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Abstract
In many discussions of the ways in which abstraction is applied in computer science (CS), researchers and advocates of CS
education argue that CS students should be taught to consciously and explicitly move among levels of abstraction (Armoni
Journal of Computers inMathematics and Science Teaching, 32(3), 265–284, 2013; KramerCommunications of the ACM, 50(4),
37–42, 2007; Wing Communications of the ACM, 49(3), 33–35, 2006). In this paper, we describe one way that attention to levels
of abstraction could also support learning in mathematics. Specifically, we propose a framework for using abstraction in
elementary mathematics based on Armoni’s (2013) framework for teaching computational abstraction. We propose that such a
framework could address an enduring challenge in mathematics for helping elementary students solve word problems with
attention to context. In a discussion of implications, we propose that future research using the framework for instruction and
teacher education could also explore ways that attention to levels of abstraction in elementary school mathematics may support
later learning of mathematics and computer science.
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Introduction

The CS For Allmovement (White House 2016) has spurred a
great deal of interest in bringing computer science education
to all students in K-12 (Grover and Pea 2013; Perez 2018;
Yadav et al. 2017). When it comes to elementary and middle
school, many of the current initiatives have focused on devel-
oping frameworks (e.g., CSK-12.org 2016), curriculum mate-
rials (e.g., code.org 2016), and instructional techniques
(Armoni 2013) for stand-alone teaching of computer science
(CS) to young students. Little attention has been given to how
these new educational ideas might support learning beyond
CS. In this paper, we explore how one innovation developed
in support of CS education could be adapted to support learn-
ing of another subject, mathematics. Specifically, we argue

that application of a particular CS idea, levels of abstraction,
has potential to help elementary educators address a difficult
area of instruction in mathematics: solving word problems.

We begin by summarizing prior research on abstraction and
word problems. Next, we discuss how moves to a lower level
of abstraction (Hazzan 2003) can be used as a lens that reveals
connections between the bodies of research on abstraction in
computer science and word problems in mathematics. Finally,
we propose an adaptation of Armoni’s (2013) framework for
teaching abstraction and describe how its use might help stu-
dents to more productively approach solving word problems.

Background

In this section, we review two bodies of research we aim to
bring together in this paper. First, we describe computer sci-
ence students’ tendency to move from higher to lower levels
of abstraction when problem solving. Second, we describe
elementary mathematics students’ tendencies to solve word
problems without consideration of context.

Levels of Abstraction in Computer Science Education

Although specific definitions are varied and many, computa-
tional abstraction is generally understood to refer to the act or
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process of ignoring irrelevant details for the purpose of focus-
ing on the essential aspects of a problem or situation.
Abstraction is both a process and an entity — a process of
extracting essential features and the resulting simplified rep-
resentation or entity (Muller and Haberman 2008). In on-
going discussions what quality computer science education
should entail, abstraction has been suggested as one of the
main pillars (Wing 2006). Indeed, Aho and Ullman (1995)
described computer science as a “science of abstraction – cre-
ating the right model for thinking about a problem and devis-
ing the appropriate mechanizable techniques to solve it” (p. 1,
as cited in Muller and Haberman 2008, p. 188). Thus, in
computer science, abstraction is “a process, a strategy, and
the result of reducing detail to focus on concepts relevant to
understanding and solving problems” (College Board
2017, p. 9).

Within computer science, representations are typically not
discussed in simple terms of whether they are abstract or not.
Rather, representations exist along a continuum of abstraction
and are often described as being at a higher or lower level of
abstract ion relat ive to each other (Hil l is 1998) .
Representations at high levels of abstraction show broad pic-
tures of a phenomenon, whereas representations at low levels
of abstraction show a smaller piece of the phenomenon in
more detail. For example, Hillis (1998) points out that a func-
tion call within a program is at a higher level of abstraction
than the lines of code in the function’s definition. The function
call is a representation showing what a function does. The
placement of function calls within code require relating the
function to the broader problem the program is addressing,
so placing the calls requires a programmer to work at a higher
level of abstraction. By contrast, the more detailed informa-
tion about how the function works is in the function definition.
Coding the definition requires thinking in detail about how the
function will accomplish its task, but does not require thinking
about how the use of the function will contribute to solving the
broader problem. Thus, programmers coding function defini-
tions, as opposed to adding function calls, are working at
lower levels of abstraction.

In her seminal paper discussing computational thinking,
Wing (2006) stated that thinking like a computer scientist
“requires thinking at multiple levels of abstraction” (p. 35).
The focus in computer science, therefore, is not on creating or
using abstractions at a particular level, but rather on being able
to move among different levels of abstraction (Wing 2006)
and choose the level (or the “right model”) that is most useful
for the particular stage of problem solving (Aho and Ullman
1995, as cited in Muller and Haberman 2008). Although ab-
straction is understood, colloquially, as a process of moving
from a concrete representation to a more abstract representa-
tion, in computer science the creation of high-level abstract
representations is not necessarily the end goal. Fluid and easy
movement among levels — whether these are moves from

higher to lower levels of abstraction or vice versa — and
consideration of the appropriate level of abstraction are the
ultimate goals. Skillful use of abstraction entails the use of
the appropriate amount of detail, which varies by context
(Kramer 2007).

Hazzan (2003) showed that mathematics and computer sci-
ence students have a tendency to move from higher to lower
levels of abstraction while problem solving. She analyzed un-
dergraduate students’ problem-solving strategies and noted
three consistent patterns. First, students tended to think in
terms of processes—the specifics of what a solution would
require the student to do—rather than in terms of concepts—
the general ideas of what needs to be done without specific
consideration of how to accomplish it. For example, one un-
dergraduate computer science student thought of an array in
terms of how to implement it in a computer’s memory, rather
than in terms of what an array might be used to accomplish.
This is parallel to the difference between a placing a function
call and writing a function definition described by Hillis
(1998). Thinking about processes moves students to a lower
level of abstraction because the focus shifts to implementation
details—similar to writing a function definition where one has
to focus on how the function is implemented—rather than
purposes for using the array—which would be similar to using
a function call in the main program where the programmer
does not have to worry about how a function does what it
does, only what it does. Processes are generally understood
in more detail than concepts because they are learned first
(Sfard 1991). The inclusion of more detail is indicative of a
lower level of abstraction.

Second, Hazzan (2003) found that students often
reformulated problems in familiar terms. For example,
one undergraduate mathematics student thought of a solu-
tion of a differential equation in terms of a solution to a
non-differential (e.g., linear, quadratic) equation. Familiar
problems are generally considered to be at a lower level of
abstraction than unfamiliar problems, as the former are
more highly connected to an individual’s other knowledge
about the problem context or related solutions and thus
more detailed (Wilensky 1991). In particular, familiar
problems are often connected to prior knowledge about
the processes used to solve them—knowledge that allows
students to work at a lower level of abstraction, as just
described.

Lastly, Hazzan (2003) found that students tended to
think about one particular element of a set, rather than
the whole set, when solving problems. For example, when
asked about linked lists, one undergraduate computer sci-
ence student spoke specifically about one-dimensional
linked lists. While thinking about a single element, stu-
dents can focus on the details of that element and therefore
stay at a low level of abstraction. However, focusing on a
single element may mean losing sight of the essential
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features of the set and why that particular element fits into
the set—views provided at a high level of abstraction.
These examples, and how they are related along a contin-
uum of levels of abstraction, are shown in Fig. 1.

Although moves to a lower level of abstraction are not
necessarily errors — indeed, moving to a lower level of
abstraction can often be a productive problem solving tech-
nique (Hazzan 2003) — this consistent pattern of moving
to lower levels becomes problematic when students do not
shift back to higher levels of abstraction at appropriate
times. Thinking about one element of a set can be instruc-
tive when solving a problem about the entirety of the set,
for example, but eventually one must shift back to thinking
about the whole set. In reflecting on this study and others
in her body of work, Hazzan (2008) noted that the moves
to lower levels of abstraction were often not conscious on
the part of the students. She argued that students may be
able to more productively move among levels of abstrac-
tion if computer science instructors explicitly articulated
the ways they use abstraction as they solve problems.
Finding ways to help students consciously and purposeful-
ly move among levels of abstraction is thus a current prob-
lem of practice in computer science education.

In the next section, we summarize a body of work on ele-
mentary mathematics students’ difficulties solving word prob-
lems, emphasizing the evidence showing that students’ lack of
attention to context is a key issue. In the subsequent section,
we reinterpret the word problem research through the lens of
students moving among levels of abstraction to argue that a
key instructional difficulty—namely, supporting students in
attending to problem contexts—might be addressed by draw-
ing students’ attention to the ways they move among levels of
abstraction as they solve word problems.

Word Problems and Lack of Attention to Context

Since the results of the 1982 National Assessment of
Educational Progress (NAEP) exhibited disappointing and
startling results in relation to mathematics problem solving
(Carpenter et al. 1983), there has been a good deal of research
on elementary and middle schoolers’ solving of word prob-
lems. Mirroring two previous sets of NAEP results, the 1982
results showed a discrepancy between students’ performance
on routine and nonroutine word problems. Routine problems
can be solved via rote application of an algorithm, while non-
routine problems require consideration of contextual factors in
the problem to obtain a correct answer. For example, consider
the following problem: “An army bus holds 36 soldiers. If
1128 soldiers are being bussed to their training site, howmany
buses are needed?” (NAEP, as cited in Carpenter et al. 1983, p.
656). This problem is considered nonroutine, as rote use of a
division algorithm produces the answer 31 remainder 12, or
31⅓— an inadequate answer to the number of buses required.
On the 1982 NAEP, 70% of 13-year-old students performed
the correct division calculation, but only 23% used the result
to report the correct answer of 32 buses. Twenty-nine percent
gave the exact quotient as the answer, neglecting to consider
that a fractional number of buses does not make sense, and
18% ignored the remainder and reported 31 as the answer,
neglecting to account for the 12 soldiers who would not have
a seat (Carpenter et al. 1983). These results suggested that
students’ poor performance on the NAEP was not due to lack
of arithmetic skills, but rather due to students’ tendency to
ignore contextual factors when solving word problems.

A seminal study by Verschaffel et al. (1994) expanded on
these results to explore word problems involving all four ar-
ithmetic operations with younger participants. The authors

Fig. 1 Examples of high versus low levels of abstraction from Hazzan (2003)
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administered 20 word problems to 75 fifth graders. Ten of the
problems were standard (S-problems), solvable via straight-
forward application of an algorithm. The other ten problems
were “problematic” (P-problems) in that the result produced
by application of an algorithm would be incorrect or insuffi-
cient as a solution. For example, an S-problem and its paired
P-problem are as follows:

S-problem: “A shop-keeper has two containers for ap-
ples. The first container contains 60 apples and the other
90 apples. He puts all apples into a new, bigger contain-
er. How many apples are there in that new container?”
(Verschaffel et al. 1994, p. 276).
P-problem: “What will be the temperature of water in a
container if you pour 1 [liter] of water at 80° and 1 [liter]
of water of 40° into it?” (Verschaffel et al. 1994, p. 276).

The P-problem above is nonroutine, as the problem is
about combining two things, but adding the two salient num-
bers in the problem (80 and 40) will not result in the correct
answer.

Over 80% of the S-problems were solved correctly; by
contrast, only 17% of the answers given to the P-problems
were classified as realistic by the researchers. This is particu-
larly striking given that the researchers marked answers as
realistic when they were consistent with what the students’
written work revealed about their beliefs about the problem
context. For example, for the P-problem above one student
gave an answer of 80°, explaining that when liquids of differ-
ent temperature are combined they take on the temperature of
the hottest liquid. This answer was marked as realistic, despite
being incorrect, because it reflected use of the students’ (ad-
mittedly erroneous) real-world knowledge. Evenwith this def-
inition of what counts as a realistic answer, only 17% of stu-
dents gave answers classified as realistic to the above P-prob-
lem. These results, again, are consistent with the hypothesis
that students’ poor performance on word problems is better
explained by lack of attention to context than by lack of math-
ematical ability.

Many studies have produced similar patterns of results over
the last 25 years of mathematics education research (e.g.,
Reusser and Stebler 1997; Palm 2008; Weyns et al. 2017).
As such, various strategies have been implemented in efforts
to help students be more attentive to word-problem contexts
throughout their problem-solving processes. For example,
Palm (2008) investigated the impact of the level of authentic-
ity of problems on students’ consideration of real-world
knowledge. He found that more authentic tasks — defined
as modified versions of typical word problems that “better
simulate some of the aspects of real life” (p. 42)— led to more
realistic answers from students.

Other researchers have focused on changing the norms of
the classroom environment to focus on consideration of

context and sense-making. For example, Verschaffel and De
Corte (1997) described a teaching experiment focused on
bringing a mathematical modeling perspective to word prob-
lems. Students in the experimental group worked on nonrou-
tine problems through processes of cooperative learning, and
the teacher focused on establishing norms that encouraged
collective sense-making and multiple interpretations of an-
swers. The study led to moderate improvements in students’
consideration of real-world knowledge when problem solv-
ing. Thus, a focus on more challenging problems and process-
es of sense-making shows promise in addressing students’
tendency to ignore real-world information during problem
solving. More frameworks and strategies for implementing
such instruction would be welcome in the mathematics edu-
cation field. In the sections that follow, we argue that using
computational abstraction ideas to frame word-problem in-
struction is a promising strategy.

Connecting Word Problems
and Computational Abstraction

In this section, we point out similarities between elementary
students’ performance on word problems (Silver et al. 1993;
Verschaffel et al. 1994) and undergraduate students’ tendency
to shift to lower levels of abstraction (Hazzan 2003). We then
discuss how a recently proposed framework for teaching com-
putational abstraction (Armoni 2013) might be used in ele-
mentary mathematics classes to serve the dual purpose of im-
proving instruction on word problems and giving students
early experience with consciously and deliberately moving
among levels of abstraction.

Using Levels of Abstraction to Interpret Word
Problem Research

One way of interpreting students’ lack of attention to context
in solving word problems is in terms ofmoving to lower levels
of abstraction, similar to the patterns Hazzan identified in
older students’ problem-solving strategies (Hazzan 2003;
Hazzan and Zazkis 2005). Specifically, when elementary stu-
dents solve word problems, they tend to reformulate them
from contextualized situations to problems involving only
decontextualized arithmetic. Figure 2 connects these twoways
of thinking about word problems to levels of abstraction. The
line of research summarized in the previous section suggests
that when elementary school students solve word problems,
they move from the contextualized problem (a higher level of
abstraction) to decontextualized arithmetic (a lower level of
abstraction), and do not return to the higher level to interpret
the result of the arithmetic. Ergo, it seems that explicitly teach-
ing the solving of word problems via attention to multiple
levels of abstraction— in particular, attention to shifting back
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to a higher level of abstraction after completing the arithmetic
— could improve students’ consideration of context and
therefore their performance on word problems.

In the next section, we discuss a framework for teaching
abstraction taken from the computer science education litera-
ture. After its description, we describe its application to the
solving of word problems.

A Framework for Teaching Abstraction

Armoni and colleagues recently developed and used a frame-
work for explicitly teaching abstraction in computer science
(Armoni 2013; Statter and Armoni 2016; Statter and Armoni
2017). The framework is based on a hierarchy of levels of
abstraction first proposed by Perrenet et al. (2005). The levels
of the hierarchy, presented from the highest level of abstrac-
tion to the lowest, are as follows:

& The problem level, at which the problem is considered as
its own entity with attributes such as solvability and
complexity.

& The object level, at which a solution to the problem — in
the form of an algorithm— is considered as its own entity,
not connected to any particular programming language.

& The program level, at which the problem solution is con-
sidered as an algorithm written in a particular program-
ming language.

& The execution level, at which the problem solution is consid-
ered as a particular run of a program on a particular machine.

Given that prior work suggested that students tend to oper-
ate at the object and program levels without attending to the

problem and execution levels, Armoni (2013) argued that stu-
dents should be taught how to consciously consider and move
among all four levels. Specifically, Armoni suggested that her
aim was to help students to develop four related skills:

(1) differentiate between levels of abstraction;
(2) consciously and freely move between levels of

abstraction;
(3) decide the level of abstraction at which it is most com-

fortable and appropriate to work during each phase of
problem solving; and

(4) use successive refinements of abstraction.

Armoni (2013) highlighted eight guidelines for how her
framework could be applied in instructional contexts. Four
of the guidelines are general and apply to discussion of all
four levels of the framework. They include:

& Be persistent and precise about consistently and clearly
distinguishing among levels.

& Use language cues as an aid in distinguishing between
levels. For example, restrict references to specific pro-
gramming constructs to the Program and Execution levels.

& Move from high levels of abstraction to lower levels, rather
than starting at low levels and then attempting to move up.

& Be explicit and reflective, prompting students to look back
at their own processes and consider the levels of abstrac-
tion used.

The three of the four remaining guidelines relate to tech-
niques for differentiating between particular levels of abstrac-
tion: distinguishing the Problem level from the rest,

Fig. 2 Connecting word
problems to levels of abstraction
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distinguishing the Object level and the Program level, and
distinguishing Program level and the Execution level. The
final guideline suggests using refinements of the Object level
to illustrate the varying amount of detail that might be appro-
priate for discussing an algorithm. For example, at some
stages it might be appropriate to discuss the generic idea of a
sorting algorithm, and at other times it might be appropriate to
refer to the name of a particular algorithm, such as
BubbleSort.

Statter and Armoni (2016, 2017) examined how the frame-
work could be used to teach abstraction in an introductory
computer science course for 7th graders. The authors com-
pared the performance on course exams between students
taught using Armoni’s (2013) framework and students in a
control group who took the same course (but were taught
without the framework). Results exhibited that students in
the treatment group were more likely to include verbal de-
scriptions of their exam solutions, along with their code, on
a course exam than were their peers in the control group. The
authors considered verbal descriptions to be evidence of work-
ing at the Object level, because it showed that students were
able to describe their algorithms without reference to specific
code elements. Providing code as part of the solution, by con-
trast, was considered evidence of working at the Program
level. Thus, the authors argued that the students in the treat-
ment group were better able to use multiple levels of abstrac-
tion in problem solving, as evidenced by their use of descrip-
tion at the Object level and code at the Program level in their
solutions. Moreover, students in the treatment group were also
more likely than those in the control groups to provide only
verbal descriptions of the solution for problems on which a
verbal description was sufficient. Statter and Armoni (2016)
argued that this was evidence that the students in the treatment
group were better able to judge which level of abstraction was
most appropriate for particular problems. Students in the con-
trol group always included code in their solutions and thus
always did some work at the Problem level. Students in the
treatment group, by contrast, recognized that sometimes
working only at the Object level was sufficient. They did not
consciously or unconsciously move to lower levels of abstrac-
tion as the students in Hazzan’s (2003) analysis did, suggest-
ing the framework successfully steered students away from
doing so.

Adapting an Abstraction Framework to Teach
Students to Solve Word Problems

The preliminary evidence of the success of Armoni’s (2013)
framework for helping 7th-grade students develop abstraction
skills in computer science (Statter and Armoni 2016, 2017)
suggests its potential for giving students an earlier start at
developing abstraction skills, possibly at the elementary level.
Moreover, Armoni’s attention to differentiation between all

four levels of abstraction suggests the framework might be
helpful for improving student performance in solving word
problems that require attention to the context when choosing
methods and interpreting the results of solution methods,
such as the P-items used by Verschaffel et al. (1994). In this
section, we propose an adapted form of Armoni’s (2013)
abstraction framework that could be applied in the context
of word problems in elementary classrooms.

First, we consider what the four levels of Armoni’s
(2013) framework might look like in the context of ele-
mentary mathematics. We transformed the framework from
computer-science-specific ideas like programming lan-
guages to the solving of word problems (see Table 1).
The Problem level is largely the same, except that the prob-
lem, in the elementary mathematics case, is the text of a
word problem. Hence, in our framework this is called the
Problem Comprehension level. The Object level, in the
case of computer science, refers to consideration of an
algorithm as a black box— considering what the algorithm
accomplishes without attention to how it does so. As such,
the analogue in the solving of word problems would be to
consider what kind of answer is needed, or what the solu-
tion might look like, without yet considering what mathe-
matics might be used to obtain that solution. We call this
the Solution Visualization level. The Program level, in the
case of computer science, refers to attending to the details
of how to implement the algorithm in a specific language.
In the context of word problems, we argue that the Program
level analogue would be attention to specific mathematical
procedures that students can carry out to obtain the desired
solution. We call this the Solution Planning level. Finally,
at the Execution level, running the program would be anal-
ogous to carrying out the mathematical procedures to solve
the word problem. Hence, we call this the Solution
Enactment level.

We see potential benefits of using our proposed frame-
work for students’ learning in mathematics. Our frame-
work bears a strong resemblance to other instructional ap-
proaches proposed by mathematics education researchers
for improving students’ performance on word problems.
For example, Greer’s (1997) model of students’ ideal so-
lution strategies for solving word problems is shown at the
top of Fig. 3. Greer argued that, ideally, students would
begin by reading the problem text. Next they create a sit-
uation model, or a representation that reflects the meaning
of the problem and what can be done to solve it. Once the
problem is well understood, students create a mathematical
model (often, an expression or equation) that reflects what
mathematics can be used to find a solution. Students com-
pute using the mathematical model to get a solution, which
is then interpreted in the context of the situation model.

The four stages outlined by Greer (1997) map onto the
four levels of our proposed framework, as shown at the
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bottom of Fig. 3. Furthermore, Greer (1997) emphasized the
importance of students returning to their situation models
after finding tentative solutions, as shown by the curved ar-
row in Fig. 3. This return to the situation model reflects a
move to a higher level of abstraction, which is a key missing
piece in students’ typical solution strategies in both mathe-
matics and computer science (Hazzan 2003; Verschaffel et al.
1994). Greer (1997) argued that students’ typical word prob-
lem strategies tend to skip over the creation of a situation
model altogether, which corresponds to lack of attention to
the Solution Visualization level. Applying our framework to
the solving of word problems in elementary classrooms has
the potential to remedy this lack of attention to situation
models as well as provide needed experience in returning to
a higher level of abstraction.

To illustrate this point, we give an example of how our
proposed framework could be applied to solving one of the
P-problems from Verschaffel et al. (1994): “What will be the
temperature of water in a container if you pour 1 [liter] of
water at 80° and 1 [liter] of water of 40° into it?” (p. 276).
Teachers and students would start at the Problem
Comprehension level, and then make clear and explicit shifts
to the other levels, moving freely among levels as needed.
Table 2 details how this process might play out in a classroom.

Conclusion and Future Directions

In this paper, we have proposed a framework describing how
levels of abstraction could be applied and discussed in ele-
mentary mathematics classrooms to help students include
more consideration of context in their problem-solving pro-
cesses. Admittedly, other models of instruction have been
suggested that could accomplish the same goal (notably,
Verschaffel and De Corte’s (1997) framework for teaching
from a modeling perspective, which inspired Greer’s (1997)
model that forms the basis of Fig. 3). However, our proposed
framework has the additional advantage demonstrating a
close connection between general processes of abstraction,
useful in computer science, and problem solving in mathe-
matics activities common in elementary school. We believe
articulating this close connection has implications for future
research on student learning and teacher education.

First, further research on this issue is merited to better under-
stand the potential power of the instructional strategy of making
abstraction explicit for supporting mathematics learning.
Specifically, future research should examine how the proposed
framework could influence students’ problem-solving within
word problems. Research could also examine how the use of
the proposed framework affects students’ problem-solving

Fig. 3 Greer’s (1997) model of
ideal word problem solution
strategies mapped onto our
proposed framework

Table 1 Armoni’s (2013) framework for abstraction alongside proposed new framework for use with word problems

Armoni’s level Armoni’s description for computer science New framework level Use with word problems

Problem level The problem is considered as its own entity
with attributes such as solvability
and complexity.

Problem Comprehension level The given text of a word problem is examined
with attention to comprehension, without
discussion of solution methods.

Object level A solution to the problem— in the form of an
algorithm— is considered as its own entity,
not connected to any particular program-
ming language.

Solution Visualization level The problem is interpreted to determine the
qualities of the solution and what form it
might take, without reference to any
specific mathematical procedures.

Program level The problem solution is considered as an
algorithm written in a particular
programming language.

Solution Planning level Particular mathematical methods, procedures,
and models are chosen that can be used to
produce the desired solution, without
carrying them out.

Execution level The problem solution is considered as a
particular run of a program on a particular
machine.

Solution Enactment level The chosen mathematical methods are carried
out to obtain a result.
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processes in other areas of mathematics. A recent analysis of
fourth graders’ work on a contextualized problem involving in-
terpretation of a bar graph showed that students make more
errors as they shift among levels of abstraction than they do
when executing routine mathematics such as counting and addi-
tion (Rich et al. 2019b). Use of our proposed framework to guide
classroom instruction, with minor modifications to suit the con-
text of the problem, may have the potential to ameliorate these
difficulties. Intervention studies, where student strategies are an-
alyzed before and after teachers use the framework for instruc-
tion, could address these questions.

Second, the close connection between mathematics problem
solving and computational abstraction raise questions about
how explicit attention to abstraction, through the use of the
framework in elementarymathematics, may support concurrent
or later student learning of computer science. Prior work sug-
gests that elementary teachers readily make connections be-
tween CT ideas and their teaching in multiple subjects, includ-
ing mathematics, science, social studies, and literacy (Rich
et al. 2019a). In our work with elementary school teachers,
we have observed them incorporating computer-science-
inspired problem-solving heuristics, such as decomposing
problems and debugging solutions, into multiple subjects in-
cluding mathematics, science, social studies, and literacy.

Classroom observations suggest that students applied these
heuristics in multiple contexts. Given the suggested generaliz-
ability of these heuristics, we believe that exploration of the
ways students may apply their understanding of levels of ab-
straction to computational problems later in their education,
after being introduced to the ideas in elementary mathematics,
would be productive. That is, we suggest that longitudinal stud-
ies may support or refute the hypothesis that exposure to levels
of abstraction in mathematics may build readiness for thinking
about levels of abstraction in computer science.

Third, we believe our framework may have productive uses
in teacher education. Further research could examine how pro-
viding opportunities for teachers to examine student work
through the lens of levels of abstraction might allow them in-
sight into students’ thinking processes, and how these insights
impact their instructional techniques. Think-aloud studies with
teachers could provide insight into how they make sense of
levels of abstraction as applied to elementary school topics,
and how they believe consideration of the levels is helpful in
students’ problem solving or assessments of student work.

Lastly, collaborating with teachers to implement and study
how the framework could be made suitable for elementary
school is important given that Armoni’s (2013) original frame-
work was designed for middle schoolers. Adapting it for use

Table 2 Applying our adapted
version Armoni’s (2013)
framework to solving Verschaffel
et al.’s (1994) temperature P-
problem

Framework levels Greer solution
stage

Teacher and student actions

Problem
Comprehension
level

Problem text Carefully read the problem. Discuss anything that students find
interesting or confusing about the problem statement. Clearly
identify what the problem is asking, without discussing what the
answer might be. In this example, the problem is asking for the
temperature of the water after the two liters have been combined.

Solution
Visualization
level

Situation
model

Transition from talking about the problem to talking about what a
potential solution might look like, without discussing what
mathematics might be used to solve the problem. Discuss what
students know about what happens when water samples with
different temperatures are combined. Would both samples get
warmer? Colder? Would they change in different ways, or the same
way? The discussion should lead to the idea that when two samples
of the same size are combined, their temperatures will even out to a
shared temperature halfway between the original temperatures.

Solution Planning
level

Mathematical
model

Transition to discussion of mathematics. Discuss how mathematics can
be used to determine a number halfway between 80 and 40. Possible
mathematical models include an expression reflecting the calculation
of an average (i.e., (80 + 40)/2), a number line with 80 and 40
marked fromwhich the point halfway between can be identified, and
so on. Do not yet discuss the specifics of how the chosen
mathematics should be carried out.

Solution
Enactment level

Solution Transition to execution of the mathematics. Carry out the chosen
mathematics to obtain a numerical answer. For example, add 80 and
40 and divide the result by 2, or locate 80 and 40 on a number line
and then locate the number halfway in between.

Solution
Visualization
level

Situation
model

Consider the numerical answer in comparison to the expected
characteristics determined in the situation model. Is our temperature
between 80° and 40°? Is it halfway between? Does the solution we
obtained make sense?
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with younger students, who are at a different developmental
level, may take more than simply shifting the context to word
problems or other elementary mathematics topics. Studying
how teachers, who bring their own experiences and knowl-
edge about students to bear when using instructional tools,
apply the framework, and how students respond to such in-
struction, could provide insight into how to adapt the frame-
work to be accessible and helpful to younger students.
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