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Abstract

Motivation: Cells in an organism share a common evolutionary history, called cell lineage tree. Cell lineage tree can
be inferred from single cell genotypes at genomic variation sites. Cell lineage tree inference from noisy single cell
data is a challenging computational problem. Most existing methods for cell lineage tree inference assume uniform
uncertainty in genotypes. A key missing aspect is that real single cell data usually has non-uniform uncertainty in in-
dividual genotypes. Moreover, existing methods are often sampling based and can be very slow for large data.

Results: In this article, we propose a new method called ScisTree, which infers cell lineage tree and calls genotypes
from noisy single cell genotype data. Different from most existing approaches, ScisTree works with genotype proba-
bilities of individual genotypes (which can be computed by existing single cell genotype callers). ScisTree assumes
the infinite sites model. Given uncertain genotypes with individualized probabilities, ScisTree implements a fast
heuristic for inferring cell lineage tree and calling the genotypes that allow the so-called perfect phylogeny and maxi-
mize the likelihood of the genotypes. Through simulation, we show that ScisTree performs well on the accuracy of
inferred trees, and is much more efficient than existing methods. The efficiency of ScisTree enables new applica-
tions including imputation of the so-called doublets.

Availability and implementation: The program ScisTree is available for download at: https://github.com/yufeng
wudcs/ScisTree.

Contact: yufeng.wu@uconn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Organisms such as human usually contain a large number of cells.
For human, each individual starts from a single fertilized egg, which
develops into trillions of cells in an adult. Before the era of single
cell sequencing, only bulk sequencing data is available, which con-
tains sequence data from a mixture of diverse cells in an organism.
This may complicate downstream analyses such as cancer evolution
(see, e.g. Gerlinger et al., 2012; Gundem et al., 2015). Recently, sin-
gle cell sequencing technology is undergoing very active develop-
ment (see, e.g. Shapiro et al., 2013; Zong et al., 2012). Single cell
sequencing can generate sequences from individual cells of an organ-
ism. This new technology may have profound impact on several im-
portant biological problems.

An important problem on cells concerns the evolutionary history
of cells of an organism, i.e. the cell lineage tree. Cell lineage tree is a
rooted tree with extant cells at the leaves. It is highly desirable to
infer cell lineage tree with single cell data (e.g. single cell DNA
sequences) from multiple sampled (healthy or tumor) cells. Since
phylogeny inference is a mature area in computational biology, it is

tempting to use existing phylogeny inference methods that are devel-
oped for species evolution. However, cell lineage tree inference has
several unique properties that make it different from traditional
phylogeny inference. One of the most important aspects about single
cell data is that single cell data is very noisy (see, e.g. Navin and
Chen, 2016; Shapiro et al., 2013). While in principle genetic varia-
tions such as single-nucleotide variants (SNVs) can be called from
single cell data, the so-called SNVs tend to be very noisy due to
technological errors such as allelic dropouts and genotyping errors.
Existing phylogeny inference methods usually don’t explicitly con-
sider such errors.

During the past several years, several cell lineage tree inference
methods (e.g. Jahn et al., 2016; Ross and Markowetz, 2016; Zafar
et al., 2017) have been developed. An assumption often made about
single cell evolution is the so-called infinite sites (IS) model, which
assumes there is a single mutation for one SNV. Several methods
such as SCITE (Jahn et al., 2016) are based on the IS model. There
are also methods that don’t assume the IS model. For example,
SiFit (Zafar et al., 2017) assumes the finite sites model. While these
methods are certainly useful, there are several major drawbacks.
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First, almost all existing methods (e.g. SCITE and SiFit) are based
on Markov chain Monte Carlo (MCMC) and are slow for large
data. With the rapid technology development, the size of single cell
data is likely to increase rapidly. Many current methods don’t scale
well when the number of cells or sites increases. Moreover, while
existing methods do consider errors in the data, these methods usu-
ally assume uniformly distributed errors in genotypes. That is, two
genotypes with the same value are assumed to have the same uncer-
tainty no matter which cells or sites they are from. In practice, how-
ever, genotypes called from single cell sequence data tend to have
‘non-uniform’ uncertainty. For example, a genotype with a large
number of mapped sequence reads can be more reliably called than
a genotype with few or even no reads. Treating genotypes uniformly
may lead to loss of useful information contained in single cell se-
quence data. To the best of our knowledge, the only existing cell lin-
age tree inference method that works with non-uniform uncertainty
data is SCIU (Singer et al., 2018). SCIU works with mapped se-
quence reads from single cells and calls genotypes and infers cell lin-
eage tree simultaneously. While SCIU is attractive in principle, a
main downside of SCIU is that it is also based on MCMC and is
slow for large data. For single cell genotype calling from single cell
sequence reads, Monovar (Zafar et al., 2016) is currently the com-
monly used approach.

In this article, we develop a new method called ScisTree (which
stands for {S}ingle {c}ell {i}nfinite {s}ites {Tree}) for inferring cell lin-
eage tree and calling genotypes simultaneously from single cell data
with non-uniform uncertainty. ScisTree assumes the IS model. The
following are the features of the ScisTree approach.

1. ScisTree takes uncertain single cell genotypes as input. Different

from most existing methods (e.g. SCITE and SiFit), each geno-

type (i.e. the genetic state of a cell at a SNV site) can have its

own individualized probability (called genotype probability).

This allows more realistic representation of uncertain genotypes,

where the content of single cell sequence data (e.g. sequence

depth) may vary at different sites and cells. Different from SCIU,

ScisTree doesn’t work with single cell sequence reads directly.

Instead, ScisTree assumes that genotype probabilities are esti-

mated from single cell sequence reads first. This is indeed feas-

ible: for example, Monovar outputs estimated genotype

probability for each called genotype. We have also developed

our own approach for calculating genotype probability from se-

quence reads. Simulation shows that ScisTree outperforms exist-

ing methods which assume uniform genotype uncertainty when

genotype uncertainty is unevenly distributed in the data.

Representing uncertain genotypes by individualized genotype

probabilities also provides a natural means to address the miss-

ing value issue. For example, for missing data without prior

knowledge in the binary genotype case, we can simply set the

probability of both 0 and 1 genotypes to 0.5.

2. ScisTree is a maximum likelihood approach. Genotypes are

called by choosing genotypes that maximize the likelihood.

While finding the maximum likelihood cell lineage tree is intract-

able in general, ScisTree implements a fast heuristic for finding

the cell lineage tree that maximizes the genotype probability

under the IS model over the tree space. The tree space search is

based on an efficiently computable likelihood. This makes

ScisTree efficient and scalable to hundreds of cells and thousands

of SNV sites. Simulation shows that ScisTree is much faster than

existing methods while its cell lineage tree inference accuracy is

better than or similar to those methods.

3. ScisTree allows both binary and ternary genotypes. ScisTree can

also address various single cell data noises such as doublets.

Sequence reads from a doublet are from more than one cell due

to noises in data collection. ScisTree can impute doublets from

the given uncertain genotypes. To the best of our knowledge,

ScisTree is the first method for imputing doublets. Note that

there are existing methods (e.g. SCITE) that can be configured to

work with data with doublets; but these methods don’t attempt

to impute the doublets.

The program ScisTree is available for download at: https://
github.com/yufengwudcs/ScisTree.

1.1 Background
ScisTree assumes the IS model. The IS model assumes that a muta-
tion in the evolutionary history can occur at most once at a single
site. Under the IS model, all (and only the) cells with the mutant al-
lele at a SNV site are clustered in a single subtree of the cell lineage
tree. ScisTree takes uncertain genotypes at SNV sites as input.
Genotype considered in this article is either binary or ternary. We let
G be a genotype matrix of n rows by m columns, where n is the
number of cells and m is the number of SNV sites. For uncertain
genotypes, genotype probability is defined by the probability func-
tion P. For each genotype G½i; j� for cell i and site j, we let Pg;i;j be
the probability of G½i; j� ¼ g for the genotype state g. For binary gen-
otypes, g 2 f0; 1g where 0 refers to the wild-type and 1 refers to the
mutant. P0;i;j þ P1;i;j ¼ 1:0 for all i and j, where 1 � i � n and
1 � j � m. For ternary genotypes, g 2 f0; 1;2g where 0 is the
homozygous wild-type, 1 is the heterozygote and 2 is the homozy-
gous mutant. P0;i;j þ P1;i;j þ P2;i;j ¼ 1:0 for all i and j. Note that
existing single cell genotype calling tools (e.g. Zafar et al., 2016)
output (ternary) genotype probabilities, which can be converted to
binary genotype probabilities (i.e. wild-type and mutant). We define
the genotype probability for a fixed genotype matrix G to be
PðGÞ ¼

Q
i;jPG½i;j�;i;j. We assume all-0 genotypes at the root of cell

lineage tree. For the ease of exposition, in the following, we use bin-
ary genotypes by default, unless otherwise stated. Note that if the IS
model holds for each site, only binary genotypes will be observed. In
practice, however, homozygous mutants may be observed due to
more complex evolutionary processes, such as recurrent mutations
and copy number changes. If such complex processes occur at a site,
the IS model may not hold for the site. While the IS model has been
popular in the literature on single cell evolution, there are also
papers that argue the IS model should be scrutinized (Kuipers et al.,
2017; Zafar et al., 2017). In this article, ScisTree assumes such com-
plex processes, if present, tend to be rare. Under this assumption, a
majority of sites are likely to support the IS model.

When there is no uncertainty in genotypes and the number of
SNV sites is large, inferring cell lineage tree is straightforward. Cell
lineage tree inference from fixed binary genotypes under the IS
model is essentially the classic (binary) perfect phylogeny problem.
There exists a well-known linear time algorithm by Gusfield (1991)
for this problem. The main difficulty for cell lineage tree inference is
the inherent complexity in single cell data. There are two categories
of complexity: evolutionary complexity and technological complex-
ity (see, e.g. Navin and Chen, 2016; Shapiro et al., 2013).

Evolutionary complexity. Evolutionary complexity for single
cells refers to complex evolutionary processes in single cells. For
example:

1. Recurrent mutation. There is more than one mutation at a site.

2. Copy number changes. This may occur in any cell, especially a

tumor cell. Copy number changes may involve copy number

gain or loss. Copy number loss may lead to loss of heterozygos-

ity (LOH).

Technological complexity. There are technical difficulty of
obtaining accurate single cell sequence data. For example,

1. Allelic dropout (or simply dropout). A segment of genomic re-

gion may be missing from sampled DNA prior to sequencing.

Dropout may lead to errors in genotype calling. For example,

consider a heterozygous genotype. If dropout occurs at the
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mutant allele, the genotype may be mistaken for a homozygous

wild-type.

2. Reads error. The allele contained in a mapped sequence read

may be different from the true allele. The probability of error in

reads is usually much smaller than the dropout rate but is not

zero.

3. Doublets. Single cell sequencing usually needs to separate cells

into single cells. This process is not perfect. Sometimes, two or

more cells may be mistaken to be a single cell.

4. Sequence coverage. Single cell sequence data may have low

coverage: there may be few or even no sequence reads at some

SNV sites. This leads to more uncertain genotype calling.

In this article, we focus on addressing technological complexity
in single cell data. In particular, we use uncertain genotypes with
individualized genotype probabilities to accommodate technological
noises. For evolutionary complexity, although we don’t explicitly
address these issues, our model is flexible enough to at least tolerate
some of these complexities. We will show that our method is still
reasonably accurate when the deviation from the assumed IS model
is modest.

2 Materials and methods

2.1 The high-level approach
Under the IS model, fixed genotypes uniquely determine a (possibly
multifurcating) phylogeny (see, e.g. Gusfield, 1997, 2014). When
the number of SNV sites increases, this phylogeny (called perfect
phylogeny) is increasingly more likely to be the true cell lineage tree
topology. Thus, with enough sites, the maximum likelihood cell lin-
eage tree topology is exactly the binary perfect phylogeny under the
IS model. It can be shown that when uniform prior is assumed for G

and T, we can use PðGÞ as the likelihood function, with the condi-
tion that G satisfies the IS model. That is, we want to find the geno-
types G that satisfy the IS model (and thus allow a perfect
phylogeny, which is used as the inferred cell lineage tree) and PðGÞ
is maximized. To be more specific:

Maximum likelihood perfect phylogeny problem: given the
genotype probability P of each genotype for n cells and m sites, find
the cell lineage tree topology Topt and the genotype matrix Gopt such
that Gopt satisfies the IS model (and thus Topt can be constructed
from Gopt via the perfect phylogeny formulation) and PðGoptÞ is
maximized.

Figure 1 gives an illustration of the maximum likelihood perfect
phylogeny problem. The true single cell phylogeny is shown in
Figure 1a. The single cell genotypes and sequence reads are shown
in Figure 1b. Here dropout can occur at some alleles, where there
are no reads. Sequencing error may also occur. Genotypes called
from the sequence reads are shown in Figure 1d. Due to dropouts
and read errors, the called genotypes are different in several posi-
tions from the true genotypes in Figure 1c. In Figure 1d, there are
two wrongly called genotypes (in bold face) due to dropout.
Uncertain genotypes with uniform probability (of genotype 0) are
shown in Figure 1e. The true genotypes would lead to maximum
probability for the uniform probability shown in Figure 1e.
However, an equally optimal solution is shown in Figure 1f. This
indicates that uniform probability is not informative enough for dis-
tinguishing these two solutions. Non-uniform genotype probability
can be more realistic for sequence data. Figure 1g shows a possible
setting for non-uniform genotype probability. For example, at site
S1 and cell C1, the probability of being genotype 0 is reduced to 0.7
because the number of reads with allele-0 is less than expected. That
is, it is likely that a dropout occurs at this position. This is different
from the genotype of C1 at S4, where only allele-0 reads exist and
the number of reads is more than expected. So G½C1; S1� is more
likely to be of genotype 1 than G½C1; S4�. In order to obtain geno-
types satisfying the IS model, the optimal genotypes have G½C1; S1�

(a)

(d) (e) (f) (g)

(c)(b)

Fig. 1. An illustration of cell lineage tree and uncertain genotypes. (a) The true cell lineage tree with five cells and four sites (with mutations labeling the branches). (b)

Sequence reads (lines with smaller boxes) and single cell genotypes (larger boxes) at the four SNV sites. Read depth may vary. Dropout and reads errors may occur. (c) True

(binary) genotypes. (d) Genotypes called from reads. (e) Uncertain genotypes with uniform probability model (assuming same genotype state with identical probability). The

probability shown in the table is for the genotype state 0. In the example, genotype state 0 has probability 0.9 and genotype state 1 has probability 0.99 (and thus 0.01 of being

genotype state 0). (f) Shows an alternative solution to maximum likelihood perfect phylogeny problem for the uniform probability given in Part 1(e). Positions changed from

the noisy genotypes are in bold face. (g) Uncertain genotypes with non-uniform probability. Positions with more or less than expected number of reads are in bold face

744 Y.Wu

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/3/742/5555811 by U
niversity of C

onnecticut user on 24 July 2020



changed to 1 and G½C5; S3� changed to 0 from the originally called
genotypes. Note that other ways to make the genotypes satisfying
the IS model would lead to lower probability. One such example is
the genotypes in Figure 1f (where G½C3; S2� is set to 1 instead of
G½C1; S1� based on genotypes in Figure 1d, and G½C3; S3� is set to 0 in-
stead of G½C5; S3�): P1;C3 ;S2

¼ 0:05 < P1;C1 ;S1
¼ 0:3; also, P0;C3 ;S3

¼
0:01 < P0;C5 ;S3

¼ 0:02.
The maximum likelihood perfect phylogeny problem is intract-

able in general (see Section 2.2). To develop a practical method, we
adopt a heuristic algorithm that is implemented in a software tool
called ScisTree. ScisTree takes the following iterative approach:

1. Construct an initial rooted binary tree T0 based on P. This is

done by finding genotypes G0 that maximize PðG0jT0Þ.
Initialize Topt  T0; Popt  PðG0jTÞ and Gopt  G0.

2. Find rooted binary trees T c that are similar topologically to

Topt.

3. Let T 2 T c that maximizes the likelihood PðGjTÞ for some geno-

types G. If PðGjTÞ > Popt, set Topt  T; Popt  PðGjTÞ;
Gopt  G and go to step 2. Otherwise, stop.

Note that PðGjTÞ is the genotype probability for genotype G
where G is consistent with tree T under the IS model. The key idea
is relying the underlying tree T to find G that maximizes PðGÞ.
When the procedure finishes, we obtain both the optimal (or near-
optimal) rooted binary cell lineage tree Topt and the genotypes Gopt

that (approximately) maximize the genotype probability. The key
step in the above procedure is computing the maximum probability
of uncertain genotypes under the genotype probability P for a fixed
phylogeny T, and also finding such optimal genotypes. We show
that in the following, finding G that maximizes PðGjTÞ for a given
T has a linear-time algorithm.

2.2 Complexity of the maximum likelihood perfect

phylogeny problem
Theorem 2.1 shows that the maximum likelihood perfect phylogeny
problem is a challenging computational problem. Due to the space
limit, its proof is given in the Supplementary Material.

Theorem 2.1. The maximum likelihood perfect phylogeny problem is

NP complete.

2.3 Finding genotypes G that maximize its probability

for a fixed tree
Suppose we are given a rooted binary tree T. We want to find geno-
types G that satisfy the IS model and maximize PðGjTÞ where T is
the underlying cell lineage tree. We denote PðGjTÞ as the maximum
likelihood of genotypes for T. We first consider the binary genotype
case. Recall that under the IS model, the set of mutant genotypes at
a site s correspond to a subtree in T and the single mutation occurs
on the branch out of the subtree root. We define Ps;vðGjTÞ for a
node v and a site s to be the probability of all genotypes at site s
given that the mutation at s occurs on the branch out of this subtree
that is rooted at v. Since T is fixed, we can examine each subtree
rooted at node v and compute Ps;vðGjTÞ. The maximum probability
at site s is:

PsðGjTÞ ¼ maxv2NodesðTÞPs;vðGjTÞ (1)

Here, Nodes(T) is the set of nodes in T. The probability of geno-
types is simply the product of the probability of each site. More pre-
cisely, for each node v in T:

Ps;vðGjTÞ ¼
Y

u2LeafðTvÞ
P1;cðuÞ;s �

Y

v62LeafðTvÞ
P0;cðvÞ;s (2)

Here Tv refers to the subtree rooted at node v. LeafðTvÞ is the set
of leaves of Tv. And c(u) is the cell corresponding to a leaf u in T.

Equations (1) and (2) lead to a simple algorithm for computing
the maximum probability PsðGjTÞ for each site s. Computing
Ps;vðGjTÞ for each v directly would lead to Oðn2Þ time for each site.
A simple observation is that we can apply dynamic programing by
taking a bottom-up approach as follows. We define qv as the ratio of
the probability of the genotypes within the subtree Tv being genotype
1 and the probability of these genotypes being genotype 0. We have:

PsðGjTÞ ¼ ðmaxv2NodesðTÞqvÞ
Y

c¼1...n

P0;c;s

The algorithm for computing PsðGjTÞ based on qv for a single
site s for a fixed binary tree T is given below, which has the running
time of O(n). Computing PðGjTÞ involves calculating the product
of PsðGjTÞ over each of m sites and thus takes O(mn) time.

Genotype calling. Note that the optimal genotypes at site s corre-
sponding to PsðGjTÞ can be easily found in the algorithm by keep-
ing track of what subtree root vopt gives the maximum genotype
probability. That is, at site s, cells within the subtree rooted at vopt

have the mutant genotype 1, while other cells have the wild-type
genotype 0.

The ternary genotype case. Algorithm 1 can be extended to the
case of ternary genotypes. The details are given in the
Supplementary Material.

2.4 Finding optimal cell lineage tree
For a given cell lineage tree T, we can compute the maximum prob-
ability of genotypes using Algorithm 1. Since the space of trees is im-
mense, it is infeasible to examine every possible T. ScisTree takes the
following heuristic for searching the tree space to find the optimal
cell lineage tree.

2.4.1 Initial tree construction

ScisTree constructs an initial cell lineage tree as follows. It first con-
structs a fixed genotype matrix G0 from the given uncertain geno-
types. G0 is obtained by taking the most probable genotype at each
position in the matrix. We break ties arbitrarily. This G0 is called the
maximal probability genotype matrix. We then use the well-known
neighbor joining (NJ) method (Saitou and Nei, 1987) to construct the
initial tree from G0. We use all-0 genotypes as the outgroup to root
the tree constructed by NJ. The resulting initial tree is thus a rooted
binary tree. To apply NJ, we define the distance d(i, j) between two
cells i and j as follows. For binary genotypes, d(i, j) is simply the
Hamming distance between the two genotype vectors for cells i and j
in G0. For ternary genotypes, we use the summation of absolute allele
differences between two cells i and j to be the distance: dði; jÞ ¼Pm

s¼1 jG0½i; s� �G0½j; s�j. By default, ScisTree uses all genotypes when
calculating the distance. Our experience indicates that this may lead
to poor initial trees given data with significant noise. Thus, ScisTree
can be configured to only use more certain genotypes for distance cal-
culation. In particular, ScisTree has a threshold value td (default to be

Algorithm 1. Maximum probability computation of binary

genotypes

1: for node v 2 T in the bottom-up order (i.e. leaves first) do

2: if v is a leaf then

3: qv  P1;cðvÞ;s
P0;cðvÞ;s

4: else

5: Let vl and vr being the two children of v.

6: qv  qvl
qvr

7: end if

8: end for

9: ps;G;T  maxv2NodesðTÞqv �
Q

c¼1...n P0;c;s

10: return ps;G;T
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zero) which is the minimum difference between the probabilities of
different genotypic states. For example, if td ¼ 0:9 for the case of bin-
ary genotypes, only genotypes with probability for genotype 0 is no
less than 0.95 or no greater than 0.05 are used in distance calculation.
Note that this is another benefit of using individualized genotype
probabilities.

2.4.2 Tree space search

Starting from the initial tree, ScisTree searches for the optimal tree
by exploring the neighborhood of the current best tree. In particular,
ScisTree examines the trees found by a single nearest-neighbor inter-
change (NNI) from the current best tree. Maximum genotype prob-
ability is computed for each candidate tree found by NNI. If a
candidate tree has higher probability than the current best tree, the
candidate tree is adopted to be the new best tree. The search stops
when none of the neighboring trees has higher probability than the
current best tree. Note that the number of NNI trees for the current
tree is O(n). So the total running time is Oðmn2NÞ, where N is the
number of iterations in search.

2.5 Doublet imputation
In single cell genotype data, some genotypes that are supposed to be
from a single cell can be from a mixture of two or more cells. Such a
cell is called doublet. Since doublets may lead to artifacts in down-
stream analyses (e.g. cell lineage tree inference or genotype calling),
it is desirable to impute doublets from the given uncertain
genotypes.

Thanks for the efficiency of the maximum likelihood approach,
we have extended the ScisTree approach to impute doublets from
single cell data. For simplicity, in the following, we assume the num-
ber of doublets nd is provided by the user. In practice, the exact
number of doublets may not be known. Note that while some dou-
blets are relatively obvious to impute, it is difficult to impute all dou-
blets. When the specified doublet number is larger than the number
of ‘obvious’ doublets, ScisTree tends to simply report trivial dou-
blets (i.e. doublets that are formed by the same cells). ScisTree is
designed to stop the imputation when such trivial doublets are
imputed. Thus, the user can choose a large value as the upper bound
for the number of doublets, if the number of true doublets is
unknown.

ScisTree takes the following iterative algorithm for imputing
doublets.

The key step in Algorithm 2 is scoring a candidate cell as follows.
ScisTree first calls genotypes of all other cells except the doublet
candidate using the maximum likelihood perfect phylogeny ap-
proach in Section 2.1; then it finds the most probable splitting of the
candidate cell into two derived cells such that genotypes of the two
derived cells are still consistent with the IS model; the candidate
score is the maximum probability of splitting the candidate cell.
Genotypes can be called for the two new cells by optimally splitting
a doublet cell into two derived cells. Overall, doublet imputation
takes Oðndn2mðmþ nÞNÞ ¼ Oðn3mðmþ nÞNÞ time, where N is the
number of iterations for finding the maximum likelihood tree. See
the Supplementary Material for more details.

2.6 Read counts simulation
We assume sequence depth follows a normal distribution at each
site by default, unless otherwise stated. For simplicity, at the same
site, different cells are assumed to have the same expected sequence
depth. We let ld be the average read depth, and rd be the standard
deviation of the normal distribution of read depth. We simulate read
counts for each genotype at each site. Each copy (allele) of the geno-
type is sampled with equal probability. If a dropout occurs at one of
the two copies, all the reads from that copy are discarded.

2.7 Genotype probability computation
Given mapped single cell sequence reads, existing single cell geno-
type calling tools (e.g. Monovar) can compute genotype probability
for each called genotype. In this article, we compute genotype prob-
abilities from allele read counts in the following way (similar to the
approach in Duitama et al., 2011). Our experience suggests that
genotype probabilities computed this way perform slightly better
than those computed by Monovar in our simulation. Let R ¼
fr0; r1g be a set of reads sampled for a cell c at a site s. Here, r0 (re-
spectively r1) is the number of reads with allele 0 (respectively 1) at
the site. Note that the number of reads at a site depends on whether
dropout occurs, and dropout tends to reduce the number of reads.
We first estimate the read depth distribution PsðkÞ for site s, assum-
ing normal distribution. Here, PsðkÞ is the probability of having k
reads for one allele at site s. If both alleles of a genotype have drop-
out, this leads to a missing genotype. For the three possible geno-
types g 2 f0;1; 2g, we calculate the posterior probability of g given
R as follows. For g ¼ 0,

Pðg ¼ 0jr0; r1Þ / Pðr0; r1jADO ¼ 1; g ¼ 0ÞPðg ¼ 0Þ

PðADO ¼ 1Þ þ Pðr0; r1jADO ¼ 0; g ¼ 0ÞPðg ¼ 0ÞPðADO ¼ 0Þ

Here, ADO is a binary random variable, where ADO ¼ 1 indi-
cates an allelic dropout occurs, and ADO ¼ 0 indicates no dropout.
We have Pðr0; r1jADO ¼ 1; g ¼ 0Þ ¼ �r1

r Psðr0 þ r1Þ, where �r is the
reads error rate (which is assumed to be known). Also, Pðr0; r1j
ADO ¼ 0; g ¼ 0Þ ¼ �r1

r Ps
r0þr1

2

� �2
, where we assume reads are evenly

distributed between two genotype alleles. Pðg ¼ 1jr0; r1Þ and Pðg ¼
2jr0; r1Þ can be calculated in the similar way. The prior probability
P(g) is calculated using the estimated allele frequency, assuming the
Hardy–Weinberg equilibrium. The prior probability for dropouts
PðADO ¼ 1Þ can be assigned uniformly to the global dropout rate.

3 Results

3.1 Cell lineage tree inference from simulated

genotypes
Table 1 lists the simulation parameters and their default values. By de-
fault, we simulate binary genotypes. The default number of sites m is
either 5 or 10 times of the number of cells n. For each setting, we simu-
late 50 replicates. Reported results are the average over these replicates.

Algorithm 2. An iterative approach for doublet imputation

1: Cd  f1 . . . ng
2: for i ¼ 1 . . . nd do

3: For each cell c 2 Cd, compute its doublet score for c.

4: Let cm be the cell with highest doublet score. If this is

a trivial doublet, stop. Otherwise, remove cm from Cd

and replace with two derived cells c
0
m and c

00
m.

5: end for

Table 1. A list of parameters and their default values used in the

simulation

Description Symbol Default

The number of cells n 100

The number of SNV sites m 500=1000

Deviation from clock property in true

cell lineage tree

t0 0.1

Recurrent mutation rate rm 0.0

Copy number loss rate mc 0.0

Genotype error rate �g 0.002

Allelic dropout rate �d 0.2

Average read depth of a single allele ld 4

Standard deviation of the read depth rd
1
2 ld
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For cell lineage tree inference, we first compare ScisTree with
two methods, SCITE (Jahn et al., 2016) and SiFit (Zafar et al.,
2017). We choose SCITE because a previous comparison study
(Miura et al., 2018) suggests SCITE performs well when compared
with other existing methods. We choose SiFit because it doesn’t as-
sume the IS model; comparing with it may allow evaluation of the
effect of modeling assumptions. Since cell lineage tree can be
inferred using classic phylogeny inference methods, we also compare
with NJ. Both SCITE and SiFit are run with true false negative and
false positive rates. We run 90 000 iterations for SCITE, and run
200 000 iterations for SiFit, unless otherwise stated. Note that the
choices on the number of iterations here may affect accuracy, al-
though it is difficult to pick the best number.

We use the well-known Robinson–Foulds (RF) distance between
the inferred cell lineage tree T and the true tree T 0 as the main measure
of phylogenetic accuracy. The RF distance is equal to the number of
clades that are in T but not in T 0. We normalize the RF distance to be
between 0 and 1 (i.e. RF distance divided by n – 2, the maximum num-
ber of non-singleton clades in a rooted tree with n leaves). See Section
3.1.1 for alternative metrics for benchmarking. To test the perform-
ance of cell lineage tree inference, we vary a number of parameters,
including n, m, t0, rm, mc, �g and �d (see Table 1).

We now evaluate the performance of ScisTree with non-uniform
genotype probability data (calculated using the procedure described
in Section 2.7). To test the performance of ScisTree with more sites,
we let n¼100 and m¼1000. Since both SCITE and SiFit don’t con-
sider non-uniform genotype probability and only work with uniform
error rates, we use the maximal probability genotypes as the called gen-
otypes, along with the true false positive and false negative rates when
running SCITE and SiFit (and NJ). To see the difference between the
uniform and non-uniform probability settings, we also run ScisTree
with the uniform genotype probability as computed from the maximal
probability genotypes under the true false positive and negative rates.

The results are shown in Figure 2. It can be seen that ScisTree
with non-uniform genotype probability clearly outperforms SiFit,
ScisTree with uniform probability and NJ. SCITE still performs well
but now becomes slightly less accurate than ScisTree in most cases.
When the read depth is low (say at 2�), SCITE is slightly more ac-
curate than ScisTree with non-uniform probability. As shown in
Figure 2a, increasing read depth (while setting read depth standard
deviation to be half of the read depth) appears to let ScisTree signifi-
cantly outperform other methods (including SCITE). Note that
SCITE and other methods only improve accuracy slightly (or even
decrease sometimes) when read depth increases. This may be be-
cause that when read depth is high, probabilities at different geno-
types become more non-uniform (note that standard deviation also
increase, since standard deviation is fixed to be half of the average);
assuming uniform error rates may be less realistic in this case. For com-
parison, in the uniform probability case, SCITE can be slightly more ac-
curate than ScisTree in some cases. This suggests that using non-uniform
genotype probability can indeed improve the tree inference accuracy.

3.1.1 Clade accuracy for cell lineage tree inference

There are other types of phylogenetic accuracy measures (other than
the RF distance) for benchmarking the cell lineage tree inference.
Here, we consider the following two measures (which are similar to
those in the Appendix of the preprint: ‘Integrative inference of sub-
clonal tumour evolution from single-cell and bulk sequencing data’
by S. Malikic, et al). These two measures work with mutation trees
(instead of cell lineage trees). We suggest the readers to read the lit-
erature on tumor phylogeny inference for more detailed description
of mutation (or clonal) trees. Briefly, mutation tree focuses on the
timing order of mutations (i.e. site labels) on the cell tree. We say a
mutation ma is ancestral to mb if the clade formed by cells carrying
mutant ma contains the clade formed by cells carrying mutant mb.

1. Ancestor-descendant error: the percentage of pairs of mutations

ma and mb where ma is ancestral to mb in the true tree but not so

in the inferred tree. Note: we use ‘error’ to be consistent with the

RF distance (which measures errors).

2. Different-lineage error: the percentage of pairs of mutations ma

and mb where ma is not ancestral to mb in the true tree but ma is

ancestral to mb in the inferred tree.

We simulate 100 cells with various numbers of SNV sites. For
comparison, we compare ScisTree with SCITE under these two
measures of inference errors. Results are shown in Figure 3. Our

Fig. 2. Cell lineage tree inference error by ScisTree with non-uniform probability

computed by sequence reads, and neighbor joining (NJ) and ScisTree on uniform

probability. (a) Shows the effect of increasing mean read depth (with read depth

standard deviation being half of the mean read depth). (b) Shows the effect of

increasing read depth standard deviation. (c) Shows the effect of increasing dropout

rates. (d) Shows the effect of number of sites. Y-axis: inference accuracy (error) in

terms of average RF distance between true tree and inferred tree. Default settings of

parameters are used for parameters not being tested
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results show that ScisTree appears to outperform SCITE significant-
ly under these two error measures on mutation trees. Our experience
indicates that SCITE tends to infer mutation tree with long nested
mutations that are not in the original simulated mutation trees. This
may explain why SCITE doesn’t perform well under these two
measures.

3.2 Cell lineage tree inference from simulated

sequence reads
So far we use simulated genotype read counts without simulating
sequence reads. In practice, current single cell data is in the form of
sequence reads. We now simulate single cell sequence reads as fol-
lows. We use a segment of human chromosome 20 as the reference
genome. We create alternative genomes from the simulated SNV
alleles for each cell. We use the reads simulator wgsim to simulate
sequence reads from the alternative genomes from the cells. We
simulate four different reads coverages (for a single chromosome
copy): 2, 4, 8 and 16. We then use Monovar to call SNVs from the
reads. We then calculate the genotype probabilities based on the al-
lelic reads counts from the VCF files by Monovar, using the ap-
proach in Section 2.7. There are some genotype positions where
Monovar reports to be missing. We assign genotype probability of
0.5/0.5 for these positions. For comparison, we run SCIU with the
simulated sequence reads (in BAM format). The suggested parame-
ters (by its user manual) are used when running SCIU. We also run
SCITE on the maximal probability genotypes as before.

As shown in Figure 4, ScisTree under the default settings is less
accurate than SCIU (and SCITE) at low coverage. However, when
we discard highly uncertain genotypes from initial tree construction
(see Section 2.4.1), ScisTree performs significantly better than under
the default settings. This can be seen by setting the probability dif-
ference threshold td to 0.95 (smaller td values also give somewhat
smaller gains). Here, ScisTree clearly outperforms SCITE and has
similar accuracy as SCIU. This suggests that accurate initial tree con-
struction can be important for noisy data. Note that this simulation
uses simulated single cell data with more noise than those in Section

3.1. This is because noise can be introduced during reads mapping
and SNV calling. On the other hand, the simulated reads distribu-
tion here is different from the results shown in Figure 2a. Our results
show that dealing with non-uniform genotype uncertainty can be
important for data with significant noise.

3.2.1 Impact of sequence reads distribution

In most of our simulation, we assume that single cell sequence reads
follow the normal distribution. In reality, single cell sequence reads
may follow more complex distributions. Here, we conduct further
simulation to test the effect of sequence reads distribution on the in-
ference accuracy. In particular, we assume single cell sequences fol-
lows the beta-binomial distribution. The beta-binomial distribution
has two parameters a and b, which determine the shape of the distri-
bution. We test two settings: a ¼ b ¼ 2 and a ¼ b ¼ 4. The cell lin-
eage tree inference error with these two settings and the case of
normal distribution is shown in Figure 5. We can see that under
beta-binomial distribution, cell tree inference accuracy is indeed less
than the case of normal distribution. This is likely due to the over-
dispersion in the beta-binomial distribution. In this case, it is more
difficult to get a good estimate of genotype probability than the nor-
mal distribution case. This indicates that obtaining good estimates
of genotype probability with complex single cell data is likely to be
an important research problem for cell lineage tree inference.

3.3 Running time
Figure 6 shows the average running time for a single dataset of
ScisTree, NJ, SCITE and SiFit under different settings with

Fig. 3. Mutation tree inference error (the ancestor-descendant error in (a) and the

different lineage in (b)) by ScisTree and SCITE. 100 cells. Number of sites: from 100

to 2000. Y-axis: error measure of mutation tree between true mutation tree and

inferred mutation tree

Fig. 4. Tree inference error with simulated single-cell sequence reads. Results for

ScisTree (default settings), ScisTree2 (using more reliable genotypes for initial tree

construction, with probability difference threshold td ¼ 0:95), SCITE and SCIU and

neighbor joining (NJ) are reported. X-axis: average reads coverage. Y-axis: normal-

ized tree inference error

Fig. 5. Effect of sequence reads distribution on cell lineage tree inference error.

Three settings: beta-binomial (with parameters 2 and 2), beta-binomial (with

parameters 4 and 4), and normal distribution. 100 cells and 1000 sites. Average

reads depth is 4
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simulated data. ScisTree is slower than NJ, but is much faster than
SiFit and SCITE. When the number of cells increases, the running
time may increase faster than the case of increasing the number of
sites for all these methods. In this case, ScisTree is still much faster
than SCITE and SiFit: for example, for 500 cells and 2500 sites,
ScisTree takes 3.5 h, while SiFit takes about 122 h and SCITE takes
about 42 h. Again, running time of SCITE and SiFit depend on the
parameter settings (especially the number of iterations). Note that
SiFit is run with multiple threads by default. ScisTree runs with a
single thread at present. Moreover, ScisTree is much faster than
SCIU. We note that SCIU runs with raw sequence reads. Even
excluding the time spent on reads processing, ScisTree is faster than
SCIU by at least one order of magnitude.

3.4 Real data
We apply ScisTree on an acute lymphoblastic leukemia dataset
(Gawad et al., 2014) which was analyzed by SCIU previously in
Singer et al. (2018). It contains 255 cells from a patient (number 3)
with acute lymphoblastic leukemia. The data are in the form of tar-
geted DNA sequence reads from the 255 cells. We align the reads
from these cells (and one additional wild-type cell used as outgroup)
onto the whole human genome reference. We use Monovar to call
SNV genotypes and compute the genotype probabilities. The
inferred cell lineage tree is shown in the Supplementary Material.
One can see that the cell lineage tree has a side-chain shape (with 24
cells plus the wild-type cell) near the root, then diverges into two
clades (one smaller and one larger). While the true tree is not
known, the mutations (not shown in the tree) provide some poten-
tially useful information. There are in total 406 SNV sites (muta-
tions) that are called by ScisTree. Among these, 53 mutations are
located on the branch from the root to the clade of 255 cells. That
is, these mutations are shared by all cancer cells. A total of 173
mutations (i.e. about 43%) are located within the side chain of 24
cancer cells, mostly along the main path from the root to the other
cancer cells). This may indicate that mutations accumulate before
entering the rapid growth phase of the cancer cells. In Singer et al.
(2018), the called genotypes by SCIU are said to have less ‘noise’
than the called genotypes by Monovar. ScisTree calls fewer SNV
sites than Monovar: there are 808 SNV sites called by Monovar

originally. However, the genotypes called by ScisTree are not as
‘clean’ as shown in Singer et al. (2018). Based on our experience,
SCIU may collapse similar clades into a single clade. While this is
only a preliminary study, it shows that the inferred cell lineage tree
can potentially be useful for understanding cancer evolution.

3.4.1 Additional results

Due to the space limit, some results (e.g. doublet imputation) are
given in the Supplementary Material.

4 Conclusion and discussions

In this article, we present a new method for inferring cell lineage
tree given individualized genotype probabilities. Individualized
genotype probability allows more faithful information about single
cell data and can improve inference accuracy. For example, if there
is evidence for the presence of dropout at a site of a cell, we can de-
crease the probability of the wild-type genotype at this position for
this cell to accommodate the potential dropout. We now discuss sev-
eral related issues.

4.1 Infinite sites model or not?
Whether the IS model is valid for single cell evolution has not been
resolved in the literature (Kuipers et al., 2017; Zafar et al., 2017). In
this article, we assume the IS model is valid at least for large portion
of data. When the underlying evolutionary process deviates signifi-
cantly from the IS model, assuming the IS model will be problemat-
ic. We note that in that case, it is difficult to distinguish
technological noises (such as allelic dropouts and doublets) and
complexities caused by these non-IS mutational processes in current-
ly available data. For example, it was argued in Zafar et al. (2017)
that the non-hereditary colorectal cancer dataset analyzed by Wu
et al. (2017) does not agree with the IS model because the data con-
tains many cases of violations to the IS model. However, since the
dropout rate can be 20% or higher, many of the observed violations
may be due to technological noises such as dropouts. In fact, the
genotypes as shown in Figure 3 of Wu et al. (2017) appear to largely
match what we expect from the IS model. For this dataset, ScisTree
finds a solution where less than 7% of genotypes need to be changed
to make the data fit the IS model.

4.2 Single cell data simulation
We conduct extensive simulation on single cell sequencing in this
article. We note that single cell sequencing is complex (e.g. different
amplification techniques may have different dropout effects). At pre-
sent, there is no widely accepted single cell sequencing simulator.
We expect a good simulator will be useful for future methodology
development.

4.3 Efficiency
ScisTree is efficient and scalable to large number of sites.
Comparing with existing methods such as SCITE and SiFit, ScisTree
runs much faster (often by over 100 times). Computational effi-
ciency is likely to be a main issue for single cell analysis. With the
fast developing technologies, it is expected that the size of single cell
data will grow rapidly.
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Fig. 6. Average running time (in seconds) for a single simulated dataset of ScisTree,

neighbor joining (NJ), SiFit and SCITE. Time for increasing the number of sites m

(with 100 cells) is in (a), and the time for increasing the number of cells n (with m

being five times of n) is in (b)
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