← γ k−1
i − ρ(w̃k

i − wk).
11: end for
12: end for

with a pre-defined variance σ 2
i to perturb it and share the

noisy primal variable w̃k
i , which can guarantee differential

privacy. According to [21], [22], by assuming the smoothness
of loss function l(·) and regularizer function R(·), strongly
convexity of regularizer R(·), and the bounded l2 norm of
the derivative of loss function by c1, the l2 sensitivity of wk

i
update function in standard ADMM is 2 c1/

(
mi (λ/n+ρ)

)
as

proved in Appendix A in Supplementary Material. Therefore,
the noise magnitude σi = 2 c1

√
2 ln(1.25/δ)/

(
(λ/n+ ρ)miϵ

)

can achieve (ϵ, δ)-differential privacy in each iteration.
However, the added noise from the perturbation mechanism

would disrupt the learning process, break the convergence
property of the iterative process, and lead to a trained model
with poor performance. This is especially the case when
the privacy budget is small. Specifically, when the iteration
number k is large, the trained model would keep changing
dramatically due to the existence of large noise. Besides,
the above perturbation method can only be applied when the
objective function is smooth and the regularizer is strongly
convex [17], [22]. In order to address such problems, we need
to consider an alternative way to preserving differential privacy
of ADMM-based distributed learning algorithms.

B. Our Approach
Our approach is inspired by the intuition that it is not nec-

essary to solve the problem up to a very high precision in each
iteration in order to guarantee the overall convergence. In our
approach, instead of using the exact augmented Lagrangian
function, we employ its first-order approximation with a scalar
l2-norm prox-function. Here we define:

L̂ρ,k,i (wi , w̃
k−1
i ,w, γ i )

=
mi∑

j=1

1
mi

ℓ(ai, j , bi, j , w̃k−1
i )+ λ

n
R(w̃k−1

i )

+
〈 mi∑

j=1

1
mi

ℓ′(ai, j , bi, j , w̃k−1
i )+ λ

n
R′(w̃k−1

i ),wi − w̃k−1
i

〉

−
〈
γ i ,wi − w

〉
+ ρ

2
∥wi − w∥2 + ∥wi − w̃k−1

i ∥2

2ηki
, (8)

where ηki ∈ R is the time-varying step size, and it decreases
as the iteration number k increases.

The proposed approximate augmented Lagrangian function
used in our approach is defined by:

L̂ρ,k({wi }i∈[n], {w̃k−1
i }i∈[n],w, {γ i }i∈[n])

=
n∑

i=1

L̂ρ,k,i (wi , w̃
k−1
i ,w, γ i ). (9)

Our approach minimizes (9) in a Gauss-Seidel manner and
adds zero-mean Gaussian noise with time-varying variance σ 2

i,k
that decreases as the iteration number k increases.
The resulting ADMM steps that provide differential privacy

are as follows:

wk
i = argmin

wi

L̂ρ,k,i (wi , w̃
k−1
i ,wk−1, γ k−1

i ), (10a)

w̃k
i = wk

i +MN d,p(0, σ 2
i,k Id , σ

2
i,k Ip), (10b)

wk = 1
n

n∑

i=1

w̃k
i − 1

n

n∑

i=1

γ k−1
i /ρ, (10c)

γ k
i = γ k−1

i − ρ(w̃k
i − wk), (10d)

where (10c) is computed at the aggregator while (10a), (10b)
and (10d) are performed at each agent.
The details are given in Algorithm 3. The central aggre-

gator firstly initializes the global variable w0, and the agents
also initialize their noisy primal variables {w̃0

i }i∈[n] and dual
variables {γ 0

i }i∈[n]. At the beginning of each iteration k, each
agent i first samples a zero-mean Gaussian noise ξ ki with
variance σ 2

i,k and updates the noisy primal variable w̃k
i based

on (10a) and (10b). Then the aggregator receives the noisy
primal variables {w̃k

i }i∈[n] and the dual variables {γ k−1
i }i∈[n]

from the agents, and uses them to update the global variable
wk according to (10c). After that, agents receive the updated
global variable wk from the aggregator and continue to update
the dual variables {γ k

i }i∈[n] by (10d). The iterative process will
continue until reaching t iterations.
Algorithm 3 is different from Algorithm 2 in three aspects.

Firstly, the approximate augmented Lagrangian function used
in this approach replaces the objective function with its first-
order approximation at w̃k−1

i , which is similar to the sto-
chastic mirror descent [23]. This approximation enforces the
smoothness of the Lagrangian function and makes it easy to
solve (10a). Even when the objective function is non-smooth,
we can still get a closed-form solution to (10a), which achieves
fast computation. More importantly, this approximation can
lead to a bounded l2 sensitivity in differential privacy guaran-
tee without the limitation that the objective function should be
smooth and strongly convex. Thus our approach can be applied
to any convex problems. We demonstrate this in Section IV.
Secondly, similar to linearized ADMM [24], [25], there

is an l2-norm prox-function ∥wi − w̃k−1
i ∥2 but scaled by

1/2ηki added in (8), where the step size ηki decreases when
the iteration number k increases. Such additional part can
guarantee the consistency between the updated model wk

i and
the previous one, especially when k is large. Thus, as k
increases, the updated model would change more smoothly.
Note that the time-varying step-size ηki is significant for the
overall convergence guarantee. In Section V, we will define
ηki and show its importance in algorithmic convergence.
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Lastly, the variance σ 2
i,k of Gaussian mechanism used in

Algorithm 3 is time-varying rather than constant as adopted
in prior studies [20]. It decreases when the iteration number
k increases. The motivation of using Gaussian mechanism
with time-varying variance is to mitigate the negative effect
from noise and guarantee the convergence property of our
approach. As explained before, the added noise would disrupt
the learning process. By using the Gaussian mechanism with
time-varying variance, the added noise will decrease when the
iteration number k increases. Therefore, the negative affect
from the added noise will be mitigated, enabling the updates
to be stable. In Section IV, we would define the magnitude of
time-varying variance σ 2

i,k to achieve differential privacy.

IV. PRIVACY GUARANTEE

In this section, we analyze the privacy guarantee of the
proposed DP-ADMM. In DP-ADMM, the shared messages
{w̃k

i }k∈[t ] may reveal the sensitive information of agent i ,
which has been discussed in Section II. Thus, we need to
demonstrate that DP-ADMM guarantees differential privacy
with outputs {w̃k

i }k∈[t ]. We first estimate the l2 norm sensitivity
of wk

i update function, then analyze the privacy leakage from
the shared primal variable w̃k

i in each iteration, and finally
compute the end-to-end differential privacy guarantee across t
iterations using the moments accountant method. Here we use
wk
i,Di

and wk
i,D′

i
to denote the local primal variables updated

from two neighboring datasets Di and D′
i .

A. L2-Norm Sensitivity
In our approach, we apply Gaussian mechanism to add noise

whose magnitude is calibrated by the l2-norm sensitivity. Note
that compared with Algorithm 2 and prior works [1], [2], [17],
the derivation of the sensitivity in our proposed algorithm does
not require the assumption of smoothness and strong convexity
of the objective function due to the first-order approximation
used in the approximate augmented Lagrangian function.
Lemma 1: Assume that ∥ℓ′(·)∥ ≤ c1. The l2-norm sensitiv-

ity of local primal variable wk
i update function is given by:

max
Di ,D′

i

∥wk
i,Di

− wk
i,D′

i
∥ = 2c1

mi (ρ + 1/ηki )
. (11)

Proof: Since L̂ρ,k,i (wi , w̃
k−1
i ,wk−1, γ k−1

i ) in the first
step of DP-ADMM (10a) is a quadratic function w.r.t. wi and
therefore convex, we could obtain that:

wk
i,Di

=
(

−
mi∑

j=1

1
mi

ℓ′(ai, j , bi, j , w̃k−1
i ) − λ

n
R′(w̃k−1

i )

+γ k−1
i + ρwk−1 + w̃k−1

i

ηki

)(
ρ + 1/ηki

)−1

, (12a)

wk
i,D′

i
=

(
−

mi−1∑

j=1

1
mi

ℓ′(ai, j , bi, j , w̃k−1
i )

− 1
mi

ℓ′(a′
i,mi

, b′
i,mi

, w̃k−1
i ) − λ

n
R′(w̃k−1

i )

+γ k−1
i + ρwk−1 + w̃k−1

i

ηki

)(
ρ + 1/ηki

)−1

, (12b)

by computing the derivative of (8) with inputs wk−1 and γ k−1
i

and letting ∇L̂ρ,k,i (wi , w̃
k−1
i ,wk−1, γ k−1

i ) to be 0.
With wk

i,Di
and wk

i,D′
i
calculated by (12a) and (12b) respec-

tively, the l2-norm sensitivity of primal variable wk
i update

function is defined by:

max
Di ,D′

i

∥wk
i,Di

− wk
i,D′

i
∥

= max
Di ,D′

i

∥∥ℓ′(ai,mi , bi,mi , w̃
k−1
i ) − ℓ′(a′

i,mi
, b′

i,mi
, w̃k−1

i )
∥∥

mi (ρ + 1/ηki )
.

(13)

Since ∥ℓ′(·)∥ is bounded by c1, the sensitivity of wk
i update

function is given by 2c1/
(
mi (ρ + 1/ηki )

)
. !

Lemma 1 shows that the sensitivity of wk
i update function

in our approach is affected by the time-varying ηki . When we
set ηki to decrease with increasing k, the sensitivity becomes
smaller with larger k, then the noise added would be smaller
when ϵ is fixed. Thus, the updates would be stable in spite of
the existence of the noise.

B. (ϵ, δ)-Differential Privacy Guarantee

In this section, we prove that each iteration of Algorithm 3
guarantees (ϵ, δ)-differential privacy.
Theorem 1: Assume that ∥ℓ′(·)∥ ≤ c1. Let ϵ ∈ (0, 1]

be arbitrary and ξ ki be the noise sampled from Gaussian
mechanism with variance σ 2

i,k where

σi,k = 2c1
√
2 ln(1.25/δ)

miϵ(ρ + 1/ηki )
. (14)

Each iteration of DP-ADMM guarantees (ϵ, δ)-differential
privacy. Specifically, for any neighboring datasets Di and D′

i ,
for any output w̃k

i , the following inequality always holds:

Pr[w̃k
i |Di ] ≤ eϵ · Pr[w̃k

i |D′
i ] + δ. (15)

Proof: The privacy loss from w̃k
i is calculated as

∣∣∣∣ ln
Pr[w̃k

i |Di ]
Pr[w̃k

i |D′
i ]

∣∣∣∣=
∣∣∣∣ ln

Pr[w̃k(h,l)
i |Di ]

Pr[w̃k(h,l)
i |D′

i ]

∣∣∣∣=
∣∣∣∣ ln

Pr[ξ k(h,l)i ]
Pr[ξ k,′(h,l)i ]

∣∣∣∣, (16)

where ξ k
(h,l)

i and ξ k,
′(h,l)

i are the (h, l)-entry of ξ ki and ξ k,
′

i , and
are sampled from N (0, σ 2

i,k ). This leads to:
∣∣∣∣ ln

Pr[w̃k
i |Di ]

Pr[w̃k
i |D′

i ]

∣∣∣∣

=
∣∣ 1

2σ 2
i,k

(∥∥ξ k
(h,l)

i

∥∥
2
−

∥∥ξ k,
′(h,l)

i

∥∥
2)∣∣

=
∣∣ 1

2σ 2
i,k

(
2ξ k

(h,l)

i ∥wk(h,l)
i,Di

− wk(h,l)
i,D′

i
∥ + ∥wk(h,l)

i,Di
− wk(h,l)

i,D′
i
∥
2)∣∣.

(17)

Since ∥ℓ′(·)∥ ≤ c1, according to Lemma 1, we have ∥wk(h,l)
i,Di

−
wk(h,l)
i,D′

i
∥ < ∥wk

i,Di
− wk

i,D′
i
∥ ≤ 2c1/

(
mi (ρ + 1/ηki )

)
. Thus,

by letting σi,k = 2 c1
√
2 ln(1.25/δ)/

(
miϵ(ρ+1/ηki )

)
, we have

∣∣∣∣ ln
Pr[w̃k

i |Di ]
Pr[w̃k

i |D′
i ]

∣∣∣∣ ≤
∣∣∣∣
ξ k

(h,l)

i mi (ρ + 1/ηki )+ c1
4 ln(1.25/δ)c1/ϵ2

∣∣∣∣. (18)
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When |ξ k(h,l)i | ≤
(
4 ln(1.25/δ)c1/ϵ − c1

)
/
(
ϵmi (ρ + 1/ηki )

)
,∣∣ ln

(
Pr[w̃k

i |Di ]/ Pr[w̃k
i |D′

i ]
)∣∣ is bounded by ϵ. Next, we need

to prove that Pr
[
|ξ k(h,l)i | >

(
4 ln(1.25/δ)c1/ϵ − c1

)
/
(
ϵmi (ρ +

1/ηki )
)]

≤ δ, which requires Pr
[
ξ k

(h,l)

i >
(
4 ln(1.25/δ)c1/ϵ −

c1
)
/
(
ϵmi (ρ + 1/ηki )

)]
≤ δ/2. According to the tail bound of

normal distribution N (0, σ 2
i,k ), we have

Pr
[
ξ k

(h,l)

i > r
]

≤ σi,k

r
√
2π

e−r2/2σ 2
i,k . (19)

By letting r =
(
4 ln(1.25/δ)c1/ϵ − c1

)
/
(
ϵmi (ρ + 1/ηki )

)
in

the above inequality, we have:

Pr
[
ξ k

(h,l)

i >
4 ln(1.25/δ)c1/ϵ − c1

mi (ρ + 1/ηki )

]

≤ 2
√
2 ln(1.25/δ)

(4 ln(1.25/δ)− ϵ)
√
2π

exp
(

− (4 ln(1.25/δ)− ϵ)2

8 ln(1.25/δ)

)
. (20)

When δ is small (≤ 0.01) and let ϵ ≤ 1, we have

2
√
2 ln(1.25/δ)

(4 ln(1.25/δ)− ϵ)
√
2π

<
1√
2π

, (21)

and

−
(
4 ln(1.25/δ)− ϵ

)2

8 ln(1.25/δ)
< ln(

√
2π

δ

2
). (22)

As a result, we have:

Pr
[
ξ k

(h,l)

i >
4 ln(1.25/δ)c1/ϵ − c1

mi (ρ + 1/ηki )

]
<

δ

2
. (23)

So far we have proved that Pr
[
ξ k

(h,l)

i >
(
4 ln(1.25/δ)c1/ϵ −

c1
)
/
(
ϵmi (ρ + 1/ηki )

)]
≤ δ/2, thus we can prove that

Pr
[
|ξ k(h,l)i | >

(
4 ln(1.25/δ)c1/ϵ − c1

)
/
(
ϵmi (ρ + 1/ηki )

)]
≤ δ.

We define:

A1 = {ξ k(h,l)i : |ξ k(h,l)i | ≤ 4 ln(1.25/δ)c1/ϵ − c1
mi (ρ + 1/ηki )

}, (24a)

A2 = {ξ k(h,l)i : |ξ k(h,l)i | > 4 ln(1.25/δ)c1/ϵ − c1
mi (ρ + 1/ηki )

}. (24b)

Therefore, we obtain the result:

Pr[w̃k
i |Di ] = Pr[wk(h,l)

i,Di
+ ξ k

(h,l)

i : ξ k
(h,l)

i ∈ A1]
+ Pr[wk(h,l)

i,Di
+ ξ k

(h,l)

i : ξ k
(h,l)

i ∈ A2]
< eϵ · Pr[w̃k

i |D′
i ] + δ, (25)

which proves that each iteration of DP-ADMM guarantees
(ϵ, δ)-differential privacy. !

C. Total Privacy Leakage

We have proved that each iteration of the proposed algo-
rithm is (ϵ, δ)-differentially private. Here we focus on the total
privacy leakage of our algorithm. Since Algorithm 3 is a t-fold
adaptive algorithm, we follow prior studies [20], [26] and use
the moments accountant method to analyze the total privacy
leakage.

Theorem 2 (Advanced Composition Theorem): Assume
∥ℓ′(·)∥ ≤ c1. Let ϵ ∈ (0, 1] be arbitrary and ξ ki be sampled
from Gaussian mechanism with variance σ 2

i,k where

σi,k = 2c1
√
2 ln(1.25/δ)

miϵ(ρ + 1/ηki )
. (26)

Then Algorithm 3 guarantees (ϵ̄, δ)-differential privacy, where
ϵ̄ = c0

√
tϵ for some constant c0.

Proof: See Appendix B in Supplementary Material. !

V. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of the pro-
posed DP-ADMM. Let w∗ denote the optimal solution of
problem (4), and cw denote ∥w∗∥. Firstly, we analyze the
convergence property based on the general assumption that
the objective function is convex and non-smooth. Secondly,
we refine the convergence property under a stricter assumption
that the objective function is convex and smooth.
We define the following notations to be used for the

analysis:

fi (wi ) =
mi∑

j=1

1
mi

ℓ(ai, j , bi, j ,wi )+
λ

n
R(wi ),

w̄t = 1
t

t∑

k=1

wk, γ̄ t
i =

1
t

t∑

k=1

γ k
i , w̄t

i =
1
t

t−1∑

k=0

w̃k
i ,

uki =

⎡

⎣
w̃k
i

wk

γ k
i

⎤

⎦ , ui =

⎡

⎣
wi
w
γ i

⎤

⎦ , F(uki ) =

⎡

⎣
−γ k

i
γ k
i

w̃k
i − wk

⎤

⎦ .

We show that DP-ADMM achieves an O(1/
√
t) rate of

convergence in terms of both the objective value and the
constraint violation:

∑n
i=1

(
fi (w̄t

i ) − fi (w∗) + β∥w̄t
i − w̄t∥

)
,

where
∑n

i=1
(
fi (w̄t

i )− fi (w∗)
)
represents the distance between

the current objective value and the optimal value while∑n
i=1 β∥w̄t

i − w̄t∥ measures the difference between the
local model and the global one. Therefore, when we have∑n

i=1
(
fi (w̄t

i ) − fi (w∗) + β∥w̄t
i − w̄t∥

)
= 0, our training

result converges to the optimal one and all local models reach
consensus.

A. Non-Smooth Convex Objective Function

In this section, we analyze the convergence when the objec-
tive function is convex but non-smooth. We firstly analyze a
single iteration of our algorithm in Lemma 2 and then give
the convergence result of DP-ADMM in Theorem 3.
Lemma 2: Assume ℓ(·) and R(·) are convex. For any k ≥ 1,

we have:
n∑

i=1

(
fi (w̃k−1

i ) − fi (wi )+ (uki − ui )
ᵀ
F(uki )

)

≤
n∑

i=1

(
ηki
2

∥∥ f ′
i (w̃

k−1
i ) − (ρ + 1/ηki )ξ

k
i

∥∥2 − ρ

2
∥wi − wk∥2

+ρ

2
∥wi − wk−1∥2 − (

ρ + 1/ηki
)〈
ξ ki ,wi − w̃k−1

i

〉
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+ 1

2ηki
∥wi − w̃k−1

i ∥2 − 1

2ηki
∥wi − w̃k

i ∥
2

+ 1
2ρ

∥γ i − γ k−1
i ∥2 − 1

2ρ
∥γ i − γ k

i ∥
2
)
. (28)

Proof: See Appendix D in Supplementary Material. !
Based on Lemma 2, we give the following convergence

theorem.
Theorem 3: Assume ℓ(·) and R(·) are convex, ∥ℓ′(·)∥ ≤ c1,

and ∥R′(·)∥ ≤ c2. Let

ηki = cw√
2k

(
(c1 + λc2/n)2 +

8dpc21 ln (1.25/δ)

m2
i ϵ

2

)− 1
2

. (29)

Define

M1(ϵ, δ) =
n∑

i=1

cw

√

2(c1 + λc2/n)2 +
16dpc21 ln (1.25/δ)

m2
i ϵ

2
,

(30)

and

M2 = n(ρc2w + β2/ρ)

2
. (31)

For any t ≥ 1 and β, we have:

E
[ n∑

i=1

(
fi (w̄t

i ) − fi (w∗)+ β∥w̄t
i − w̄t∥

)]

≤ M1(ϵ, δ)√
t

+ M2

t
. (32)

Proof: See Appendix E in Supplementary Material. !
Theorem 3 shows an explicit utility-privacy trade-off of our

approach: when privacy guarantee is weaker (larger ϵ and δ),
our approach has better utility. In addition, it demonstrates that
our algorithm converges at a rate of O(1/

√
t).

B. Smooth Convex Objective Function
In this section, we refine Theorem 3 under a stricter

assumption that ℓ(·) and R(·) are both convex and smooth.
Here, we replace the definition of w̄t

i : w̄
t
i = 1

t

∑t−1
k=0 w̃

k
i by

w̄t
i = 1

t

∑t
k=1 w̃

k
i . Similar to Section V-A, we first focus on a

single iteration and then give the final convergence result.
Lemma 3: Assume ℓ(·) and R(·) are convex and smooth,

∥∇2ℓ(·)∥ ≤ c3, and ∥∇2 R(·)∥ ≤ c4. For any k ≥ 1, we have:
n∑

i=1

(
fi (w̃

k
i ) − fi (wi )+ (uki − ui )

ᵀ
F(uki )

)

≤
n∑

i=1

( (
ρ + 1/ηki

)2

2/ηki − 2(c3 + λc4/n)

∥∥ξki
∥∥2 − 1

2ηki
∥wi − w̃k

i ∥
2

+ 1

2ηki
∥wi − w̃k−1

i ∥2 −
(
ρ + 1/ηki

)〈
ξ ki ,wi − w̃k−1

i

〉

+ρ

2
∥wi − wk−1∥2 − ρ

2
∥wi − wk∥2

+ 1
2ρ

∥γ i − γ k−1
i ∥2 − 1

2ρ
∥γ i − γ k

i ∥
2
)
. (33)

Proof: See Appendix F in Supplementary Material. !
Based on Lemma 3, we give the following theorem.

Theorem 4: Assume ℓ(·) and R(·) are convex and smooth,
∥∇2ℓ(·)∥ ≤ c3, and ∥∇2 R(·)∥ ≤ c4. Let

ηki =
(
c3 + λc4/n + 4c1

√
dpk ln(1.25/δ)
miϵcw

)−1

. (34)

Define

M3(ϵ, δ) =
n∑

i=1

4cwc1
√
dp ln(1.25/δ)
miϵ

, (35)

and

M4 = nc2w(c3 + λc4/n + ρ)+ nβ2/ρ

2
. (36)

For any t ≥ 1 and β, we have:

E
[ n∑

i=1

(
fi (w̄t

i )− fi(w∗)+β∥w̄t
i−w̄t∥

)]
≤ M3(ϵ, δ)√

t
+M4

t
.

(37)

Proof: See Appendix G in Supplementary Material. !
Theorem 4 also shows an explicit relation between the

privacy budget (i.e., ϵ and δ) and the utility of our approach
with smoothness, and demonstrates that the result from our
algorithm converges to the optimal result at a rate of O(1/

√
t).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DP-ADMM
with both non-smooth objectives and smooth objectives by
considering logistic regression problems with l1-norm and
l2-norm regularizers, respectively.

A. Dataset
We evaluate our approach on a real-world dataset: Adult

dataset [27] from UCI Machine Learning Repository. Adult
dataset includes 48, 842 instances. Each instance has 14
attributes such as age, sex, education, occupation, marital
status, and native country, and is associated with a label rep-
resenting whether the income is above $50, 000 or not. Before
the simulation, we firstly preprocess the data by removing all
the instances with missing values, converting the categorical
attributes into binary vectors, normalizing columns to guaran-
tee the maximum value of each column is 1, normalizing rows
to enforce their l2 norm to be less than 1, and converting the
labels {> 50k, < 50k} into {+1,−1}. After this, we obtain
45, 222 entries each with a 104-dimensional feature vector
(d = 104) and a 1-dimensional label belonging to {+1,−1}
(p = 1). In each simulation, we sample 40, 000 instances for
training, and the remaining 5, 222 instances for testing. In the
training process, we divide the training data into n groups
randomly, and thus each group contains 40000/n data points
(mi = 40000/n).

B. Baseline Algorithms
We compare our DP-ADMM (Algorithm 3) with five

baseline algorithms: (1) non-private centralized approach,
(2) ADMM algorithm (Algorithm 1), (3) ADMM algorithm
with PVP (Algorithm 2), (4) ADMM with dual variable pertur-
bation (DVP) in [17], and (5) differentially private stochastic
gradient descent (DPSGD) in [20] for distributed settings.
We evaluate the accuracy and effectiveness of our approach
by comparing it with the five baseline algorithms.
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Fig. 1. Impact of distributed data source number on DP-ADMM (l1-regularized logistic regression).

TABLE II

COMPUTATION TIME (100 ITERATIONS)

C. Setup

We set up the simulation by MATLAB in an Intel(R)
Core(TM) 3.40 GHz computer with 16 GB RAM. In the
simulation, we set the total iteration number t = 100 and
the penalty parameter ρ = 0.1, and choose the optimal
regularizer parameter λ/n to be 10−6 by 10-cross-validation
in non-private setting. In DPSGD, we set the optimal learning
rate to be 0.1 and the sampling ratio to be 1. We focus on
the settings with strong privacy guarantee and thus we set
privacy budget per iteration ϵ = {0.01, 0.05, 0.1, 0.2} and
δ = {10−3, 10−4, 10−5, 10−6}, and use moments accountant
method to obtain the corresponding total privacy loss ϵ̄. In each
simulation, we run it for 10 times to get averaged result.

D. Evaluations

We consider logistic regression problem in a distributed
setting and evaluate our approach for logistic regression
problems with l1-norm and l2-norm regularizers respectively,
in terms of convergence, accuracy, and computation cost. The
loss function of binary logistic regression is defined by (2).
The convergence properties are evaluated with respect to the
augmented objective value, which measures the loss as well
as the constraint penalty and is defined as

∑n
i=1

(
fi (w̄k

i ) +
ρ∥w̄k

i − w̄k∥
)
. We evaluate the accuracy by empirical loss

1
n

∑n
i=1

∑mi
j=1

1
mi

ℓ(ai, j , bi, j , w̃k
i ), and classification error rate.

We measure the computation cost using the running time of
training.

E. L1-Regularized Logistic Regression

We obtain the DP-ADMM steps for l1 regularized logistic
regression by:

wk
i =

(
1
mi

mi∑

j=1

bi, j ai, j
1+ exp(bi, j w̃k−1ᵀ

i ai, j )
− λ

n
sgn(w̃k−1

i )

+γ k−1
i + ρwk−1 + w̃k−1

i /ηki

)(
ρ + 1/ηki

)−1

, (38a)

w̃k
i = wk

i +MN d,p(0, σ 2
i,k Id , σ

2
i,k Ip), (38b)

wk = 1
n

n∑

i=1

w̃k
i − 1

n

n∑

i=1

γ k−1
i /ρ, (38c)

γ k
i = γ k−1

i − ρ
(
w̃k

i − wk
)
, (38d)

where sgn(·) is the sign function.
Since the l1 regularized objective function is convex but

non-smooth, we apply Theorem 3 to set ηki . Since we enforce
∥ℓ′(·)∥ ≤ 1 by data preprocessing, and we have ∥R′(·)∥ ≤√
dp (d = 104 and p = 1), we set c1 = 1 and c2 =√
104. We obtain w∗ by pre-training and set cw to be 23.

According to Theorem 3, we set ηki to be 23
(
2k(1 + 10−6

√
104/n)2 + 1664k ln (1.25/δ)/

(
m2

i ϵ
2))− 1

2 .
Since PVP and DVP cannot be applied when the objective

function is non-smooth, we only compare our approach with
ADMM and DPSGD in this section. We first investigate
the performance of our approach with different numbers of
distributed data sources and compare it with the centralized
approach. Figure 1 shows that the accuracy of our training
model would decrease if we consider larger number of data
sources. Since the size of local dataset is smaller for larger
number of agents, more noise should be introduced to guar-
antee the same level of differential privacy, thus degrading
the performance of the trained model. This is consistent with
Theorem 1 that the noise magnitude is scaled by 1/mi . In fol-
lowing simulations, we consider the case when the number of
agents n equals 100. Figure 2 demonstrates the convergence
properties of our approach by showing how the augmented
objective value converges for different ϵ and δ. It shows that
our approach with larger ϵ and larger δ has better convergence,
which is consistent with Theorem 3. Finally, we evaluate the
accuracy of our approach by empirical loss and classification
error rate by comparing with ADMM and DPSGD. Figure 3
shows our approach outperforms DPSGD due to the faster
convergence property, demonstrating the advantage of ADMM
framework. In addition, Figure 3 shows the privacy-utility
trade-off of our approach. When privacy leakage increases
(larger ϵ and larger δ), our approach achieves better utility.

F. L2-Regularized Logistic Regression

The DP-ADMM steps for l2 regularized logistic regression
are described as follows:

wk
i =

(
1
mi

mi∑

j=1

bi, j ai, j
1+ exp(bi, j w̃k−1ᵀ

i ai, j )
− λ

n
w̃k−1
i + γ k−1

i

+ρwk−1 + w̃k−1
i /ηki

)(
ρ + 1/ηki

)−1

, (39a)
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Fig. 2. Convergence properties of DP-ADMM (l1-regularized logistic regression).

Fig. 3. Accuracy comparison in empirical loss and classification error rate (l1-regularized logistic regression).

Fig. 4. Impact of distributed data source number on DP-ADMM (l2-regularized logistic regression).

w̃k
i = wk

i +MN d,p(0, σ 2
i,k Id , σ

2
i,k Ip), (39b)

wk = 1
n

n∑

i=1

w̃k
i − 1

n

n∑

i=1

γ k−1
i /ρ, (39c)

γ k
i = γ k−1

i − ρ
(
w̃k
i − wk

)
. (39d)

Here the l2 regularized objective function is convex and
smooth, thus we apply Theorem 4 to set ηki . Since we have
∥∇2 R(·)∥ ≤ 1, and we enforce ∥∇ℓ(·)∥ ≤ 1 and ∥∇2ℓ(·)∥ ≤
0.25 by data preprocessing, thus we set c1 = 1, c3 = 0.25,
and c4 = 1. We obtain the optimal solution w∗ by pre-training,
and set cw to be 89. According to Theorem 4, we set ηki to
be

(
0.25+ 10−6 + 2

√
416k ln(1.25/δ)/

(
89 miϵ

))−1.
We fist investigate the performance of our approach under

the settings with different numbers of distributed data sources
and Figure 4 depicts the corresponding accuracy changes
(accuracy decreases with increasing number of agents). Since
the total data size is fixed, when we consider a larger number
of agents, the size of local dataset is smaller, so the training
model has lower accuracy due to more added noise for the
same level of privacy guarantee. In the following simulations,
we focus on the case where the number of agents is 100.
Next, we show the convergence properties of our approach.

Figure 5 demonstrates that under weaker privacy guarantee
(larger ϵ and larger δ), our approach has better convergence,
which is consistent with Theorem 4. We evaluate the accuracy
of our approach by comparing it with ADMM, PVP, DVP, and
DPSGD on empirical loss and classification error rate. Figure 6
shows that our approach outperforms PVP, DVP, and DPSGD.
Specifically, ADMM has fast convergence but is sensitive
to noise. Thus the methods directly perturbing intermediate
results in ADMM (PVP and DVP) have poor performance.
Gradient-based method (DPSGD) has good noise-resilience
property but converges slowly. Our approach is based on
ADMM framework, and combines the approximate aug-
mented Lagrangian function with time-varying Gaussian noise
addition to achieve higher utility. Furthermore, the results
in Figure 6 also show the utility-privacy trade-off of our
approach: larger ϵ and larger δ indicating weaker privacy
guarantee would result in better utility. Finally, we show the
advantage of our approach in computation cost by running
time. Table II gives the comparison and shows that DP-ADMM
has much less computation cost than all three ADMM baseline
algorithms, which is resulted from the first-order approxima-
tion used in our approach enabling updates with closed-form
solutions.
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Fig. 5. Convergence properties of DP-ADMM (l2-regularized logistic regression).

Fig. 6. Accuracy comparison in empirical loss and classification error rate (l2-regularized logistic regression).

VII. RELATED WORK

The existing literature related to our work could be
categorized by: privacy-preserving empirical risk minimiza-
tion, privacy-preserving distributed learning, and variants of
ADMM.

A. Privacy-Preserving Empirical Risk Minimization

There have been tremendous research efforts on privacy-
preserving empirical risk minimization [22], [28]–[30]. Most
of them focus on a centralized setting where sensitive data is
collected and stored centrally, thus the privacy leakage comes
from the final released trained model. Chaudhuri et al. [22]
propose two perturbation methods: output perturbation and
objective perturbation to guarantee ϵ-differential privacy.
Bassily et al. [28] provide a systematic investigation of differ-
entially private algorithms for convex empirical risk minimiza-
tion and propose efficient algorithms with tighter error bound.
Wang et al. [29] focus on a more general problem: non-convex
problem, and propose a faster algorithm based on a proximal
stochastic gradient method. Thakurta and Smith [30] explore
the stability of model selection problems, and propose two
differentially private algorithms based on perturbation stability
and subsampling stability respectively.

B. Privacy-Preserving Distributed Learning

Preserving privacy in distributed learning is challenging
due to frequent information exchange in the iterative process.
Recently, much works have been done to develop privacy-
preserving distributed learning algorithms. Some of them
employ cryptography-based methods in the protocol to hide
the private information [31]–[34]. A recent work [33] uses par-
tially homomorphic cryptography in ADMM-based distributed
learning to preserve data privacy but the proposed approach
cannot protect the information leakage of the private user
data from the final learned models. In contrast, our approach

provides differential privacy in the final trained machine learn-
ing models. Among the works on distributed learning with
differential privacy, most of them focus on subgradient-based
algorithms [35]–[38] and only a few works consider ADMM-
based methods [1], [2], [17]–[19]. Zhang and Zhu [17]
propose two perturbation methods: primal perturbation and
dual perturbation to guarantee dynamic differential privacy in
ADMM-based distributed learning. Zhang et al. [1] propose
to perturb the penalty parameter of ADMM to guarantee
differential privacy. Zhang et al. [2] propose recycled ADMM
with differential privacy guarantee where the results from odd
iterations could be re-utilized by the even iterations, and thus
half of updates incur no privacy leakage. Guo and Gong [18]
preserve differential privacy in the asynchronous ADMM
algorithm. We design an ADMM-based distributed learning
scheme with differential privacy which uses approximate aug-
mented Lagrangian function for all iterations and adaptively
changes the variance of added Gaussian noise in each iteration.
We also use moments accountant method to analyze the total
privacy loss to better estimate the trade-off between the data
privacy and utility. We are the first to analyze rigorously
the convergence rate and utility performance of ADMM with
differential privacy.

C. Variants of ADMM

Some variants of ADMM have been proposed recently for
applicability to more generous problems. Linearized ADMM
[24], [25] replaces the quadratic function in the augmented
Lagrangian function with a linearized approximation and thus
provides a better way to solve subproblems without closed-
form solutions. Stochastic ADMM [39], [40] considers sto-
chastic and composite objective functions caused by natural
uncertainties in observations. Our DP-ADMM algorithm inher-
its the features of linearized ADMM and stochastic ADMM,
and guarantees strong differential privacy with good utility and
low computation cost.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on August 11,2020 at 23:58:13 UTC from IEEE Xplore.  Restrictions apply. 



1012 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

VIII. CONCLUSION

In this paper, we have proposed an improved ADMM-
based differentially private distributed learning algorithm,
DP-ADMM, for a class of learning problems that can be
formulated as convex regularized empirical risk minimization.
By designing an approximate augmented Lagrangian function
and Gaussian mechanism with time-varying variance, our
novel approach is noise-resilient, convergent and computation-
efficient, especially under high privacy guarantee. We have
also applied the moments accountant method to analyze the
end-to-end privacy loss of the proposed iterative algorithm.
The theoretical convergence guarantee and utility bound of our
approach are derived. The evaluations on real-world datasets
have demonstrated the effectiveness of our approach in the
setting under high privacy guarantee.
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