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Abstract—We introduce Ordalia, a novel approach for speeding
up deep learning hyperparameter optimization search through
early-pruning of less promising configurations. Our method
leverages empirical and theoretical results characterizing the
shape of the generalization error curve for increasing training
data size and number of epochs. We show that with relatively
small computational resources one can estimate the dominant
parameters of neural networks’ learning curves to obtain consis-
tently good evaluations of their learning process to reliably early-
eliminate non-promising configurations. By iterating this process
with increasing training resources Ordalia rapidly converges to a
small candidate set that includes many of the most promising
configurations. We compare the performance of Ordalia with
Hyperband, the state-of-the-art model-free hyperparameter opti-
mization algorithm, and show that Ordalia consistently outper-
forms it on a variety of deep learning tasks. Ordalia conservative
use of computational resources and ability to evaluate neural
networks learning progress leads to a much better exploration
and coverage of the search space, which ultimately produces
superior neural network configurations.

Index Terms—Deep Learning, Hyperparameters Optimization,
Multi-armed Bandits, Automated Machine Learning

I. INTRODUCTION

Despite the great advancements in Deep Learning, finding a
network’s optimal hyperparameters is still a matter of tinkering.
In the best cases, tuning a neural network’s hyperparameters1 is
a resource-intensive process that involves exhaustive evaluation
of massive hyperparameters-grids, in the worst, a manual search
for the best configuration. There exist many frameworks to
tackle neural networks’ hyperparameters optimization automati-
cally, recently Hyperband [1] received considerable attention for
its performances and simplicity. Hyperband outperforms more
established Bayesian frameworks, e.g SMAC [2] or TPE [3],
which do not scale well in neural networks’ highly dimensional
search space, as discussed by the authors in [4].

In this work, we introduce Ordalia, a novel approach for
speeding up neural networks hyperparameter search through
early-termination of less promising configurations. Our method
leverages empirical and theoretical results from learning theory
to characterize the shape of the generalization error bounds
for increasingly larger training samples and epochs to evaluate
the neural networks learning capabilities. Ordalia exploits the

1e.g. layers size, dropout rate, learning rate, batch size, number of epochs

fact that neural networks validation learning curves have a
sub-linear convergence to their Bayes Error with respect to
the training sample size and number of epochs. By training on
incrementally larger samples and epochs, Ordalia quickly tests
a vast number of networks configurations and estimates their
learning curves dominant parameters to get a projection of their
final performances which it uses as a proxy-metric to evaluate
their learning progresses and discard the non-promising ones.

Previous works [5]–[10] perform hyperparameter optimiza-
tion based on empirical multi-fidelity estimate of their final
performances. However, those works introduce a significant
computational overhead due to their search-space modeling,
which is particularly burdensome in the context of neural
networks high-dimensional hyperparameter space. As suggested
by the empirical analysis in [11], it is possible to reliably
model neural networks’ learning curves with power-laws, a
phenomenon coherent with learning theory results on gen-
eralization error bounds [12]. The seminal work [13] was
the first to propose the use of power-laws to model neural
networks training/validation learning curves to predict their
final performances. However recent work [14] showed that
the large capacity of modern neural networks frequently leads
them to overfit to the training sample, making it impossible to
leverage training curves as originally proposed in [13].

Ordalia builds on those results and introduces a novel method
to evaluate neural networks learning progress to perform
model selection based on their intermediate performances.
We show that with a relatively small-sized training set and
number of epochs one can estimate the dominant parameters
of the learning curve to obtain consistently sufficiently good
evaluations to reliably eliminate sub-optimal configurations.
By iterating this process with increasing training resources, the
process rapidly converges to a small candidate set that includes
many of the most promising configurations. In summary, the
contributions of this paper are:

• We provide empirical evidence and theoretical motivation
to explain why neural networks learning curves scale as
a power-law with respect sample size/number of epochs

• We introduce Ordalia, a neural network early-termination
strategy that leverages incremental training and empirical
power-law projections to evaluate neural networks learning
process and prune bad hyperparameters configurations.
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• We test Ordalia on MNIST, CIFAR10 and CIFAR100 and
show that it outperforms state-of-the-art Hyperband

• We test Ordalia on MNIST, CIFAR10, and CIFAR100
and show that it provides a better metric to evaluate and
prune neural networks than train and validation error.

II. BACKGROUND

During the last decade machine learning has become a
ubiquitous and increasingly adopted technology embraced in a
heterogeneous variety of fields, even far apart from computer
science or statistics. Recently Automated Machine Learning
(AutoML) frameworks [15]–[20] become a convenient way to
automate end-to-end machine learning pipelines design in real-
world problems. In order to extract actionable insights out of
raw data, an AutoML system needs first to (1) ingest raw data
from different formats, (2) clean/prune them by identifying
corrupted records and (3) pre-porcess the attributes to create
new features starting from the original ones. Then the systems
needs to (4) select the best machine learning model for the
given dataset and find its optimal parameters via (5) Hyper-
parameter Optimization. Finally it needs to (6) validate this
pipeline by evaluating the end-to-end solution against an hold-
out dataset. (7) Once a model that satisfies the user desiderata
is found, it is sent to deployment.
Hyper-parameters Optimization: it is possible to model data
with a wide variety of algorithms, each of which has a specific
set of hyperparameters that needs to be tuned (e.g. SVM’s
γ and c have no meaningful interpretation for a Random
Forest). We define as Hyperparameters Space H the space
that contains all the possible hyperparameters combinations
obtainable from a given hyperparameters domain. We then
define as loss a function l that evaluates an algorithm’s
hyperparameter configuration h on a sample S returning a
real value lS : h → R (in practice the returned value can
be any arbitrary metric that we want to use to evaluate the
configurations). Finally we define h∗ as the best possible
configuration, that is h∗ = argminh∈H lS(h), and y∗ = lS(h

∗)
as the loss that the configuration h∗ obtains on the task
using S. In other terms y∗ is the best possible obtainable
performance in the search space H for the given task, using a
sample S. Hyperparameters spaces are massive, heterogeneous,
conditional mathematical objects that do not allow an analytical
treatment of l. For this very reason is hard to find the optimum
h∗ and the only way to achieve this goal is to compute lS(h)
by evaluating many configurations performances and perform
black-box optimization. There are two main paradigms to
perform such optimization:

• Model-Free: the optimizer explores the search space H
using a sampling and evaluation strategy that does not
rely on any modeling assumptions of lS(·). Examples in
this category are Grid Search, Random Search and most
of the Bandits-based strategies.

• Model-Based: the optimizer uses a surrogate model MlS

of the unknown function lS(·), built and updated based
on past evaluations. This model is designed to be an
analytically treatable surrogate of the function lS , which

Fig. 1: CIFAR10 learning curves: we show a representative
example of a CNN validation learning curve (blue) and its
power-law modeling (orange). The first plot is in natural scale,
while the second in log-log scale.

is used to adaptively guide the search space exploration.
Examples in this category are Cost-Based Selection,
Bayesian Optimization, Simulated Annealing.

The two strategies are not in conflict with each other. We
can use model-based techniques to achieve the global optimum
h∗ sampling n most promising configurations from MlS and
use a model-free strategy to optimally allocate the budget by
enforcing early-termination during the evaluation stage.
Non-Stochastic Infinite-armed Bandit Problem: in this
paper we focus on a Model-Free optimization strategies, in
a sense that we do not attempt to model the hyperparameter
space. We frame neural network hyperparameter optimization
as a Non-Stochastic Infinite-armed Bandit Problem (NIAB)
as formalized in [1]. For each neural network configuration
h ∈ H we associate a series of bounded loss functions
lS1(h), lS2(h), ...lSi(h), where lSi(h) represent the validation
error of a neural network with configuration h ∈ H using Si

resources. We assume the series to be monotonically decreasing
and converging to a value l∗ = limk→∞ lm. While we make no
assumptions on the loss functions lSi, we do take advantage of
the fact that neural networks’ learning curves scales as power-
laws with respect to training resources [11]. Hence, we model
the losses-series convergence rate l∗ = limSi→∞ lSi with
empirical sublinear functions in the form l̂∗(h) = âm−b̂ (as
shown in figure 1). In the next sections show in the next sections
we show how we can use this phenomena to build a more
reliable metric to evaluate neural networks early-performances
than simply relying on point-wise training or validation error.

III. RELATED WORK

In recent years an extensive literature on automated machine
learning have been produced about hyperparameters optimiza-
tion [15], [21]–[26]. The most similar framework to Ordalia is
Hyperband [1] a bandits-algorithm that incrementally allocates
a fixed budget to perform neural network hyperparameters
tuning. The main drawback of such system is that it just
uses an incremental number of epochs (not a combination of
training sample and number of epochs) and does not make
any assumptions on the networks convergence to their true
error, which makes hard for Hyperband to distinguish between
a complex estimator, that requires many epochs and training
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samples to perform well, and a bad one. In [13], the authors
investigate the relationship between training sample size and
generalization error. They propose a technique to estimate
neural networks’ final performances by modeling their learning
curves as lvalidation(h) = a+b/mα and ltrain(h) = a−c/mβ

(where m is the training set size) based on partial training and
validation results. To solve this system of equations and find
a (the network final error) they assume that the validation and
training error have the same convergence rates, hence α = β
and b = c. While such assumption may appear conceptually
appealing, it proved to be not realistic given that neural
networks usually have such high-capacity to be often able
to memorize the whole training set, even if randomly shuffled
as showed in [14]. Other frameworks like Auto-WEKA [27] and
the twin package Auto-sklearn ( [16]) address hyperparameter
optimization from the model-based perspective, by using
Sequential Model-based Algorithm Configuration (SMAC).
SMAC is a Bayesian Optimization (BO) algorithm that utilizes
a random forest trained on previous runs logs to estimate
new configurations potential improvement with respect the
current best using expected improvement as acquisition function.
Unfortunately, the sophistication introduced by this meta-
modeling leads to a considerable overhead in the absence of
any multi-fidelity strategy as shown in [1]. Other model-based
hyperparameters optimization works [4], [6], [7] model the
search space/learning curve to select the configurations to train
based on multi-fidelity performances estimates. While those
approaches introduce a computational overhead, mainly due
to the Bayesian modeling, they can be considered as a valid
model-based orthogonal approach to Ordalia. Finally, Auto-
Keras [28] perform full neural architecture search in which
the exploration process is performed by morphing the neural
network (i.e., inserting a layer or adding a skip connection)
guided by simulated annealing; also this approach can be
considered orthogonal to Ordalia.

IV. ORDALIA

In this section, we discuss Ordalia, a multi-stage bandits-
based early-termination-strategy for neural network hyperpa-
rameter optimization. At each stage Ordalia prunes sub-optimal
networks by incrementally training them on increasingly
large samples/number of epochs and evaluating their learning
progress. We first introduce the theoretical framework behind
Ordalia, then we use these results to give an algorithmic
overview of Ordalia. Finally, we discuss the implementation
details regarding the learning curves extrapolation.

A. Generalization Error Convergence Rates

As introduced in Section III previous work on neural
networks model-free early-termination has been based on
the idea of pruning bad configurations using partially trained
networks. Those intermediate evaluations are computed from
early iteration results of stochastic gradient descend (SGD)
and only based on its latest point-wise evaluation. As presented
in [1] this approach has the main drawback of penalizing slow-
learners, e.g. neural networks with small learning rate, which in

the early stages do not perform well and suffer the ’competition’
from ultimately-worst, but faster-learning configurations. Even
the model-based error prediction approach proposed in [29] is
not feasible for neural networks hyperparameters optimization
due to the high dimensionality of their search space, and
consequent computational overhead as discussed in [4]. Ordalia
is a model-free early-termination strategy that leverages gener-
alization error bounds and makes them actionable for practical
neural networks selection by modeling their learning curves .

Following [12], given an arbitrary function h in an hypothesis
space H2, and a sample S = {z1, z2, · · · , zm} from a
distribution D, we define the true loss of a function h with
respect the distribution D as Lh = LD[h(z)] and the empirical
estimate of Lh on the sample L̂h = 1

m

∑m
i=1 h(zi).

Then, with high probability (as m → ∞), we have

|Lh − L̂h| ≤ 2R̃(H,S) + 3ε, (1)

where R̃(H,S) is the empirical Rademacher Complexity.
Now, using Massart’s Lemma, we bound R̃(H,S) as follows:

R̃(F ,S) ≤ B
√
2 ln |F|
m

=

√
2d ln(m)

m
(2)

where B = maxf∈F
(∑m

i=1 f
2(zi)

)1/2
=

√
m, and d is the

VC-dimension of H. Equations (1) and (2) provide an upper
bound on the difference between the generalization error and its
empirical estimate, and provides a useful metric to evaluate the
overall learning progress of the networks based on the training
resources and the observation that |Lh − L̂h|, converges as
O(1/

√
m).

This theoretical result is supported by the extensive empirical
evidence in [11] in which neural networks exhibit this kind
of behavior for a wide variety of learning settings (e.g. image
classification, machine translation). In figure 1 we provided
a visual instance of this phenomena for CNN solving image-
classification on CIFAR10 and show the validation learning
curve in standard and log-log scale with its quasi-perfectly
fitting empirical power-law models. In the next subsection, we
use those results in the description of Ordalia, which leverages
neural networks convergence rates to perform hyperparameters
optimization for neural networks.

B. Ordalia

Ordalia efficiently explores a given hyperparameter space
H by incrementally allocating a given budget B, similarly
to Successive Halving. It works over pruning rounds, at the
end of which just the top performing fraction configurations
are passed to the next stages. Ordalia takes as input (1) n
neural networks sampled at random from the search space
H, (2) a training and (3) a validation set. It first splits the
training set into monotonically increasing train sub-samples to
which it associates a specific number of epochs. The numbers
of epochs are also monotonically increasingly such that we
have a series of tuples (m1, e1), (m2, e2), ...(mb, eb) which

2H is the hyperparameters space in our context
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Fig. 2: Ordalia’s Projection: progression of Ordalia’s projections, with 5, 10, 15, 20 partial-evaluations. The dashed blue line
is the actual learning curve, the red one Ordalia’s projection at that round, the blue points are the partial errors.

Algorithm 1: Ordalia-Termination (OT). Ordalia splits
the training resources into exponentially larger sets and
samples n configurations at random from the search
space. Then at each round the algorithm computes
the Ordalias’s projection for each of the surviving
configuration up to that round and then ranks them
accordingly: at round i just the top-ηi−1

ηi
are retained

for the successive rounds. During the last round all
the resources η are used and the top performing
configuration returned.

Input: Training Resources η, validation set Dval,
search space H

Output: h∗ (best architecture)
1 Split η into exponentially larger sets η1, . . . , ηN
2 H = get_rnd_network_architecture(n);
3 for i ∈ 1 . . . N do
4 top = ηi−1

ηi
· |H|

5 l̂η(h) ← [OP (h, η) ∀h ∈ H]

6 H =
[
H[i] ∀i ∈ argsort(l̂η(h))[0 : top]

]
7 if len(H) == 1 then
8 h∗ = H[1]
9 break

10 end
11 end
12 return h∗

determines how many training sample mi and for how many
epoch ei the neural networks should train at each pruning
round i. Each time a neural network is trained using (mi, ei)
resources, its validation error stored and used to extrapolate
the dominant parameters â, b̂ of its validation learning curve
l̂η(·) = âη−b̂, where η is the product of the training sample size
and number of epochs η = me3. Once the dominant parameters
â and b̂ are obtained, Ordalia computes the neural network’s
performance projections and uses them as a metric to evaluate
their learning progresses and decide which configuration to
early-terminate. At each pruning round i, Ordalia applies the
following criterion:

3we interpret ηi as the cardinality of a sample generated by the concatenation
of another sample of size mi with itself for ei times.

Pruning Criterion: at pruning round i, all survived neural
networks are trained using ηi resources. Ordalia then com-
putes and uses the partial validation error to compute the
networks final performance projection. Once all configurations
performance estimates are computed, the algorithms ranks
them accordingly, and retains the top (ηi)/(ηi+1)

4 networks
for the next pruning round and terminates the other ones. Once
just k configurations are left, Ordalia trains them using all the
available resources and returns them ranked based on the final
validation error.

In Algorithm 1 and figure 2 we provide an algorithmic outline
and a visual intuition of Ordalia running time behaviour. While
the performances of neural networks in the early stages are
unrepresentative in terms of absolute values, Ordalia uses them
to judge the overall learning process of the networks up to
iteration i and prune bad performers without actually needing
to training them on the whole training sample. One of the main
innovations introduced by Ordalia is the empirical extrapolation
of learning curves’ dominant parameters to compute this proxy
score of the networks final performance. Other algorithms
such as Hyperband utilize just the partial validation error
as a ranking measure, however, this has the drawback to
prune resources-hungry configurations (slow-learners) together
with the bad ones. Indeed resources-hungry configurations are
likely to perform poorly in early-stages while improving and
ultimately taking over in the later stages. By extrapolating the
learning curve parameters, Ordalia takes into account the full
learning dynamic of the network distinguishing slow-learners
from bad ones.

C. Learning Curves Early-Extrapolation

To evaluate the learning process of a neural network
configuration we extrapolate its dominant parameters from its
validation learning curve as shown in Algorithm 2. In order to
do so we map the validation errors and ηs into the log-log space.
In this space the original model l̂η(·) = âη−b̂ is represented
as log l̂η(·) = log â − log(b̂)η, hence we can efficiently fit a
regression line and obtain the intercept and slope that represent
the power-law multiplicative constant in the log-space5 log(â)

4this particular ratio is used to maintain each round computational cost
constant

5hence, further exponentiation is required

183

Authorized licensed use limited to: Brown University. Downloaded on August 12,2020 at 14:46:31 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 2: Ordalia-Projection (OP). For a given
neural network configuration h Ordalia evaluates its
overall learning process by extrapolating l(h)’s domi-
nant parameters â and b̂ in the log-log space, and then
computing the projection âη−b̂

B .
Input: Network h, partial training resources

{η1, . . . , ηi}, max resources η, breaking point μ,
to be returned k

Output: Projection
1 partial_score ← h.train(ηi)
2 h.scores.append(partial_score);
3 if i ≤ μ then
4 log_scores = log(h.scores)
5 log_η = log(η1, . . . , ηi)

6 log(â), b̂ = LinearRegression(log_η, log_scores)
7 lη(h) = âη−b̂

B

8 else
9 lη(h) = partial_score

10 return lη(h)

and exponent b̂, respectively. Given that the partial errors
obtained in the early pruning rounds are computed on relatively
small sample sizes, they are less reliable than the later ones, and
for this reason when Ordalia computes the dominant parameters
in the log-log space, it weights each partial validation point
using ηs’ standard deviations:

√
η1,

√
η2, ...

√
ηi.

In figure 1 we show that there are two major and distinct
learning phase. This phenomena, clearly visible in the log-
log plots and also reported also in [11], suggests that in the
initial stages the training sample/epoch number is too small
and not representative of the whole distribution, hence the
architecture performs as random guesser. In this phase, called
small-sample learning region, it is hard to extrapolate any
information regarding the learning process and a larger sample
size/epoch number is required. Then the trained architecture’s h
generalization error begins to converge to its irreducible error
as a power-law with respect η. In this second stage, called
power-law learning region, it is possible to empirically model
the networks learning process via l̂η(·) = âη−b̂. 6.

The transition point between the small-sample learning
region and power-law learning region is called the breaking
point. Each algorithm has its own breaking point that depends
on the complexity of the model and on complexity of the
task. Ordalia starts extrapolating the bounds constants just
after the breaking point μ7 and uses validation error in the
initial coarse pruning rounds, as reported in the Algorithm 2.
In case of pathologically configured models, which never reach
a breaking point and perform as random guessers, only the
validation error is used and no attempt to model the learning
curve is performed.

6Eventually the trained network hits its irreducible error (Bayes error),
where more data, or resources, do not improve the performances

7which is computed checking the derivatives of the errors progression

MNIST CIFARs
Batch Sz. 16, 32, 64,128 32, 64,128
Learning
Rate

0.00005, 0.0001,
0.0002, 0.0005, 0.001

0.00005, 0.0001,
0.0005, 0.001

Optimizer
RMSprop, SGD, Nadam,

Adagrad, Adadelta,
Adam, Adamax

RMSprop, SGD,
Adadelta, Adam

Dropout 0.1, 0.2, 0.5 0.1, 0.2, 0.5
FF Size 128, 256, 512 128, 256, 512
CNN Size N.A. 16, 32,64

TABLE I: Search Space: on the left we report the hyperpa-
rameters space of the 3-layer FNNs used on MNIST, for a
total of 1260 hyperparameter combinations. On the right, the
hyperparameters space for the 3-layer CNNs used on CIFAR10
and CIFAR100, for a total of 1296 configurations.

V. EXPERIMENTS

A. Experimental Setup

For our experiments we used image classification datasets
MNIST, CIFAR10 and CIFAR100. The architectures that we
used in our experiments are 3-layers FNN for MNIST and a 3-
layers CNN. The neural network implementation has been done
using Keras using Tensorflow as backend. The hyperparameters
search has been executed over the space defined by table I.
Hardware Environment: the experiments have been executed
on Google Cloud Platform (GCP) with N1-highmem machines,
with 4-core Intel Haswell vCPUs with 26 GB memory, running
Debian 4.9 and Python 3.6.3. The neural networks training has
been performed on a NVIDIA Tesla V100 GPUs.

B. Ordalia v Hyperband

We now discuss the experimental results obtained during the
comparison of Ordalia against Hyperband on MNIST, CIFAR10
and CIFAR100. On MNIST, we executed 100 hyperparameter
optimization runs using a 3-layered FNN with a running
time cap of 12000 seconds for each experiment. During
those runs, Ordalia was able to test an average of 270
different hyperparameters configurations, while Hyperband
just 67. Instead on CIFAR10 and CIFAR100, we executed
100 hyperparameters optimization runs using a 3-layered CNN
with a running time cap of 15000 seconds for each experiment.
In those cases, Ordalia was able to test on average respectively
195 and 200 configurations, while Hyperband just 32. The
experiments total running time for each dataset is roughly 17
CPU-days, for a total of 51 days.

The plots in figure 3 show that given a running time cap,
Ordalia achieve consistently better final performance by testing
much more hyperparameters configurations than Hyperband.
In particular in the first column in figure 3 it is possible to see
that Ordalia is able to perform on average ~8x more partial
evaluations than Hyperband. The second column displays the
validation error against the number of partial evaluations over
the three datasets and it shows how Ordalia achieves a much
better coverage of the search space by taking a conservative
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Fig. 3: Ordalia v Hyperband: each row shows the experiments’ results obtained on MNIST, CIFAR10 and CIFAR100,
respectively. The left column compares the number of partial evaluated configurations by the two strategies at any given time.
In the central column the two strategies global validation error is plotted against the number of partial evaluations for the three
datasets. The black dashed line indicates at which point of the search space when Hyperband exhausted its budget. Finally in
the last column the global validation error is plotted against the running time.

approach in the evaluation of configurations. The vertical
dashed line represents the number of configurations after which
Hyperband exhausts its budget while Ordalia still has plenty
of resources to explore the search space. Ordalia red curve
has a monotonically decreasing step-wise shape and each step
represents a new round using more training data and epochs:
this phenomenon reflects exactly the design behind Ordalia.

Finally, the third column shows that, while Hyperband
intermediate results converge faster to its final performance by
immediately training the networks on the whole training set,
for this same very reason, it wastes too many resources on
bad configurations, quickly exhausting its budget during the
exploration and returning worst configurations.

In every tested dataset, Ordalia’s conservative use of
resources leads to a better coverage of the search space, which
bundled with an early-on detection of top configurations via
projections, leads ultimately to a better selection process. On

average, Ordalia top-network accuracy outperforms Hyper-
band’s one by 0.22% on MNIST, 3.18%, on CIFAR10 and
1.46% on CIFAR100.

C. Pruning Criteria Comparison

We now discuss the impact of different pruning criteria
on the final performances of the model selection process. At
each pruning round the neural networks are evaluated, ranked
and pruned based on the four criteria: Ordalia’s projections,
validation-error, train-error and random (baseline). For this
experiment we used recall as metric to evaluate the ability
of those strategies to retain top-performing configurations
until the last round. We tested the four criteria on a series
of 100 experiments over MNIST, CIFAR10 and CIFAR100
datasets. For each experiment we sampled 400 configurations
from the hyperparameters grid defined in table I (roughly
~1200 architectures). The total running time for each dataset
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Fig. 4: Pruning Criteria Comparison: each row shows the experimental results performed on MNIST, CIFAR10 and CIFAR100.
Each column reports the recall values at each pruning round for different top-k values, from left to right top-5, top-10 and
top-20. Ordalia’s projections determine a substantial improvement in terms of recall in the mid-range pruning rounds, where
enough intermediate evaluations are available.

experiments has been roughly 30 CPU-days, for a total of 90
days over the three datasets. In figure 4 we show the results of
those experiments which indicates that Ordalia retains top-k
performing configurations better than the other criteria. On the
abscissa we report the number of "surviving" architectures at
each pruning round and on the ordinate the strategies recall
(percentage of retained top-k configurations at that round). In
each row we report the recall plots for each of the tested
dataset, while for each column we report different values of
k that we used to compute the recall (from the left to right
top-5, top-10 and top-20).

It is immediate to notice that for each of the performed
experiments projection and validation error set themselves
apart from the other two criteria, being able on average to
retain much more top-k configurations. There are virtually
no differences between OP and validation error in the earlier
rounds. This is due to the small-sample learning region problem

discussed in section IV-C, which makes hard to get reliable
projections, hence during those rounds Ordalia relies on
the validation score to prune the networks. However, once
enough partial evaluations points are available, Ordalia starts
to evaluate the networks based on Algorithm 2. This determines
better configurations pruning, especially in mid-pruning rounds,
that ultimately leads to an higher final recall of top performing
networks. On MNIST Ordalia’s Projections generate the largest
improvements over the other techniques, especially for the top-
5 recall experiments, where there is a gap of ∼ 10% between
the projections and the validation error.

VI. CONCLUSIONS AND FUTURE WORK

This paper leveraged empirical evidence and learning theory
results to propose a novel technique based on incremental
training and power-law projections to perform early-stage
pruning of non-promising neural network configurations. While
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the proposed technique outperforms state-of-the-art strategies,
our research raised new important questions regarding neural
networks. The first problem is to build a comprehensive
theoretical framework to explain why neural networks learning
curves scale as power-laws with respect increasing training
set sizes. While recent results in learning theory and deep
learning [30]–[32] provided us with a first intuition on this
point, more investigation is required to fully understand
why such consistent behavior takes place. The second open
question arose during our experiments and it is related to
the minimum amount of resources, in terms of epochs and
sample size, that a neural network architecture requires to
actually start learning. We are interested in investigating the
reasons why after a specific amount of training resources,
neural networks stops behaving as a random guesser and
abruptly starts learning from data. This problem is crucial
in the context of hyperparameter optimization because the
ability to detect the "small-sample learning region" deeply
impacts the goodness of the projections. The last open problem
to investigate is the relationship between train and validation
error. Our empirical investigation showed that for the same
datasets, different networks have strikingly different train and
validation learning curves. For some architectures, we found a
positive correlation between the two, while for others a negative
or a zero one. However, regardless of the correlation of the two
curves, the models show good generalization capabilities which
stress the need for a deeper understanding of what overfitting
means in the context of neural networks.
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