

HCV patients without CKD (all P-values <0.001). **Conclusion:** CKD is associated with significant healthcare utilization and economic burdens in CLD driven by outpatient visits, ED visits and inpatient admissions. CKD is a significant cost multiplier in CLD patients with LT, DCC, Cirrhosis, HBV and HCV.

Disclosures:

The following people have nothing to disclose: Mohamed I Elsaied, You Li, Tina John, Vinod K Rustgi

Disclosure information not available at the time of publication: Sri Ram Pentakota

394

AN OPTIMIZATION TOOL FOR GLOBAL HEPATITIS C ELIMINATION: A CASE FOR HEPATITIS C ELIMINATION IN CHINA

Jag Chhatwal^{1,2}, **Qiushi Chen**³, **Tiannan Zhan**², **Turgay Ayer**⁴, **Yueran Zhuo**^{1,2}, **Wanyi Chen**^{1,2}, **Amy Puenpatom**⁵ and **Chizoba Nwankwo**⁵, (1)Harvard Medical School, (2)Massachusetts General Hospital Institute for Technology Assessment, (3) Harold and Inge Marcus Department of Industrial Engineering and Manufacturing Engineering, Penn State University, (4)H. Milton Stewart School of Industrial and System Engineering, Georgia Institute of Technology, (5)Center for Observational and Real-World Evidence, Merck & Co. Inc.

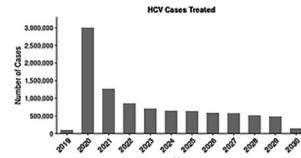
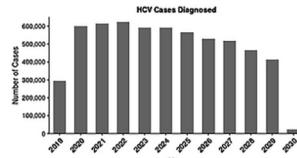
Background: The World Health Assembly recently pledged to eliminate hepatitis C virus (HCV) by 2030. However, most countries do not have a national strategy for HCV screening and treatment that can lead to HCV elimination. Furthermore, optimal resource allocation (screening vs treatment) of limited budget to eliminate HCV is not known. Our objective was to develop an open-access, interactive budget calculator to identify strategies that can lead to HCV elimination and the optimal allocation of budget to eliminate HCV. We demonstrate the tool using China as an example. **Methods:** We developed an interactive, open-access, online tool to simulate the clinical management of HCV by incorporating HCV natural history, transmission rate, diagnosis rate, access to antivirals therapies, and cost of antiviral and disease management. The tool uses a validated dynamic microsimulation model in the backend, which is parameterized by country-specific disease and population characteristics and costs. **Results:** Figure shows the screenshot of Hep C budget calculator using China as an example. The top panel allows users to set specific targets (e.g., WHO's HCV elimination targets). The middle panel displays screening and treatment strategies that can meet user-defined elimination targets. The bottom panel shows project temporal trends in HCV disease and cost burden of different scenarios that can lead to HCV elimination. For instance, in 2019, around 9 million people have chronic HCV infection in China. To achieve HCV elimination, annual HCV screening would need to be scaled-up to at least 8.5% to diagnose 600,000 people per year, and treatment rate would need to be scaled-up to 45-80% of the eligible HCV individuals. This scenario would decrease liver-related deaths from 105,000 in 2015 to 33,000 in 2030 (68% reduction). The total cost of HCV elimination, including the cost of treatment, screening and disease management between 2020 and 2030 would be \$94.7 billion. **Conclusion:** Hep C budget calculator allows policy makers to identify potential strategies that can lead to HCV elimination by 2030 and budget needed to eliminate HCV for each strategy.

Hep C Budget Calculator

Choose your inputs:

1. Select a country	2. Select Hep C Elimination Targets	3. Set Cost and Budget
China	Incidence Reduction by 2030: 50% (0% to 100%)	Antibody Test Cost (\$): 17
	Diagnosis Rate by 2030: 50% (0% to 100%)	Viremia Test Cost (\$): 144
	Mortality Reduction by 2030: 50% (0% to 100%)	Treatment Cost (\$): 5991
	Treatment Coverage by 2030: 50% (0% to 100%)	<input type="button" value="Set Default Costs"/>
	<input type="button" value="Set WHO Targets"/>	<input type="checkbox"/> Set a budget limit?
		<input type="radio"/> Yes <input checked="" type="radio"/> No

Potential Strategies:



Show 10 of 151 entries

This table lists potential strategies that fulfill no restraints.

Intervention (Annual Rate)	Hep C Elimination Targets (By 2030)				Prevalence & Costs (By 2030)		
	Screening Rate	Treatment Rate	Incidence Reduction	Mortality Reduction	Treatment Coverage	Diagnosis Rate	Prevalence %
8.0%	80%	90%	68%	93%	93%	0.05%	\$94,748,717,148
10.0%	70%	91%	71%	93%	93%	0.05%	\$94,819,315,450
10.5%	60%	91%	72%	93%	93%	0.05%	\$94,848,296,993
9.5%	75%	91%	71%	93%	93%	0.05%	\$94,860,308,923
8.5%	70%	91%	67%	93%	93%	0.05%	\$94,913,475,097
9.5%	80%	91%	69%	93%	94%	0.05%	\$94,928,500,559
11.0%	60%	91%	71%	92%	93%	0.05%	\$95,002,384,831
10.9%	60%	91%	69%	92%	93%	0.05%	\$95,012,430,960
11.5%	50%	91%	70%	92%	93%	0.05%	\$95,109,308,223
10.5%	70%	92%	72%	93%	94%	0.05%	\$95,123,694,341

Showing 1 to 10 of 151 entries

...

Disclosures:

Jag Chhatwal – Merck: Grant/Research Support; Gilead: Advisory Committee or Review Panel; Gilead: Consulting

Amy Puenpatom – Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA: Employment; Merck & Co., Inc., Kenilworth, NJ, USA: Stock Shareholder

The following people have nothing to disclose: Qiushi Chen, Tiannan Zhan, Turgay Ayer, Yueran Zhuo, Wanyi Chen, Chizoba Nwankwo

395

THE ECONOMIC COST AND HEALTH BURDEN OF NON ALCOHOLIC STEATOHEPATITIS IN THE EU5 COUNTRIES

Philip N Newsome¹, **Jörn Schattenberg**², **Lawrence Serfaty**³, **Alessio M Aghemo**⁴, **Salvador Augustin**⁵, **Emmanuel A. Tsoschatzis**⁶, **Ali E Canbay**⁷, **Victor de Ledinghen**⁸, **Elisabetta Bugianesi**⁹, **Manuel Romero-Gomez**¹⁰, **Stephen D Ryder**¹¹, **Heike Bantel**¹², **Jerome Boursier**¹³, **Salvatore Petta**¹⁴, **Javier Crespo**¹⁵, **Laurent Castera**¹⁶, **Vincent Leroy**¹⁷, **Claude Le Pen**¹⁸, **Frank-Ulrich Fricke**¹⁹, **Rachel A Elliott**²⁰, **Vincenzo Atella**²¹, **Jorge Mestre-Ferrandiz**²², **Lefteris Floros**²³, **Aleksandra Torbica**²⁴, **Alice Morgan**²⁵, **Sally Hartmanis**²⁶, **Aldo Trylesinski**²⁷, **Emily Stirzaker**²⁵, **Sharad Vasudevan**²⁶, **Lynne Pezzullo**²⁶ and **Vlad Ratiu**²⁸, (1)University of Birmingham, (2)Department of Medicine, University Hospital Mainz, Mainz, Germany, (3)Hôpitaux Universitaires De Strasbourg, (4)Humanitas University and Humanitas Research Hospital Irccs, Pieve Emanuele, Italy, (5)Centro De Investigacion Biomedica En Red De Enfermedades Hepaticas y Digestivas, Instituto De Salud Carlos III, Madrid, Spain, (6)UCL Institute for Liver and Digestive Health and Sheila Sherlock Liver Centre, Royal Free Hospital, (7)Department of Gastroenterology, Hepatology and Infectiology, Otto-Von-Guericke University Magdeburg, (8)Hepatology Department, Bordeaux University Hospital, (9)Department of Medical Sciences, University of Turin, Turin, Italy, (10)Department of Digestive Disease, Institute of Biomedicine of Seville, University of Seville, Seville, Andalusia, Spain, (11)Nottingham University Hospitals, (12)Hannover Medical School, (13)Hepatology Department,