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ABSTRACT

We study edit distance computation with preprocessing: the pre-
processing algorithm acts on each string separately, and then the
query algorithm takes as input the two preprocessed strings. This
model is inspired by scenarios where we would like to compute
edit distance between many pairs in the same pool of strings.

Our results include:

Permutation-LCS: If the LCS between two permutations has length
n — k, we can compute it exactly with O(nlog(n)) preprocessing
and O(k log(n)) query time.

Small edit distance: For general strings, if their edit distance is at
most k, we can compute it exactly with O(nlog(n)) preprocessing
and O(k? log(n)) query time.

Approximate edit distance: For the most general input, we can
approximate the edit distance to within factor (7 + o(1)) with pre-
processing time O(n?) and query time O(n!-5+0()),

All of these results significantly improve over the state of the
art in edit distance computation without preprocessing. Interest-
ingly, by combining ideas from our algorithms with preprocessing,
we provide new improved results for approximating edit distance
without preprocessing in subquadratic time.
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1 INTRODUCTION

Edit distance (aka Levenshtein distance) [37] and longest common
subsequence are widely used distance measures between pairs of
strings, over some alphabet X. They find applications in several
fields like computational biology, pattern recognition, text pro-
cessing, information retrieval and many more. The edit distance
between A and B, denoted by ED(A, B), is defined as the minimum
number of character insertions, deletions, and substitutions needed
for converting A into B. The longest common subsequence of A and
B, denoted by LCS(A, B), is defined as the longest subsequence com-
mon to A and B. A simple dynamic program solves this problem in
quadratic time. Moreover under reasonable hardness assumptions
like SETH and BP-SETH no real subquadratic time algorithm for
these problems exists [2, 3, 11, 20].

While dealing with huge amounts of data (such as DNA chains,
enormous storage, etc.), quadratic-time algorithms are unaffordable.
This raised an active and extensive line of work on moving from
quadratic-time exact computation towards (near)-linear time for
approximation algorithms [6, 8, 10, 12-14, 17, 19, 22, 24, 29, 30, 44,
45], and even designing sub-linear time algorithms for special cases
such as restriction on the distance between the input sequences [10,
13, 27] or permutations [9, 16, 25, 40, 44, 46].

In many of these applications, a large number of very long strings
from a database must be compared among each other (such as com-
parative genomics, comparing text corpora for documents similarity
etc.). For example, in string similarity join, which is a fundamental
problem in databases, one needs to find all pairs of strings (e.g.,
genome sequences) in a database that are close with respect to edit
distance [15].This in particular motivates developing sub-linear
time algorithms. But, unfortunately even under strong assumptions,
the known guarantees for sub-linear time algorithms (including
recent works by the authors) are unsatisfactory. For example, recent
work [27] requires ©(f + k®)-time, and with a highly non-trivial
algorithm can barely distinguish between edit distance k and k2.
Even when the strings are both permutations and k-close to each
other, [9]’s nearly-optimal algorithm runs in time é(% + +/n) and
still only approximates the edit distance (to within some large con-
stant factor). In part this is due to strong lower bounds: for example,
when the edit distance is k < n, in order to have any chance of
observing any difference between the strings, the algorithm must
see Q(7) characters.

Our main contribution is a simple and natural augmenta-
tion to the standard model: preprocessing. Formally, we con-
sider two parties that preprocess each input string independently,
and then in a query phase they jointly (approximately) compute an
optimal alignment. Because the preprocessing of the two strings is
done independently, (i) the same preprocessing of one string can
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be useful for many comparisons, and (ii) the preprocessing step can
be fully parallelized in any distributed system.

In this paper we raise the question of whether preprocessing the
input can accelerate the computation of the edit distance between
input strings and computing their longest common subsequence.
We affirmatively answer these questions by providing several algo-
rithms that beat the state of the art algorithms where no preprocess-
ing is allowed. Our results include faster algorithms for the tasks of
exact computation of edit distance and permutation LCS. We also
provide a better trade off between running time and approximation
factor for edit distance approximation.

We note in particular that when the preprocessing runs in near-
linear time (as is the case with all our sublinear-time algorithms),
it is essentially for free in the sense that it is barely more than it
took to record and store the inputs in the first place. Even when
preprocessing takes super-linear time, it could be much more cost-
effective to have it when dealing with large number of strings.
Preprocessing captures a middle ground between (i) aforementioned
works on (approximate) edit distance between two long strings; and
(if) works on approximate closest pair or nearest neighbor among
a large number of short strings [4, 7, 25, 26, 31, 38, 41, 43]. Our
preprocessing algorithms are most appealing when both the length
and number of strings are large.

Preprocessing is also closely related to sketching [12, 15]. With
an efficient sketching algorithm, we can preprocess a string to
compute a small-sized sketch and then only compare the sketches
during querying. The state of the art result in edit distance sketching
has a preprocessing time of O(nk?) and query time of poly(k log n)
[15]. Our algorithms get significantly better trade-offs. There are
numerous works on related but different models such as comput-
ing embedding of edit distance [7, 23, 25, 41], document exchange
protocols [15, 28, 33] and error-correcting codes for insertions and
deletions [18, 28, 29].

1.1 Contributions

In the preprocessing model we provide much faster and simpler!
algorithms that output much better alignments:

Permutation-LCS If the LCS between two permutations has
length n — k, we can compute it exactly with O(nlog(n))
preprocessing and O(k log(n)) query time. Contrast this re-
sult with [9] where in O(% + 4/n), the ulam distance can be
approximated to within a large constant factor.

Small edit distance For general strings, if their edit distance
is at most k, we can compute it exactly with O(nlog(n))
preprocessing and O(k? log(n)) query time. Contrast this
result with [27] where in (5(% +k3) time, one can distinguish
if edit distance is below k or above ©(k?).

Approximate edit distance For the most general input, we
can approximate the edit distance to within factor (7 +
o(1)) with preprocessing time O(n? log(n)) and query time
O(n!-5+°(1)) Contrast this result with [6] where a f(e)-
approximation for edit distance can be computed in time
O(n'3%€) (f(€) goes to infinity as e decreases).

1Our first two algorithms are so simple that we could fully explain both in a single
STOC talk!
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What if we only preprocess one string? This setting is much
harder, but we can still beat state of the art without prepro-
cessing, namely distinguish k vs 3k% with O(n) preprocessing
and O(n/k + k?) query time.

These strong improvements run contrary to the fine-grained
complexity rule of thumb that preprocessing inputs does not help [48].
We also formalize a few conditional hardness results establishing
limitations of preprocessing for fast string alignment:

Exact alignment We show that assuming (BP)-SETH, even
after arbitrary polynomial-time preprocessing, computing
edit distance or LCS exactly requires near-quadratic query
time.

Approximate edit-distance We show that if we can a-
approximate edit distance in truly-subquadratic query time
with arbitrary polynomial preprocessing, then we can also
(a +o(1))-approximate it in truly-subquadratic time without
preprocessing (currently not known for any a < 3).

We remark that another related hardness result is known for the
case where we only preprocess one string: Abboud and Vassilevska-
Williams show that even polynomial space (exponential time) pre-
processing doesn’t help to break the near-quadratic time barrier
(assuming BP-SETH/poly) [5].

Approximate edit-distance without preprocessing
Interestingly, using our algorithms with preprocessing (for
small and large edit distance regime), we give the fastest
algorithm for approximating edit distance within 3 + €
approximation without preprocessing. Our algorithm runs
in O(n!-67°(1)) time whereas the best running time so far
was O(n!-09+o(1) [6].

1.2 More Context on Our Results

Below we explain how the parameters in our results compare to
existing literature without preprocessing. We note that another
feature of our algorithms is that they are all relatively simple. Even
our most technically involved contribution, the algorithm for gen-
eral edit distance, is significantly simpler than related literature
(e.g. [19, 34, 44]).

Permutation-LCS. Our O(k log(n)) query time is most closely
related to (and inspired by) the classic O(nlog(n)) for longest in-
creasing subsequence (LIS) without preprocessing. Note that for
exact computation, even after arbitrary preprocessing Q(k) bits of
communication are necessary, so our running time is tight up to
the log(n) factor. Contrasting to [9], we get exact result as opposed
to approximation and significantly better query time bounds for

k = 0(vn).

Small edit distance. Our O(k?log(n))-time algorithm is most
closely related to (and inspired by) a classic O(n+k?)-time algorithm
without preprocessing. Note that our near-n? SETH-lower-bound
for general edit distance with preprocessing extends to k? SETH-
lower-bound by a trivial padding argument (see also [21]). Hence
our running time is near-tight assuming (BP)-SETH. Contrasting
to [27], we again get exact result and better query time bound for
all regimes of k, even when we allow single string preprocessing.
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Table 1: Taxonomy of Algorithms Approximating Edit Distance

Authors Time Approximation Factor | comments

[22] oty [3+¢?

[6] o) |[3+e

This paper | O(n!-%*€) | 3+ ¢

[6] o) | A0

This paper | O(n'>*€) | 7+ ¢ using O(n?)-time preprocessing
[19, 34] O(n'+9) f2(8) +n1=5) additive error

Approximate edit distance. This result is most closely related to
(and inspired by) recent subquadratic time approximation algo-
rithms for edit distance [6, 17, 19, 22, 34]. Here, the state of the art
results include a (3 + €)-approximation in O(n'%/7) time [22] and
later improvement to time O(n!-) [6], f(¢)-approximation in time
O(n'-3%€) [6], or f’(e)-approximation in time O(n!*€) when the
true edit distance is large [19, 34] (here f, f’ are functions that go to
infinity as € decreases). While the improvement is not as dramatic
as for sublinear algorithms, after near-quadratic preprocessing, our
algorithm is clearly faster than [6, 22] (n'-> vs n1-%?), while obtain-
ing much better approximation guarantees than [6, 19, 34] (7 + € vs
f(€)). Interestingly, this algorithm combines ideas from aforemen-
tioned recent advances on approximate edit distance computation
[17, 19, 22, 42], together with our algorithm for small edit distance
computation with preprocessing. Even more surprisingly, by com-
bining ideas from our algorithms with preprocessing, we design
the fastest 3 + € approximation algorithm for edit distance without
any preprocessing.

1.3 Open Problems

We now describe a couple of exciting directions for future work

Preprocess one string: An appealing variant of our preprocessing
model is when only one of the string is preprocessed. (This is
motivated by a scenario where a single reference string is compared
to many strings that are only used once.) For sublinear algorithms,
we are able to get some improvement over state of the art, but the
Q(n/k) lower bound from communication complexity continues
to hold here. With subquadratic algorithms on the other hand, our
preprocessing algorithm has a natural variant that could be applied
to only one string. But so far we are unable to use it to obtain
significant improvement over no-preprocessing approximate edit
distance algorithms.

Open Question 1. What is the complexity of approximate edit
distance after preprocessing one of the strings?

Approximate edit distance in sub-linear time. A natural question
is whether we can combine ideas from our exact O(k?)-time algo-
rithm for small edit distance together with the O(n*-5t°)_time
approximation algorithm for general edit distance to approximate
small edit distance in truly sub-k? time. Alternatively, it may be pos-
sible to show unconditional lower bounds (e.g. via communication
complexity) for approximate edit distance in this regime.

Open Question 2. What is the complexity of approximate edit
distance with preprocessing when k <« n?
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Beyond string alignment? As discussed before, preprocessing is
particularly appealing when it runs in near-linear time and the
queries run in sub-linear time. In the context of string alignment,
there is a very natural notion of preprocessing where each string
is preprocessed separately. An interesting, open-ended direction
is to identify other problems in sub-linear algorithms where one
can define preprocessing models that are both natural and allow
for significant improvements.

Open Question 3. Define preprocessing models for other prob-
lems in sub-linear algorithms that are both natural and allow for
significant improvements.

2 SMALL ULAM DISTANCE

In this section, we prove Theorem 2.1 where with preprocessing
we can compute ulam distance (bounded by k) exactly in time

O(klog(n)).

THEOREM 2.1 (PERMUTATION-LCS). Given two permutations X, Y
of {1,...,n} with a common string of length at least n — k, we can
compute their LCS exactly with O(nlog(n))-time preprocessing and
O(k log(n))-time joint processing.

CrAIM 1 (STRUCTURE OF CLOSE PERMUTATIONS). If two permuta-
tions X, Y of {1, ..., n} share a common string of length at least n — k,
then they can be partitioned into O(k) contiguous blocks such that
each block of Y has an identical block in'Y.

Proor. The shared common string can be partitioned into at
most k + 1 blocks that are contiguous for X, and similarly for Y.
The coarsest refinement of both partitions is contiguous on both X
and Y and uses at most 2k + 1 blocks. O

Algorithm description. The preprocessing algorithm (Algorithm ??)
constructs log(n) + 1 hash tables. The £-th hash table corresponds
to window size 2¢; we use a rolling hash function (e.g. Rabin fin-
gerprint) to construct a hash table of all contiguous substrings of
X of length 2% in time O(n).

Algorithm 2 finds the partition into blocks guaranteed in Claim 1.
At each iteration of the algorithm, it finds the longest contiguous
substring of X, starting from XStart that has an identical contiguous
substring in Y. Using the prestored hashes, this is done in time
O(log(n)).

Finally, given the partition into blocks, we just have to solve a
heaviest increasing substring problem on the O(k) blocks (with
weights corresponding to block lengths). This can be done in time
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O(klog(k)) using a standard generalization of the classic LIS al-
gorithm (e.g. [32]). We provide pseudocode in Algorithm 3 for
completeness.

In the pseudocode below we sometimes abuse notation and think
of XY as functions from indices to characters, and similarly, we use
Y~! to denote the inverse of this function (i.e. given a character it
returns its index in Y.

Algorithm 1: PreprocEss(X)

1 n « length(X)
2 for £ =0...log(n) do
3 L H[£] « Rolling hash of X with window of length 2¢

4 return H

Algorithm 2: Algorithm CoMPRESss iteratively finds maximal
blocks [XStart...XEnd] in X that have a matching maximal block
[YStart..YEnd] in Y. At each iteration it first exponentially
increases the variable ¢ until ¢ := [log,(XEnd — XStart) |; it
then binary searches for the exact length of the block.

1 Algorithm: Compress(X, Hx, Y, Hy)
2 n « length(X)

3 XStart « 0

4 XBlocks « &

5 while XStart < n do
6 YStart < Y~1(X(XStart)) ;

starts of next block

// XStart,YStart = respective

7 €1

8 while ¢ < log(n) do

9 if Hx [¢][XStart] ¢ Hy[£] then
10 L break

11 —C+1

XEnd « XStart + 2¢

YEnd « YStart + 2¢

while £ > 0 do
{—{-1
if Hx [¢][XEnd] == Hy [¢][YEnd] then
L XEnd « XEnd + 2¢

YEnd < YEnd + 2¢
XBlocks « XBlocks U (XStart, XEnd — XStart)
| XStart < XEnd + 1

12
13
14
15
16
17

18

19

20

21 return XBlocks

3 SMALL EDIT DISTANCE

In this section, we prove our result on small edit distance, when the
edit distance is bounded by k. In particular, we prove Theorem 3.1.

THEOREM 3.1 (SMALL-EDIT). Given two strings A = ajay..a, and
B = biby..by of length n over alphabet 3, and a bound on their
edit distance, ED(A, B) < k, we can compute their edit distance
exactly with O(nlog (n))-time preprocessing and O(k? log (n))-time
Jjoint processing.

We first recall an algorithm developed in [35, 36, 39, 47] that
computes edit distance in O(n + k?) time.
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Algorithm 3: Algorithm HIS maintains data structure (bal-
anced binary search tree) Pareto, which stores the total weight
and Y-index of the last character of each common substring of
X and Y. The data structure is maintained sorted by Y-index,
and we only keep common substrings that are pareto-optimal
(in the sense that we want common substrings that are heavier
but end on lower Y-index).

1 Algorithm: HIS(XBlocks,Y)

2 k « length(XBlocks)

3 Pareto « new balanced binary search tree
4 Pareto.insert(0, 0)

5 fori=1...kdo
/* Add the next block to Pareto:

6 newY « Y~!(Xblock[i].start)
7 prevY « Pareto.prev(newY).Y

*/

8 prevWeight « Pareto.prev(newY).weight
9 newWeight « prevWeight + Xblock.weight
Pareto.insert(newY,newWeight)
/* Remove old blocks that are no longer
pareto-optimal: */
while newWeight > Pareto.next(newY).weight do
L Pareto.next(newY).delete()

13 return Pareto.max().weight

Warm-up: An O(n+k?) algorithm for Edit Distance. The well-known
dynamic programming algorithm computes an (n + 1) X (n + 1)
edit-distance matrix D[0...n][0...n] where entry D[i, j] is the edit
distance, ED(A!, B/) between the prefixes A[1, i] and B[1, j] of Aand
B, where A[1,1] = ajaz...a; and B[1, j] = b1b2...b;. The following is
well-known and easy to verify coupled with the boundary condition
D[i,0] = D[0,i] = iforalli € [0,n].
For all i,j € [0,n]

Dli—-1,j1+1 ifi > 0;
D[i,j] =min{ D[i,j—1]+1 ifj > 0;
Dli—1,j— 1]+ 1(a; 2 bj) ifi,j>o0.

The computation cost for this dynamic programming is O(n?).
To obtain a significant cost saving when ED(A, B) < k << n, the
O(n + k?) algorithm works as follows. It computes the entries of D
in a greedy order, computing first the entries with value 0, 1,2, ...k
respectively. Let diagonal d of matrix D, denotes all D[i, j] such
that j = i + d. Therefore, the entries with values in [0, k] are located
within diagonals [k, k]. Now since the entries in each diagonal of
D are non-decreasing, it is enough to identify for every d € [k, k],
and for all h € [0, k], the last entry of diagonal d with value h. The
rest of the entries can be inferred automatically. Hence, we are
overall interested in identifying at most (2k + 1) * k such points.
The O(n + k?) algorithm shows how building a suffix tree over a
combined string A$B (where $ is a special symbol not in X) helps
identify each of these points in O(1) time, thus achieving the desired
time complexity.

Let Lh (d) = max{i : D[i,i + d] = h}. The h-wave is defined by
Lh = (L' (=k), ..., LP(k)). Therefore, the algorithm computes Lh for
h =0, ..k in the increasing order of h until a wave e is computed
such that L¢(0) = n (in that case ED(A, B) = ¢), or the wave L¥
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is computed in the case the algorithm is thresholded by k. Given

L1, we can compute L" as follows.

Define

Equal(i, d) = max(q | Ali,q] = B[i +d. q])
q=i

Then, L°(0) = Equal(0,0) and

Equal(LP~1(d) + 1,d)
Equal(L""(d - 1), d)
Equal(L"~1(d + 1) + 1,d)

ifh—1>0;
ifd—1>-k,h > 1;
ifd+1,h+1<k.

LM (d) = max

Using a suffix tree of the combined string A$B, any Equal(i, d)
query can be answered in O(1) time. Next, we show that it is possi-
ble to preprocess each A and B separately so that even then each
Equal(i,d) query can be implemented in O(log n) time.

Preprocessing Algorithm. The preprocessing algorithm (Algo-
rithm 1) constructs log(n) + 1 hash tables just like in Section 2.
The ¢-th hash table corresponds to window size 2¢; we use a rolling
hash function (e.g. Rabin fingerprint) to construct a hash table of all
contiguous substrings of X of length 2¢ in time O(n). Since there
are logn + 1 levels, the overall preprocessing time is O(nlogn).
Let H4[£] store all the hashes for windows of length 20 of A and
similarly Hg[{] stores all the hashes for windows of length 20 of B.

Answering Equal(i,d) in O(logn) time. Equal(i, d) queries can be
implemented by doing a simple binary search over the presorted
hashes in O(log n) time. The pseudocode is given below. Suppose
Equal(i,d) = q. The first While loop (line 5-8) identifies the smallest
¢ > 0 such that g < 2¢. The next While loop does a binary search
for g between i + 2671 to i + 2.

Algorithm 4: Equaw(i, d, A, Ha, B, Hp)
1 n « length(A)

2 AStart « i, BStart «— i + d
3 {0

4 while ¢ < log(n) do
5

6

if Ha[€][AStart] # Hg[£][BStart] then
L break

7 C—C+1
AStart « i + 2671 BStart « i + d + 2¢71
AEnd « i+2¢ —1,BEnd — i+d +2¢ -1
Mid — (AEndfgstartJrl)
while Mid > 1do
if H4[Mid][AStart] == Hg[Mid][BStart] then
L AStart « AStart + Mid, BStart « BStart + Mid

o

©

10

1

oy

12
13

else
L AEnd « AEnd — Mid — 1, BEnd « BEnd — Mid — 1

Mid — (AEndf./;StarHl)

14
15
16

17 return AEnd

S

Implementing Equal(i,d) query in O(log n) time together with
the correctness proof of O(n + k?) algorithm leads to Theorem 3.1.
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4 PREPROCESSING A SINGLE STRING:
ANSWERING GAP EDIT DISTANCE IN
SUBLINEAR TIME

In this section, we design an algorithm that given two strings A and
B, preprocess only one string, say B. During the query phase, the
string A is provided, and a query algorithm must answer whether
ED(A,B) < k or ED(A, B) > 2k%. We give an algorithm for this
quadratic gap-edit distance problem that runs in O~(% + k?) time.
Therefore, the algorithm achieves a sublinear query time whenever
k < n'/2 and k >polylog n. Note that this problem was recently
studied in [27] without any preprocessing. They achieve a running
time bound of 6(% +k3).

4.1 Preprocessing Algorithm

Given Y € 3", we sample each index in [1, n] uniformly at random

log? n
k

with probability .Let S = {iy, iz, ..., is} denote the sampled
indices. Create the following substrings

Jk—1,k.

By a standard application of the Chernoff bound, we can assume

with probability at least 1 — #, the number of sampled indices
_ nlog? n
S = @(T)

The preprocessing algorithm constructs log(s) + 1 hash tables
just like in Section 3, but for each Bd, d € [—k, k]. The ¢-th hash
table corresponds to window size 2¢ of B. Since there are logs+1
levels, the overall preprocessing time is O(k * % log? nlogs)=0(n)
with probability 1 — # Let Hg [£] store all the hashes for windows
of length 20 of B4 for d = [~k k].

B = by yabiyiaebiya ¥ = —k,—k + 1,..,0, ...

4.2 Query Algorithm

Given A € X". We create a sampled substring Ag = a;, a;,....a;,. We
construct log(s) + 1 hash tables for Ag. Again, the ¢-th hash table
corresponds to window size 2¢ of Ag. Since there are log s + 1 levels,
the overall time to compute the hashes of Ag is O(% log? nlogs) =
O(%) with probability 1 — # Let Ha[(] store all the hashes for
windows of length 2¢ of Ag

We now define an approximate Equal(i, d), Approx-Equal(i, d)
query as follows. Let n(i) > i be the nearest index to i present in S.
Define

Approx-Equal(i.d) = max (g | g € S.Xs[n(i).q] = Y/[n(i). q])
q=i

We now run the same algorithm from Section 3 except that we
replace Equal (i, d) with Approx-Equal(i, d). Let us use L" to denote
the h-wave computed by using Approx-Equal(i,d) for h € [0, k]
and d € [k, k]. If the algorithm computes L/ (0) > n for h < k, the
algorithm returns YES. Else, it returns NO.

Clearly, the running time of the algorithm is O(% +k?%). We now
show that the algorithm solves the quadratic gap problem.

Analysis. When comparing a symbol x; with yj, if they do not
match, we call it a ‘'mismatch’. The following is an easy lemma which
shows we cannot miss too many mismatches due to sampling.

LEMMA 4.1. Giveni € [1,n] andd € [~k k], leti’ > i be the
smallest index such that x;Xj4+1....xy and Y,y gYis1+d---Yired have
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r _ _k
at least k' = Togn

indices such that xj, # yj, + d. Define a bad event B(i,d) to be
the event that none of these k’ mismatch indices are sampled. Then
Prob(Bad(i,d)) <1 - # Moreover, all bad events are avoided with

mismatches. Let i < ji,jo,....jxr = i’ be the

probability at least 1 — %

Proor. Since the sampling probability is ©( IOgI: "), the expected
number of points sampled from j1, j2, .., jiz is ©(log n). Now, by the
Chernoff bound, the probability that none of them are sampled can
be made to be 1 — # (by choosing the constants in the sampling
probability appropriately).

Then by a union bound over all i € [1,n] and d € [k, k], with
probability > 1 — % none of the bad events Bad(i,d) happen. O

Therefore, we can assume all bad events are avoided. The above
lemma leads to the following direct corollary.

COROLLARY 4.2. Foralli € S, € [0,logs + 1] and d € [k, k] if
Ha[€)[i] = HA[€][i] then aiais1.... a; pc and bivgbisivg...bi,gior
have less than @ mismatches.

Proor. Take any i and d. Since Bad(i,d) did not happen, if

AjQjt1...,Aj9c and b;ygb;114...b;, 4,0¢ had at least 1o]§n mis-
matches, we would have Ha[(][i] # Hg [€1[i] O
Using the above corollary, we can now show that

Approx-Equal(i, d) is a good approximation of Equal(i, d).

LemmaA 4.3. If Approx-Equal(i, d) q then ajajy1....aq and
bivabivar1--bgra have strictly less than 2k mismatches.

2
Proor. Since the sampling probability is logk % (n(i)-i) < Iolgcn

with high probability (we assume k > polylog n).

Now A[n(i), q] can be decomposed into at most logs + 1 <
log n + 1 intervals each of length that is a power of two. Moreover
for each of these intervals the computed hashes H4 and Hg must
match. Therefore, each of these at most log n + 1 intervals can have
at most ﬁ mismatches from Corollary 4.2. Thus the total number

of mismatches is strictly less than (n(i) — i) + (logn + 1)@ =
k+ 2k <2k o
ogn

In order to complete our analysis, we now compare the h-waves
computed by the exact algorithm from Section 3 and approximate
h-waves computed by using Approx-Equal(i,d).

LEMMA 4.4 (COMPLETENESS). Yh € [0,k] and d € [-k,k],
ik d) > Lh (d). Therefore, ifED(A, B) < k, then the algorithm will
return YES.

since
]

Proor. The proof follows induction

Approx-Equal(i,d) > Equal(i,d).

simply by

LEMMA 4.5 (SOUNDNEsS). Vh € [0,k] andd € [k, k], L"(d) <
L2k(h+1) gy, Therefore, if ED(A, B) > 2k? + 2k, then the algorithm
will return NO.
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The proof is again by induction, and is given in the full version.
Therefore, if ED(A, B) > 2k? + 2k, then L2k2+2k(0) < n. Then

I:k(O) < L2k2+2k(0) < n, the algorithm aborts and declares NO.
Hence, we get the following theorem.

THEOREM 4.6 (SMALL-EDIT-SINGLE-PREPROCESSING). Given two
strings A = ajay..an and, B = b1by...b, of length n over alphabet 3,
we can answer if ED(A, B) < k orED(X, Y) > 3k? with probability
at least 1 — % by preprocessing only a single string in O(n)-time and
with a query time ofé(% +k2).

5 LARGE EDIT DISTANCE, 7 + e-APPROX

In this section we prove our result for the large edit distance regime.
Our main result is a 7 + o(1) approximation for ED(A, B) in na+o
query time. We are allowed to preprocess each A and B separately

and spend ~ n? time in overall preprocessing.

Remark (Estimating the distance vs computing an alignment). For
simplicity of presentation, we write our algorithms as merely esti-
mating the distance. It is straightforward with standard techniques
to modify them to output the alignment as well in roughly the same
running time.

Organization of this section. In Subsection 5.1 we give a bird’s
eye overview of the main technical elements of our algorithm. Sub-
section 5.2 formally describes the decomposition of the strings into
windows, Subsection 5.3 is a standard dynamic programming for
computing an optimal window-compatible matching from pair-
wise distances. Our main contribution is in Subsection 5.4 which
describes the algorithm for learning the close-window graph.

5.1 High Level Description of the Algorithm

The basic divide-and-conquer framework for approximate edit dis-
tance. The algorithm builds upon the recent progress on approxi-
mating edit distance in subquadratic time using divide-and-conquer
algorithms [6, 17, 19, 22, 34, 44], along with our small-edit-distance
algorithm from Section 3. We decompose the strings A and B into
contiguous substrings called windows. These windows can be over-
lapping and have variable lengths. Up to an (1+0(1))-factor approx-
imation, we can now wlog restrict our attention to matchings of A
to B that are “window-compatible”, i.e. they respect the partition to
windows (see Lemma 5.1).

If we (approximately) knew all the pairwise distances between
windows, a standard DP would find an (approximately) optimal
window-compatible matching efficiently (Lemma 5.3). Comput-
ing the pairwise distances is further reduced to (approximately)
learning the bipartite close-window graph, where a pair of A- and
B-windows are neighbors if their pairwise edit distance is below
an appropriate threshold 7.

The goal is now to approximately learn the close-window graph
while computing as few window-window distances as possible.
With this in mind, we classify the windows as either dense (high-
degree in the close window graph), or sparse. We use by-now-
standard separate subroutines to handle each kind of windows.

Further Details of Our Algorithm. The density of a window can be
estimated by computing its edit distance to a small sample of its
potential neighbors. To obtain optimal tradeoff between parameters,
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we cannot afford even this small sample to classify windows as
dense or sparse. Here we deviate from previous works and estimate
the density on-the-fly. That is each window is assumed to be sparse
by default, and only when it is selected as a special “seed” for the
sparse subroutine, we estimate its degree and move it to the dense
subroutine if necessary. (In fact, an originally dense window can
lose many of its neighbors and become sparse by the time it is
selected; this does not hurt our analysis.)

The main sparse subroutine proceeds by recursively narrowing
down the set of relevant candidate neighbors. Even though sparse
windows take part in multiple levels of recursion, the loss in ap-
proximation from each level of the sparse subroutine is negligible,
so it continues to be negligible in aggregate. The dense subroutine
incurs the main loss in approximation due to the use of triangle
inequality. Fortunately, each dense window can only contributes to
one level of the entire recursion and thus the overall approximation
factor remains bounded.

When we compute the edit distance between pairs of windows,
we do it exactly using our algorithm from Section 3. This algorithm
is very efficient when the windows are close, but its running time
may be as slow as quadratic in the window size when the distance
is large. We remark that three recent approximate edit distance
algorithms [6, 19, 34] also use the basic divide-and-conquer frame-
work, yet manage to obtain comparable or faster running times
without preprocessing. Those algorithms compute window-window
distances by recursively applying an approximate edit distance al-
gorithm; while this improves efficiency, the approximation factor
explodes exponentially in the depth of the recursion.

5.2 Decomposition into Variable Sized
Windows

Parameters Settings. We divide the strings A, B into windows,
equivalently contiguous substrings. We use d and t to denote the
window width and the number of windows of A respectively. Fix
d=n"*and t = & = n3/* throughout the presentation.

Let € > 0 be an arbitrarily small constant (or slightly sub-
constant), such that we would like to obtain a (7 + O(e))-
approximation in O(n3/2*9(€))_time. The windows in B will vary
in width. Moreover, they can be overlapping where the amount of
overlap will be controlled by a parameter 7 which is the relative ED
threshold between a pair of windows. We will vary 7 geometrically,
and for each value of 7, we will compute a set of windows B7. Let ¢,
denote the number of windows of 87. We will have t; = O(25).

Choice of Windows. The choice of windows play a crucial role
in our overall algorithm design. For the string A, partition A into
disjoint windows of width d denoted by A.

A= (A[L,d),Ald + 1,2d],...,Aln—d + 1,n])

We now compute the windows of B. Let us take 7
{0 1 (1+e) (1+€)?

N , ..., 1}. For each value of 7, we compute a set
of windows B7. Finally, we set 8 = U;B7 to denote all computed
windows of B.

Forr = 0, take hy = d,and l; = d. For t = % take h; =
d+1,I; = d—1.In general, for 7 = (p:f)],j > 1, take hy =

ld+(1+e)andl, = [d-(1+e)71].
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Set yr = max (1, | erd]). Define

H" :={B[1,h;),Blyr + 1,yr + hy), B2y + 1,2y; + h;], ...}

L7 :={B[1,l;),Blyr + Lyr + 1), B2y + 1,2y; + [;],...}

Finally, Br = H*® U L7, that is B7 consists of intervals of length
h; and I; starting at every y; grid points.

For window a € A (similarly for windows in 8B), let s(a) denote
the starting index of a (e.g., s(A[1,d]) = 1) and let e(a) denote
index the the last index of a (e(A[1,d]) = d). This completes the
description of the windows.

Note that overall we create ¢t = & windows of Aand t; = O(}%)

Mapping between windows. We say that a mapping p : A —
B U {1} between windows is monotone if for all a,a’ € A
such that p(a),pu(a’) #L and s(a) < s(a’) we also have that
s(u(@)) < s(u(a’)) and e(u(a)) < e(u(a’)). Setting p(a) =1 rep-
resents deleting a from the string. As such, we define ED(a, L) = d
for all windows a.

By abuse of notation, we let y € A denote the set of A-windows
such that p(a) #.L. For a € p, let a.next denote the window a’ € p
immediately after a (note that next depends on the mapping p). If
a is the last window in p, we define a.next :=1. We define a.prev
in the analogous way.

For a monotone mapping p we define its edit distance as:

ED(i) = »_ ED(a, p(a)) +

acA i

#astiepu(a)-1

n
=1

The first term is just sum of the edit distances between matched
windows. To understand the second term, notice that for each i we
expect it to appear in the image pi(a) of exactly 1 window. The sec-
ond term sums the difference between the number of appearances
of i and 1; it is a penalty for either overlap of windows (requiring
deletions) or excessive spacing (requiring insertions).

The next lemma (proof in the full version) asserts that the cost
of a minimal monotone mappings provides a good approximation
for the actual edit distance between the input strings A, B.

LEmMMA 5.1. Let A, B € X", then the following holds:

(1) For every monotone mapping pp : A — B U {L} we have:
ED(y) > ED(A4, B).

(2) There exists a monotone mapping i : A — BU{L} satisfying:
ED(y) < (1 + 8¢) ED(A, B).

Low-Skew Mapping. A monotone mapping p : A — B is said to
have skew at most D if for all a, a’ € A we have:

p1s(@) = (@)l < Is(u(@)) = s(u(a")] < Dls(a) = s(a”)]

We next show that any monotone mapping p can be transformed
into a low-skew mapping with D = 1 with negligible loss (proof in
the full version). Along with Lemma 5.1, this ensures there exists
a near-optimal low-skew mapping, which we will exploit in our
algorithm design.
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LEMMA 5.2. For every monotone mapping j1 : A — B U {1}, and
for every € > 0, there exists a monotone mapping pi’ : A — B U {L}
such that: ED(u") < (1+2€) ED(u) and u’ has a skew that is at most
1/e.

Low-skew mapping will play an impartial role in our algorithm
design and analysis.

5.3 Reduction to Estimating Window Costs

Let & : AXB — {0,...,d} be an estimate of the edit distance such
that &(a,b) > ED(a,b) for all a € A,b € B. Given a monotone
mapping p : A — B U {1}, we define its cost with respect to & as
follows:

EDg(p) = ). &(au(@)+ ).

acA

#last.ieu(a)} -1

n
1

i=

We define ED(&) as the minimal cost EDg (y) over all monotone
mappings.

Now, given such an estimation the next lemma (combining ideas
from [47] and [17]) asserts that one can efficiently compute ED(E).

Instead of computing ED(E) directly, we pick a threshold A,
and verify whether ED(E) < A. Indeed, if we can answer whether
ED(E) < A, or ED(E) > (7 + 0o(1))A efficiently, then by increas-
ing the threshold by an (1 + €) factor each time, we will be able
to compute ED(&) within a (7 + o(1)) approximation in log; . n
iterations.

LEMMA 5.3 (REDUCTION TO ESTIMATING WINDOW CosTS). Given

2
an estimate &, one can compute ED(E) in O(% % log n)-time.

Proor. Pick a threshold A. Set y = %. If y; <y, then from
BT pick every I_YLTJ windows so that gap between two consecutive
windows in 87 is > y — 1 for all 7. Therefore, the total number of
windows that we consider in B is O(2).

For window w, we let e(w) denote the index of the last character
of w; for a set ‘W, e(‘W) denotes the set of last indices. For i €
e(‘W), we let i.prev := max{i’ € e('W) U {0} A i’ < i} denote the
index of the previous finish in W (or 0 if such an index does not
exist).

We abuse notation and let ED(i, j) denote the minimum cost
of alignment ending at i, j using estimates &. Following [47] we
use dynamic programming to fill a table of ED(j, j) for every pair
i,j € e(A) X e(B) such that |i — j| < 10A. Notice that the number
of such pairs is bounded by:

gl _o(r A o™
|ﬂ||3|7_0(3 » n)_o(dz)' (1)

For boundary conditions, we define ED(i,j) = oo whenever
|i = j| > 10A, and ED(i,0) = ED(0,i) = i.

Consider a pair i, such that e(a) = i (notice that there may
be O¢(1) B-windows ending at j). The cost ED(i, j) of alignment
ending at i, j is given by taking the minimum of:

o Cost of deleting the last A-window: i —i.prev +ED(i.prev, j);
o Cost of deleting the last several B-characters: j — j.prev +
ED(i.prev, j); and
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e Cost of using a last pair of windows: min, ;)= {S(a, b) +
ED(s(a) — 1, 5(b) — 1)}.

Notice that the runtime of our algorithm is dominated by the

2
number of pairs 1, aka it is O(%) Now, considering all choices of
A, we get the required running time. O

5.4 Close-Window Graphs and the
Preprocessing Phase

For subset of windows C we define the graph G¢, ; as follows:
The vertex set equals C. The pair (c, ¢’) is connected by an edge if
ED(c,¢’) < zd. For a substring z € 34, we denote by N7 (z) the
set of all windows ¢ € C satisfying ED(c, z) < 7d. The windows in
NC-7(z) will also be referred to as the r-neighbors of ¢ in C, and
INC:7(2)| as its degree in C. When it is clear from the context, we
will often omit 7, and simply use the terms such as neighbors and
degree of c. We will abuse notation and also use this definition for
z¢C.

Preprocessing Phase Algorithm. The preprocessing algorithm
crucially uses the algorithm for computing small edit distance
with preprocessing from Section 3. In the preprocessing phase,

strings A and B are processed separately. Let 7 € {0, %} for
i= [0 log(lJre) d]

Preprocessing A. For each 7, the preprocessing algorithm com-
putes the graph G g, ;. The number of windows of A is 7. Hence,

the preprocessing time over all 7 is O(Z—idZ) = 0(n?).

Preprocessing B. The preprocessing algorithm computes Ggz_,
for each 7. By the preprocessing algorithm of Section 3, we can
process entire B in O(nlog n) time so that the computation of rd-
thresholded edit distance between any pair of windows can be run
in O(r2d? log n) time.

Note that for a given 7, the gap between two consecutive win-
dows in B is yr max (1, Llerd]). Therefore, when 7 = 0, the
number of windows is O(n?), but for every pair of windows, edit dis-
tance computation time is O(1). For 7 > 0, the number of windows

2
is O(%;). Hence, the computation time is O(ﬁrzd2 logn) =

O('e’—i). Thus, over all 7, the total preprocessing time for B is Oc (n?).

5.5 Query Phase Algorithm

The input to the query phase algorithm is the two strings, as well as
the close-window graphs computed in the preprocessing phase. The
output is an estimate data structure that can answer & : A X B —
R* queries in O(log(n)) time. We implicitly initialize E(a, b) « oo
for all pairs (a, b).

We consider all choices of 7 € {0, (1%;)1} for i = [0..log (4 d].
For 7 we run the following algorithm that attempts to discover the
pairs of windows a,b € A x BT of edit distance at most 7. The
estimate algorithm has some false negatives, and it may also have
false positives whose true edit distance is up to 77. The estimate
can be fed into the DP in Section 5.3.

Recall that ¢; := |B7| denote the number of windows in 87, and

-
tr = cra
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For each value of 7, the algorithm below uses O(t;l/ 3+0(1))

queries to edit distance of pairs of windows of length O(d) of the
form is ED(a, b) < rd. Using the algorithm from Theorem 3.1, each
query can be answered in O(d?72) time. Hence the total run time
is given by

O(t;x/3+o(1) ~d272) = O(n¥/2+o)y,

Initialization: Covered windows. Initially, all windows are uncov-
ered. Intuitively, we say that a window is covered when we have
upper bounded the edit distance to its relevant neighbors in 87.

1/3+€

A: Intervals. Consider a partition of [n] into ¢; contiguous inter-

vals of length n/til./3+€ < t$/3_6 -d. For A we define the A-interval
I 4 corresponding to interval I C [n] as the set of < tg/ 7€ win-

dows with indices in I. Therefore, for A-windows they are either
entirely contained in the interval or don’t intersect it. For B, we let
I/e denote a 1/e-factor expansion of I (i.e. the interval of length
[I|/€ centered at I)®. We define the B7 -interval Ig- to be the set of
windows that intersect I/e. When clear from context we sometimes
just call I ¢, Ig- intervals.

B: Sampling seeds. For each A-interval I, if less than log?(n)
windows in I 4 remain uncovered, we simply find all of their -
neighbors in 87 using O(t; ) queries and mark them covered. Other-
wise we sample log? (n) uncovered windows from I #. For each sam-
pled window a, we test whether [N 3"7 (a)| > ti/SA This is done
by sampling t$/3 log?(n) windows b € B7 and querying ED(a, b)
for each. (We account for those queries later, depending on whether
a is dense or sparse.)

If more than log?(n)/2 of the samples belong to N 57 (a) then a
is declared dense, otherwise it is sparse. If the window is dense we
process it as described below, after which it is a covered window
and no longer a good sample. We then continue to sample (in ran-
dom order) other uncovered windows from the same I # until: If the
number of sparse windows sampled so far is smaller than log?(n),
we stop sampling whenever we see log?(n) consecutive covered
windows. Otherwise (the number of observed sparse sampled win-
dows is at least log?(n)), we stop sampling after querying log®(n)
consecutive windows which are all either sparse or covered.

Remark. Therefore, if we keep discovering dense windows, we
process it as in Step C, the window gets covered, and we keep on
sampling more uncovered windows.

C: Dense windows. Suppose that a is dense; choose (arbitrarily)
be NB"7(a) among those discovered during Step B while process-
ing a. For each windows-pair a’ € N ™27 (g) and b’ € NB"47(b),
whose estimate has not been computed yet, the algorithm sets
&E(a’,b") « 7r. This is done abstractly by pointing each a’ to
a, b’ to b and marking that ED(a,b) < 7. Observe that the sets
N 727 (g), N B"47 (b) have already been computed during the pre-
processing phase. We mark each window in the set N %27 (g) as
covered.

3For example, if I = [20, 30] then its 3-expansion is [10, 40].
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Approximation: Observe that every a’ € N7%27(q) is indeed
covered in the sense that by triangle inequality, for every b”’ €
NB, T (a/)

ED(b,b”") < ED(b”,a’) + ED(a’,a) + ED(a,b) < 47,  (2)

and hence N %7 (a’) ¢ NB-47(b). Similarly, by triangle inequality
for every b’ € NB47(b) and o’ € N B-27(a), we have that

ED(a’,b’) < ED(d’, a) + ED(a, b) + ED(b,b’) < 7r. (3)

Complexity: Notice that if the (87, r)-neighborhoods of two
dense windows (or one dense and one sparse) a and a’ intersect,
then when we process one of them as dense we will cover both.
Hence we only need to run the dense subroutine at most tg/ ? times.
Each run requires é(ti/ %) queries, and hence in total over the entire
7-th iteration we only need é(ti/ 3) queries.

D: Sparse windows. For each interval I 4, out of the set of win-
dows a € I# which were declared sparse, we pick at random a
set S(I.#) of size log?(n). For every window in S(Ig), we query its
entire (87, r)-neighborhood using ¢; queries. For each interval I #
we record the union of all é(tll./ %) intervals fé; that contain any
(87, 7)-neighbors of any of the sparse samples a € S(Iz). We call
these B-windows the relevant windows for the windows in I.4. We
henceforth no longer look to match windows from I # to irrelevant
B-windows. Note that in a low-skew mapping (for more precise
statement, see Lemma 5.5), windows in I # cannot be mapped to any
irrelevant 8-windows under that mapping. (Hence in total across

1/3+e€ 5,4/3+e

all t7 intervals the sparse samples take O(t;'°" ") queries.)

Approximation: Recall that by Lemma 5.1 and Lemma 5.2, there
is a low-skew monotone mapping that approximates the optimal
transformation to within (1+€)-factor. For any low-skew monotone
mapping u, the entire interval I 4 is mapped to a single 87 -interval
Igz. Suppose that (1 — €)-fraction of the sparse windows in Iz are
mapped to 87 -windows (or L) of distance greater than 7. Then we
can safely discard the 7-edges for the remaining e-fraction of sparse
windows with negligible loss in approximation factor. Hence in total
we pay only (1+ O(e))-factor in approximation for sparse windows.
Otherwise, w.h.p. at least one of the samples has a (87, 7)-neighbor
in Ig-. For more details, see Lemma 5.5.

Complexity: Each uncovered A-window has only é(t;/ .
ti/S_e) = O(t17¢) relevant windows.

Recursion. We recurse on Parts A-D of the algorithm, with the
following modifications for the ¢-th level of the recursion.
e We increase the number of intervals to t;/ S+(tr)e
) . ~ 2/3—((+1)e
size decreases accordingly to O(t; ).
e We only sample relevant windows when we estimate de-

grees. The degree-threshold for a window to be considered

, and their

“dense” remains ti/ ?. Notice that a window may be dense
with respect to the entire graph, but sparse with respect to
its relevant windows.

e Once we discover a dense window, we run Part C without
regard to relevant/irrelevant windows. In particular the cal-
culation of total number of queries spent on dense windows
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is global for the entire 7-th iteration of the algorithm, includ-
ing recursion.

e For each sparse sample, we only compute the restriction of
its (B7, 7)-neighborhood to relevant windows. Hence we

only spend O(t;_&) queries for each sample, or a total of

O(tﬁ/ 3+6) queries across all intervals.

e The relevant windows for the next level of recursion are a
(strict) subset of the relevant windows in the current level.

The recursion continues until each interval has less than log2 (n)
windows, after which all windows are covered.

We now summarize the approximation factor and the complexity
of the query algorithm.

LEmMMA 5.4 (TIME COMPLEXITY). Let A,B € X™. Then running
time of the query phase is bounded by: O (n3/2*€).

Proor. Fix 7. By the complexity analysis of Step C, the total
number of queries required to cover dense windows over all the
recursion steps is é(t3/3).

On the ¢-th level of recursion, the number of intervals is
t;/ 3HEHDE por every interval, we pick at most log® n sparse win-
dows, and query all relevant windows. The number of relevant
windows is é(t}_fe). Therefore, on the £-th level of recursion, the
number of queries spent on sparse windows is ti/ 3*€ Since the
number of levels of recursion is at most % + 1, the total number of

t3/3+e

queries spent on sparse windows is O(~
Computing rd-thresholded edit distance between pairs of win-
dows requires time O(r2d?) (using our algorithm from Section 3).

Therefore, the time complexity for a given 7 over all dense and
. Lo~ pA3re 2 X pdl2re
sparse windows is O(~— ) =0( 7 ).
Since, the number of choices of 7 is O( IOE ") and the time to run
the DP from Section 5.3 is O(%n3/2 logn) , the overall total time
~ 3/2+e€

complexity is O( ”EITM)

]

LEMMA 5.5 (APPROXIMATION). Let A, B€ X" LetE: AX B —
R* be the cost function produced during the query phase. Then with
probability at least 1 — % we have:

ED(E) < (7 + €) ED(A, B).

Proor. Note that if we can construct & : A X B — {0,...,d}
such that ED(a, b) < &(a,b) < 7ED(a, b), then using the DP algo-
rithm from Section 5.3 and employing Lemma 5.1, we get a 7 + o(1)
approximation for ED(A, B). Moreover, by Lemma 5.2, it is only
required to compute all the edges of & with the above accuracy
which an optimum low-skew monotone mapping p would use. Fix
such a mapping .

We prove that for the first level of the recursion, for each interval
I € 14 it is either the case that there exists a sparse window a such
that: y(a) e N Br.7 (g), or that the covered dense windows provide
a good approximation for the edges used by . Indeed, fix I € I4,
the proof proceeds by case analysis.

Case 1: Suppose that there exists 7 such that at least e-fraction
of a € I 4, are such that p(a) € N®Bc7(g) and a is T-sparse.
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In this case, with high probability the algorithm will eventually
pick a window a € I such that u(a) € N®8c7(g) and a is -
sparse. Consider the set I’3: recorded by the algorithm. Since u
is a low-skew mapping, one of the intervals Ig € fg: is such
that all the edges (a, u(a)) where a € 14, are such that u(a) €
Ig, and hence declared relevant. Therefore, in further iterations
of the algorithm these edges will be assigned with the required
approximation guarantee.

Case 2: Suppose that for all 7 at most e-fraction of a € I 4, are
such that p(a) € NBrT(q) and a is T-sparse.

In this case we may fail to detect all the edges (a, u(a)), where
u(a) € NB=7(a) and ais r-sparse. Nevertheless, in that case, even
if we map all these edges to L, we only lose a (1 + ¢€) factor in the
edit distance. As for the rest of the windows a € I #, we claim that
with high probability for at least 1 — € of the windows a we have:
&(a, pu(a)) < 7ED(a, p(a)).

Indeed, observe that whenever the algorithm completes step B,
then it is the case that with high probability all but at most e-fraction
of dense windows are already covered. If this is the case, then for
each covered window a € Iz we have: E(a, u(a)) < 7ED(a, u(a)).
For the rest we have no guarantee on &(a, p(a)). However, even if
we map all these edges to L, we only lose a (1 + €) factor in the
edit distance. The claim follows. O

We therefore have the following theorem.

THEOREM 5.6. Given two strings A, B € £, we can approximate
ED(A, B) within7+0(1) approximation with probability at least 1— %
with a preprocessing time of O¢ (n%) and query time of O (n3/2+0(1)),

6 NO PREPROCESSING: 3 + o(1)-APPROX IN
n1.6+0(1) TIME

In this section we introduce our (3 +0(1))-approximation algorithm
for edit distance that runs in time n-67°(1) without preprocessing.
At a high level, it is similar to other recent traingle-inequality
based approximation algorithms for edit distance. In particular, the
previous state of the art algorithm by Andoni [6] obtains a similar
result when the edit distance is large (near-linear), but we can give
an overall faster algorithm using the sublinear algorithm for small
edit distance with preprocessing (Section 3). The preprocessing cost
is negligble when we apply it once to each window, and use the
sublinear algorithm to compute the distances of many pairs.

THEOREM 6.1 (APPROXIMATE EDIT DISTANCE WITHOUT PREPRO-
CESSING). Given two strings A, B € 2", we can approximate ED(A, B)
within 3 + o(1) approximation in O (n!-6+0()y time with probability
1

at least1 - +

High level idea. The algorithm enumerates over various thresh-
olds 7. For each value of 7, the algorithm first marks all the A-
windows as 7-uncovered. Then, it uses sampling to estimate the
degree of each A window, and classifies them as sparse or dense.
It handles sparse windows similarly to Section 5. As for the dense
windows, if there are few of them, it exhaustively finds their (8, 7)-
neighbors. Otherwise, it sparsifies the set of uncovered dense win-
dows as follows. It enumerates over the set of 8 windows: For
each such a window b it estimates its degree with respect to un-
covered dense windows. If the degree is large, then it computes
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N727(b), N B-7 (b), marks that the relative distance between pairs
in N27(b) x NB-7(b) as upper bounded by 37. It then moves
each uncovered dense window in N 27 (b) to the set of covered
windows. In such a way, since we remove the neighborhood of
dense B-windows, we show that the number of uncovered dense
A-windows decreases significantly. We recurse on the sparsifi-
cation phase; each iteration uses a smaller degree threshold for
dense B-windows and handles fewer remaining uncovered dense
A-windows.

Similarities to Section 5 Algorithm. Similar to Section 5 and other
recent approximation algorithms, we partition the input strings
into windows, and consider the close-window graph where two
windows share an edge if they are close in edit distance. We handle
high-degree (“dense”) windows using triangle inequality, and low-
degree (“sparse”) by iteratively focusing on narrowing intervals.

Main technical difference compared to Section 5 Algorithm. A
subtle technicality of this algorithm is that in the sparsification
phase, we can remove B-windows of high degree, and all
their A-neighbors. This suffices to ensure that the remaining
A-windows are sparse on average. However, the analysis of the
sparse case, crucially relies on every window being sparse. By
Markov’s inequality, once we decrease the average degree of the
A-window at most ¢~ ¢-fraction of them remain overly-dense.
We can thus recurse on all the 8-windows and the t~¢-fraction
overly-dense A-windows, again removing the highest-degree
B-windows. After O(1/e€) iterations, all the dense A-windows
have been removed.

As in Section 5, we repeat the following steps for every 7 in a
multiplicative-(1 + €)-net.

Parameters and notation. Following the notation of Section 5.2, we
set the base window length to d = n%2, and the number of A-
windows is t = n%-8; the number of windows in B; is t; = Oe (t/7).
Our algorithm will use ti/“"“) queries, each in time O(d%7?), as
well as the DP from Lemma 5.3. Hence the total running time is
given by
é(t2/2+0(1) 2?4 Z_z) _ é(n1.6+o(1)). )

Our sparsification phase (Steps A-2 and B below) works in it-
erations, where in each iteration we cover the edges of the form
(a,b) where b is a high degree vertex. In more detail, the algo-
rithm iteratively identifies 8-windows with high degree. At the
first iteration, the degree threshold is deg; := ti/ % and it decreases
by tf in each subsequent iteration. Le. at the g-th iteration it is
deg, = 11207V

We maintain a partition of A into three subsets: A = Agpagse U
Apap U Acoverep- Initially, [Apspl < [A| =t < t;. In each
iteration of the sparsification phase, windows from Ap,, are moved
to Acoveren- The upper bound on |Ap,p| decreases by £ -factor
in each iteration.

Step A: Estimating density of A-windows. For each a € A, we
sample t;/ 2-e log?(n) B, -windows b at random and query ED(b, a).
We place a in Ap,p if at least % logz(n) of the samples are within
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edit distance 7. Otherwise, we place it in Agparse and ignore it until
Step C of the algorithm.

Complexity: We spend é(ti/ 2) queries for each a € Ap,p, hence
a total of O(£/2).

Step B-g. An iteration of the sparsification phase. In each iteration of
the sparsification phase, we enumerate over the 8,-windows. For
each window b that has not already been marked dense in previous
| ABap | 10g2(n) A

—degg Bap

iterations, we sample -windows a at random

and query ED(b, a). We say that b is dense if at least % log?(n) of
the samples are within edit distance 7.

If b is dense, we query its entire N /Ban:7 (), N/ 87227 (b) neigh-
borhoods. We (implicitly) add edges with cost 37 for every pair in
N AT (h) x N 8727 (p), and move the windows in N 7Bav-7 (b)
to Acoverep-

If the number of Ap,p windows becomes at most t;/ 2 at any
point, we exhaustively find all their neighbors in 8; and move
them to Acoverep-

Approximation. By triangle inequality, every pair of windows in
N ABa-T(p) x N Br-27 (b) has edit distance at most 37. Notice also
that by triangle inequality N 87 (N AT (b)) ¢ NBr27(p), e,
we have discovered all the (8., 7)-neighbors of all the Acoverep-
windows.

Complexity: We maintain the bound that at the beginning of
the g-th iteration, |Apap| = O(t;_(g_l)) = O(t;/2 deg,). Hence,
similarly to Step A, we spend O(t%/ 2) queries for estimating the
degree of each b € B, for a total of (3(t2/2).

Every time we discover a dense b, we query its edit distance
to < t + t; windows, and decrease by Q(degg) the number of
remaining Ap,p-windows. Recall that we start the g-th iteration

1-(g-1)e

with at most O(¢, ) = O(ti/2 degg) Apap-windows. Hence

in total this step requires O((t + t) - ti/z) = O(ti/z) queries.

The sparsification phase: iterating over Step B-g. We iteratively ap-
ply Step B-g O(1/€) times. At the end of the g-th iteration, every
remaining B;-window has at most deg,, = t;/z_(g e remaining
(Apap, 7)-neighbors. Hence the total number of 7-close pairs in

B X Apap is ti/zf(gfl)e. Since every Apap window has Q(ti/%e)

(8B, 7)-neighbors?, we have that |Ap,p| = O(t;_(g)e).

Step C. Sparse windows. We process the Agsparse-windows as in the
sparse case in Section 5 (for completeness, we spell out the details
below). This algorithm is somewhat simpler than Section 5 since
we already determined in advance which windows are sparse and
which are dense.

Intervals (first iteration): Consider a partition of [n] into ti/ 22e

contiguous intervals of length n/t;/z+26 < ti/z_ze -d. For A we
define the A-interval I # corresponding to interval I C [n] as the set
of < ti/ 272¢ yindows with indices in I. Therefore, for A-windows
they are either entirely contained in the interval or don’t intersect it.
“Notice that the number of remaining neighbors for a € Ap,p does not change during

the run of the sparsification phase, since once any of a’s neighbors is declared dense,
we move a to Acoverep-
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For B, we let I/e denote a 1/e-factor expansion of I (i.e. the interval
of length |I|/€ centered at I)>. We define the B7 -interval Ig- to be
the set of windows that intersect I/e. When clear from context we
sometimes just call I #,Ig- intervals.

Sparse subroutine (first iteration): For each interval I 4, if at most
log?(n) of its windows are sparse, we simply query their entire
(87, r)-neighborhoods. Otherwise, we sample a random set S(I.#)
of log2 (n) windows from [ 4 N Asprs- For every window in S(Ig),
we query its entire (87, r)-neighborhood using ¢; queries. For
each interval I # we record the union of all é(til./ 2+E) intervals I’(B\T
that contain any (87, 7)-neighbors of any of the sparse samples
a € S(I). We call these B-windows the relevant windows for the
windows in I.z. We henceforth no longer look to match windows
from I # to irrelevant 8-windows. Note that in a low-skew mapping,
if at least one of the samples is matched, then windows in I 4 cannot
be mapped to any irrelevant 8-windows under that mapping.

Approximation (first iteration): Recall that by Lemma 5.1 and
Lemma 5.2, there is a low-skew monotone mapping that approx-
imates the optimal transformation to within (1 + O(e))-factor.
For any low-skew monotone mapping y, the entire interval I 4
is mapped to a single B7 -interval Ig-. Suppose that (1 —¢)-fraction
of the sparse windows in Iz are mapped to 8% -windows (or L) of
distance greater than 7. Then we can safely discard the 7-edges for
the remaining e-fraction of sparse windows with negligible loss in
approximation factor. Hence in total we pay only (1 + O(e))-factor
in approximation for sparse windows. Otherwise, w.h.p. at least
one of the samples has a (87, r)-neighbor in Ig-.

Complexity (first iteration): Each sparse A-window has only
é(ti/zﬂ . t;/z_ze) = O(t17€) relevant windows. Since there are

1/2+2¢ 3/2+e€
tr

A-intervals, we spend use a total of O(t; ) queries.

Recursion. We recurse on the sparse subroutine, with the follow-
ing modifications for the ¢-th iteration.

e We increase the number of intervals to t;/ 2+(+2)e

size decreases accordingly to O(t;/27(€+2)6).
e For each sparse sample, we only compute the restriction of

its (87, r)-neighborhood to relevant windows. Hence we

, and their

only spend é(ti_“) queries for each sample, or a total of

O(t§/2+e) queries across all intervals.

e The relevant windows for the next level of recursion are a
(strict) subset of the relevant windows in the current level.

The recursion continues until each interval has less than logz(n)
sparse windows, after which we can simply query the distance of
every remaining sparse window to all its relevant 8, -windows.

Completing the proof of Theorem 6.1. As we argued above, the al-
gorithm finds a (3 + €)-approximation using é(tg/ 2+6) queries.
Taking € to be slightly sub-constant completes the proof of Theo-
rem 6.1. O

SFor example, if I = [20, 30] then its 3-expansion is [10, 40].
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7 HARDNESS

In this section we formalize, in the context of (approximate) edit
distance, the folklore intuition (based on [48]) that polynomial
preprocessing can not circumvent fine-grained complexity lower
bounds. In Subsection 7.1 we show that known fine-grained com-
plexity hardness results for exact edit distance and related problems
extend to accommodate polynomial preprocessing.

In Subsection 7.2 we consider the problem of edit distance ap-
proximation. There are essentially no conditional hardness re-
sults for this problem, and in fact recent work obtained a truly-
subquadratic constant factor approximation algorithm [22]. Im-
proving this factor, and in particular obtaining a truly-subquadratic
(1 + €)-approximation factor, is perhaps the most important open
problem in this area. There are evidences that providing 1 + o(1)-
factor approximation might be hard, as it implies new circuit lower
bounds [1]. Theorem 7.4 shows that essentially any approximation
factor that is obtained with polynomial preprocessing can also be
obtained without it. Note that this holds unconditionally, even if
(BP)-SETH is false.

7.1 SETH-Hardness of Exact String Alignment
with Preprocessing

The Strong Exponential Time Hypothesis is an (extreme) strength-
ening of P # NP postulating that k-SAT on n variables requires
2(0=9)" time. Building on [3], we can prove our hardness based
on the milder BP-SETH which replaces k-CNF with a branching
program:

Hypothesis 1 (BP-SETH). Given a branching program over n vari-
ables of width W and length T such that T = 2°(")_ deciding
whether it has a satisfying assignment requires time 2(1-o()n
time.

THEOREM 7.1 (BP-SETH HARDNESS). Unless BP-SETH is false,
there is no algorithm that preprocesses two input strings in polyno-
mial time and then computes their (edit distance / longest common
subsequence / dynamic time warping) in truly-subquadratic time.

Remark. We remark that unlike with k-SAT, it is plausible that
the brute-force algorithm for BP-SAT is optimal to within poly(n)
factors, and in fact better algorithms would imply new circuit
lower bounds ([3] and references therein). Under a correspond-
ing strengthening of BP-SETH one can show that string alignment
with preprocessing requires N2 /polylog(N) time.

The proof of Theorem 7.1 builds on alignment gadgets and nor-
malized vector gadgets (NVG) from previous works on SETH and BP-
SETH hardness of string alignment [3, 11, 20]. Each NVG represents
a half-assignment to the branching program, and the alignment
gadgets define a composition of the NVGs into two long strings.
Here we deviate from typical SETH-hardness proofs of sequence
similarity, and use a divide-and-conquer approach of [48] to con-
struct two larger sets of shorter strings. This allows us to reuse
the preprocessing of each shorter string when we compare every
pair to look for a satisfying assignment (aka a satisfying pair of
half-assignments).

Below we use dist() to refer to the distance under the rele-
vant similarity measure (edit distance / longest common subse-
quence / dynamic time warping); for longest common subsequence
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we use the “co-LCS” (edit-distance-without-substitutions) distance
dist(A, B) := n — LCS(A, B).

Normalized Vector Gadgets. Given a BP ¢ of width W and length
T, normalized vector gadgets NVG) map half assignments a,b €
{0,1}™/2 into strings such that:

cr if assignment (a o b) satisfies ¢;

CF

dist(NVG4(a), NVGg(b)) = { .
otherwise

where ¢ < cF are integers that depend on W, T.

LEMMA 7.2 (NORMALIZED VECTOR GADGETS [3]). Given a BP of
width W and length T, we can construct NVGs of length TO1g(W))y)
for all half assignments a, b € {0,1)""/2 in time 2"/% . TOUog(W)y),

Alignment Gadgets. Consider two ordered sets of strings A, B of
cardinalities n4 < np, respectively. An alignment p is a monotone
partial mapping from A to B U {_L}. An alignment y is structured if
it maps the i-th string in A to the i + A string in B for some fixed
shift A and for all a € A.

The cost of a mapping p is defined by:

cost(p, A, B) := Z dist(a, p(a)).
aeA
Here dist(a, 1) := max ¢ 4 peg dist(a’, b).

An alignment gadget is a mapping from A, B into respective
strings GA 4(A), GAg(8) such that for some parameter cg 7 =
c(na,np):

min
alignment p

<

cost(p, A, B) < dist(GA4(A), GAB(B)) + cga

cost(y, A, B). ©)

min
structured alignment p
LEMMA 7.3 (ALIGNMENT GADGETS [20]). Edit distance, LCS (with
binary alphabet), and Dynamic Time Warping admit alignment gad-
gets that can be computed in linear time.

Completing the Proof of BP-SETH-Hardness.

ProoF oF THEOREM 7.1. Suppose that we have an algorithm that
computes dist() for strings of length N with preprocessing time
O(N?) and query time O(N%~€). Given a BP over n = 2log,(N)
variables, we construct all its normalized vector gadgets in near-
linear time as in Lemma 7.2.

We partition the A-NVGs into 201701 subsets
A, ... Aya-ynn of size 2"/t each (and likewise for 8B). For
each subset A;, we construct its alignment gadget A; of size
O(N/!). For B;, let B; be constructed by the alignment gadget for
the set repeated twice. If no pair of half-assignments corresponding
to A; x B; satisfies the BP, then every pair of NVGs is at distance
cr, and by (5) the distance of A;, B; will be dp := 2"/’cp — cg a.
If there is a satisfying pair, then the structured alignment that
matches the corresponding NVGs will have cost at most

dr = cr + (2"t = 1)cp - cga <dr.

We preprocess all the strings in total time O(Nl_l/t . (Nl/t)t) =
O(NZ1/ty, Finally, we compute the distance between all (N 1-1/¢y2
pairs in time O(N272/t . (N1/?)2=€) = O(N2-2¢/t). The BP is
satisfiable iff at least one of the pairs is at distance at most d7. O

>
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7.2 Preprocessing Doesn’t Help for
Approximate ED in Truly-Subquadratic
Time

THEOREM 7.4 (HARDNESS OF APPROXIMATION). If there is an a-
approximation algorithm for edit distance that runs in polynomial
preprocessing time and truly-subquadratic query time, then there is an

(o + o(1))-approximation algorithm that runs in truly-subquadratic

time with no preprocessing.

The proof combines the divide-and-conquer steps from our ap-
proximate edit distance algorithm (Section 5) with that of [48] (see
also last step in the proof of Theorem 7.1).

ProoF. Suppose that there exists an algorithm that computes
an a-approximation of edit distance using O(n’)-preprocessing
and O(n®~€)-query time. First, we assume wlog that the true edit
distance is k = w(n1™1/2%), otherwise we can solve the problem in
time O(n?~1/t) using the algorithm of [35]. In particular, we can
henceforth neglect additive errors of O(nl~1/2ty,

Using the notation of Section 5.2, we decompose the strings
into windows with base width d := n'/¢. The A-windows have no
overlap, and for the B-windows we consider 87 for r = n-1/2t,
Hence we have O(n'~1/*) A-windows and O(n'~1/2%) B-windows,
all of length O(n!/?).

We preprocess all the windows in time

é(nl—l/Zt ) (nl/t)t) _ é(nZ—I/Zt)'

We then run the a-approximate edit distance algorithm on pairs
of windows. By the argument of [47], it suffices to only compute
the distances between pairs of windows whose starting points are
within +k far apart. In particular for every A-window, we only
need to compute the edit distance to O(n'~/t) B-windows. In total
we spend (5((111_1“)2 . (nl/t)z_e) = O(nz_e/t) time on this phase.
Given the a-approximate window-window distance estimates,
we aggregate them in time O(n?~%/?) using Lemma 5.3. Thus we ob-
tain an a-approximation to the optimal window-compatible match-
ing, which by Lemma 5.1, is an (« + o(1))-approximation to the edit
distance. O
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