
Does Preprocessing Help in Fast Sequence Comparisons?
Elazar Goldenberg

elazargo@mta.ac.il

The Academic College of Tel

Aviv-Yaffo

Israel

Aviad Rubinstein

Stanford University

USA

aviad@cs.stanford.edu

Barna Saha
∗

University of California Berkeley

USA

barnas@berkeley.edu

ABSTRACT
We study edit distance computation with preprocessing: the pre-

processing algorithm acts on each string separately, and then the

query algorithm takes as input the two preprocessed strings. This

model is inspired by scenarios where we would like to compute

edit distance between many pairs in the same pool of strings.

Our results include:

Permutation-LCS: If the LCS between two permutations has length

n − k , we can compute it exactly with O (n log(n)) preprocessing
and O (k log(n)) query time.

Small edit distance: For general strings, if their edit distance is at

most k , we can compute it exactly with O (n log(n)) preprocessing
and O (k2 log(n)) query time.

Approximate edit distance: For the most general input, we can

approximate the edit distance to within factor (7 + o(1)) with pre-

processing time Õ (n2) and query time Õ (n1.5+o (1)).
All of these results significantly improve over the state of the

art in edit distance computation without preprocessing. Interest-

ingly, by combining ideas from our algorithms with preprocessing,

we provide new improved results for approximating edit distance

without preprocessing in subquadratic time.

CCS CONCEPTS
•Theory of computation→Design and analysis of algorithms.

KEYWORDS
edit distance, preprocessing, approximation algorithms

ACM Reference Format:
Elazar Goldenberg, Aviad Rubinstein, and Barna Saha. 2020. Does Pre-

processing Help in Fast Sequence Comparisons?. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC ’20),
June 22–26, 2020, Chicago, IL, USA. ACM, New York, NY, USA, 14 pages.

https://doi.org/10.1145/3357713.3384300

∗
Work partially supported by an NSF CAREER Award 1652303, NSF HDR TRIPODS

Grant 1934846 and an Alfred P. Sloan Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC ’20, June 22–26, 2020, Chicago, IL, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6979-4/20/06. . . $15.00

https://doi.org/10.1145/3357713.3384300

1 INTRODUCTION
Edit distance (aka Levenshtein distance) [37] and longest common

subsequence are widely used distance measures between pairs of

strings, over some alphabet Σ. They find applications in several

fields like computational biology, pattern recognition, text pro-

cessing, information retrieval and many more. The edit distance

between A and B, denoted by ED(A,B), is defined as the minimum

number of character insertions, deletions, and substitutions needed

for convertingA into B. The longest common subsequence ofA and

B, denoted by LCS(A,B), is defined as the longest subsequence com-

mon to A and B. A simple dynamic program solves this problem in

quadratic time. Moreover under reasonable hardness assumptions

like SETH and BP-SETH no real subquadratic time algorithm for

these problems exists [2, 3, 11, 20].

While dealing with huge amounts of data (such as DNA chains,

enormous storage, etc.), quadratic-time algorithms are unaffordable.

This raised an active and extensive line of work on moving from

quadratic-time exact computation towards (near)-linear time for

approximation algorithms [6, 8, 10, 12–14, 17, 19, 22, 24, 29, 30, 44,

45], and even designing sub-linear time algorithms for special cases

such as restriction on the distance between the input sequences [10,

13, 27] or permutations [9, 16, 25, 40, 44, 46].

In many of these applications, a large number of very long strings

from a database must be compared among each other (such as com-

parative genomics, comparing text corpora for documents similarity

etc.). For example, in string similarity join, which is a fundamental

problem in databases, one needs to find all pairs of strings (e.g.,

genome sequences) in a database that are close with respect to edit

distance [15].This in particular motivates developing sub-linear

time algorithms. But, unfortunately even under strong assumptions,

the known guarantees for sub-linear time algorithms (including

recent works by the authors) are unsatisfactory. For example, recent

work [27] requires Θ(nk + k
3)-time, and with a highly non-trivial

algorithm can barely distinguish between edit distance k and k2.
Even when the strings are both permutations and k-close to each

other, [9]’s nearly-optimal algorithm runs in time Õ (nk +
√
n) and

still only approximates the edit distance (to within some large con-

stant factor). In part this is due to strong lower bounds: for example,

when the edit distance is k ≪ n, in order to have any chance of

observing any difference between the strings, the algorithm must

see Ω(nk) characters.
Our main contribution is a simple and natural augmenta-

tion to the standard model: preprocessing. Formally, we con-

sider two parties that preprocess each input string independently,

and then in a query phase they jointly (approximately) compute an

optimal alignment. Because the preprocessing of the two strings is

done independently, (i) the same preprocessing of one string can

657

https://doi.org/10.1145/3357713.3384300
https://doi.org/10.1145/3357713.3384300

STOC ’20, June 22–26, 2020, Chicago, IL, USA Elazar Goldenberg, Aviad Rubinstein, and Barna Saha

be useful for many comparisons, and (ii) the preprocessing step can

be fully parallelized in any distributed system.

In this paper we raise the question of whether preprocessing the

input can accelerate the computation of the edit distance between

input strings and computing their longest common subsequence.

We affirmatively answer these questions by providing several algo-

rithms that beat the state of the art algorithms where no preprocess-

ing is allowed. Our results include faster algorithms for the tasks of

exact computation of edit distance and permutation LCS. We also

provide a better trade off between running time and approximation

factor for edit distance approximation.

We note in particular that when the preprocessing runs in near-

linear time (as is the case with all our sublinear-time algorithms),

it is essentially for free in the sense that it is barely more than it

took to record and store the inputs in the first place. Even when

preprocessing takes super-linear time, it could be much more cost-

effective to have it when dealing with large number of strings.

Preprocessing captures amiddle ground between (i) aforementioned

works on (approximate) edit distance between two long strings; and

(ii) works on approximate closest pair or nearest neighbor among

a large number of short strings [4, 7, 25, 26, 31, 38, 41, 43]. Our

preprocessing algorithms are most appealing when both the length

and number of strings are large.

Preprocessing is also closely related to sketching [12, 15]. With

an efficient sketching algorithm, we can preprocess a string to

compute a small-sized sketch and then only compare the sketches

during querying. The state of the art result in edit distance sketching

has a preprocessing time of Õ (nk2) and query time of poly (k logn)
[15]. Our algorithms get significantly better trade-offs. There are

numerous works on related but different models such as comput-

ing embedding of edit distance [7, 23, 25, 41], document exchange

protocols [15, 28, 33] and error-correcting codes for insertions and

deletions [18, 28, 29].

1.1 Contributions
In the preprocessing model we provide much faster and simpler

1

algorithms that output much better alignments:

Permutation-LCS If the LCS between two permutations has

length n − k , we can compute it exactly with O (n log(n))
preprocessing and O (k log(n)) query time. Contrast this re-

sult with [9] where in Õ (nk +
√
n), the ulam distance can be

approximated to within a large constant factor.

Small edit distance For general strings, if their edit distance

is at most k , we can compute it exactly with O (n log(n))
preprocessing and O (k2 log(n)) query time. Contrast this

result with [27] where in Õ (nk +k
3) time, one can distinguish

if edit distance is below k or above Θ(k2).
Approximate edit distance For the most general input, we

can approximate the edit distance to within factor (7 +
o(1)) with preprocessing time O (n2 log(n)) and query time

O (n1.5+o (1)). Contrast this result with [6] where a f (ϵ)-
approximation for edit distance can be computed in time

O (n1.5+ϵ) (f (ϵ) goes to infinity as ϵ decreases).

1
Our first two algorithms are so simple that we could fully explain both in a single

STOC talk!

What if we only preprocess one string? This setting ismuch

harder, but we can still beat state of the art without prepro-

cessing, namely distinguishk vs 3k2 with Õ (n) preprocessing
and Õ (n/k + k2) query time.

These strong improvements run contrary to the fine-grained

complexity rule of thumb that preprocessing inputs does not help [48].

We also formalize a few conditional hardness results establishing

limitations of preprocessing for fast string alignment:

Exact alignment We show that assuming (BP)-SETH, even

after arbitrary polynomial-time preprocessing, computing

edit distance or LCS exactly requires near-quadratic query

time.

Approximate edit-distance We show that if we can α-
approximate edit distance in truly-subquadratic query time

with arbitrary polynomial preprocessing, then we can also

(α +o(1))-approximate it in truly-subquadratic time without

preprocessing (currently not known for any α < 3).

We remark that another related hardness result is known for the

case where we only preprocess one string: Abboud and Vassilevska-

Williams show that even polynomial space (exponential time) pre-

processing doesn’t help to break the near-quadratic time barrier

(assuming BP-SETH/poly) [5].

Approximate edit-distance without preprocessing
Interestingly, using our algorithms with preprocessing (for

small and large edit distance regime), we give the fastest

algorithm for approximating edit distance within 3 + ϵ
approximation without preprocessing. Our algorithm runs

in Õ (n1.6+o (1)) time whereas the best running time so far

was Õ (n1.69+o (1)) [6].

1.2 More Context on Our Results
Below we explain how the parameters in our results compare to

existing literature without preprocessing. We note that another

feature of our algorithms is that they are all relatively simple. Even

our most technically involved contribution, the algorithm for gen-

eral edit distance, is significantly simpler than related literature

(e.g. [19, 34, 44]).

Permutation-LCS. Our O (k log(n)) query time is most closely

related to (and inspired by) the classic O (n log(n)) for longest in-
creasing subsequence (LIS) without preprocessing. Note that for

exact computation, even after arbitrary preprocessing Ω(k) bits of
communication are necessary, so our running time is tight up to

the log(n) factor. Contrasting to [9], we get exact result as opposed
to approximation and significantly better query time bounds for

k = O (
√
n).

Small edit distance. Our O (k2 log(n))-time algorithm is most

closely related to (and inspired by) a classic Õ (n+k2)-time algorithm

without preprocessing. Note that our near-n2 SETH-lower-bound
for general edit distance with preprocessing extends to k2 SETH-
lower-bound by a trivial padding argument (see also [21]). Hence

our running time is near-tight assuming (BP)-SETH. Contrasting

to [27], we again get exact result and better query time bound for

all regimes of k , even when we allow single string preprocessing.

658

Does Preprocessing Help in Fast Sequence Comparisons? STOC ’20, June 22–26, 2020, Chicago, IL, USA

Table 1: Taxonomy of Algorithms Approximating Edit Distance

Authors Time Approximation Factor comments

[22] O (n1.714) 3 + ϵ 2

[6] Õ (n1.69) 3 + ϵ

This paper Õ (n1.6+ϵ) 3 + ϵ

[6] Õ (n1.5+ϵ) f1 (δ)

This paper Õ (n1.5+ϵ) 7 + ϵ using Õ (n2)-time preprocessing
[19, 34] Õ (n1+δ) f2 (δ) +n1−f3 (δ) additive error

Approximate edit distance. This result is most closely related to

(and inspired by) recent subquadratic time approximation algo-

rithms for edit distance [6, 17, 19, 22, 34]. Here, the state of the art

results include a (3 + ϵ)-approximation in Õ (n12/7) time [22] and

later improvement to time Õ (n1.69) [6], f (ϵ)-approximation in time

O (n1.5+ϵ) [6], or f ′(ϵ)-approximation in time O (n1+ϵ) when the

true edit distance is large [19, 34] (here f , f ′ are functions that go to
infinity as ϵ decreases). While the improvement is not as dramatic

as for sublinear algorithms, after near-quadratic preprocessing, our

algorithm is clearly faster than [6, 22] (n1.5 vs n1.69), while obtain-
ing much better approximation guarantees than [6, 19, 34] (7+ ϵ vs
f (ϵ)). Interestingly, this algorithm combines ideas from aforemen-

tioned recent advances on approximate edit distance computation

[17, 19, 22, 42], together with our algorithm for small edit distance

computation with preprocessing. Even more surprisingly, by com-

bining ideas from our algorithms with preprocessing, we design

the fastest 3 + ϵ approximation algorithm for edit distance without

any preprocessing.

1.3 Open Problems
We now describe a couple of exciting directions for future work

Preprocess one string: An appealing variant of our preprocessing

model is when only one of the string is preprocessed. (This is

motivated by a scenario where a single reference string is compared

to many strings that are only used once.) For sublinear algorithms,

we are able to get some improvement over state of the art, but the

Ω(n/k) lower bound from communication complexity continues

to hold here. With subquadratic algorithms on the other hand, our

preprocessing algorithm has a natural variant that could be applied

to only one string. But so far we are unable to use it to obtain

significant improvement over no-preprocessing approximate edit

distance algorithms.

Open Question 1. What is the complexity of approximate edit

distance after preprocessing one of the strings?

Approximate edit distance in sub-linear time. A natural question

is whether we can combine ideas from our exact Õ (k2)-time algo-

rithm for small edit distance together with the O (n1.5+o (1))-time

approximation algorithm for general edit distance to approximate

small edit distance in truly sub-k2 time. Alternatively, it may be pos-

sible to show unconditional lower bounds (e.g. via communication

complexity) for approximate edit distance in this regime.

Open Question 2. What is the complexity of approximate edit

distance with preprocessing when k ≪ n?

Beyond string alignment? As discussed before, preprocessing is

particularly appealing when it runs in near-linear time and the

queries run in sub-linear time. In the context of string alignment,

there is a very natural notion of preprocessing where each string

is preprocessed separately. An interesting, open-ended direction

is to identify other problems in sub-linear algorithms where one

can define preprocessing models that are both natural and allow

for significant improvements.

Open Question 3. Define preprocessing models for other prob-

lems in sub-linear algorithms that are both natural and allow for

significant improvements.

2 SMALL ULAM DISTANCE
In this section, we prove Theorem 2.1 where with preprocessing

we can compute ulam distance (bounded by k) exactly in time

O (k log(n)).

Theorem 2.1 (Permutation-LCS). Given two permutations X ,Y
of {1, . . . ,n} with a common string of length at least n − k , we can
compute their LCS exactly with O (n log(n))-time preprocessing and
O (k log(n))-time joint processing.

Claim 1 (Structure of close permutations). If two permuta-
tions X ,Y of {1, . . . ,n} share a common string of length at least n−k ,
then they can be partitioned into O (k) contiguous blocks such that
each block of Y has an identical block in Y .

Proof. The shared common string can be partitioned into at

most k + 1 blocks that are contiguous for X , and similarly for Y .
The coarsest refinement of both partitions is contiguous on both X
and Y and uses at most 2k + 1 blocks. □

Algorithm description. The preprocessing algorithm (Algorithm ??)
constructs log(n) + 1 hash tables. The ℓ-th hash table corresponds

to window size 2
ℓ
; we use a rolling hash function (e.g. Rabin fin-

gerprint) to construct a hash table of all contiguous substrings of

X of length 2
ℓ
in time O (n).

Algorithm 2 finds the partition into blocks guaranteed in Claim 1.

At each iteration of the algorithm, it finds the longest contiguous

substring ofX , starting from XStart that has an identical contiguous

substring in Y . Using the prestored hashes, this is done in time

O (log(n)).
Finally, given the partition into blocks, we just have to solve a

heaviest increasing substring problem on the O (k) blocks (with
weights corresponding to block lengths). This can be done in time

659

STOC ’20, June 22–26, 2020, Chicago, IL, USA Elazar Goldenberg, Aviad Rubinstein, and Barna Saha

O (k log(k)) using a standard generalization of the classic LIS al-

gorithm (e.g. [32]). We provide pseudocode in Algorithm 3 for

completeness.

In the pseudocode below we sometimes abuse notation and think

of X,Y as functions from indices to characters, and similarly, we use

Y
−1

to denote the inverse of this function (i.e. given a character it

returns its index in Y .

Algorithm 1: Preprocess(X)

1 n ← length(X)

2 for ℓ = 0 . . . log(n) do
3 H [ℓ]← Rolling hash of X with window of length 2

ℓ

4 return H

Algorithm 2: Algorithm Compress iteratively finds maximal

blocks [XStart...XEnd] in X that have a matching maximal block

[YStart...YEnd] in Y. At each iteration it first exponentially

increases the variable ℓ until ℓ := ⌊log
2
(XEnd − XStart)⌋; it

then binary searches for the exact length of the block.

1 Algorithm: Compress(X , HX , Y , HY)

2 n ← length(X)

3 XStart← 0

4 XBlocks← ∅
5 while XStart < n do
6 YStart← Y −1 (X (XStart)) ; // XStart,YStart = respective

starts of next block

7 ℓ ← 1

8 while ℓ < log(n) do
9 if HX [ℓ][XStart] < HY [ℓ] then

10 break

11 ℓ ← ℓ + 1

12 XEnd← XStart + 2ℓ

13 YEnd← YStart + 2ℓ

14 while ℓ > 0 do
15 ℓ ← ℓ − 1

16 if HX [ℓ][XEnd] == HY [ℓ][YEnd] then
17 XEnd← XEnd + 2ℓ

18 YEnd← YEnd + 2ℓ

19 XBlocks← XBlocks ∪ (XStart, XEnd − XStart)

20 XStart← XEnd + 1

21 return XBlocks

3 SMALL EDIT DISTANCE
In this section, we prove our result on small edit distance, when the

edit distance is bounded by k . In particular, we prove Theorem 3.1.

Theorem 3.1 (Small-EDIT). Given two strings A = a1a2..an and
B = b1b2..bn of length n over alphabet Σ, and a bound on their
edit distance, ED(A,B) ≤ k , we can compute their edit distance
exactly with O (n log (n))-time preprocessing and O (k2 log (n))-time
joint processing.

We first recall an algorithm developed in [35, 36, 39, 47] that

computes edit distance in O (n + k2) time.

Algorithm 3: Algorithm HIS maintains data structure (bal-

anced binary search tree) Pareto, which stores the total weight

and Y-index of the last character of each common substring of

X and Y. The data structure is maintained sorted by Y-index,

and we only keep common substrings that are pareto-optimal
(in the sense that we want common substrings that are heavier

but end on lower Y-index).

1 Algorithm: HIS(XBlocks,Y)

2 k ← length(XBlocks)

3 Pareto← new balanced binary search tree

4 Pareto.insert(0, 0)

5 for i = 1 . . . k do
/* Add the next block to Pareto: */

6 newY← Y −1 (Xblock[i].start)
7 prevY← Pareto.prev(newY).Y

8 prevWeight← Pareto.prev(newY).weight

9 newWeight← prevWeight + Xblock.weight

10 Pareto.insert(newY,newWeight)

/* Remove old blocks that are no longer

pareto-optimal: */

11 while newWeight ≥ Pareto.next(newY).weight do
12 Pareto.next(newY).delete()

13 return Pareto.max().weight

Warm-up: AnO (n+k2) algorithm for Edit Distance. The well-known
dynamic programming algorithm computes an (n + 1) × (n + 1)
edit-distance matrix D[0...n][0...n] where entry D[i, j] is the edit
distance, ED(Ai ,B j) between the prefixesA[1, i] and B[1, j] ofA and

B, whereA[1, i] = a1a2...ai and B[1, j] = b1b2...bj . The following is
well-known and easy to verify coupled with the boundary condition

D[i, 0] = D[0, i] = i for all i ∈ [0,n].
For all i, j ∈ [0,n]

D[i, j] = min




D[i − 1, j] + 1 if i > 0;

D[i, j − 1] + 1 if j > 0;

D[i − 1, j − 1] + 1(ai , bj) if i, j > 0.

The computation cost for this dynamic programming is O (n2).
To obtain a significant cost saving when ED(A,B) ≤ k << n, the
O (n + k2) algorithm works as follows. It computes the entries of D
in a greedy order, computing first the entries with value 0, 1, 2, ...k
respectively. Let diagonal d of matrix D, denotes all D[i, j] such
that j = i +d . Therefore, the entries with values in [0,k] are located
within diagonals [−k,k]. Now since the entries in each diagonal of

D are non-decreasing, it is enough to identify for every d ∈ [−k,k],
and for all h ∈ [0,k], the last entry of diagonal d with value h. The
rest of the entries can be inferred automatically. Hence, we are

overall interested in identifying at most (2k + 1) ∗ k such points.

The O (n + k2) algorithm shows how building a suffix tree over a

combined string A$B (where $ is a special symbol not in Σ) helps
identify each of these points inO (1) time, thus achieving the desired

time complexity.

Let Lh (d) = max{i : D[i, i + d] = h}. The h-wave is defined by

Lh = ⟨Lh (−k), ...,Lh (k)⟩. Therefore, the algorithm computes Lh for

h = 0, ..k in the increasing order of h until a wave e is computed

such that Le (0) = n (in that case ED(A,B) = e), or the wave Lk

660

Does Preprocessing Help in Fast Sequence Comparisons? STOC ’20, June 22–26, 2020, Chicago, IL, USA

is computed in the case the algorithm is thresholded by k . Given

Lh−1, we can compute Lh as follows.

Define

Equal (i,d) = max

q≥i
(q | A[i,q] = B[i + d,q])

Then, L0 (0) = Equal (0, 0) and

Lh (d) = max




Equal (Lh−1 (d) + 1,d) if h − 1 ≥ 0;

Equal (Lh−1 (d − 1),d) if d − 1 ≥ −k,h ≥ 1;

Equal (Lh−1 (d + 1) + 1,d) if d + 1,h + 1 ≤ k .

Using a suffix tree of the combined string A$B, any Equal (i,d)
query can be answered inO (1) time. Next, we show that it is possi-

ble to preprocess each A and B separately so that even then each

Equal (i,d) query can be implemented in O (logn) time.

Preprocessing Algorithm. The preprocessing algorithm (Algo-

rithm 1) constructs log(n) + 1 hash tables just like in Section 2.

The ℓ-th hash table corresponds to window size 2
ℓ
; we use a rolling

hash function (e.g. Rabin fingerprint) to construct a hash table of all

contiguous substrings of X of length 2
ℓ
in time O (n). Since there

are logn + 1 levels, the overall preprocessing time is O (n logn).

Let HA[ℓ] store all the hashes for windows of length 2
ℓ
of A and

similarly HB [ℓ] stores all the hashes for windows of length 2
ℓ
of B.

Answering Equal (i,d) in O (logn) time. Equal (i,d) queries can be

implemented by doing a simple binary search over the presorted

hashes in O (logn) time. The pseudocode is given below. Suppose

Equal (i,d) = q. The firstWhile loop (line 5-8) identifies the smallest

ℓ ≥ 0 such that q < 2
ℓ
. The next While loop does a binary search

for q between i + 2ℓ−1 to i + 2ℓ .

Algorithm 4: Eqal(i, d, A, HA, B, HB)

1 n ← length(A)
2 AStart← i , BStart← i + d
3 ℓ ← 0

4 while ℓ < log(n) do
5 if HA[ℓ][AStart] , HB [ℓ][BStart] then
6 break

7 ℓ ← ℓ + 1

8 AStart← i + 2ℓ−1, BStart← i + d + 2ℓ−1

9 AEnd← i + 2ℓ − 1, BEnd← i + d + 2ℓ − 1

10 Mid←
(AEnd−AStart+1)

2

11 while Mid ≥ 1 do
12 if HA[Mid][AStart] == HB [Mid][BStart] then
13 AStart← AStart +Mid , BStart← BStart +Mid

14 else
15 AEnd← AEnd −Mid − 1, BEnd← BEnd −Mid − 1

16 Mid←
(AEnd−AStart+1)

2

17 return AEnd

Implementing Equal (i,d) query in O (logn) time together with

the correctness proof of O (n + k2) algorithm leads to Theorem 3.1.

4 PREPROCESSING A SINGLE STRING:
ANSWERING GAP EDIT DISTANCE IN
SUBLINEAR TIME

In this section, we design an algorithm that given two stringsA and

B, preprocess only one string, say B. During the query phase, the

string A is provided, and a query algorithm must answer whether

ED(A,B) ≤ k or ED(A,B) ≥ 2k2. We give an algorithm for this

quadratic gap-edit distance problem that runs in Õ (nk + k
2) time.

Therefore, the algorithm achieves a sublinear query time whenever

k ≤ n1/2 and k ≥polylogn. Note that this problem was recently

studied in [27] without any preprocessing. They achieve a running

time bound of Õ (nk + k
3).

4.1 Preprocessing Algorithm
Given Y ∈ Σn , we sample each index in [1,n] uniformly at random

with probability
log

2 n
k . Let S = {i1, i2, ..., is } denote the sampled

indices. Create the following substrings

Bd = bi1+dbi2+d ...bis+d ,∀d = −k,−k + 1, .., 0,,k − 1,k .

By a standard application of the Chernoff bound, we can assume

with probability at least 1 − 1

n3
, the number of sampled indices

s = Θ(
n log

2 n
k).

The preprocessing algorithm constructs log(s) + 1 hash tables

just like in Section 3, but for each Bd , d ∈ [−k,k]. The ℓ-th hash

table corresponds to window size 2
ℓ
of Bd . Since there are log s + 1

levels, the overall preprocessing time is O (k ∗ n
k log

2 n log s)=Õ (n)

with probability 1 − 1

n3
. Let Hd

B [ℓ] store all the hashes for windows

of length 2
ℓ
of Bd for d = [−k,k].

4.2 Query Algorithm
GivenA ∈ Σn . We create a sampled substringAS = ai1ai2ais . We

construct log(s) + 1 hash tables for AS . Again, the ℓ-th hash table

corresponds to window size 2
ℓ
ofAS . Since there are log s+1 levels,

the overall time to compute the hashes of AS is O (nk log
2 n log s) =

Õ (nk) with probability 1 − 1

n3
. Let HA[ℓ] store all the hashes for

windows of length 2
ℓ
of AS

We now define an approximate Equal (i,d), Approx-Equal (i,d)
query as follows. Let n(i) ≥ i be the nearest index to i present in S .
Define

Approx-Equal (i,d) = max

q≥i
(q | q ∈ S,XS [n(i),q] = Y

d
[n(i),q])

We now run the same algorithm from Section 3 except that we

replace Equal (i,d) withApprox-Equal (i,d). Let us use L̂h to denote

the h-wave computed by using Approx-Equal (i,d) for h ∈ [0,k]

and d ∈ [−k,k]. If the algorithm computes L̂h (0) ≥ n for h ≤ k , the
algorithm returns YES. Else, it returns NO.

Clearly, the running time of the algorithm is Õ (nk +k
2). We now

show that the algorithm solves the quadratic gap problem.

Analysis. When comparing a symbol xi with yj , if they do not

match, we call it a ’mismatch’. The following is an easy lemmawhich

shows we cannot miss too many mismatches due to sampling.

Lemma 4.1. Given i ∈ [1,n] and d ∈ [−k,k], let i ′ ≥ i be the
smallest index such that xixi+1...,xi′ and yi+dyi+1+d ...yi′+d have

661

STOC ’20, June 22–26, 2020, Chicago, IL, USA Elazar Goldenberg, Aviad Rubinstein, and Barna Saha

at least k ′ = k
logn mismatches. Let i ≤ j1, j2, ..., jk ′ = i ′ be the

indices such that x jh , yjh + d . Define a bad event B (i,d) to be
the event that none of these k ′ mismatch indices are sampled. Then
Prob (Bad (i,d)) ≤ 1 − 1

n3
. Moreover, all bad events are avoided with

probability at least 1 − 1

n .

Proof. Since the sampling probability is Θ(
log

2 n
k), the expected

number of points sampled from j1, j2, .., jk ′ is Θ(logn). Now, by the
Chernoff bound, the probability that none of them are sampled can

be made to be 1 − 1

n3
(by choosing the constants in the sampling

probability appropriately).

Then by a union bound over all i ∈ [1,n] and d ∈ [−k,k], with
probability ≥ 1 − 1

n none of the bad events Bad (i,d) happen. □

Therefore, we can assume all bad events are avoided. The above

lemma leads to the following direct corollary.

Corollary 4.2. For all i ∈ S , ℓ ∈ [0, log s + 1] and d ∈ [−k,k] if
HA[ℓ][i] = Hd

B [ℓ][i] then aiai+1...,ai+2ℓ and bi+dbi+1+d ...bi+d+2ℓ
have less than k

logn mismatches.

Proof. Take any i and d . Since Bad (i,d) did not happen, if

aiai+1...,ai+2ℓ and bi+dbi+1+d ...bi+d+2ℓ had at least
k

logn mis-

matches, we would have HA[ℓ][i] , Hd
B [ℓ][i] □

Using the above corollary, we can now show that

Approx-Equal (i,d) is a good approximation of Equal (i,d).

Lemma 4.3. If Approx-Equal (i,d) = q then aiai+1....aq and
bi+dbi+d+1...bq+d have strictly less than 2k mismatches.

Proof. Since the sampling probability is
log

2 n
k , (n(i)−i) ≤ k

logn
with high probability (we assume k ≥ polylogn).

Now A[n(i),q] can be decomposed into at most log s + 1 ≤

logn + 1 intervals each of length that is a power of two. Moreover

for each of these intervals the computed hashes HA and Hd
B must

match. Therefore, each of these at most logn + 1 intervals can have

at most
k

logn mismatches from Corollary 4.2. Thus the total number

of mismatches is strictly less than (n(i) − i) + (logn + 1) k
logn =

k + 2k
logn ≤ 2k . □

In order to complete our analysis, we now compare the h-waves
computed by the exact algorithm from Section 3 and approximate

h-waves computed by using Approx-Equal (i,d).

Lemma 4.4 (Completeness). ∀h ∈ [0,k] and d ∈ [−k,k],
L̂h (d) ≥ Lh (d). Therefore, if ED(A,B) ≤ k , then the algorithm will
return YES.

Proof. The proof follows simply by induction since

Approx-Equal (i,d) ≥ Equal (i,d). □

Lemma 4.5 (Soundness). ∀h ∈ [0,k] and d ∈ [−k,k], L̂h (d) ≤
L2k (h+1) (d). Therefore, if ED(A,B) > 2k2 + 2k , then the algorithm
will return NO.

The proof is again by induction, and is given in the full version.

Therefore, if ED(A,B) > 2k2 + 2k , then L2k
2+2k (0) < n. Then

L̂k (0) ≤ L2k
2+2k (0) < n, the algorithm aborts and declares NO.

Hence, we get the following theorem.

Theorem 4.6 (Small-EDIT-Single-Preprocessing). Given two
strings A = a1a2..an and, B = b1b2...bn of length n over alphabet Σ,
we can answer if ED(A,B) ≤ k or ED(X ,Y) > 3k2 with probability
at least 1 − 1

n by preprocessing only a single string in Õ (n)-time and
with a query time of Õ (nk + k

2).

5 LARGE EDIT DISTANCE, 7 + ϵ-APPROX
In this section we prove our result for the large edit distance regime.

Our main result is a 7+o(1) approximation for ED(A,B) in n
3

2
+o (1)

query time. We are allowed to preprocess each A and B separately

and spend ∼ n2 time in overall preprocessing.

Remark (Estimating the distance vs computing an alignment). For

simplicity of presentation, we write our algorithms as merely esti-

mating the distance. It is straightforward with standard techniques

to modify them to output the alignment as well in roughly the same

running time.

Organization of this section. In Subsection 5.1 we give a bird’s

eye overview of the main technical elements of our algorithm. Sub-

section 5.2 formally describes the decomposition of the strings into

windows, Subsection 5.3 is a standard dynamic programming for

computing an optimal window-compatible matching from pair-

wise distances. Our main contribution is in Subsection 5.4 which

describes the algorithm for learning the close-window graph.

5.1 High Level Description of the Algorithm
The basic divide-and-conquer framework for approximate edit dis-
tance. The algorithm builds upon the recent progress on approxi-

mating edit distance in subquadratic time using divide-and-conquer

algorithms [6, 17, 19, 22, 34, 44], along with our small-edit-distance

algorithm from Section 3. We decompose the strings A and B into

contiguous substrings called windows. These windows can be over-

lapping and have variable lengths. Up to an (1+o(1))-factor approx-
imation, we can now wlog restrict our attention to matchings of A
to B that are “window-compatible”, i.e. they respect the partition to

windows (see Lemma 5.1).

If we (approximately) knew all the pairwise distances between

windows, a standard DP would find an (approximately) optimal

window-compatible matching efficiently (Lemma 5.3). Comput-

ing the pairwise distances is further reduced to (approximately)

learning the bipartite close-window graph, where a pair of A- and
B-windows are neighbors if their pairwise edit distance is below
an appropriate threshold τ .

The goal is now to approximately learn the close-window graph

while computing as few window-window distances as possible.

With this in mind, we classify the windows as either dense (high-
degree in the close window graph), or sparse. We use by-now-

standard separate subroutines to handle each kind of windows.

Further Details of Our Algorithm. The density of a window can be

estimated by computing its edit distance to a small sample of its

potential neighbors. To obtain optimal tradeoff between parameters,

662

Does Preprocessing Help in Fast Sequence Comparisons? STOC ’20, June 22–26, 2020, Chicago, IL, USA

we cannot afford even this small sample to classify windows as

dense or sparse. Here we deviate from previous works and estimate

the density on-the-fly. That is each window is assumed to be sparse

by default, and only when it is selected as a special “seed” for the

sparse subroutine, we estimate its degree and move it to the dense

subroutine if necessary. (In fact, an originally dense window can

lose many of its neighbors and become sparse by the time it is

selected; this does not hurt our analysis.)

The main sparse subroutine proceeds by recursively narrowing

down the set of relevant candidate neighbors. Even though sparse

windows take part in multiple levels of recursion, the loss in ap-

proximation from each level of the sparse subroutine is negligible,

so it continues to be negligible in aggregate. The dense subroutine

incurs the main loss in approximation due to the use of triangle

inequality. Fortunately, each dense window can only contributes to

one level of the entire recursion and thus the overall approximation

factor remains bounded.

When we compute the edit distance between pairs of windows,

we do it exactly using our algorithm from Section 3. This algorithm

is very efficient when the windows are close, but its running time

may be as slow as quadratic in the window size when the distance

is large. We remark that three recent approximate edit distance

algorithms [6, 19, 34] also use the basic divide-and-conquer frame-

work, yet manage to obtain comparable or faster running times

without preprocessing. Those algorithms compute window-window

distances by recursively applying an approximate edit distance al-

gorithm; while this improves efficiency, the approximation factor

explodes exponentially in the depth of the recursion.

5.2 Decomposition into Variable Sized
Windows

Parameters Settings. We divide the strings A,B into windows,
equivalently contiguous substrings. We use d and t to denote the
window width and the number of windows of A respectively. Fix

d = n1/4 and t = n
d = n

3/4
throughout the presentation.

Let ϵ > 0 be an arbitrarily small constant (or slightly sub-

constant), such that we would like to obtain a (7 + O (ϵ))-
approximation in O (n3/2+O (ϵ))-time. The windows in B will vary

in width. Moreover, they can be overlapping where the amount of

overlap will be controlled by a parameter τ which is the relative ED

threshold between a pair of windows. We will vary τ geometrically,

and for each value of τ , we will compute a set of windowsBτ . Let tτ
denote the number of windows of Bτ . We will have tτ = O (n

ϵτd).

Choice of Windows. The choice of windows play a crucial role

in our overall algorithm design. For the string A, partition A into

disjoint windows of width d denoted by A.

A = {A[1,d],A[d + 1, 2d], . . . ,A[n − d + 1,n]}

We now compute the windows of B. Let us take τ =

{0, 1d ,
(1+ϵ)
d ,

(1+ϵ)2
d , ..., 1}. For each value of τ , we compute a set

of windows Bτ . Finally, we set B = ∪τB
τ
to denote all computed

windows of B.
For τ = 0, take hτ = d , and lτ = d . For τ = 1

d , take hτ =

d + 1, lτ = d − 1. In general, for τ =
(1+ϵ) j
d , j ≥ 1, take hτ =

⌊d + (1 + ϵ) j−1⌋ and lτ = ⌊d − (1 + ϵ) j−1⌋.

Set γτ = max (1, ⌊ϵτd⌋). Define

H τ
:= {B[1,hτ),B[γτ + 1,γτ + hτ),B[2γτ + 1, 2γτ + hτ],}

Lτ := {B[1, lτ),B[γτ + 1,γτ + lτ),B[2γτ + 1, 2γτ + lτ], ...}

Finally, Bτ = H τ ∪Lτ , that is Bτ consists of intervals of length

hτ and lτ starting at every γτ grid points.

For window a ∈ A (similarly for windows in B), let s (a) denote
the starting index of a (e.g., s (A[1,d]) = 1) and let e (a) denote
index the the last index of a (e (A[1,d]) = d). This completes the

description of the windows.

Note that overall we create t = n
d windows of A and tτ = O (nγτ).

Mapping between windows. We say that a mapping µ : A →

B ∪ {⊥} between windows is monotone if for all a,a′ ∈ A
such that µ (a), µ (a′) ,⊥ and s (a) ≤ s (a′) we also have that

s (µ (a)) ≤ s (µ (a′)) and e (µ (a)) ≤ e (µ (a′)). Setting µ (a) =⊥ rep-

resents deleting a from the string. As such, we define ED (a,⊥) = d
for all windows a.

By abuse of notation, we let µ ⊂ A denote the set of A-windows
such that µ (a) ,⊥. For a ∈ µ, let a.next denote the window a′ ∈ µ
immediately after a (note that next depends on the mapping µ). If
a is the last window in µ, we define a.next :=⊥. We define a.prev
in the analogous way.

For a monotone mapping µ we define its edit distance as:

ED(µ) =
∑
a∈A

ED(a, µ (a)) +
n∑
i=1

����#{a s.t. i ∈ µ (a)} − 1
����

The first term is just sum of the edit distances between matched

windows. To understand the second term, notice that for each i we
expect it to appear in the image µ (a) of exactly 1 window. The sec-

ond term sums the difference between the number of appearances

of i and 1; it is a penalty for either overlap of windows (requiring

deletions) or excessive spacing (requiring insertions).

The next lemma (proof in the full version) asserts that the cost

of a minimal monotone mappings provides a good approximation

for the actual edit distance between the input strings A,B.

Lemma 5.1. Let A,B ∈ Σn , then the following holds:

(1) For every monotone mapping µ : A → B ∪ {⊥} we have:
ED(µ) ≥ ED(A,B).

(2) There exists a monotone mapping µ : A → B∪{⊥} satisfying:
ED (µ) ≤ (1 + 8ϵ) ED(A,B).

Low-Skew Mapping. A monotone mapping µ : A → B is said to

have skew at most D if for all a,a′ ∈ A we have:

1

D
|s (a) − s (a′) | ≤ |s (µ (a)) − s (µ (a′)) | ≤ D |s (a) − s (a′) |

We next show that any monotone mapping µ can be transformed

into a low-skew mapping with D = 1

ϵ with negligible loss (proof in

the full version). Along with Lemma 5.1, this ensures there exists

a near-optimal low-skew mapping, which we will exploit in our

algorithm design.

663

STOC ’20, June 22–26, 2020, Chicago, IL, USA Elazar Goldenberg, Aviad Rubinstein, and Barna Saha

Lemma 5.2. For every monotone mapping µ : A → B ∪ {⊥}, and
for every ϵ > 0, there exists a monotone mapping µ ′ : A → B ∪ {⊥}
such that: ED(µ ′) ≤ (1+ 2ϵ) ED(µ) and µ ′ has a skew that is at most
1/ϵ .

Low-skew mapping will play an impartial role in our algorithm

design and analysis.

5.3 Reduction to Estimating Window Costs
Let E : A×B → {0, . . . ,d } be an estimate of the edit distance such

that E (a,b) ≥ ED(a,b) for all a ∈ A,b ∈ B. Given a monotone

mapping µ : A → B ∪ {⊥}, we define its cost with respect to E as

follows:

EDE (µ) =
∑
a∈A

E (a, µ (a)) +
n∑
i=1

����#{a s.t. i ∈ µ (a)} − 1
����

We define ED(E) as the minimal cost EDE (µ) over all monotone

mappings.

Now, given such an estimation the next lemma (combining ideas

from [47] and [17]) asserts that one can efficiently compute ED(E).
Instead of computing ED(E) directly, we pick a threshold ∆,

and verify whether ED(E) ≤ ∆. Indeed, if we can answer whether

ED(E) ≤ ∆, or ED(E) > (7 + o(1))∆ efficiently, then by increas-

ing the threshold by an (1 + ϵ) factor each time, we will be able

to compute ED(E) within a (7 + o(1)) approximation in log
1+ϵ n

iterations.

Lemma 5.3 (Reduction to Estimating Window Costs). Given
an estimate E, one can compute ED(E) in O (1ϵ

n2

d2
logn)-time.

Proof. Pick a threshold ∆. Set γ = ∆d
n . If γτ ≤ γ , then from

Bτ pick every ⌊
γ
γτ ⌋ windows so that gap between two consecutive

windows in Bτ is ≥ γ − 1 for all τ . Therefore, the total number of

windows that we consider in B is O (nγ).

For windoww , we let e (w) denote the index of the last character
of w ; for a setW , e (W) denotes the set of last indices. For i ∈
e (W), we let i .prev := max{i ′ ∈ e (W) ∪ {0} ∧ i ′ < i} denote the
index of the previous finish inW (or 0 if such an index does not

exist).

We abuse notation and let ED(i, j) denote the minimum cost

of alignment ending at i, j using estimates E. Following [47] we

use dynamic programming to fill a table of ED(i, j) for every pair

i, j ∈ e (A) × e (B) such that |i − j | ≤ 10∆. Notice that the number

of such pairs is bounded by:

|A||B|
10∆

n
= O

(
n

d
·
n

γ
·
∆

n

)
= O

(
n2

d2

)
. (1)

For boundary conditions, we define ED(i, j) = ∞ whenever

|i − j | > 10∆, and ED(i, 0) = ED(0, i) = i .
Consider a pair i, j such that e (a) = i (notice that there may

be Oϵ (1) B-windows ending at j). The cost ED(i, j) of alignment

ending at i, j is given by taking the minimum of:

• Cost of deleting the lastA-window: i − i .prev+ED(i .prev, j);
• Cost of deleting the last several B-characters: j − j .prev +
ED(i .prev, j); and

• Cost of using a last pair of windows: mine (b)=j

{
E (a,b) +

ED(s (a) − 1, s (b) − 1)
}
.

Notice that the runtime of our algorithm is dominated by the

number of pairs 1, aka it is O (n
2

d2
). Now, considering all choices of

∆, we get the required running time. □

5.4 Close-Window Graphs and the
Preprocessing Phase

For subset of windows C we define the graph GC,τ as follows:

The vertex set equals C. The pair (c, c ′) is connected by an edge if

ED(c, c ′) ≤ τd . For a substring z ∈ Σd , we denote by N C,τ (z) the
set of all windows c ∈ C satisfying ED(c, z) ≤ τd . The windows in
N C,τ (z) will also be referred to as the τ -neighbors of c in C, and
|N C,τ (z) | as its degree in C. When it is clear from the context, we

will often omit τ , and simply use the terms such as neighbors and

degree of c . We will abuse notation and also use this definition for

z < C.

Preprocessing Phase Algorithm. The preprocessing algorithm

crucially uses the algorithm for computing small edit distance
with preprocessing from Section 3. In the preprocessing phase,

strings A and B are processed separately. Let τ ∈ {0,
(1+ϵ)i
d } for

i = [0.. log(1+ϵ) d].

Preprocessing A. For each τ , the preprocessing algorithm com-

putes the graphGA,τ . The number of windows of A is
n
d . Hence,

the preprocessing time over all τ is O (n
2

d2
d2) = O (n2).

Preprocessing B. The preprocessing algorithm computes GBτ ,τ
for each τ . By the preprocessing algorithm of Section 3, we can

process entire B in O (n logn) time so that the computation of τd-
thresholded edit distance between any pair of windows can be run

in O (τ 2d2 logn) time.

Note that for a given τ , the gap between two consecutive win-

dows in B is γτ = max (1, ⌊ϵτd⌋). Therefore, when τ = 0, the

number of windows isO (n2), but for every pair of windows, edit dis-
tance computation time is O (1). For τ > 0, the number of windows

is O (n
ϵτd). Hence, the computation time is O (n2

ϵ 2τ 2d2
τ 2d2 logn) =

O (n
2

ϵ 2). Thus, over all τ , the total preprocessing time for B is Õϵ (n
2).

5.5 Query Phase Algorithm
The input to the query phase algorithm is the two strings, as well as

the close-window graphs computed in the preprocessing phase. The

output is an estimate data structure that can answer E : A × B →

R+ queries in O (log(n)) time. We implicitly initialize E (a,b) ← ∞
for all pairs (a,b).

We consider all choices of τ ∈ {0,
(1+ϵ)i
d } for i = [0.. log(1+ϵ) d].

For τ we run the following algorithm that attempts to discover the

pairs of windows a,b ∈ A × Bτ of edit distance at most τ . The
estimate algorithm has some false negatives, and it may also have

false positives whose true edit distance is up to 7τ . The estimate

can be fed into the DP in Section 5.3.

Recall that tτ := |Bτ | denote the number of windows in Bτ , and

tτ =
n

ϵτd .

664

Does Preprocessing Help in Fast Sequence Comparisons? STOC ’20, June 22–26, 2020, Chicago, IL, USA

For each value of τ , the algorithm below uses O (t
4/3+o (1)
τ)

queries to edit distance of pairs of windows of length O (d) of the
form is ED(a,b) < τd . Using the algorithm from Theorem 3.1, each

query can be answered in Õ (d2τ 2) time. Hence the total run time

is given by

O
(
t
4/3+o (1)
τ · d2τ 2

)
= O (n3/2+o (1)).

Initialization: Covered windows. Initially, all windows are uncov-
ered. Intuitively, we say that a window is covered when we have

upper bounded the edit distance to its relevant neighbors in Bτ .

A: Intervals. Consider a partition of [n] into t1/3+ϵτ contiguous inter-

vals of length n/t1/3+ϵτ ≤ t2/3−ϵτ ·d . For Awe define theA-interval
IA corresponding to interval I ⊂ [n] as the set of ≤ t2/3−ϵτ win-

dows with indices in I . Therefore, for A-windows they are either

entirely contained in the interval or don’t intersect it. For B, we let
I/ϵ denote a 1/ϵ-factor expansion of I (i.e. the interval of length
|I |/ϵ centered at I)3. We define the Bτ -interval IBτ to be the set of

windows that intersect I/ϵ . When clear from context we sometimes

just call IA , IBτ intervals.

B: Sampling seeds. For each A-interval IA , if less than log
2 (n)

windows in IA remain uncovered, we simply find all of their τ -
neighbors inBτ using Õ (tτ) queries and mark them covered. Other-

wise we sample log
2 (n) uncovered windows from IA . For each sam-

pled window a, we test whether |N B
τ ,τ (a) | ≳ t1/3τ . This is done

by sampling t2/3τ log
2 (n) windows b ∈ Bτ and querying ED(a,b)

for each. (We account for those queries later, depending on whether

a is dense or sparse.)

If more than log
2 (n)/2 of the samples belong toN B,τ (a) then a

is declared dense, otherwise it is sparse. If the window is dense we

process it as described below, after which it is a covered window

and no longer a good sample. We then continue to sample (in ran-

dom order) other uncovered windows from the same IA until: If the

number of sparse windows sampled so far is smaller than log
2 (n),

we stop sampling whenever we see log
2 (n) consecutive covered

windows. Otherwise (the number of observed sparse sampled win-

dows is at least log
2 (n)), we stop sampling after querying log

2 (n)
consecutive windows which are all either sparse or covered.

Remark. Therefore, if we keep discovering dense windows, we

process it as in Step C, the window gets covered, and we keep on

sampling more uncovered windows.

C: Dense windows. Suppose that a is dense; choose (arbitrarily)

b ∈ N B
τ ,τ (a) among those discovered during Step B while process-

ing a. For each windows-pair a′ ∈ NA,2τ (a) and b ′ ∈ N B
τ ,4τ (b),

whose estimate has not been computed yet, the algorithm sets

E (a′,b ′) ← 7τ . This is done abstractly by pointing each a′ to
a, b ′ to b and marking that ED(a,b) ≤ τ . Observe that the sets

NA,2τ (a),N B
τ ,4τ (b) have already been computed during the pre-

processing phase. We mark each window in the set NA,2τ (a) as
covered.

3
For example, if I = [20, 30] then its 3-expansion is [10, 40].

Approximation: Observe that every a′ ∈ NA,2τ (a) is indeed
covered in the sense that by triangle inequality, for every b ′′ ∈

N B,τ (a′)

ED(b,b ′′) ≤ ED(b ′′,a′) + ED(a′,a) + ED(a,b) ≤ 4τ , (2)

and hence N B,τ (a′) ⊆ N B,4τ (b). Similarly, by triangle inequality

for every b ′ ∈ N B,4τ (b) and a′ ∈ N B,2τ (a), we have that

ED(a′,b ′) ≤ ED(a′,a) + ED(a,b) + ED(b,b ′) ≤ 7τ . (3)

Complexity: Notice that if the (Bτ ,τ)-neighborhoods of two
dense windows (or one dense and one sparse) a and a′ intersect,
then when we process one of them as dense we will cover both.

Hence we only need to run the dense subroutine at most t2/3τ times.

Each run requires Õ (t2/3τ) queries, and hence in total over the entire

τ -th iteration we only need Õ (t4/3τ) queries.

D: Sparse windows. For each interval IA , out of the set of win-

dows a ∈ IA which were declared sparse, we pick at random a

set S (IA) of size log2 (n). For every window in S (IA), we query its

entire (Bτ ,τ)-neighborhood using tτ queries. For each interval IA
we record the union of all Õ (t1/3τ) intervals ÎBτ that contain any

(Bτ ,τ)-neighbors of any of the sparse samples a ∈ S (IA). We call

these B-windows the relevant windows for the windows in IA . We

henceforth no longer look to match windows from IA to irrelevant

B-windows. Note that in a low-skew mapping (for more precise

statement, see Lemma 5.5), windows in IA cannot be mapped to any

irrelevant B-windows under that mapping. (Hence in total across

all t1/3+ϵτ intervals the sparse samples take Õ (t4/3+ϵτ) queries.)

Approximation: Recall that by Lemma 5.1 and Lemma 5.2, there

is a low-skew monotone mapping that approximates the optimal

transformation to within (1+ϵ)-factor. For any low-skewmonotone

mapping µ, the entire interval IA is mapped to a single Bτ -interval

IBτ . Suppose that (1 − ϵ)-fraction of the sparse windows in IA are

mapped to Bτ -windows (or ⊥) of distance greater than τ . Then we

can safely discard the τ -edges for the remaining ϵ-fraction of sparse

windowswith negligible loss in approximation factor. Hence in total

we pay only (1+O (ϵ))-factor in approximation for sparse windows.

Otherwise, w.h.p. at least one of the samples has a (Bτ ,τ)-neighbor
in IBτ . For more details, see Lemma 5.5.

Complexity: Each uncovered A-window has only Õ
(
t1/3τ ·

t2/3−ϵτ

)
= Õ (t1−ϵτ) relevant windows.

Recursion. We recurse on Parts A-D of the algorithm, with the

following modifications for the ℓ-th level of the recursion.

• We increase the number of intervals to t
1/3+(ℓ+1)ϵ
τ , and their

size decreases accordingly to Õ (t
2/3−(ℓ+1)ϵ
τ).

• We only sample relevant windows when we estimate de-

grees. The degree-threshold for a window to be considered

“dense” remains t1/3τ . Notice that a window may be dense

with respect to the entire graph, but sparse with respect to

its relevant windows.

• Once we discover a dense window, we run Part C without

regard to relevant/irrelevant windows. In particular the cal-

culation of total number of queries spent on dense windows

665

STOC ’20, June 22–26, 2020, Chicago, IL, USA Elazar Goldenberg, Aviad Rubinstein, and Barna Saha

is global for the entire τ -th iteration of the algorithm, includ-

ing recursion.

• For each sparse sample, we only compute the restriction of

its (Bτ ,τ)-neighborhood to relevant windows. Hence we

only spend Õ
(
t1−ℓϵτ

)
queries for each sample, or a total of

Õ
(
t4/3+ϵτ

)
queries across all intervals.

• The relevant windows for the next level of recursion are a

(strict) subset of the relevant windows in the current level.

The recursion continues until each interval has less than log
2 (n)

windows, after which all windows are covered.

We now summarize the approximation factor and the complexity

of the query algorithm.

Lemma 5.4 (Time Complexity). Let A,B ∈ Σn . Then running
time of the query phase is bounded by: Õϵ (n

3/2+ϵ).

Proof. Fix τ . By the complexity analysis of Step C, the total

number of queries required to cover dense windows over all the

recursion steps is Õ (t4/3τ).
On the ℓ-th level of recursion, the number of intervals is

t
1/3+(ℓ+1)ϵ
τ . For every interval, we pick at most log

2 n sparse win-

dows, and query all relevant windows. The number of relevant

windows is Õ (t1−ℓϵτ). Therefore, on the ℓ-th level of recursion, the

number of queries spent on sparse windows is t4/3+ϵτ . Since the

number of levels of recursion is at most
1

ϵ + 1, the total number of

queries spent on sparse windows is O (
t 4/3+ϵτ
ϵ).

Computing τd-thresholded edit distance between pairs of win-

dows requires time Õ (τ 2d2) (using our algorithm from Section 3).

Therefore, the time complexity for a given τ over all dense and

sparse windows is Õ (
t 4/3+ϵτ τ 2d2

ϵ) = Õ (n
3/2+ϵ

ϵ 7/4).

Since, the number of choices of τ isO (
logn
ϵ) and the time to run

the DP from Section 5.3 is O (1ϵ n
3/2

logn) , the overall total time

complexity is Õ (n
3/2+ϵ

ϵ 15/4). □

Lemma 5.5 (Approximation). Let A,B ∈ Σn . Let E : A × B →

R+ be the cost function produced during the query phase. Then with
probability at least 1 − 1

n , we have:

ED(E) ≤ (7 + ϵ) ED(A,B).

Proof. Note that if we can construct E : A × B → {0, . . . ,d }
such that ED(a,b) ≤ E (a,b) ≤ 7 ED(a,b), then using the DP algo-

rithm from Section 5.3 and employing Lemma 5.1, we get a 7+ o(1)
approximation for ED(A,B). Moreover, by Lemma 5.2, it is only

required to compute all the edges of E with the above accuracy

which an optimum low-skew monotone mapping µ would use. Fix

such a mapping µ.
We prove that for the first level of the recursion, for each interval

I ∈ IA it is either the case that there exists a sparse window a such

that: µ (a) ∈ N Bτ ,τ (a), or that the covered dense windows provide

a good approximation for the edges used by µ. Indeed, fix I ∈ IA,
the proof proceeds by case analysis.

Case 1: Suppose that there exists τ such that at least ϵ-fraction

of a ∈ IA , are such that µ (a) ∈ N Bτ ,τ (a) and a is τ -sparse.

In this case, with high probability the algorithm will eventually

pick a window a ∈ IA such that µ (a) ∈ N Bτ ,τ (a) and a is τ -

sparse. Consider the set ÎBτ recorded by the algorithm. Since µ

is a low-skew mapping, one of the intervals IB ∈ ÎBτ is such

that all the edges (a, µ (a)) where a ∈ IA , are such that µ (a) ∈
IB , and hence declared relevant. Therefore, in further iterations

of the algorithm these edges will be assigned with the required

approximation guarantee.

Case 2: Suppose that for all τ at most ϵ-fraction of a ∈ IA , are

such that µ (a) ∈ N Bτ ,τ (a) and a is τ -sparse.
In this case we may fail to detect all the edges (a, µ (a)), where

µ (a) ∈ N Bτ ,τ (a) and a is τ -sparse. Nevertheless, in that case, even

if we map all these edges to ⊥, we only lose a (1 + ϵ) factor in the

edit distance. As for the rest of the windows a ∈ IA , we claim that

with high probability for at least 1 − ϵ of the windows a we have:

E (a, µ (a)) ≤ 7 ED(a, µ (a)).
Indeed, observe that whenever the algorithm completes step B,

then it is the case that with high probability all but at most ϵ-fraction
of dense windows are already covered. If this is the case, then for

each covered window a ∈ IA we have: E (a, µ (a)) ≤ 7 ED(a, µ (a)).
For the rest we have no guarantee on E (a, µ (a)). However, even if

we map all these edges to ⊥, we only lose a (1 + ϵ) factor in the

edit distance. The claim follows. □

We therefore have the following theorem.

Theorem 5.6. Given two strings A,B ∈ Σn , we can approximate
ED(A,B) within 7+o(1) approximation with probability at least 1− 1

n
with a preprocessing time of Õϵ (n

2) and query time of Õϵ (n
3/2+o (1)).

6 NO PREPROCESSING: 3 + o(1)-APPROX IN
n1.6+o (1) TIME

In this section we introduce our (3+o(1))-approximation algorithm

for edit distance that runs in time n1.6+o (1) without preprocessing.
At a high level, it is similar to other recent traingle-inequality

based approximation algorithms for edit distance. In particular, the

previous state of the art algorithm by Andoni [6] obtains a similar

result when the edit distance is large (near-linear), but we can give

an overall faster algorithm using the sublinear algorithm for small

edit distance with preprocessing (Section 3). The preprocessing cost

is negligble when we apply it once to each window, and use the

sublinear algorithm to compute the distances of many pairs.

Theorem 6.1 (Approximate edit distance without prepro-

cessing). Given two stringsA,B ∈ Σn , we can approximate ED(A,B)
within 3+o(1) approximation in Õϵ (n

1.6+o (1)) time with probability
at least 1 − 1

n .

High level idea. The algorithm enumerates over various thresh-

olds τ . For each value of τ , the algorithm first marks all the A-

windows as τ -uncovered. Then, it uses sampling to estimate the

degree of each A window, and classifies them as sparse or dense.

It handles sparse windows similarly to Section 5. As for the dense

windows, if there are few of them, it exhaustively finds their (B,τ)-
neighbors. Otherwise, it sparsifies the set of uncovered dense win-

dows as follows. It enumerates over the set of B windows: For

each such a window b it estimates its degree with respect to un-

covered dense windows. If the degree is large, then it computes

666

Does Preprocessing Help in Fast Sequence Comparisons? STOC ’20, June 22–26, 2020, Chicago, IL, USA

NA,2τ (b),N B,τ (b), marks that the relative distance between pairs

in NA,2τ (b) × N B,τ (b) as upper bounded by 3τ . It then moves

each uncovered dense window in NA,2τ (b) to the set of covered

windows. In such a way, since we remove the neighborhood of

dense B-windows, we show that the number of uncovered dense

A-windows decreases significantly. We recurse on the sparsifi-

cation phase; each iteration uses a smaller degree threshold for

dense B-windows and handles fewer remaining uncovered dense

A-windows.

Similarities to Section 5 Algorithm. Similar to Section 5 and other

recent approximation algorithms, we partition the input strings

into windows, and consider the close-window graph where two

windows share an edge if they are close in edit distance. We handle

high-degree (“dense”) windows using triangle inequality, and low-

degree (“sparse”) by iteratively focusing on narrowing intervals.

Main technical difference compared to Section 5 Algorithm. A
subtle technicality of this algorithm is that in the sparsification

phase, we can remove B-windows of high degree, and all

their A-neighbors. This suffices to ensure that the remaining

A-windows are sparse on average. However, the analysis of the
sparse case, crucially relies on every window being sparse. By

Markov’s inequality, once we decrease the average degree of the

A-window at most t−ϵ -fraction of them remain overly-dense.

We can thus recurse on all the B-windows and the t−ϵ -fraction
overly-dense A-windows, again removing the highest-degree

B-windows. After O (1/ϵ) iterations, all the dense A-windows

have been removed.

As in Section 5, we repeat the following steps for every τ in a

multiplicative-(1 + ϵ)-net.

Parameters and notation. Following the notation of Section 5.2, we

set the base window length to d = n0.2, and the number of A-

windows is t = n0.8; the number of windows in Bτ is tτ = Oϵ (t/τ).

Our algorithm will use t
3/2+o (1)
τ queries, each in time Õ (d2τ 2), as

well as the DP from Lemma 5.3. Hence the total running time is

given by

Õ
(
t
3/2+o (1)
τ · d2τ 2 +

n2

d2

)
= Õ (n1.6+o (1)). (4)

Our sparsification phase (Steps A-2 and B below) works in it-

erations, where in each iteration we cover the edges of the form

(a,b) where b is a high degree vertex. In more detail, the algo-

rithm iteratively identifies B-windows with high degree. At the

first iteration, the degree threshold is deg
1
:= t1/2τ , and it decreases

by tϵτ in each subsequent iteration. I.e. at the д-th iteration it is

degд := t
1/2−(д−1)ϵ
τ .

We maintain a partition ofA into three subsets:A = ASparse ∪

ABad ∪ ACovered. Initially, |ABad | ≤ |A| = t ≤ tτ . In each

iteration of the sparsification phase, windows fromABad aremoved

to ACovered. The upper bound on |ABad | decreases by tϵτ -factor
in each iteration.

Step A: Estimating density of A-windows. For each a ∈ A, we

sample t1/2−ϵτ log
2 (n) Bτ -windowsb at random and query ED(b,a).

We place a in ABad if at least
1

2
log

2 (n) of the samples are within

edit distance τ . Otherwise, we place it inASparse and ignore it until

Step C of the algorithm.

Complexity: We spend Õ (t1/2τ) queries for each a ∈ ABad, hence

a total of Õ (t3/2τ).

Step B-д. An iteration of the sparsification phase. In each iteration of

the sparsification phase, we enumerate over the Bτ -windows. For

each window b that has not already been marked dense in previous

iterations, we sample
|ABad | log

2 (n)
degд

ABad-windows a at random

and query ED(b,a). We say that b is dense if at least 1

2
log

2 (n) of
the samples are within edit distance τ .

If b is dense, we query its entire NABad,τ (b),N Bτ ,2τ (b) neigh-
borhoods. We (implicitly) add edges with cost 3τ for every pair in

NABad,τ (b) × N Bτ ,2τ (b), and move the windows in NABad,τ (b)
to ACovered.

If the number of ABad windows becomes at most t1/2τ at any

point, we exhaustively find all their neighbors in Bτ and move

them to ACovered.

Approximation. By triangle inequality, every pair of windows in

NABad,τ (b) × N Bτ ,2τ (b) has edit distance at most 3τ . Notice also
that by triangle inequality N Bτ ,τ (NABad,τ (b)) ⊆ N Bτ ,2τ (b), i.e.
we have discovered all the (Bτ ,τ)-neighbors of all the ACovered-

windows.

Complexity: We maintain the bound that at the beginning of

the д-th iteration, |ABad | = O (t
1−(д−1)
τ) = O (t1/2τ degд). Hence,

similarly to Step A, we spend Õ (t1/2τ) queries for estimating the

degree of each b ∈ Bτ , for a total of Õ (t3/2τ).
Every time we discover a dense b, we query its edit distance

to ≤ t + tτ windows, and decrease by Ω(degд) the number of

remaining ABad-windows. Recall that we start the д-th iteration

with at most O (t
1−(д−1)ϵ
τ) = O (t1/2τ degд) ABad-windows. Hence

in total this step requires O ((t + tτ) · t
1/2
τ) = O (t3/2τ) queries.

The sparsification phase: iterating over Step B-д. We iteratively ap-

ply Step B-д O (1/ϵ) times. At the end of the д-th iteration, every

remaining Bτ -window has at most degд = t
1/2−(д−1)ϵ
τ remaining

(ABad,τ)-neighbors. Hence the total number of τ -close pairs in

Bτ ×ABad is t
3/2−(д−1)ϵ
τ . Since everyABad window has Ω(t1/2+ϵτ)

(Bτ ,τ)-neighbors
4
, we have that |ABad | = O (t

1−(д)ϵ
τ).

Step C. Sparse windows. We process theASparse-windows as in the

sparse case in Section 5 (for completeness, we spell out the details

below). This algorithm is somewhat simpler than Section 5 since

we already determined in advance which windows are sparse and

which are dense.

Intervals (first iteration): Consider a partition of [n] into t1/2+2ϵτ
contiguous intervals of length n/t1/2+2ϵτ ≤ t1/2−2ϵτ · d . For A we

define theA-interval IA corresponding to interval I ⊂ [n] as the set

of ≤ t1/2−2ϵτ windows with indices in I . Therefore, for A-windows
they are either entirely contained in the interval or don’t intersect it.

4
Notice that the number of remaining neighbors for a ∈ ABad does not change during

the run of the sparsification phase, since once any of a’s neighbors is declared dense,
we move a to ACovered .

667

STOC ’20, June 22–26, 2020, Chicago, IL, USA Elazar Goldenberg, Aviad Rubinstein, and Barna Saha

For B, we let I/ϵ denote a 1/ϵ-factor expansion of I (i.e. the interval
of length |I |/ϵ centered at I)5. We define the Bτ -interval IBτ to be

the set of windows that intersect I/ϵ . When clear from context we

sometimes just call IA , IBτ intervals.

Sparse subroutine (first iteration): For each interval IA , if at most

log
2 (n) of its windows are sparse, we simply query their entire

(Bτ ,τ)-neighborhoods. Otherwise, we sample a random set S (IA)
of log

2 (n) windows from IA ∩ASparse. For every window in S (IA),
we query its entire (Bτ ,τ)-neighborhood using tτ queries. For

each interval IA we record the union of all Õ (t1/2+ϵτ) intervals ÎBτ
that contain any (Bτ ,τ)-neighbors of any of the sparse samples

a ∈ S (IA). We call these B-windows the relevant windows for the
windows in IA . We henceforth no longer look to match windows

from IA to irrelevantB-windows. Note that in a low-skewmapping,

if at least one of the samples is matched, then windows in IA cannot

be mapped to any irrelevant B-windows under that mapping.

Approximation (first iteration): Recall that by Lemma 5.1 and

Lemma 5.2, there is a low-skew monotone mapping that approx-

imates the optimal transformation to within (1 + O (ϵ))-factor.
For any low-skew monotone mapping µ, the entire interval IA
is mapped to a single Bτ -interval IBτ . Suppose that (1−ϵ)-fraction
of the sparse windows in IA are mapped to Bτ -windows (or ⊥) of

distance greater than τ . Then we can safely discard the τ -edges for
the remaining ϵ-fraction of sparse windows with negligible loss in

approximation factor. Hence in total we pay only (1 +O (ϵ))-factor
in approximation for sparse windows. Otherwise, w.h.p. at least

one of the samples has a (Bτ ,τ)-neighbor in IBτ .

Complexity (first iteration): Each sparse A-window has only

Õ
(
t1/2+ϵτ · t1/2−2ϵτ

)
= Õ (t1−ϵτ) relevant windows. Since there are

t1/2+2ϵτ A-intervals, we spend use a total of Õ (t3/2+ϵτ) queries.

Recursion. We recurse on the sparse subroutine, with the follow-

ing modifications for the ℓ-th iteration.

• We increase the number of intervals to t
1/2+(ℓ+2)ϵ
τ , and their

size decreases accordingly to Õ (t
1/2−(ℓ+2)ϵ
τ).

• For each sparse sample, we only compute the restriction of

its (Bτ ,τ)-neighborhood to relevant windows. Hence we

only spend Õ
(
t1−ℓϵτ

)
queries for each sample, or a total of

Õ
(
t3/2+ϵτ

)
queries across all intervals.

• The relevant windows for the next level of recursion are a

(strict) subset of the relevant windows in the current level.

The recursion continues until each interval has less than log
2 (n)

sparse windows, after which we can simply query the distance of

every remaining sparse window to all its relevant Bτ -windows.

Completing the proof of Theorem 6.1. As we argued above, the al-

gorithm finds a (3 + ϵ)-approximation using Õ (t3/2+ϵτ) queries.
Taking ϵ to be slightly sub-constant completes the proof of Theo-

rem 6.1. □

5
For example, if I = [20, 30] then its 3-expansion is [10, 40].

7 HARDNESS
In this section we formalize, in the context of (approximate) edit

distance, the folklore intuition (based on [48]) that polynomial

preprocessing can not circumvent fine-grained complexity lower

bounds. In Subsection 7.1 we show that known fine-grained com-

plexity hardness results for exact edit distance and related problems

extend to accommodate polynomial preprocessing.

In Subsection 7.2 we consider the problem of edit distance ap-

proximation. There are essentially no conditional hardness re-

sults for this problem, and in fact recent work obtained a truly-

subquadratic constant factor approximation algorithm [22]. Im-

proving this factor, and in particular obtaining a truly-subquadratic

(1 + ϵ)-approximation factor, is perhaps the most important open

problem in this area. There are evidences that providing 1 + o(1)-
factor approximation might be hard, as it implies new circuit lower

bounds [1]. Theorem 7.4 shows that essentially any approximation

factor that is obtained with polynomial preprocessing can also be

obtained without it. Note that this holds unconditionally, even if

(BP)-SETH is false.

7.1 SETH-Hardness of Exact String Alignment
with Preprocessing

The Strong Exponential Time Hypothesis is an (extreme) strength-

ening of P , NP postulating that k-SAT on n variables requires

2
(1−δk)n time. Building on [3], we can prove our hardness based

on the milder BP-SETH which replaces k-CNF with a branching

program:

Hypothesis 1 (BP-SETH). Given a branching program over n vari-

ables of widthW and length T such that TW = 2
o (n)

, deciding

whether it has a satisfying assignment requires time 2
(1−o (1))n

time.

Theorem 7.1 (BP-SETH hardness). Unless BP-SETH is false,
there is no algorithm that preprocesses two input strings in polyno-
mial time and then computes their (edit distance / longest common
subsequence / dynamic time warping) in truly-subquadratic time.

Remark. We remark that unlike with k-SAT, it is plausible that

the brute-force algorithm for BP-SAT is optimal to within poly(n)
factors, and in fact better algorithms would imply new circuit

lower bounds ([3] and references therein). Under a correspond-

ing strengthening of BP-SETH one can show that string alignment

with preprocessing requires N 2/polylog(N) time.

The proof of Theorem 7.1 builds on alignment gadgets and nor-
malized vector gadgets (NVG) from previous works on SETH and BP-

SETH hardness of string alignment [3, 11, 20]. Each NVG represents

a half-assignment to the branching program, and the alignment

gadgets define a composition of the NVGs into two long strings.

Here we deviate from typical SETH-hardness proofs of sequence

similarity, and use a divide-and-conquer approach of [48] to con-

struct two larger sets of shorter strings. This allows us to reuse

the preprocessing of each shorter string when we compare every

pair to look for a satisfying assignment (aka a satisfying pair of

half-assignments).

Below we use dist() to refer to the distance under the rele-

vant similarity measure (edit distance / longest common subse-

quence / dynamic time warping); for longest common subsequence

668

Does Preprocessing Help in Fast Sequence Comparisons? STOC ’20, June 22–26, 2020, Chicago, IL, USA

we use the “co-LCS” (edit-distance-without-substitutions) distance

dist(A,B) := n − LCS(A,B).

Normalized Vector Gadgets. Given a BP φ of widthW and length

T , normalized vector gadgets (NVG) map half assignments a,b ∈

{0, 1}n/2 into strings such that:

dist(NVGA (a),NVGB (b)) =



cT if assignment (a ◦ b) satisfies φ;

cF otherwise

,

where cT < cF are integers that depend onW ,T .

Lemma 7.2 (Normalized Vector Gadgets [3]). Given a BP of
widthW and length T , we can construct NVGs of length TO (log(W)))

for all half assignments a,b ∈ {0, 1}n/2 in time 2n/2 ·TO (log(W))).

Alignment Gadgets. Consider two ordered sets of strings A,B of

cardinalities nA < nB , respectively. An alignment µ is a monotone

partial mapping fromA to B ∪ {⊥}. An alignment µ is structured if
it maps the i-th string in A to the i + ∆ string in B for some fixed

shift ∆ and for all a ∈ A.

The cost of a mapping µ is defined by:

cost(µ,A,B) :=
∑
a∈A

dist(a, µ (a)).

Here dist(a,⊥) := maxa′∈A,b ∈B dist(a′,b).
An alignment gadget is a mapping from A,B into respective

strings GAA (A),GAB (B) such that for some parameter cGA =
c (nA,nB):

min

alignment µ
cost(µ,A,B) ≤ dist(GAA (A),GAB (B)) + cGA

≤ min

structured alignment µ
cost(µ,A,B). (5)

Lemma 7.3 (Alignment gadgets [20]). Edit distance, LCS (with
binary alphabet), and Dynamic Time Warping admit alignment gad-
gets that can be computed in linear time.

Completing the Proof of BP-SETH-Hardness.

Proof of Theorem 7.1. Suppose that we have an algorithm that

computes dist() for strings of length N with preprocessing time

O (N t) and query time O (N 2−ϵ). Given a BP over n = 2 log
2
(N)

variables, we construct all its normalized vector gadgets in near-

linear time as in Lemma 7.2.

We partition the A-NVGs into 2
(1−1/t)n

subsets

A1, . . .A2
(1−1/t)n of size 2

n/t
each (and likewise for B). For

each subset Ai , we construct its alignment gadget Ai of size

Õ (N 1/t). For Bj , let Bj be constructed by the alignment gadget for

the set repeated twice. If no pair of half-assignments corresponding

to Ai × Bj satisfies the BP, then every pair of NVGs is at distance

cF , and by (5) the distance of Ai ,Bj will be dF := 2
n/tcF − cGA .

If there is a satisfying pair, then the structured alignment that

matches the corresponding NVGs will have cost at most

dT := cT + (2n/t − 1)cF − cGA < dF .

We preprocess all the strings in total time Õ
(
N 1−1/t · (N 1/t)t

)
=

Õ (N 2−1/t). Finally, we compute the distance between all (N 1−1/t)2

pairs in time O
(
N 2−2/t · (N 1/t)2−ϵ

)
= O

(
N 2−2ϵ/t

)
. The BP is

satisfiable iff at least one of the pairs is at distance at most dT . □

7.2 Preprocessing Doesn’t Help for
Approximate ED in Truly-Subquadratic
Time

Theorem 7.4 (Hardness of Approximation). If there is an α-
approximation algorithm for edit distance that runs in polynomial
preprocessing time and truly-subquadratic query time, then there is an
(α + o(1))-approximation algorithm that runs in truly-subquadratic
time with no preprocessing.

The proof combines the divide-and-conquer steps from our ap-

proximate edit distance algorithm (Section 5) with that of [48] (see

also last step in the proof of Theorem 7.1).

Proof. Suppose that there exists an algorithm that computes

an α-approximation of edit distance using O (nt)-preprocessing
and O (n2−ϵ)-query time. First, we assume wlog that the true edit

distance is k = ω (n1−1/2t), otherwise we can solve the problem in

time O (n2−1/t) using the algorithm of [35]. In particular, we can

henceforth neglect additive errors of O (n1−1/2t).
Using the notation of Section 5.2, we decompose the strings

into windows with base width d := n1/t . The A-windows have no
overlap, and for the B-windows we consider Bτ for τ = n−1/2t .

Hence we have Õ (n1−1/t) A-windows and Õ (n1−1/2t) B-windows,
all of length O (n1/t).

We preprocess all the windows in time

Õ
(
n1−1/2t · (n1/t)t

)
= Õ

(
n2−1/2t

)
.

We then run the α-approximate edit distance algorithm on pairs

of windows. By the argument of [47], it suffices to only compute

the distances between pairs of windows whose starting points are

within ±k far apart. In particular for every A-window, we only

need to compute the edit distance to Õ (n1−1/t) B-windows. In total

we spend Õ
(
(n1−1/t)2 · (n1/t)2−ϵ

)
= Õ

(
n2−ϵ/t

)
time on this phase.

Given the α-approximate window-window distance estimates,

we aggregate them in time Õ (n2−2/t) using Lemma 5.3. Thus we ob-

tain an α-approximation to the optimal window-compatible match-

ing, which by Lemma 5.1, is an (α +o(1))-approximation to the edit

distance. □

REFERENCES
[1] Amir Abboud and Arturs Backurs. 2017. Towards Hardness of Approximation

for Polynomial Time Problems. In 8th Innovations in Theoretical Computer Science
Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA. 11:1–11:26. https:

//doi.org/10.4230/LIPIcs.ITCS.2017.11

[2] Amir Abboud and Karl Bringmann. 2018. Tighter Connections Between Formula-

SAT and Shaving Logs. In 45th International Colloquium on Automata, Languages,
and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic. 8:1–8:18.
https://doi.org/10.4230/LIPIcs.ICALP.2018.8

[3] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and

Ryan Williams. 2016. Simulating branching programs with edit distance and

friends: or: a polylog shaved is a lower bound made. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016. 375–388. https://doi.org/10.1145/2897518.2897653

[4] Amir Abboud, Aviad Rubinstein, and R. Ryan Williams. 2017. Distributed PCP

Theorems for Hardness of Approximation in P. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17,
2017. 25–36. https://doi.org/10.1109/FOCS.2017.12

[5] Amir Abboud and Virginia Vassilevska Williams. 2019. Personal communication.

[6] Alexandr Andoni. 2019. Simpler Constant-Factor Approximation to Edit Distance

Problems. In preparation.

[7] Alexandr Andoni, Michel Deza, Anupam Gupta, Piotr Indyk, and Sofya Raskhod-

nikova. 2003. Lower bounds for embedding edit distance into normed spaces.

In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete

669

https://doi.org/10.4230/LIPIcs.ITCS.2017.11
https://doi.org/10.4230/LIPIcs.ITCS.2017.11
https://doi.org/10.4230/LIPIcs.ICALP.2018.8
https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1109/FOCS.2017.12

STOC ’20, June 22–26, 2020, Chicago, IL, USA Elazar Goldenberg, Aviad Rubinstein, and Barna Saha

Algorithms, January 12-14, 2003, Baltimore, Maryland, USA. 523–526. http:

//dl.acm.org/citation.cfm?id=644108.644196

[8] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. 2010. Polylog-

arithmic Approximation for Edit Distance and the Asymmetric Query Com-

plexity. In 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA. 377–386. https:

//doi.org/10.1109/FOCS.2010.43

[9] Alexandr Andoni and Huy L. Nguyen. 2010. Near-Optimal Sublinear Time

Algorithms for Ulam Distance. In Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January
17-19, 2010. 76–86. https://doi.org/10.1137/1.9781611973075.8

[10] Alexandr Andoni and Krzysztof Onak. 2012. Approximating Edit Distance in

Near-Linear Time. SIAM J. Comput. 41, 6 (2012), 1635–1648. https://doi.org/10.

1137/090767182

[11] Arturs Backurs and Piotr Indyk. 2018. Edit Distance Cannot Be Computed in

Strongly Subquadratic Time (Unless SETH is False). SIAM J. Comput. 47, 3 (2018),
1087–1097. https://doi.org/10.1137/15M1053128

[12] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. 2004. Ap-

proximating Edit Distance Efficiently. In 45th Symposium on Foundations of Com-
puter Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings. 550–559.
https://doi.org/10.1109/FOCS.2004.14

[13] Tugkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova,

Ronitt Rubinfeld, and Rahul Sami. 2003. A sublinear algorithm for weakly

approximating edit distance. In Proceedings of the 35th Annual ACM Sympo-
sium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA. 316–324.
https://doi.org/10.1145/780542.780590

[14] Tugkan Batu, Funda Ergün, and Süleyman Cenk Sahinalp. 2006. Oblivious string

embeddings and edit distance approximations. In Proceedings of the Seventeenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida,
USA, January 22-26, 2006. 792–801. http://dl.acm.org/citation.cfm?id=1109557.

1109644

[15] Djamal Belazzougui and Qin Zhang. 2016. Edit Distance: Sketching, Streaming,

and Document Exchange. In IEEE 57th Annual Symposium on Foundations of
Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick,
New Jersey, USA. 51–60. https://doi.org/10.1109/FOCS.2016.15

[16] Omri Ben-Eliezer, Clément L. Canonne, Shoham Letzter, and Erik Waingarten.

2019. Finding monotone patterns in sublinear time. CoRR abs/1910.01749 (2019).

arXiv:1910.01749 http://arxiv.org/abs/1910.01749

[17] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Mohammad Taghi Haji-

aghayi, and Saeed Seddighin. 2018. Approximating Edit Distance in Truly Sub-

quadratic Time: Quantum andMapReduce. In Proceedings of the Twenty-Ninth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018. 1170–1189. https://doi.org/10.1137/1.9781611975031.76

[18] Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. 2016. Efficient

Low-redundancy Codes for Correcting Multiple Deletions. In Proceedings of the
Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
’16).

[19] Joshua Brakensiek and Aviad Rubinstein. 2019. Constant-factor approximation

of near-linear edit distance in near-linear time. CoRR abs/1904.05390 (2019).

arXiv:1904.05390 http://arxiv.org/abs/1904.05390

[20] Karl Bringmann and Marvin Künnemann. 2015. Quadratic Conditional Lower

Bounds for String Problems and Dynamic Time Warping. In IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015. 79–97. https://doi.org/10.1109/FOCS.2015.15

[21] Karl Bringmann and Marvin Künnemann. 2018. Multivariate Fine-Grained Com-

plexity of Longest Common Subsequence. In Proceedings of the Twenty-Ninth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018. 1216–1235. https://doi.org/10.1137/1.9781611975031.79

[22] Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and

Michael E. Saks. 2018. Approximating Edit Distance within Constant Factor in

Truly Sub-Quadratic Time. In 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018. 979–990. https:

//doi.org/10.1109/FOCS.2018.00096

[23] Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. 2016. Stream-

ing algorithms for embedding and computing edit distance in the low distance

regime. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016. 712–725.

[24] Moses Charikar, Ofir Geri, Michael P. Kim, and William Kuszmaul. 2018. On

Estimating Edit Distance: Alignment, Dimension Reduction, and Embeddings. In

45th International Colloquium on Automata, Languages, and Programming, ICALP
2018, July 9-13, 2018, Prague, Czech Republic. 34:1–34:14. https://doi.org/10.4230/

LIPIcs.ICALP.2018.34

[25] Moses Charikar and Robert Krauthgamer. 2006. Embedding the Ulam metric into

l
1
. Theory of Computing 2, 11 (2006), 207–224. https://doi.org/10.4086/toc.2006.

v002a011

[26] Lijie Chen, Shafi Goldwasser, Kaifeng Lyu, Guy N. Rothblum, and Aviad Ru-

binstein. 2019. Fine-grained Complexity Meets IP = PSPACE. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019,
San Diego, California, USA, January 6-9, 2019. 1–20. https://doi.org/10.1137/1.

9781611975482.1

[27] Elazar Goldenberg, Robert Krauthgamer, and Barna Saha. 2019. Sublinear Al-

gorithms for Gap Edit Distance. FOCS abs/1910.00901 (2019). arXiv:1910.00901
http://arxiv.org/abs/1910.00901

[28] Bernhard Haeupler. 2019. Optimal Document Exchange and New Codes for

Insertions and Deletions. In 60th IEEE Annual Symposium on Foundations of
Computer Science, FOCS.

[29] Bernhard Haeupler, Aviad Rubinstein, and Amirbehshad Shahrasbi. 2019. Near-

linear time insertion-deletion codes and (1+ϵ)-approximating edit distance via

indexing. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019. 697–708.

[30] MohammadTaghi Hajiaghayi, Masoud Seddighin, Saeed Seddighin, and Xiaorui

Sun. 2019. Approximating LCS in Linear Time: Beating the

√
n Barrier. In

Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2019, San Diego, California, USA, January 6-9, 2019. 1181–1200.
https://doi.org/10.1137/1.9781611975482.72

[31] Piotr Indyk. 2004. Approximate Nearest Neighbor under edit distance via product

metrics. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004. 646–
650. http://dl.acm.org/citation.cfm?id=982792.982889

[32] Guy Jacobson and Kiem-Phong Vo. 1992. Heaviest Increasing/Common Sub-

sequence Problems. In Combinatorial Pattern Matching, Third Annual Sympo-
sium, CPM 92, Tucson, Arizona, USA, April 29 - May 1, 1992, Proceedings. 52–66.
https://doi.org/10.1007/3-540-56024-6_5

[33] Hossein Jowhari. 2012. Efficient Communication Protocols for Deciding Edit

Distance. In Proceedings of the 20th Annual European Conference on Algorithms
(Ljubljana, Slovenia) (ESA’12). 648–658.

[34] Michal Koucký and Michael E. Saks. 2019. Constant factor approximations to

edit distance on far input pairs in nearly linear time. CoRR abs/1904.05459 (2019).

arXiv:1904.05459 http://arxiv.org/abs/1904.05459

[35] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. 1998. Incremental

String Comparison. SIAM J. Comput. 27, 2 (1998), 557–582. https://doi.org/10.

1137/S0097539794264810

[36] Gad M. Landau and Uzi Vishkin. 1988. Fast String Matching with k Differences. J.
Comput. Syst. Sci. 37, 1 (1988), 63–78. https://doi.org/10.1016/0022-0000(88)90045-
1

[37] VI Levenshtein. 1966. Binary Codes Capable of Correcting Deletions, Insertions

and Reversals. Soviet Physics Doklady 10 (1966), 707.

[38] Wei Lu, Xiaoyong Du, Marios Hadjieleftheriou, and Beng Chin Ooi. 2014. Ef-

ficiently Supporting Edit Distance Based String Similarity Search Using B

$ˆ+$-Trees. IEEE Trans. Knowl. Data Eng. 26, 12 (2014), 2983–2996. https:

//doi.org/10.1109/TKDE.2014.2309131

[39] Eugene W. Myers. 1986. An O(ND) Difference Algorithm and Its Variations.

Algorithmica 1, 2 (1986), 251–266. https://doi.org/10.1007/BF01840446

[40] Ilan Newman, Yuri Rabinovich, Deepak Rajendraprasad, and Christian Sohler.

2019. Testing for forbidden order patterns in an array. Random Struct. Algorithms
55, 2 (2019), 402–426. https://doi.org/10.1002/rsa.20840

[41] Rafail Ostrovsky and Yuval Rabani. 2007. Low distortion embeddings for edit

distance. J. ACM 54, 5 (2007), 23. https://doi.org/10.1145/1284320.1284322

[42] Aviad Rubinstein. 2018. Approximating Edit Distance. https://theorydish.blog/

2018/07/20/approximating-edit-distance/.

[43] Aviad Rubinstein. 2018. Hardness of approximate nearest neighbor search. In

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018. 1260–1268. https://doi.org/10.

1145/3188745.3188916

[44] Aviad Rubinstein, Saeed Seddighin, Zhao Song, and Xiaorui Sun. 2019. Approx-

imation Algorithms for LCS and LIS with Truly Improved Running Times. In

FOCS 2019. To appear.

[45] Aviad Rubinstein and Zhao Song. 2019. Reducing approximate Longest Com-

mon Subsequence to approximate Edit Distance. CoRR abs/1904.05451 (2019).

arXiv:1904.05451 http://arxiv.org/abs/1904.05451

[46] Michael E. Saks and C. Seshadhri. 2017. Estimating the Longest Increasing

Sequence in Polylogarithmic Time. SIAM J. Comput. 46, 2 (2017), 774–823. https:

//doi.org/10.1137/130942152

[47] Esko Ukkonen. 1985. Algorithms for Approximate String Matching. Information
and Control 64, 1-3 (1985), 100–118. https://doi.org/10.1016/S0019-9958(85)80046-
2

[48] Virginia VassilevskaWilliams and R. RyanWilliams. 2018. Subcubic Equivalences

Between Path, Matrix, and Triangle Problems. J. ACM 65, 5 (2018), 27:1–27:38.

https://doi.org/10.1145/3186893

670

http://dl.acm.org/citation.cfm?id=644108.644196
http://dl.acm.org/citation.cfm?id=644108.644196
https://doi.org/10.1109/FOCS.2010.43
https://doi.org/10.1109/FOCS.2010.43
https://doi.org/10.1137/1.9781611973075.8
https://doi.org/10.1137/090767182
https://doi.org/10.1137/090767182
https://doi.org/10.1137/15M1053128
https://doi.org/10.1109/FOCS.2004.14
https://doi.org/10.1145/780542.780590
http://dl.acm.org/citation.cfm?id=1109557.1109644
http://dl.acm.org/citation.cfm?id=1109557.1109644
https://doi.org/10.1109/FOCS.2016.15
http://arxiv.org/abs/1910.01749
http://arxiv.org/abs/1910.01749
https://doi.org/10.1137/1.9781611975031.76
http://arxiv.org/abs/1904.05390
http://arxiv.org/abs/1904.05390
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1137/1.9781611975031.79
https://doi.org/10.1109/FOCS.2018.00096
https://doi.org/10.1109/FOCS.2018.00096
https://doi.org/10.4230/LIPIcs.ICALP.2018.34
https://doi.org/10.4230/LIPIcs.ICALP.2018.34
https://doi.org/10.4086/toc.2006.v002a011
https://doi.org/10.4086/toc.2006.v002a011
https://doi.org/10.1137/1.9781611975482.1
https://doi.org/10.1137/1.9781611975482.1
http://arxiv.org/abs/1910.00901
http://arxiv.org/abs/1910.00901
https://doi.org/10.1137/1.9781611975482.72
http://dl.acm.org/citation.cfm?id=982792.982889
https://doi.org/10.1007/3-540-56024-6_5
http://arxiv.org/abs/1904.05459
http://arxiv.org/abs/1904.05459
https://doi.org/10.1137/S0097539794264810
https://doi.org/10.1137/S0097539794264810
https://doi.org/10.1016/0022-0000(88)90045-1
https://doi.org/10.1016/0022-0000(88)90045-1
https://doi.org/10.1109/TKDE.2014.2309131
https://doi.org/10.1109/TKDE.2014.2309131
https://doi.org/10.1007/BF01840446
https://doi.org/10.1002/rsa.20840
https://doi.org/10.1145/1284320.1284322
https://theorydish.blog/2018/07/20/approximating-edit-distance/
https://theorydish.blog/2018/07/20/approximating-edit-distance/
https://doi.org/10.1145/3188745.3188916
https://doi.org/10.1145/3188745.3188916
http://arxiv.org/abs/1904.05451
http://arxiv.org/abs/1904.05451
https://doi.org/10.1137/130942152
https://doi.org/10.1137/130942152
https://doi.org/10.1016/S0019-9958(85)80046-2
https://doi.org/10.1016/S0019-9958(85)80046-2
https://doi.org/10.1145/3186893

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 More Context on Our Results
	1.3 Open Problems

	2 Small Ulam distance
	3 Small Edit Distance
	4 Preprocessing a Single String: Answering Gap Edit Distance in Sublinear Time
	4.1 Preprocessing Algorithm
	4.2 Query Algorithm

	5 Large edit distance, 7+-approx
	5.1 High Level Description of the Algorithm
	5.2 Decomposition into Variable Sized Windows
	5.3 Reduction to Estimating Window Costs
	5.4 Close-Window Graphs and the Preprocessing Phase
	5.5 Query Phase Algorithm

	6 No preprocessing: 3+o(1)-approx in n1.6+o(1) time
	7 Hardness
	7.1 SETH-Hardness of Exact String Alignment with Preprocessing
	7.2 Preprocessing Doesn't Help for Approximate ED in Truly-Subquadratic Time

	References

