
Energy-Aware Resource Management in Vehicular Edge Computing Systems

Tayebeh Bahreini

Dept. of Computer Science

Wayne State University, USA

Email: tayebeh.bahreini@wayne.edu

Marco Brocanelli

Dept. of Computer Science

Wayne State University, USA

Email: brok@wayne.edu

Daniel Grosu

Dept. of Computer Science

Wayne State University, USA

Email: dgrosu@wayne.edu

Abstract—The low-latency requirements of connected elec-
tric vehicles and their increasing computing needs have led to
the necessity to move computational nodes from the cloud data
centers to edge nodes such as road-side units (RSU). However,
offloading the workload of all the vehicles to RSUs may not
scale well to an increasing number of vehicles and workloads.
To solve this problem, computing nodes can be installed directly
on the smart vehicles, so that each vehicle can execute the heavy
workload locally, thus forming a vehicular edge computing
system. On the other hand, these computational nodes may
drain a considerable amount of energy in electric vehicles. It
is therefore important to manage the resources of connected
electric vehicles to minimize their energy consumption.

In this paper, we propose an algorithm that manages the
computing nodes of connected electric vehicles for minimized
energy consumption. The algorithm achieves energy savings for
connected electric vehicles by exploiting the discrete settings
of computational power for various performance levels. We
evaluate the proposed algorithm and show that it considerably
reduces the vehicles’ computational energy consumption com-
pared to state-of-the-art baselines. Specifically, our algorithm
achieves 15-85% energy savings compared to a baseline that
executes workload locally and an average of 51% energy sav-
ings compared to a baseline that offloads vehicles’ workloads
only to RSUs.

Keywords-Resource Management, Vehicular Edge Comput-
ing, Energy Management.

I. INTRODUCTION

The future increase in the amount of data and workloads

(e.g., image recognition, infotainment) generated on con-

nected electric vehicles leads to the necessity to move the

computational nodes from the cloud data center closer to

the vehicles [13]. In such edge environment, computational

nodes can be deployed in edge nodes such as Road-Side

Units (RSUs) so that heavy workloads of nearby vehicles

can be processed with a much lower latency compared

to using the cloud nodes. However, this system may have

issues of scalability to an increasing number of vehicles and

workloads. Due to the limited resource availability in RSUs,

some vehicles may experience poor performance or even

failure. To solve this problem, powerful computing nodes

such as the Nvidia Drive Px 2 can be installed on each

vehicle to execute most of the workload locally. In addition,

vehicles can communicate with each other and with RSUs

using the Dedicated Short Range Communication (DSRC)

technology [1]. A system that connects the computing re-

sources of vehicles, RSUs, and cloud is called a Vehicular

Edge Computing (VEC) system. On the other hand, the com-

putational energy consumption can affect the driving range

of vehicles. For example, a computing node consisting of

one CPU of type Intel Xeon E5-2630 and three GPUs of type

NVIDIA TitanX can reduce the driving range of a Chevy

Bolt by 6% [7]. However, by considering the whole system

and including storage and cooling overhead, the reduction

is about 11.5% [7]. Given the above challenges in VEC

systems, it is desired to coordinate the available computing

nodes to minimize the vehicles’ energy consumption.

Previous studies have proposed various solutions for

VEC systems. Unfortunately, they have at least one of two

problems. First, they are unaware of the limited energy

availability. Many previous studies on VEC systems fo-

cused on ensuring high Quality of Service (QoS) without

considering the limited energy availability of electric vehi-

cles [14], [16]. In addition, in order to minimize the risk

of failure, some studies [5], [10], [17] used task replication.

However, they do not balance the number of replicas with

the energy consumption: having a high number of replicas

may lead to a small improvement in robustness to failure

while causing energy waste on vehicles. Second, they are

unaware of moving service providers. Several solutions have

been proposed to trade off between latency and energy

consumption in mobile edge computing systems [6], [8],

[9], [11], [12], [15]. However, most of them do not consider

the case of VEC systems where the service providers, i.e.,

the vehicles, can quickly change their location. Without a

proper consideration of the vehicles’ moving pattern, the

offloading mechanism may lead to a poor QoS and a higher

risk of failure. In addition, as also experimented in some of

the above related work (e.g., [14]), the limited computing

resources at RSU level leads to blocked or dropped vehicular

workloads, which inevitably leads to poor QoS or higher

energy consumption for some vehicles. To the best of our

knowledge, none of the above solutions consider at the

same time the problems of (a) coordinating the computing

resources of moving vehicles, and (b) deciding the number

of replicas for vehicular workloads to minimize the vehi-

cles’ energy consumption without violating the desired QoS

levels.

In this paper, we propose an energy-aware resource man-

agement algorithm for VEC systems. Rather than relying on

the limited capacity of RSU nodes, the algorithm coordinates

the computing resources of the vehicles to achieve energy

savings. The key-intuition for achieving energy savings

is to exploit the discrete power/performance settings of

computing resources such as CPUs and GPUs. For exam-

ple, CPUs commonly have a fixed number of selectable

configurations for voltage-frequency levels and number of

cores to trade off power consumption and performance. Each

configuration leads to a maximum number of instructions

that can be executed within a certain time period. If the

local workload exceeds that maximum, then the system must

select a new configuration that increases the performance at

the cost of a higher power consumption, e.g., activate more

cores or increase the voltage-frequency level. However, this

selected default configuration may not be fully utilized by

the local workload, i.e., the number of instructions executed

with the local workload is lower than the maximum achiev-

able by the default configuration. Thus, requester vehicles

can achieve energy savings by offloading workloads on

the providers’ nodes and by using the providers’ leftover

capacity without changing their default configuration, i.e.,

without affecting the provider’s power consumption. Then, at

a later time, the providers can become requesters to achieve

energy savings.

Based on the above intuition, an energy manager runs

periodically on the local RSU to decide (a) the state of each

nearby vehicle, i.e., requester or provider, and (b) the number

of replicas for the requesters’ workloads that minimizes

the energy consumption of all the vehicles. We formulate

this Energy-aware Resource Management Problem as a

Mixed Integer Non-Linear Program (i.e., ERMP-MINLP).

ERMP-MINLP is robust to uncertainties of vehicles’ loca-

tions. However, it is also a chance-constrained optimization

problem, which is not solvable in polynomial time. Thus,

we propose a greedy algorithm called G-ERMP to find a

solution in polynomial time. G-ERMP considers a set of

probable future locations for each vehicle to minimize their

energy consumption while ensuring a low risk of failure and

good QoS.

In summary, this paper makes the following contributions:

• Formulate the energy-aware resource management

problem (ERMP) as an MINLP.

• Design an efficient greedy algorithm (G-ERMP) to

solve the ERMP problem in polynomial time.

• G-ERMP achieves 15-85% energy savings compared

to a baseline that executes workload locally and an

average of 51% energy savings compared to a baseline

that offloads workloads only to RSUs.

The rest of the paper is organized as follows. Section II

formulates the ERMP problem. Section III provides the

details of our proposed G-ERMP algorithm. Section IV de-

Cell Partitioner

Energy Manager

1

2

3

4

5

Cellular Tower

Road-Side Unit

(a)

P
ro

v
id

e
r

Requeste
r

Workload
Result

Provider

A

C

B

W
o
rk

lo
ad

C
ancel

1

Energy Manager Road-Side Unit

4
1

1

2

3

2

(b)

Figure 1: Overview of a VEC system: (a) the cell partitioner

creates 5 edge-cells. (b) each edge-cell runs the energy

manager.

scribes the experimental setup and results. Finally, Section V

concludes the paper and discusses our future work.

II. ENERGY-AWARE RESOURCE MANAGEMENT IN VEC

In this section, we formulate the Energy-aware Resource

Management Problem (ERMP) in VEC systems. We assume

that cell towers run a cell partitioner, which takes the vehi-

cles’ speed and direction into consideration to periodically

(at a coarse time scale) assign vehicles within its cell to edge-

cells managed by RSUs, so that each vehicle remains in

the assigned edge-cell for most of the cell partitioner time

period. We also consider that, within each edge-cell, the

local RSU periodically runs, at a finer time scale than the cell

partitioner, the energy manager, which decides the vehicles’

state (i.e., requester or provider), the number of replicas

for each requester’s workload, and the replicas’ allocation

on provider vehicles. Cell partitioner and energy manager

run at different time scales and can be treated as separate

problems. Figure 1(a) shows a hierarchical architecture of a

VEC system. In the example of the figure, there are several

vehicles and RSUs that are co-located within the cellular

area of a cellular tower. Based on the information of the

vehicles (i.e., speed and direction), the cell partitioner creates

five edge-cells of cars. Each edge-cell is managed by a local

RSU that runs the energy manager periodically. Figure 1(b)

shows a single edge-cell with three vehicles and a local

RSU. In this example, the energy manager (1) selects vehicle

A as a service requester and vehicles B and C as service

providers. It also determines two replicas for the request of

vehicle A to be assigned on vehicles B and C. (2) The energy

manager coordinates the replicas deployment. (3) When one

of the providers returns the computation result to A (e.g.,

vehicle C), (4) the other providers stop the computation and

wait for other workloads.

In this paper, we focus on the design of the energy

manager and leave as future work the design of the cell

partitioner. Note that the energy manager is distributed

across RSUs and thus the above described structure can

2

handle vehicles moving across edge-cells after each cell-

partitioner period.

Energy-Manager Problem Statement. Given the above

described architecture, within each cell-partitioner period,

the inputs of the energy manager are a fixed set of V

vehicles, the historic location of vehicles until the current

time, and the workload characteristics. We assume that the

RSU runs the energy manager for Fe periods within each

cell partitioner period. The length of each period is fixed and

is denoted by Tem, which can be set to a value that satisfies

the Quality of Service (QoS) for the workloads execution,

i.e., every workload should execute within Tem units of time.

Thus, the energy manager, at each one of the Fe invocations,

decides the vehicle’s state and the number of replicas for

each selected requester so that, after Fe periods, the ve-

hicles’ energy consumption is minimized without violating

the QoS requirements. In other words, we want to ensure

that each vehicle, by participating in sharing computational

resources, can save some energy before changing the edge-

cell assignment at the next cell partitioner invocation. Next,

we identify two important constraints for ERMP, define the

energy model of vehicles, and formulate the optimization

problem.

Capacity Constraint. We characterize the workload of

vehicle j by Rj = {r1j , . . . , rQj}, where Q is the number

of resource types and rij is the amount of resource of

type i needed to complete the execution of the workload.

We consider three resource types (i.e., Q = 3) indexed

by h: CPU (h = 1), memory (h = 2), and storage

(h = 3). Thus, r1j is the number of CPU instructions

(in millions), r2j is the amount of memory, and r3j is

the amount of storage needed by workload of vehicle j.

Each vehicle j selected as a provider has a limited capacity

Chj for each resource h, thus the total amount of resources

requested cannot exceed the available capacity:

V
∑

i=1

xij · rhi ≤ xjj · Chj ∀j, ∀h (1)

where V is the total number of vehicles in the edge-cell

and xij is a binary variable that is 1, if a replica of

vehicle i is assigned to vehicle j, and 0, otherwise. The state

of vehicle j is associated with the value of variable xjj .

Vehicle j is a requester if it does not run its workload

locally, i.e., xjj = 0, otherwise it is a provider. Thus,

the above constraint also guarantees that no replica will

be assigned to requester vehicles. As we describe later, we

use xij to decide the number of providers and the number

of requesters’ workload replicas during each one of the Fe

periods. However, the optimized variable xij also gives an

initial placement of replicas to providers, which can be either

enforced or optimized at a finer time grain for a higher QoS.

A challenge to overcome is how to calculate the CPU

capacity C1j in Constraint (1). We define the CPU capacity

based on the Millions of Instructions per Second (MIPS) that

can be executed for a certain CPU frequency and number of

cores. This relation can be approximated as follows:

MIPSj = (ϑj · fj + θj) · nj (2)

where ϑj and θj are estimated parameters, nj is the number

of cores, and fj is the CPU frequency of each core (assum-

ing the same frequency for all the cores for simplicity). In

order to ensure a good QoS, the required time to run the

local workload r1j must be shorter than the energy manager

period duration Tem, which can be set as desired. Thus,

vehicle j can satisfy this QoS requirement at the minimum

energy consumption for its own computation by selecting

as default the minimum frequency level that satisfies the

following inequality:

fj ≥
r1j

ϑj · nj · Tem
−
θj

ϑj
(3)

As a result, the total CPU capacity C1,j of Equation (1) can

be calculated as follows:

C1j = (ϑj · fj + θj) · nj · Tem (4)

For each vehicle j, the leftover capacity that can be used for

requester workloads can be calculated as MIPSj ·Tem−r1j ,

where MIPSj is calculated using the default frequency fj
described above. This capacity constraint enables the en-

ergy manager to place extra workload on provider vehicles

without affecting their default CPU power consumption.

Thus, the energy manager can achieve energy savings for all

the V vehicles in the edge-cell over multiple energy manager

periods.

Risk Factor Constraint. Despite the cell partitioner efforts

to provide a static vehicle set within each partitioner period,

it may happen that some vehicles may change location in

any of the Fe energy manager periods. Thus, because the

future vehicle locations can only be predicted, we need to

ensure that, with some level of confidence defined by a risk

factor, each requester has a good connection with at least one

provider during each period. To formulate this constraint,

we first need to find the minimum distance between each

requester and providers. In particular, for every selected

requester, we want to have at least one provider within a

reliable distance δ > 0. On the other hand, the location of

vehicles is non-deterministic and thus it may be affected

by estimation errors. As a result, we must make sure that

the probability of having at least one provider in a reliable

distance is greater than a satisfaction factor (1 − α). This

constrain can be expressed as follows:

p

{

min
j∈{1,...,V }

{lij · xij +M · (1− xij)} ≤ δ

}

≥ 1− α ∀i

(5)

where lij is the average distance between vehicle i and

vehicle j in the current period and M is a sufficiently large

3

number. The second term M · (1− xij) is needed to handle

the cases in which the first term is 0 either because i = j

and i is a requester (i.e., lij · xij = 0 where lij = 0 and

xij = 0), or because i 6= j where j is a provider not serving

requests of i (i.e., lij · xij = 0 where lij > 0 and xij = 0).

Energy Consumption. The computing system energy con-

sumption for vehicle j is mainly characterized by two

components, i.e., the computational and the transmission en-

ergy consumption. The computational energy consumption

E
comp
j can be estimated with a linear model of the CPU

clock frequency fj and the number of cores nj :

E
comp
j = Tem ·

[

P idle
j + nj · (λj · fj + γj) · xjj

]

(6)

where P idle
j is the idle power consumption, λj and γj

are estimated parameters. Note that when the CPU is idle

because vehicle j is a requester, i.e., xjj = 0, the compu-

tational energy consumption of the vehicles is equivalent to

Tem ·P idle
j . Therefore, the energy savings of vehicle j, if it

is selected as a requester, are calculated as follows:

Esave
j = Tem · (1− xjj) · (λj · fj + γj) · nj (7)

Note that, if vehicle j is a provider, i.e., xjj = 1, Esave
j = 0.

The transmission energy consumption of vehicle j to

receive a request from vehicle i is calculated as the ratio

of the request size di and the average bandwidth bij , i.e.,

ωj · di

bij
. The parameter ωj is the energy consumption of

vehicle j to receive one unit of data. Also, the average

bandwidth bij between vehicle i and vehicle j is proportional

to their average distance lij , i.e., bij = µ
lij

, where µ is a

constant estimated parameter. Therefore, the total energy

consumption of vehicle j to receive requests from other

vehicles, i.e., Erec
j , is:

Erec
j = Tem ·

[

V
∑

i=1

xij · ωj ·
di

bij

]

(8)

Similarly, the energy consumption of vehicle j to send its

request to other vehicles is:

Esend
j = Tem ·

[

V
∑

i=1

xji · ψj ·
dj

bji

]

(9)

where ψj is the energy consumption of vehicle j to send

one unit of data to the network. Note, Equations (8) and (9)

guarantee that Erec
j = 0 and Esend

j = 0 if vehicle j is

selected as a requester and a provider, respectively.

In order to keep track of the total energy saved and extra

energy spent by each vehicle when selected as requesters

or providers, respectively, we define the energy balance. In

each energy manager period, the energy balance of vehicle j,

Eblnc
j , is calculated based on the energy balance Eblnc′

j

obtained from the previous periods, the transmission energy,

and the energy savings in the current period. In practice, a

negative energy balance means energy savings compared

Table I: Notation

Notation Description

V Total number of vehicles in the edge-cell
α Risk factor
xij Binary decision variable for replica assignments
rhj Amount of type h resource requested by vehicle j
lij Average distance between vehicle i and j
Chj Available capacity of resource of type h h

Eblnc′

j Energy balance of vehicle j from previous period

P idle
j Idle power consumption of vehicle j

fj Default CPU frequency of vehicle j
dj Size of the request of vehicle j
bij Average bandwidth between vehicle i and vehicle j
ψj Transmission Energy to send one unit of data
ωj Transmission Energy to receive one unit of data
λj , θj , γj , ϑj Estimated parameters

to always executing the workload locally. Given the above

models, the energy balance is calculated as follows:

Eblnc
j = Eblnc′

j + Tem · (xjj − 1) · (λj · fj + γj) · nj+

V
∑

i=1

xji · ψj ·
dj

bji
+

V
∑

i=1

xij · ωj ·
di

bij

(10)

Problem Formulation. The main objective of the energy

manager is to minimize the vehicles’ energy balance. In

fact, it would be desired to have a negative energy balance

for all the vehicles before the end of the current cell

partitioner period. Table I summarizes the notation used in

the formulation. The Mixed Integer Non-Linear Program

(MINLP) for ERMP denoted by ERMP-MINLP is defined

as follows:

Min z (11)

s.t.:

V
∑

i=1

xij · rhi ≤ xjj · Chj ∀j, ∀h (12)

p

{

min
j∈{1,...,V }

{lij · xij +M · (1− xij)} ≤ δ

}

≥ 1− α ∀i

(13)

E
blnc′

j + Tem · (xjj − 1) · (λj · fj + γj)+
V
∑

i=1

xji · ψj ·
dj

bji
+

V
∑

i=1

xij · ωj ·
di

bij
≤ z ∀j (14)

xij ∈ {0, 1} ∀i, ∀j (15)

The objective function of ERMP-MINLP is to minimize the

maximum energy balance of each vehicle. This is equivalent

to minimizing an auxiliary variable z that is an upper bound

for the energy balance of each vehicle (Constraint (14)).

Constraint (15) guarantees the integrality of the decision

variables. Finally, Constraints (12) and (13), as described

in the previous paragraphs, enforce the available resource

capacity and the desired risk factor, respectively.

4

III. A GREEDY ALGORITHM FOR ERMP

Due to Constraint (13), ERMP-MINLP can be classified

as a chance-constrained optimization problem. As a result, it

is robust to location uncertainties of the vehicles. However,

solving chance-constrained optimization problems optimally

usually requires computationally expensive algorithms (e.g.,

CPLEX [2]) that are not suitable for our setting. Therefore,

we develop an efficient greedy algorithm called G-ERMP

that finds a feasible solution to ERMP-MINLP in polyno-

mial time.

G-ERMP operates in two phases using various scenarios

to handle the chance constraint. Each scenario assumes a

deterministic (i.e., known) location for vehicles. In the first

phase, the algorithm picks a random sample of scenarios

generated based on a set of probable locations for the

vehicles. Therefore, the algorithm solves the deterministic

version of ERMP-MINLP to obtain a solution for each

scenario. Because the location within a scenario is known,

this solution provides a single replica for each requester

vehicle. Then, in the second phase, based on the assignments

obtained for each scenario, the algorithm determines the

number of replicas for each vehicle as well as their replica

assignment so that Constraint (13) is satisfied with a proba-

bility higher than (1− α). However, the problem solved in

the first phase of G-ERMP belongs to the class of packing

problems, which are known to be NP-hard. Therefore, it

is not solvable in polynomial time, unless P=NP. For this

purpose, we first develop a greedy algorithm called GD-

ERMP, that solves the problem associated with the first

phase of G-ERMP in polynomial time for a selected sce-

nario. Then, we describe the complete G-ERMP algorithm,

which examines the solutions provided by GD-ERMP to

finalize the selection of the providers and the number of

replicas.

A. The GD-ERMP Algorithm

In order to minimize the maximum energy balance of

vehicles, GD-ERMP analyzes the energy balance of each

vehicle at the beginning of each period: vehicles with a low

energy balance are more likely to be selected as the providers

for the current period. However, making this decision based

only on energy balance may lead to an unnecessarily high

number of irregularly distributed providers. To solve this

problem, our algorithm needs to consider both the location

of the vehicles and their energy balance.

Algorithm 1 shows the pseudo-code of GD-ERMP. It

considers both the energy balance and the location of

vehicles to decide the set of providers S and the number

of replicas for requesters. The input is the vector of vehicles

with their request type Rj , capacity Cj , their current energy

balance Eblnc′

j , and their location (in a given scenario) Aj .

The output is the allocation matrix X = {xij}. In order

to determine the providers, GD-ERMP first picks a vehicle

with the minimum energy balance, and puts it in the set of

Algorithm 1 GD-ERMP

Input: Set of vehicles : V
1: j ← argmini∈V E

blnc′

i

2: S ← {j}
3: stop← false
4: while not stop do
5: stop← true
6: for i ∈ V − S do
7: j ← nearest-provider(i, S,X)
8: if lij ≤ δ then
9: yi ← j

10: else

11: j ← argmaxi∈V−S(
l(i,S)

L̄
−

Eblnc′

i

Ē
)

12: S ← S ∪ {j}
13: stop← false
14: break

15: for i ∈ S do
16: xii ← 1
17: for i ∈ V − S do
18: xiyi ← 1

Output: X

providers S (Lines 1-2). Then, in an iterative manner, other

providers are added to S. For each vehicle i that is not

selected as a provider, the algorithm calls nearest-provider

to find the nearest provider that has enough capacity to serve

the vehicle (Line 7). If that provider is within a reliable

distance, i.e., lij ≤ δ, the requester is assigned to that

provider and the allocation vector y is updated (Lines 8-9).

If the algorithm cannot allocate a request within a reliable

distance, the current set of providers is not enough to satisfy

all the requests. Hence, the algorithm needs to add another

vehicle to the set of providers. As discussed in the examples

above, the next provider is chosen so that it has a relatively

low energy balance and it is far away from the already

selected providers, which helps covering more requesters

with a minimum number of providers. This strategy is

implemented in Lines 11-14, where the algorithm picks a

vehicle that has the maximum value of

(

l(i,S)
L̄

−
Eblnc′

i

Ē

)

,

where l(i, S) is the distance of vehicle i from the selected

providers, i.e., l(i, S) = minj∈S lij . L̄ and Ē are the average

distance over vehicles and the average energy balance over

vehicles, respectively.

The above procedure is repeated until all requests are

allocated to providers that are within a reliable distance.

Then, the algorithm updates the allocation matrix X based

on the allocation obtained for vector y in the last iteration

of the algorithm (Lines 15-18).

Complexity Analysis. The time complexity of GD-ERMP

is O(V 3). The main part of GD-ERMP consists of the loop

in Lines 4-14, which executes |S| times. In each iteration,

for each non-provider vehicle, finding the nearest provider

among j providers will take O(j) time. Therefore, the total

time complexity of GD-ERMP is
∑|S|

j=1(V −j)·j = O(V 3)

5

Algorithm 2 G-ERMP

Input: Set of vehicles : V
Set of scenarios :ξ

1: S ← ∅
2: for each j ∈ V do
3: σj ← 0

4: Γ← ∅
5: for each ε ∈ ξ do
6: Zε ←GD-ERMP(V ,ε)

7: for each j ∈ V do
8: for each i ∈ V do
9: wij ←

∑

ε∈ξ
zεij

10: Indegj ←
∑

i∈V wij

11: while |Γ| < V do
12: j ← argmaxi∈V−Γ Indegi
13: S ← S ∪ {j}
14: xjj ← 1
15: Γ← Γ ∪ {j}
16: for each i ∈ S do
17: if xji = 1 then
18: xji ← 0
19: for each k ∈ V − Γ do
20: if wki > 0 and available(k,i,X) then
21: xki ← 1
22: σk ← σk + wki

23: if σk > (1− α) · |ξ| then
24: Γ← Γ ∪ {k}

25: for each g ∈ V − Γ do
26: if wgj > 0 and available(g,j,X) then
27: xgj ← 1
28: σg ← σg + wgj

29: if σg > (1− α) · |ξ| then
30: Γ← Γ ∪ {g}

Output: X

B. The G-ERMP Algorithm

Algorithm 2 shows the pseudo-code of G-ERMP. The

algorithm has as input the set of scenarios, ξ, the vector of

vehicles with their request size, Rj , and their capacity, Cj .

The output is the allocation matrix X = {xij}. The main

idea of G-ERMP is to create a graph based on the allocation

matrices Zε = {zεij}, where zεij is 1 if vehicle i is assigned

to vehicle j in scenario ε, and 0, otherwise. Each vertex

of this graph represents a vehicle; each edge of the graph

indicates a requester i to provider j assignment, weighted

by the number of scenarios in which a request of i has

been allocated to j by the GD-ERMP algorithm. Then, the

algorithm partitions this graph into the set of providers and

the set of requesters, and determines the number of replicas

for each requester. This partitioning is done so that, for each

vehicle, Constraint (13) is satisfied for more than (1−α) · |ξ|
scenarios.

G-ERMP starts with an empty set of providers S

(Line 1). In each iteration of the algorithm, this set will

be updated. Also, we define vector σ = {σj} to store the

number of scenarios in which Constraint (13) is satisfied

for each vehicle j (Lines 2-3). We define Γ as a set of

vehicles for which Constraint (13) is satisfied. G-ERMP

initializes Γ with the empty set (Line 4). Matrix Z is used

to save the allocation obtained for each scenario (Lines 5-

6). Based on the allocation matrix Z, the algorithm creates

a graph with V vertices. Each vertex represents a vehicle

and each edge indicates a request-provider assignment. The

weight of an edge from vertex i to vertex j is denoted by wij

and is defined as the number of scenarios in which vehicle

i is assigned to vehicle j. The indegree of vertex j, i.e., the

total weight of edges adjacent to vertex j, is stored in vector

Indeg = {Indegj} (Lines 7-10).

In order to find the minimum number of providers, in

each iteration, G-ERMP selects the vehicle as the provider

that has received the maximum number of requests from the

various scenarios. Therefore, it choses the vertex with the

maximum indegree as a provider (Line 12). Then, it updates

the set of providers, and the allocation matrix (Line 13-14).

When a vehicle is selected as a provider, it runs its requests

locally, which means that, for this vehicle, Constraint (13) is

automatically satisfied. Thus, it adds the current provider to

the set Γ (Line 15). The algorithm then updates the replica

assignment of vehicles in two steps. In the first step, since

vehicle j is selected as a provider, the algorithm removes all

the previous assignments from vehicle j on any provider. In

fact, the algorithm checks if a request from vehicle j has

been assigned to a provider i, it removes that assignment

and resets the corresponding allocation variable (Lines 16-

18). Furthermore, since the remaining capacity of vehicle i

is increased, it might be able to serve more requests. Thus,

for each vehicle k ∈ V − Γ willing to be assigned to

vehicle i, the algorithm updates the assignment if vehicle i

has enough capacity. It also updates σ for vehicle k. If σk
is greater than (1 − α) · |ξ|, the algorithm adds vehicle k

to Γ. Therefore, the algorithm will not generate any further

replica for that vehicle (Lines 19-24). In the second step, the

algorithm assigns requests from each vehicle g willing to be

assigned to vehicle j. It updates the assignment if vehicle i

has enough capacity. It also updates σ for vehicle g. If σg is

greater than (1− α) · |ξ|, the algorithm adds vehicle g to Γ
(Lines 25-30). The algorithm continues this procedure until

all the vehicles are added to set Γ. Due to space limitations,

we refer to Sections 4 and 5 of our technical report [3] for

illustrative examples to show how the proposed algorithm

works.

Complexity Analysis. To investigate the time complexity

of G-ERMP, we analyze the time complexity of the two

main parts of the algorithm. In the first part, G-ERMP calls

GD-ERMP for each scenario. Therefore, as analyzed in the

previous section, the time complexity of the first part is

O(|ξ| · V 3). In the second part, G-ERMP builds a graph

based on the solution obtained in the first part. The time

complexity of the second part mainly depends on the loop in

6

Lines 11-29, which executes O(V) times. The main part of

the loop consists of the loop in Lines 16-24 which executes

O(|S| · (|V − |Γ|)) times. Therefore, the time complexity

of the second part is O(V 3). As a result, the total time

complexity of G-ERMP is O(|ξ| · V 3 + V 3) = O(|ξ| · V 3)

IV. EXPERIMENTAL ANALYSIS

A. Experimental setup

Edge-Cell Setup. We consider a time slotted system in

which the location of vehicles may change from one time

slot to another. Vehicles are located within a 4-way road.

An RSU is located at the intersection. We assume that the

coverage range of the RSU is 1 km, which is similar to the

radius of DSRC technologies used on connected vehicles [1].

The RSU runs the energy manager for 10 periods. The

duration of each period is 10 time slots, i.e., Tem = 10.

Based on the traffic and the average speed of vehicles on

each road, we initialize the location of vehicles so that they

do not leave the coverage area of the RSU during the 10

energy manager periods. In our setup, we assume that the

traffic on North-South road is two times heavier than the

traffic on East-West road. The direction of each vehicle can

be toward the intersection or away from the intersection.

We also assume that the speed of vehicles on the East-West

road is 20 meters per second while that of the vehicles on

the North-South road is 10 meters per second. We consider

that vehicles moving towards the intersection may turn to

the other road with a probability calculated based on the

traffic statistics. Therefore, the location of vehicles during

the current energy manager period, depends on the initial

location, the direction, and the speed of the vehicles on the

road. Given this setup, we estimate that there could be up

to 400 vehicles on the road within the considered edge-cell.

Computing Setup. Table II shows the parameters that we

use to generate instances in our analysis. In this table,

U [x, y] indicates the uniform distribution within the interval

[x, y], and N(x, y) indicates the normal distribution with

mean x and variance y. We assume that for each type of

resources, the capacity of vehicles is in the same range

and does not vary significantly. Therefore, we use normal

distribution for the memory and storage capacity of vehicles.

The capacity of CPU depends on the default frequency of

vehicles (See Equation (4)). We use as an example CPU the

ARM Cortex A57. The CPU has 13 frequency levels from

700 MHz to 1,900 MHz and the difference of frequency

between two consequent levels is about 100 MHz. We profile

the Cortex A57 in terms of MIPS and power consumption

for each frequency level to get the model parameters in

Equations (4) and (6). Specifically, the maximum leftover

capacity of a provider over Tem time slots does not exceed

30,732 million instructions. Therefore, to have a reasonable

problem settings, we vary the workload of vehicles between

500 million instructions and 20,000 million instructions.

Table II: Distribution of parameters
Parameter Distribution/Value Parameter Value

rh1

low: U [100, 5000] P idle
j 0.1

medium: U [5000, 10000] ϑj 7.683
heavy: U [10000, 20000] µ 10

rh2 U [100, 1000] θj −4558.52
rh3 U [100, 1000] Fe 10
C2j N [5000, 1000] Tem 10
C3j N [5000, 1000] γj −0.741625
α 0.1 λj 0.00125
ωj 0.2 φj 0.2

According to Equation (3), the default frequency of vehi-

cles varies between 700 MHz and 900 MHz, which gives

an estimated capacity between 8,198 and 94,259 million

instructions to execute within a Tem period. We estimate

the transmission energy parameters ωj and φj based on the

analysis provided in [4].

Performance Metrics. The performance of the proposed

algorithm is evaluated by computing the percentage of

total energy saving, which is defined as the ratio between

the total energy saving of vehicles and the total baseline

energy consumption (when all the vehicles run their requests

locally).

ES(%) = 100 ·

∑V

i=1(ai · fi + bi) · ni · (1− xjj)
∑V

i=1(ai · fi + bi) · ni

(16)

To evaluate the fairness of the algorithms, we determine

the Coefficient of Variation (CV) over energy balance of the

vehicles. A lower value of CV means a more fair distribution

of requests. CV is defined as the ratio of the standard

deviation of Eblnc
j over the average energy balance across

vehicles Ē,

CV =

√

1
V

∑V

j=1(E
blnc
j − Ē)2

Ē
(17)

G-ERMP is implemented in C++ and the experiments are

conducted on an Intel 1.6GHz Core i5 with 8 GB RAM.

B. Experimental results

In this section, we first investigate the performance of

G-ERMP compared to the baseline that executes workload

of each vehicle locally for the low, medium, and high

workload instances and a fixed number of vehicles. Then,

we investigate the scalability of G-ERMP compared to a

baseline that only offloads vehicles’ workload to the local

RSU while changing the number of vehicles and using

random workload instances.

Fixed Number of Vehicles. Here we analyze the per-

formance of G-ERMP by considering a fixed number of

vehicles, i.e., V = 100, and run the algorithm in 10

energy-manager periods. We consider three sets of workload

instances: low, medium, and high. In these instances, the

size of transmission data of vehicles is low and is randomly

chosen from [200, 500] KB (see our Tech Report [3] for

the tests on the effect of data transmission). The average

7

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

V
eh

ic
le

s
w

it
h

 n
eg

a
ti

v
e

b
a

la
n

ce
 (

%
)

Period

High workload Medium workload Low workload

(a)

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

P
r
o

v
id

e
r
s

(%
)

Period

High workload Medium workload Low workload

(b)

Figure 2: G-ERMP performance with low, medium, and high workloads: (a) Percentage of vehicles with negative balance,

(b) Percentage of vehicles selected as provider.

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10

C
V

Period

High workload Medium workload Low workload

(a)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

E
n

er
g
y
 s

a
v
in

g
 (

%
)

Period

High workload Medium workload Low workload

(b)

Figure 3: G-ERMP performance with low, medium, and high workloads: (a) Coefficient of Variance (CV) of energy balance,

and (b) Percentage of energy saving.

execution time of G-ERMP for each problem instance is

about 0.06s, which is negligible compared to the execution

period of the requests (Tem = 10s).

As Figure 2(a) shows, the percentage of vehicles with

a negative balance increases over the periods. For problem

instances with low and medium workload, after two periods,

all vehicles obtain energy savings. However, for the heavy

workload instances, only 97% of the vehicles are able to

obtain energy savings because heavy workloads are more

difficult to place on providers without changing their default

frequency. High workloads have two consequences. First,

as Figure 2(b) shows, the percentage of providers increases

compared to the low workloads, and second, as Figure 3(a)

shows, the CV value of high workloads is generally higher

than that of the low workloads because more vehicles have

to process their requests locally. This leads to having fewer

vehicles achieving energy savings. On the other hand, as Fig-

ure 3(b) shows, even for the high-workload case the vehicles

can achieve about 15% more energy savings compared to the

baseline while the medium and low workloads achieve 50%

and 85% energy savings, respectively.

These experiments show that the G-ERMP allows vehi-

cles to achieve energy savings for their computational nodes.

Scalability. Here, we investigate the scalability of G-ERMP

to the number of vehicles and compare it to a baseline called

RSU-Base, which uses the local RSU to run the request

of the vehicles. RSU-Base orders the vehicle requests in

descending order based on the vehicles’ energy balance and

then, starting from the one with highest balance, it allocates

as many requests as possible on the RSU’s resources.

As discussed in Section IV-A, the estimated number of

vehicles that can be hosted in the edge-cell is 400. Thus,

here we vary the number of vehicles from 100 to 550 so

that we account also for estimation error on speed and

vehicle sizes. The vehicles’ workload is randomly chosen

from the low, medium, and high workload. As Figure 4(a)

shows, by increasing the number of vehicles, the execution

time of G-ERMP increases polynomially (see analysis in

Section III). However, on average, its execution time is less

than 10% of the energy-manager period duration and thus

is acceptable. On the other hand, as Figure 4(b) shows,

G-ERMP allows all the vehicles to obtain energy savings

after 10 periods while RSU-Base, because of its limited

resources, cannot achieve energy savings for all the vehicles

when there are more than 300 vehicles in the edge-cell. As a

result, as Figure 5(a) shows, G-ERMP has a fair distribution

of the energy savings (decreasing CV value) while RSU-

Base has an unbalanced savings distribution (increasing

CV value) due to the limited number of vehicles that can

8

1

501

1001

1501

2001

2501

3001

100 150 200 250 300 350 400 450 500 550

E
x

e
c
u

ti
o

n
 t

im
e
 (

m
se

c
)

of vehicles

G-ERMP RSU-Base

(a)

0

20

40

60

80

100

120

100 150 200 250 300 350 400 450 500 550V
eh

ic
le

s
w

it
h

 n
eg

a
ti

v
e

b
a
la

n
ce

 (
%

)

of vehicles

G-ERMP RSU-Base

(b)

Figure 4: The effect of the number of vehicles on (a) the execution time of the algorithm, (b) the percentage of vehicles

with negative balance.

0

0.002

0.004

0.006

0.008

0.01

100 150 200 250 300 350 400 450 500 550

C
V

of vehicles

G-ERMP RSU-Base

(a)

0

10

20

30

40

50

60

70

80

90

100

100 150 200 250 300 350 400 450 500 550

E
n

er
g

y
 s

a
v

in
g

 (
%

)

of vehicles

G-ERMP RSU-Base

(b)

Figure 5: The effect of the number of vehicles on (a) the Coefficient of Variance (CV) of energy balance, and (b) the energy

savings.

offload their workload. This behavior, as Figure 5(b) shows,

translates in a stable 50% energy savings with G-ERMP

and a decreasing amount of savings for RSU-Base with an

increasing number of vehicles.

These experiments show that the proposed algorithm, G-

ERMP, allows vehicles to achieve energy savings indepen-

dently from the number of vehicles to manage.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed G-ERMP, an energy-

aware resource management algorithm for VEC systems.

We have evaluated G-ERMP by performing an extensive

experimental analysis on several problem instances. The

results have shown that the proposed algorithm has a reason-

able execution time and allows vehicles to achieve 15-85%

computational energy savings compared to a baseline that

executes workload locally and 51% more energy savings

compared to a baseline that offloads vehicles’ workloads

only to RSUs. In our future research we plan to develop

the cell partitioner, which partitions the vehicles and as-

signs them to the edge-cells guaranteeing that each vehicle

remains in the assigned edge-cell for most of the cell parti-

tioner time period. In addition, we plan to improve G-ERMP

to (i) formally guarantee the minimum computational energy

consumption for any data transmission size, (ii) further

reduce its execution time, (iii) explore the possibility of

splitting large requester workloads, and (iv) allow provider

vehicles to temporarily increase their default computing

frequency level.

ACKNOWLEDGMENT

This work was supported by the NSF under grant no. IIS-

1724227.

REFERENCES

[1] DSRC Technology. https://www.auto-talks.com/technology/
dsrc-technology.

[2] IBM ILOG CPLEX V12.1 user’s manual. ftp://ftp.software.
ibm.com/software/websphere/ilog/docs/, 2009.

[3] T. Bahreini, M. Brocanelli, and D. Grosu. Technical
report. https://www.dropbox.com/s/v39r0z4lf68l4vo/Tech
Report.pdf?dl=0.

[4] E. Björnson and E. G. Larsson. How energy-efficient can a
wireless communication system become? In ACSSC, 2018.

[5] Z. Jiang, S. Zhou, X. Guo, and Z. Niu. Task replication
for deadline-constrained vehicular cloud computing: Optimal
policy, performance analysis, and implications on road traffic.
IEEE Internet of Things Journal, 5(1):93–107, 2018.

[6] L. Li, X. Zhang, K. Liu, F. Jiang, , and J. Peng. An energy-
aware task offloading mechanism in multiuser mobile-edge
cloud computing. Mobile Information Systems, 2018:3–15,
April 2018.

9

[7] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque,
L. Tang, and J. Mars. The architectural implications of
autonomous driving: Constraints and acceleration. In ACM
SIGPLAN Notices, volume 53, pages 751–766. ACM, 2018.

[8] O. Muñoz, A. Pascual-Iserte, and J. Vidal. Optimization of
radio and computational resources for energy efficiency in
latency-constrained application offloading. IEEE Transactions
on Vehicular Technology, 64(10):4738–4755, 2015.

[9] S. Sardellitti, G. Scutari, and S. Barbarossa. Joint optimization
of radio and computational resources for multicell mobile-
edge computing. IEEE Transactions on Signal and Informa-
tion Processing over Networks, 1(2):89–103, 2015.

[10] Y. Sun, J. Song, S. Zhou, X. Guo, and Z. Niu. Task replication
for vehicular edge computing: A combinatorial multi-armed
bandit based approach. arXiv preprint arXiv:1807.05718,
2018.

[11] H. Trinh, D. Chemodanov, S. Yao, Q. Lei, B. Zhang, F. Gao,
P. Calyam, and K. Palaniappan. Energy-aware mobile edge
computing for low-latency visual data processing. In FiCloud,
2017.

[12] H. Viswanathan, E. K. Lee, I. Rodero, and D. Pompili.
Uncertainty-aware autonomic resource provisioning for mo-
bile cloud computing. IEEE Trans. on Parallel and Dis-
tributed Syst., 26(8):2363–2372, 2015.

[13] R. Yu, Y. Zhang, S. Gjessing, W. Xia, and K. Yang. To-
ward cloud-based vehicular networks with efficient resource
management. IEEE Network, 27(5):48–55, September 2013.

[14] R. Yu, Y. Zhang, S. Gjessing, W. Xia, and K. Yang. To-
ward cloud-based vehicular networks with efficient resource
management. IEEE Network, 27(5):48–55, 2013.

[15] K. Zhang, Y. Mao, S. Leng, Q. Zhao, L. Li, X. Peng, L. Pan,
S. Maharjan, and Y. Zhang. Energy-efficient offloading for
mobile edge computing in 5g heterogeneous networks. IEEE
Access, 4:5896–5907, 2016.

[16] K. Zheng, H. Meng, P. Chatzimisios, L. Lei, and X. Shen.
An smdp-based resource allocation in vehicular cloud com-
puting systems. IEEE Transactions on Industrial Electronics,
62(12):7920–7928, 2015.

[17] C. Zhu, G. Pastor, Y. Xiao, Y. Li, and A. Ylae-Jaeaeski. Fog
following me: Latency and quality balanced task allocation
in vehicular fog computing. In SECON, 2018.

10

