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For many animal species, cognitive traits are important for fitness. Such traits may be especially
important in rapidly changing environments, where innovation and learning about new challenges
could mean the difference between persistence and extinction (Dukas, 2013; Mery, 2013).
One factor that may affect cognitive performance is hybridization. Hybridization occurs when
individuals from distinct species mate and produce offspring. It is widespread, with estimates
suggesting 1-10% of all animal species hybridize (Mallet, 2005; Schwenk et al., 2008), and is
expected to become increasingly common as species distributions shift due to climate change
(Chunco, 2014). Yet, the extent to which hybridization affects cognition, and any resulting impacts
on hybrid fitness, remain relatively unknown. Recently, Rice and McQuillan (2018) described
several mechanisms by which hybridization could directly affect cognitive abilities and negatively
influence hybrid fitness. Here, I also consider that hybridization’s impacts on cognition could
lead to positive fitness consequences, and indirectly affect the expression of cognitive traits. I
further discuss how the trade-off between investment in cognition and other functions could have
important implications for the ultimate evolutionary outcome of hybridization. Currently, little is
known about hybridization’s effects on the expression of and selection on cognitive traits, and I
argue that this is an important area for future research.

WHAT WE KNOW ABOUT HYBRID COGNITION

The effects of hybridization on cognition have been poorly studied, particularly in cases of natural
hybridization. A recent study tested the relative spatial memory and problem-solving abilities of
black-capped and Carolina chickadees and their naturally-occurring hybrids (McQuillan et al.,
2018). Chickadees are scatter hoarders, caching food throughout the environment during the fall.
They rely on spatial memory to retrieve this food in the winter, and individuals with better spatial
memory are more likely to survive (Sonnenberg et al., 2019). Although black-capped and Carolina
chickadees performed equally well on an associative learning spatial task and a novel problem-
solving task, hybrids were less able to remember the location of a food item or to solve the problem
(McQuillan et al., 2018). Further testing is needed to determine whether other aspects of cognition
are similarly affected. In contrast to the results in hybrid chickadees, mules—hybrids produced
by crossing domestic horses and donkeys—exhibit enhanced visual discrimination and problem
solving compared to their parental species (Proops et al., 2009; Osthaus et al., 2013). Although
mules are not subject to natural selection, being domesticated, these findings demonstrate that
hybridization can also lead to enhanced cognitive abilities compared to parental species.

Together, these examples illustrate the potential for hybridization to both positively and
negatively affect cognition; however, much remains unknown. How frequently does hybridization
influence cognition in other taxa? By what mechanism(s)? For a given hybrid cross, does
hybridization have similar or variable effects on the diverse aspects of cognition? What are the net
fitness consequences in wild populations across a range of environments? And how does selection
on hybrid cognition contribute to the evolutionary outcomes of hybridization?

Frontiers in Ecology and Evolution | www.frontiersin.org 1

February 2020 | Volume 8 | Article 39


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2020.00039
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2020.00039&domain=pdf&date_stamp=2020-02-25
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles
https://creativecommons.org/licenses/by/4.0/
mailto:amr511@lehigh.edu
https://orcid.org/0000-0002-5475-8226
https://doi.org/10.3389/fevo.2020.00039
https://www.frontiersin.org/articles/10.3389/fevo.2020.00039/full
http://loop.frontiersin.org/people/828668/overview

Rice

The Overlooked Influence of Hybridization on Cognition

DIRECT EFFECTS OF HYBRIDIZATION ON
COGNITION

Cognition can be shaped by natural (e.g., Roth et al., 2012) and
artificial selection (e.g., Mery and Kawecki, 2002), and individual
variation in cognitive performance is repeatable (Cauchoix et al.,
2018), leading to the conclusion that it has a heritable genetic
basis (Croston et al, 2015). Therefore, hybridization should
be expected to directly affect cognitive traits by the same
mechanisms as it affects other traits.

Hybridization frequently leads to negative fitness
consequences. Cognitive traits may be subject to genetic
incompatibilities in hybrids (Dobzhansky, 1936; Muller, 1942;
Figure 1), leading either to negative fitness consequences, or
to asymmetric fitness consequences depending on the cross
direction (Orr, 1995; Turelli and Moyle, 2007) or the sex of
hybrid individuals (“Haldane’s Rule,” Schilthuizen et al., 2011).
Likewise, when two parental species with cognitive abilities
under divergent selection produce hybrids of intermediate
ability, ecological selection may act against the hybrids (Hatfield
and Schluter, 1999; McBride and Singer, 2010; Figure 1)
following a classical “ecological speciation” scenario (Rundle and
Nosil, 2005). Rice and McQuillan (2018) further elaborate on the
direct mechanisms by which hybridization could affect cognitive
traits, leading to negative fitness consequences and postzygotic
reproductive isolation between parental species.

Hybridization could also directly affect cognition in ways that
lead to positive fitness consequences, and facilitate adaptation to

novel environments. The mule example above shows that in some
cases, cognitive abilities may be enhanced in hybrids relative to
parental taxa (Proops et al., 2009; Osthaus et al., 2013). Enhanced
cognitive abilities could result from positive genetic interactions
between loci in the parental species (“heterosis”; Dagilis et al.,
2019), or from the recombination of additive alleles in F;
and advanced generation hybrids (“transgressive segregation”;
Rieseberg et al., 1999). Hybrids with enhanced abilities could
experience high fitness (Figure 1), provided the fitness benefits
of enhanced cognition in their specific environment outweigh
any costs (Cole et al, 2012; Kotrschal et al., 2013). Such
enhanced abilities, if caused by heterosis, may be transient, as
it is less likely in advanced generation hybrids or back-crossed
individuals (Barton, 2001). However, high fitness phenotypes in
hybrids caused by transgressive segregation can persist across
generations, as illustrated by the existence of stable hybrid species
that are succeeding in novel or extreme environments, or are
utilizing novel resources (e.g., Nolte et al., 2005; Gompert et al.,
2006; Lamichhaney et al., 2018).

INDIRECT EFFECTS OF HYBRIDIZATION
ON COGNITION

Hybrids often have lower success than parental species
individuals in obtaining resources, or have less efficient
metabolism, which could have indirect negative effects on
cognition (Figure 1). Hybrids produced by parental species that
have diverged in resource use may be intermediate in their
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FIGURE 1 | Non-mutually exclusive pathways by which hybridization can affect cognition. Hybridization can have direct effects on cognition through positive or
negative genetic interactions, or through combinations of additive alleles. Reduced, intermediate, or enhanced cognition may result in hybrids, and the fitness
consequences could be either positive or negative, depending on a variety of factors (see text). Alternatively, or even simultaneously, hybridization can indirectly affect
cognition through its direct effects on resource use phenotypes, metabolic efficiency, or abilities to locate food. All of these direct outcomes are likely to lead to
reduced energy and low condition in hybrids, likely causing selection against hybrids. Reduced energy and low condition can subsequently lead to compromised
neural development and cognition in hybrids, which can in turn cause hybrid cognitive abilities to differ from those in the parental species.
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resource use phenotypes, and poor competitors in either parental
environment (Hatfield and Schluter, 1999; Pfennig and Rice,
2007). Hybridization may also interfere with an individual’s
ability to locate food (Linn et al.,, 2004; Turissini et al., 2017).
Such hybrids are likely to obtain fewer resources, and thereby
experience reduced energy availability during development.
Further, laboratory studies have demonstrated that mismatches
between mitochondrial and nuclear genomes can affect metabolic
function (Tieleman et al., 2009; Arnqvist et al., 2010; Hoekstra
et al,, 2013). Consistent with these findings, naturally-occurring
hybrids from two different avian hybrid zones were found to be
less efficient at energy metabolism (Olson et al., 2010; McFarlane
et al., 2016). The fitness consequences of inefficient metabolism
are likely to be environment dependent (Hoekstra et al., 2013),
and could be further exacerbated if hybrids also have difficulties
obtaining resources. Cognitive abilities and neural development
are frequently condition dependent (reviewed in Buchanan et al,,
2013). For example, birds experiencing restricted diets during
development exhibited poorer spatial learning (Pravosudov et al.,
2005) and auditory memory (Bell et al., 2018) as adults. However,
poor nutrition does not necessarily affect all aspects of cognition
similarly (Pravosudov et al,, 2005). Given that hybridization
can affect condition and energy availability through multiple
mechanisms, indirect effects on some aspects of hybrid cognition
are likely to be widespread (Figure 1).

TRADE-OFFS, THE ENVIRONMENT, AND
SELECTION ON COGNITION

If hybrids differ from their parental species in cognitive
performance, whether due to direct or indirect effects of
hybridization or both (Figurel), it will be important to
estimate the magnitude and direction of selection on these
traits. This will determine the impact of cognitive performance
on the evolutionary outcomes of hybridization, which can
include weakening or strengthening of species barriers, adaptive
introgression, and even the creation of new hybrid species
(Abbott et al., 2013).

Decreased cognitive abilities in hybrids could actually provide
a fitness benefit in some environments, while enhanced cognitive
abilities could result in lower fitness. This is because the energy
demands of maintaining the brain tissue underlying cognitive
abilities are expected to be high (Mink et al., 1981; Bordone
et al., 2019), leading to a trade-off between investment in
cognition and in other energetically costly functions and traits.
For example, lines of Drosophila selected for enhanced learning
ability experienced a decline in average lifespan compared to
control lines (Burger et al, 2008). A consistent result was
found in lines of guppies selected for large brains; the large-
brained lines exhibited enhanced cognition (Kotrschal et al,
2013) but also shorter lifespan (Kotrschal et al., 2019). A trade-off
between learning ability and competitive ability was uncovered
in Drosophila as well (Mery and Kawecki, 2003), and families of
cabbage white butterflies showing enhanced learning produced
fewer eggs (Snell-Rood et al., 2011). Thus, the net strength
and direction of selection on cognitive abilities will incorporate

the costs to other functions important to fitness, and may
differ among resource-poor and resource-rich environments.
If hybridization occurs across a range of such environments
and affects cognition, hybrids in certain environments may be
strongly selected against, leading to a strengthening of species
boundaries and potentially narrow hybrid zones, while the
opposite could be true in other environments.

It is worth noting for at least three reasons, however,
that hybrids may be particularly likely to find themselves in
environments favoring enhanced cognitive abilities, even in
the face of trade-offs. First, species range overlap is often
associated with environmental gradients and can shift with
the climate (Chunco, 2014; Taylor et al., 2015), such that the
opportunity for hybridization may be especially high in variable
or novel environments. Second, hybridization may facilitate the
colonization of novel environments, either through the adaptive
introgression of genes underlying functionally important traits,
or as a result of transgressive segregation (Pfennig et al,
2016). Third, areas of sympatry, such as hybrid zones, are
likely to be complex social environments, as animals must
navigate and process both intra- and interspecific interactions
and signals (Pfennig and Pfennig, 2012). Variable, novel, and
socially complex environments are expected to favor enhanced
learning, memory, and problem-solving (Sol et al., 2002; Dukas,
2013; Mery, 2013; Ashton et al., 2018), so that hybrids with such
abilities could experience high fitness.

Selection on hybrid cognition is likely to be complex, and
much additional research is required to assess how cognition
contributes to the net fitness consequences of hybridization.
Because hybrids may have reduced energy reserves compared
to parental species individuals (see above), one interesting
implication of the trade-off between investment in cognition
and other functions is that the direction and magnitude of
selection on cognition could vary between hybrids and parental
species, even in similar environments. The optimal level of
cognitive ability for a parental individual in a given environment
might be higher than the optimal level for a hybrid—with
reduced energy reserves—in the same environment. Expected
patterns of selection are further complicated by the fact that
individuals can vary in their performance across different
aspects of cognition (DuBois et al, 2018; van Horik et al,
2018), and therefore hybridization may have variable effects on
different aspects of cognition depending on which individuals
are hybridizing.

CONCLUSION

Hybridization is likely to have important direct and indirect
impacts on cognitive ability. Resulting cognitive performance in
hybrids may lead to positive or negative fitness consequences.
Further, the trade-off between investment in cognition and other
important functions coupled with the potential for individual
variation in performance across multiple aspects of cognition
will complicate patterns of selection on hybrid cognition. The
net strength and direction of this selection will determine how
cognitive performance contributes to the ultimate evolutionary
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outcomes of hybridization. Currently, very little is known
about hybridization’s impact on cognition, and there is large
scope for additional research. Important questions include: How
frequently does hybrid cognition differ from parental species, and
in what systems? Is it more common for hybridization to affect
cognition through direct or indirect mechanisms, or both? What
is the direction and magnitude of selection on hybrid cognition,
and how does it vary across environments? Many study systems,
across a broad range of taxonomic diversity, are well-suited
for addressing these questions, particularly those with existing
knowledge of traits affected by hybridization. Such research is
needed if we are to evaluate the role of cognitive performance
in the maintenance of species boundaries, or the links between
hybridization and the expression of and selection on cognitive
traits in the wild.
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