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Abstract—While standard statistical inference techniques and
machine learning generalization bounds assume that tests are run
on data selected independently of the hypotheses, practical data
analysis and machine learning are usually iterative and adaptive
processes where the same holdout data is often used for testing
a sequence of hypotheses (or models), which may each depend
on the outcome of the previous tests on the same data. In this
work, we present RADABOUND a rigorous, efficient and practical
procedure for controlling the generalization error when using a
holdout sample for multiple adaptive testing. Our solution is
based on a new application of the Rademacher Complexity gen-
eralization bounds, adapted to dependent tests. We demonstrate
the statistical power and practicality of our method through
extensive simulations and comparisons to alternative approaches.
In particular, we show that our rigorous solution is a substantially
more powerful and efficient than the differential privacy based
approach proposed in Dwork et al. [1]–[3].

Index Terms—Adaptive Analysis, Rademacher Complexity,
Statistical Learning

I. INTRODUCTION

The goal of data analysis and statistical learning is to model

a stochastic process, or distribution, that explain an observed

data. A major risk in statistical learning is overfitting, that

is, learning a model that fits well with the observed data but

does not predict new data. The standard practice in machine

learning is to split the data into training and holdout (or

testing) sets. A learning algorithm then learns a model using

the training data and tests the model on the holdout set to

obtain a confidence interval for the expected error or for

the value of the loss function of the model. If the process

halts after a single iteration, then the statistical analysis is

easy. However, in most cases, the learning process is iterative

and adaptive. One uses successive tests for model selection,

feature selection, parameter tuning, etc., and the choice of the

tests themselves often depends on the outcomes of previous

tests. Ideally, each hypothesis should be tested on a fresh data

sample. However, it is common practice to reuse the same

holdout data to evaluate a sequence of hypotheses. While
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widespread, this practice is known to lead to overfitting; that

is, the learned model becomes representative of the sample

rather than the actual process. Evaluating the accumulated

error in testing a sequence of related hypothesis on the

same data set is a major challenge in both machine learning

and modern statistics. In machine learning, the problem

of “preventing overfit”, is usually phrased and analyzed in

terms of bounding the generalization error [4]. In inference

statistics, the goal is controlling the Family Wise Error Rate

(FWER), or the False Discovery Rate (FDR) of a sequence

of hypothesis tests [5].

Our Results: We develop and analyze RADABOUND, a rig-

orous, efficient, and practical procedure for online evaluation

of the accumulated generalization error in a sequence of sta-

tistical inferences applied to the same sample. RADABOUND

can evaluate fully adaptive sequences of tests. The choice of

a test may depend on the information obtained from previous

tests, and the total number of tests is not fixed in advance.

One way to quantify the risk of overfitting after k queries

is by considering the probability of the condition defined by

the results of the first k queries. If the probability of such

condition is close to 1, the results of the queries evaluated so

far do not significantly restrict the sample space, and there is,

therefore, no risk of overfitting. Viceversa, if the probability

of the observed condition is small, the sample space defined

by the true distribution conditioned on the results of the

queries is noticeably different from the true distribution, and

there is thus a significant risk of overfitting. In general, it is

hard to bound the probability of the observed condition as

the true distribution over the samples is unknown. However,

in the special case for which the queries being considered

correspond to evaluating the average of functions (such as

evaluating the average risk or loss functions of alternative

learning procedures), we can design an adaptive process based

on an empirical estimate of the Rademacher Complexity of

the set of queries which correctly bounds this probability

and correspondingly halts the procedure when the risk of

overfitting exceeds a certain threshold fixed by the user.
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Our method builds on the concept of Rademacher Com-

plexity [6], [7] that has emerged as a powerful alternative

to VC-dimension and related uniform convergence methods

for characterizing generalization error and sample complexity.

A fundamental advantage of the Rademacher Complexity ap-

proach in contrast to standard uniform convergence tools, such

as VC-dimension, that capture the complexity with respect the

worst case input distribution, is that it yields a data-dependent

bound as it is computed with respect to the input (sample)

distribution, and can be efficiently approximated from the

sample.

Our solution employs three major components: (1) For

a set of functions chosen independent of the sample, the

Rademacher Complexity [6], [7] provides a powerful and

efficient bound on the error in estimating the expectations

of all these function using one sample; (2) As long as the

outcome of the sequence of tests does not significantly overfit

to the sample, conditioning on these outcomes has only a

minor effect on the distribution; and (3) The Rademacher

Complexity of a sequence of tests can be estimated efficiently

form a given sample, requiring similar computation time

as running the actual tests. To fully utilize our technique,

we need computationally efficient methods for rigorously

estimating the Rademacher Complexity from a sample. We

introduce two novel methods based on Bernstein’s inequality

for martingales [8] and the Martingale Central Limit

Theorem [9]. Our analysis and extensive experiments prove

and demonstrate that our method guarantees statistical validity

while retaining statistical power and practical efficiency.

Related Work: Classic statistics offers a variety of procedures

for controlling the Family Wise Error Rate (FWER), ranging

from the simple Bonferroni [10] to Holm’s step-down [11] and

Hochberg’s step-up procedures [12] in the context of multiple

hypotheses testing. While controlling the FWER under weak

assumptions about the hypotheses, these methods are too

conservative, giving many false negative results, in particular

for large sets of hypotheses. Less conservative procedures,

such as Benjamini and Hochberg [5], which control the False

Discovery Rate (FDR) (i.e., the expected fraction of false

discoveries), still do not scale up well for a very large number

of hypotheses. However, all these procedures cannot be applied

in the adaptive setting, as they require for the set of hypotheses

to be fixed at the beginning of the testing procedure (i.e.,

before any data evaluation).

In statistics, “sequential analysis” or “sequential hypothesis
testing” is a paradigm for statistical testing where for a fixed

family of hypotheses to be the tested the sample size is

not fixed in advance. Instead, data are evaluated as they are

collected, and further sampling is stopped in accordance with

a pre-defined stopping rule as soon as significant results are

observed. Despite the sequential iterative nature of this prac-

tices, as the hypotheses being considered are fixed beforehand,

sequential analysis procedures are not suitable for adaptive

analysis as the set of queries (hypotheses) being considered

depends in general for the outcome of previous evaluation of

the data itself. Other “sequential” hypothesis testing proce-

dures, such as the sequential False Discovery Rate control by

G’Sell et al. [13], assume that the order according to which

the hypotheses are to be evaluated is fixed beforehand, and

hence cannot be adaptively selected. Similar considerations

apply to the “Alpha Investing” sequential testing by Foster

and Stine [14], which achieves control of the “marginal False
Discovery Rate”. While the previously mentioned procedures

apply to the setting of hypotheses testing, the method proposed

in this work allows adaptive evaluations of statistical queries

while maintaining rigorous guarantees on the accuracy of the

obtained estimates.

A series of recent papers [1]–[3] explored an interesting

relation between “Differential Privacy” [15] and overfit

prevention in adaptive analysis. The basic idea is to limit the

user access to the holdout data so that the answers to the

sequence of queries is differentially private. A differentially

private access to the holdout data limits the risk of overfitting

to that data set. Unfortunately, the practical application of

this elegant mathematics is limited. Differential privacy is

achieved through random perturbation of the data (or the

reply to the queries). The higher the number of adaptive

queries, the larger the required perturbation. However, the

amount of perturbation is limited by the need to preserve the

actual signal in the data. As a result, rigorous application of

this approach is either limited to a small number of queries or

is computationally intractable [3], making it less useful than

alternative methods [16], [17]. Our experiments in Section 5

show that RADABOUND allows orders of magnitude reduction

of the required holdout dataset compared to Dwork et al.’s

method [1] while offering the same guarantees. Further,

our technique is much simpler as it does not require any

introduction of additional noise. We discuss in detail the

advantages of our solution compared to [1] in Section VI.

A more practical solution for a restricted setting inspired

by machine learning competitions was presented in [18].

Their solution, “the Ladder”, provides a loss estimate only

for those that made a significant improvement over the

previous best. This restricted setting allows to sidestep the

hardness results discussed in [16], [17]. Note however that

the guarantee achieved by the Ladder is fundamentally

different from the one achieved in Dwork et al. [2] and in

this work, as it ensures accuracy in the relative ordering of

the performance of multiple classifiers, while the latter ensure

accurate evaluations of adaptively selected queries. Hence,

the former is not comparable with the latters.

Paper organization: The presentation is organized as follows:

In Section II we introduce out RadaBound method for

adaptive statistical analysis. In Section III we discuss the

use of uniform convergence bounds based on Rademacher

Complexity in our setting, and we present two methods for

estimating the Rademacher Complexity of a class of adaptively

selected functions from the data. In Section IV we present the

details of our RadaBound and the guarantees provided by

it. In Section V, we present an experimental validation of the
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correctness and power of our methods using synthetic data.

Finally, in Section VI we compare our approach to the state-

of-the-art approach based on Differential Privacy by Dwork et

al. [2]. In particular, we show that a Rademacher complexity

based solution gives significantly better results than the more

complicated differential privacy based solution of Dwork et

al..

II. THE RADABOUND

For concreteness, we focus on the following setup. We have

an holdout sample composed by m independent observations

x̄ = (x1, . . . , xm), each from a distribution D, and parameters

ε, δ ∈ (0, 1) fixed by the user.

The process: In an iterative process, at each step, the user

(or an adaptive algorithm) submits a function f and receives

an estimate Ẽx̄ [f ] = 1
m

∑m
i=1 f(xi) of the “ground truth

value” ED [f ]. The user has no direct access to the sample

x̄. That is, he can only acquire information regarding x̄ from

the confidence intervals Ẽx̄ [f ]± ε for the expectation ED [f ],
which the testing procedure has returned as answer to the

queries considered so far. Let Fk = {f1, . . . , fk} denote

the set of the first k functions evaluated during the adaptive

process. The maximum error in estimating the expectations of

the k functions is given by:

Ψ(Fk, x̄) = sup
f∈Fk

| 1
m

m∑
i=1

f(xi)− ED [f ] |

= sup
f∈Fk

|Ẽx̄ [f ]− ED [f ] |.

In this work, we use the expression “overfittig” as follows: A

given set of functions Fk is said to overfit the sample x̄ if for

any f ∈ F the value Ẽx̄ [f ] evaluated on x̄ differs from the

true value ED [f ] by more than the user given threshold ε. Our

adaptive testing process halts at the first k-th step for which

for which it cannot guarantee that the probability of overfitting

is at most δ, that is, when Pr (Ψ (Fk, x̄) ≤ ε) ≥ 1− δ.

The process is fully adaptive. The choice of the function

fk+1 evaluated at the k + 1-th step may depend on the

information obtained during the first k steps. We make

no assumptions on the processes according to which the

functions are adaptively chosen to be tested, nor do we

require the total number of tests to be fixed in advance. For

simplicity, we assume that all functions are in the range [0, 1].
More general settings are discussed later in the paper.

Bounding the generalization error for the iterative process:
The sequence of answers to the queries, Ẽx̄ [f1]± ε, Ẽx̄ [f2]±
ε, . . . , Ẽx̄ [fk]± ε defines a filtration L = {Dk}k≥0, such that

D0 = D and Dk = {D | Ẽx̄ [f1]± ε ∧ · · · ∧ Ẽx̄ [fk]± ε}.
The k-th query is chosen with respect to, and is answered

in the filtered distribution Dk−1. Our first step in developing

RADABOUND is to adapt the Rademacher Complexity results

to an iterative, adaptive sequence of queries.

Let Ek denote the event that the answer to the k-th query

was within ε of the correct value, that is, Ek := |Ẽx̄ [f ] −
ED [fk] | ≤ ε. Then, Pr (Ψ (Fk, x̄) ≤ ε) = Pr

(∧k
i=1Ek

)
, and

thus, in the filtration process,

PrL (Ψ(Fk, x̄) > ε)

≤ PrD0

(
Ē1

)
+ PrD1

(
Ē2

)
+ . . .+ PrDk−1

(
Ēk

)
=

k∑
i=1

Pr
(
Ēi ∧ (∧i−1

j=1Ej)
)

Pr
(∧i−1

j=1Ej

)
≤ 1− Pr

(∧k
j=1Ej

)
Pr

(∧k−1
j=1Ej

) .

By the definition of the events Ej we thus have:

PrL (Ψ(Fk, x̄) > ε) ≤ 1− Pr (Ψ (Fk, x̄) ≤ ε)

Pr (Ψ(Fk−1, x̄) ≤ ε)
(1)

where Pr () with no subscript refers to probability in the

un-filtered distribution D.

The fact that the distribution of the generalization error in

the adaptive case, PrL (Ψ (Fk, x̄) > ε), is related to the proba-

bility of an error in the non-adaptive case, Pr (Ψ (Fk, x̄) > ε),
is not surprising. In order to fit the sample differently than

the original distribution D, the process needs to detect a

pattern whose frequency is considerably different in the sample

compared to the actual distribution D. However, the first query

that observes such a pattern is chosen when the process has not

yet observed a significant difference between the sample and

the distribution. This is due to the fact that the process halts

as soon as such difference is detected. Thus, the probability

of overfitting in k queries is related to the probability that the

sample gives a bad estimate for the correct value of one of

the k queries in the non-adaptive case.

The challenge is to compute a tight bound to the probability

Pr (Ψ (Fk, x̄) ≤ ε). We achieve this through two novel bounds

on estimating the Rademacher Complexity of Fk.

III. BOUNDING Ψ(Fk, x̄) USING RADEMACHER

COMPLEXITY

Our solution is based on iterative applications of

Rademacher Complexity bounds.

Definition 1. [19] Let σ̄ = (σ1, . . . , σm) be a vector of
m independent Rademacher random variables, such that for
all i, Pr (σi = 1) = Pr (σi = −1) = 1/2. The Empirical

Rademacher Complexity of a class of function F with respect
to a sample x̄ = {x1, . . . , xm}, with x̄ ∼ Dm is

RF
x̄ = Eσ̄

[
sup
f∈F

1

m

m∑
i=1

f(xi)σi

]

The Rademacher Complexity of F for samples of size m is
defined as RF

m := Ex̄∼Dm

[
RF

x̄

]
.
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The relation between Ψ(Fk, x̄) and the Rademacher Com-

plexity of Fk is given by the following results 1:

Lemma 1 (Lemma 26.2, [4]).

Ex̄∼Dm [Ψ(Fk, x̄)] = E

[
sup
f∈Fk

| 1
m

m∑
i=1

f(xi)− ED[f ]|
]

≤ 2RFk
m .

Lemma 2 (Theorem 14.21, [19]). Assume that for all x ∈ X
and f ∈ Fk we have f(x) ∈ [0, 1], then:

Pr
(
Ψ(Fk, x̄) > 2RFk

m + ε
) ≤ e−2mε2 . (2)

Note that in our context (a) we need a one-sided bound, and

(b) for all x ∈ X and f ∈ Fk we have f(x) ∈ [0, 1].
For algorithmic applications, two important consequences

of these result are that: (a) for bounded functions the gener-

alization error is concentrated around their expectation, and

(b) the Rademacher Complexity can be estimated from the

sample. In order for this bound to be actually usable in

practical applications, it is necessary to compute an estimate

of the Rademacher Complexity given the dataset x̄, and to

bound its error. In the “textbook” treatment, the difference

between Rademacher Complexity and its empirical counter-

part is bounded using a second application of McDiarmid’s
Inequality [4], [20]. However, this bound is often too loose

for practical applications such as ours.

In this work, we propose an alternative, direct, estimate of

the Rademacher Complexity and we develop two methods for

tightly bounding the estimation error.

A. Tight bounds on Rademacher Complexity estimate

Given a finite size sample x̄ ∼ Dm and � independent

Rademacher vectors σ̄1, . . . , σ̄�, each composed of m indepen-

dent Rademacher random variables (i.e., σ̄j = σj,1σi,2 . . . σj,m

), we estimate RFk
m with

R̃Fk

x̄,� =
1

�

�∑
j=1

sup
f∈Fk

1

m

m∑
i=1

f(xi)σj,i. (3)

Clearly, Ex̄,σ̄1,...,σ̄�

[
R̃Fk

x̄,�

]
= RFk

m . To bound the error RFk
m −

R̃Fk

x̄,�, we model the process as a Doob martingale ( [19,

Chapter 13.1]) as follows:

Ci = E[RFk
m − R̃Fk

x̄,� | Y1, . . . , Yi] for i = 0, . . . ,m(�+ 1),

where the Y1, . . . , Ym(�+1) are the random variables that

determinate the value of the estimate R̃Fk

x̄,�. The first m
variables Yi’s correspond to the values of the sample x̄, i.e. for

1 ≤ i ≤ m, Yi = Xi, and the remaining m� Yi’s correspond

to the Rademacher random variables, Yi = σ�i/m�,i−�i/m�. It

is easy to verify that C0 = 0, and Cm(�+1) = RF
m − R̃Fk

x̄,�.

Next, we define a martingale difference sequence Zi =
Ci−Ci−1 with respect to the martingale C0, C1, . . . Cm(�+1),

1In our setting, in order apply the result with absolute value we assume
that for any f ∈ Fk we also have −f ∈ Fk , i.e., we assume that Fk is
closed under negation.

and note that
∑m(�+1)

t=1 Zt = Cm(�+1) = RFk
m − R̃Fk

x̄,�.

Application of Bernstein’s Inequality for Martingales: Our

first bound builds on Bernstein’s Inequality for Martingales

(BIM). We use the following version due to Freedman [8], as

presented in [21] and adapted to one-sided error.

Theorem 1. [8], [21] Let Z1, . . . , Zt be a martingale differ-
ence sequence with respect to a certain filtration {Fi}i=0,...,t.

Thus, E [Zi|Fi−1] = 0 for i = 1, . . . , t. The process∑t
i=1 Zi is thus a martingale with respect to this filtration.

Further, assume that |Zi| ≤ a for i = 1, . . . , t, and that the
conditional variance

∑t
i=1 E

[
Z2
i

] ≤ L. For ε ∈ (0, 1), we
have:

Pr

(
t∑

i=1

Zi > ε

)
≤ e−

ε2

2L+2aε/3 . (4)

Note that the bound presented here is slightly different from

the one in [8] as for our purposes we only require a one-sided

bound. A careful analysis of E[Z2
i ] in our application allows us

to obtain a significantly stronger bound than the one obtained

using McDiarmid’s Inequality [4], [20], which depends on the

maximum variation of the martingale.

Theorem 2. Given a sample x̄ ∼ Dm, a family of functions
Fk which take values in [0, 1], � independent vectors of
Rademacher random variables, and ε, δ ∈ (0, 1), we have:

Pr
(
RFk

m − R̃Fk

x̄,� > ε
)
≤ e−

6m�ε2

15+8�ε . (5)

Proof: Recall the definition of the Doob martingale

Ci = E[RFk
m − R̃Fk

x̄,� | Y1, . . . , Yi],

for i = 0, . . . ,m(� + 1), and the the definition of the

corresponding martingale difference sequence Zi = Ci−Ci−1.
By definition, for every i = 1, . . . ,m(� + 1), we have

E [Zi] = 0, and hence, E
[
Z2
i

]
= Var [Zi].

In order to apply Bernstein’s Inequality, we need a bound a,

such that a ≥ |Zi| for 1 ≤ i ≤ m(�+1), and an upper-bound

L to the conditional variance, such that

L ≥
m(�+1)∑
i=1

E
[
Z2
i

]
=

m(�+1)∑
i=1

Var [Zi] .

We consider the cases for 1 ≤ i ≤ m and m < i ≤ m(�+1)
separately:

• 1 ≤ i ≤ m: For 1 ≤ j ≤ �, let us consider

C
(j)
i = E[RFk

m − sup
f∈Fk

1

m

m∑
i=1

f(xi)σj,i | Y1, . . . , Yi],

Z
(j)
i = C

(j)
i − C

(j)
i−1.

According to our definitions, we have

Ci =
1

�

�∑
j=1

C
(j)
i

Zi =
1

�

�∑
j=1

Z
(j)
i .
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Since ∀x ∈ X and ∀f ∈ Fk, f(x) ∈ [0, 1], changing

the value of any of the m points in x̄ can change

supf∈Fk

1
m

∑m
i=1 f(xi) by at most 1/m, and thus we

have |Z(j)
i | ≤ 1/m, and Z

(j)
i ∈ [α, β] with β−α ≤ 1/m.

From Popoviciu’s Inequality on variance [22], we have

that the variance of a random variable which takes values

in [α, β] is bounded from above by (β − α)2/4. Hence,

by applying Popoviciu’s Inequality to Z
(j)
i , we have that

Var
[
Z

(j)
i

]
≤ 1/(4m2).

As we are considering the expectation over the unas-

signed values of the Rademacher random variables,

and as we are averaging over the values obtained us-

ing � independent and identically distributed vectors

of Rademacher random variables, we can conclude

that |Zi| ≤ 1
�

∑�
j=1 |Z(j)

i | ≤ 1/m, and Var [Zi] =
1
�2

∑�
j=1 Var

[
Zj
i

]
≤ 1/(4m2�).

• m < i ≤ m(�+1): Changing the value of any of the �m
Rademacher random variables can change the value of

R̃Fk
x̄,j by at most 2/�m, and thus we have |Zi| ≤ 2/�m ≤

1/m, and Zi ∈ [α, β] with β − α ≤ 2/�m. By applying

Popoviciu’s Inequality, we thus have Var [Zi] ≤ 1/�2m2.

By linearity of expectation,
∑m(�+1)

i=1 Zi = RFk
m − R̃Fk

x̄,�.

Further, we have
∑m(�+1)

i=1 Z2
i ≤ 5/4�m, and |Zi| < 1/m

for all 1 ≤ i ≤ m(�+ 1). The statement follows by applying

Theorem 1.

Note that for a sufficiently large (constant) �, the term 6ε�
dominates the denominator of the exponent in the right hand

side of (5), giving a fast rate of convergence for the estimate.

Our estimate fully characterizes the benefit achieved using

multiple independent vectors of Rademacher random variables

in estimating R̃Fk

x̄,�.

Combining the results of Theorem 2, Lemma 1, and

Lemma 2 using the union bound, we obtain an empirical bound

on Ψ(Fk, x̄).

Theorem 3. Given a sample x̄ ∼ Dm, a family of functions
Fk which take values in [0, 1], � independent vectors of
Rademacher random variables, and ε, δ ∈ (0, 1), we have:

Pr
(
Ψ(Fk, x̄) > 2R̃

Fk
x̄,� + ε

)
< min

α∈(0,ε)
e−2m(ε−α)2 + e−

3m�α2

30+8�α .

(6)

Proof: From Lemmas 1 and 2, we have:

Pr
(
Ψ(Fk, x̄) > 2RFk

m + ε1
) ≤ e−2mε21 .

Theorem 2 characterizes the quality of the estimate of the

Rademacher Complexity given by R̃Fk

x̄,�, computed as specified

in (3):

Pr
(
RF

m − R̃Fk

x̄,� > ε2

)
≤ e−

6m�ε22
15+8�ε2 .

Combining the two results, we obtain:

Pr
(
Ψ(Fk, x̄) > 2R̃Fk

x̄,� + ε1 + 2ε2

)
≤ e−2mε21 + e−

6m�ε22
15+8�ε2 .

By substituting α = 2ε2 and ε = ε1 + 2ε2 in the previous

equation, we have:

Pr
(
Ψ(Fk, x̄) > 2R̃Fk

x̄,� + ε
)
≤ e−2m(ε−α)2 + e−

6m�(α/2)2

15+8�ε2 .

The statement follows.

Alternative bound with single application of Bernstein’s
Inequality for Martingales: We now present an alternative

result to the one in Theorem 3, which can be achieved with

a single application of BIM. This bound is tighter than the

one in Theorem 3 when the number of independent vectors of

Rademacher random variables is very high.

Theorem 4.

Pr
(
Ψ(Fk, x̄) > 2R̃Fk

x̄,� + ε
)
< e

− ε2

�+4
√

�+20
2m�

+ 4ε
3m

Proof: Consider the Doob supermartingale:

Ci = E
[
Ψ(Fk, x̄)− 2R̃Fk

x̄,�|Y1, . . . Yi

]
for i = 0, . . . ,m(�+1),

where for 1 ≤ i ≤ m, Yi = Xi, and the remaining

Yi correspond to the m� independent Rademacher random

variables in the � vectors; that is, Yj(m)+i = σj,i for 1 ≤ j ≤ �
and 1 ≤ i ≤ m. It is easy to verify that Cm(�+1) =

Ψ(Fk, x̄) − 2R̃Fk

x̄,�. Further, C0 = E [Ψ (Fk, x̄)] − 2RFk
m , and

due to Theorem 1, C0 ≤ 0.

Let us define the corresponding martingale difference se-

quence Zi = Ci −Ci−1. For each i ∈ {1, . . . ,m(�+1)}, due

to linearity of expectation, we have Zi = Ai − 2Bi, where:

Ai = E [Ψ (Fk, x̄) |Y1, . . . Yi]− E [Ψ (Fk, x̄) |Y1, . . . Yi−1] ;

Bi = E
[
R̃Fk

x̄,�|Y1, . . . Yi

]
− E

[
R̃Fk

x̄,�|Y1, . . . Yi−1

]
.

In order apply Bernstein’s Inequality, we need an upper-bound

a ≥ |Zi| for 1 ≤ i ≤ m(� + 1) and an upper-bound L, such

that L ≥ ∑m(�+1)
i=1 E

[
Z2
i

]
.

Given our definition of Zi, we have that for every i,
E [Zi] = E [Ai] = E [Bi] = 0, and thus: E

[
Z2
i

]
= Var [Zi] ≤

Var [Ai] + 4Var [Bi] + 4Cov [Ai, Bi]. From the properties of

covariance, we have |Cov [Ai, Bi] | ≤ √
Var [Ai]Var [Bi],

and thus, E
[
Z2
i

]
= Var [Zi] ≤ Var [Ai] + 4Var [Bi] +

4
√

Var [Ai]Var [Bi].

We consider the cases for 1 ≤ i ≤ m and m < i ≤ m(�+1)
separately:

• 1 ≤ i ≤ m: In our setting ∀x ∈ X and ∀f ∈ F , f(x) ∈
[0, 1], changing the value of any of the m points in x̄ can

change f(x̄) by at most 1/m. Therefore, |Ai| ≤ 1/m, and

Ai ∈ [α, β] with β−α ≤ 1/m. By applying Popoviciu’s

Inequality, we have: Var [Ai] ≤ 1/4m2.

The analysis for Var [Bi] follows the same reasoning

discussed in the proof of Theorem 2 for bounding Var [Zi]
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in the case 1 ≤ i ≤ m, and thus Var [Bi] ≤ 1/(4m2�).
We can thus conclude:

E
[
Z2
i

]
= Var [Zi] ≤ 1

4m2
+

4

4�m2
+ 4

√
1

4m2

1

4�m2

≤ �+ 4 + 4
√
�

4m2�
;

|Zi| ≤ 2

m
.

• m < i ≤ m(� + 1): Changing the value of any of the

Rademacher random variables does not change the value

of Ψ(Fk, x̄). Hence, Var [Ai] = E
[
A2

i

]
= 0.

Given fixed values for the random variables correspond-

ing to the points in x̄, changing the value of one

Rademacher random variable can change the value of

R̃Fk

x̄,� by at most 2/�m. Thus, |Bi| ≤ 2
�m , and Bi ∈ [α, β]

with β−α ≤ 2/�m. By applying Popoviciu’s Inequality,

we have:

Var [Zi] = 4Var [Bi] ≤ 4

m2�2
.

We, therefore, have |Zi| ≤ 2
m for all 1 ≤ i ≤ m(� + 1), and∑m(�+1)

i=1 E
[
Z2
i

] ≤ �+4
√
�+20

4m� . By linearity of expectation, and

by applying Theorem 1:

�(m+1)∑
i=1

Zi = Ψ(Fk, x̄)− E [Ψ (Fk, x̄)]− 2
(
R̃Fk

x̄,� −RFk
m

)

≥ Ψ(Fk, x̄)− 2RFk
m − 2

(
R̃Fk

x̄,� −RFk
m

)
;

≥ Ψ(Fk, x̄)− 2R̃Fk

x̄,�;

The statement follows by applying BIM (Theorem 3.3).

This result can be used in RADABOUND in place of the

bound given by Theorem 3. Note that with this result, it is

easier to compute the bound on the probability of overfitting

(denoted as δ′ in line 11: of Algorithm 1).

Application of the Martingale Central Limit Theorem: In

practical applications, one may prefer the standard practice

in statistics of applying central limit asymptotic bounds. We

develop here a bound based on the Martingale Central Limit

Theorem (MCLT). Our experimental results in Section V show

that the bound obtained using the MCLT is more powerful

while still preserving statistical validity.

We adapt the following version of the MCLT 2:

Theorem 5 (Corollary 3.2, [9]). Let Z0, Z1, . . . be a differ-
ence martingale with bounded absolute increments. Assume
that (1)

∑n
i=1 Z

2
i

p→ V 2 for a finite V > 0, and (2)
E
[
maxi Z

2
i

] ≤ M < ∞, then
∑n

i=1 Zi/
√∑n

i=1 E [Z2
i ]

converges in distribution to N(0, 1).

When applying the MCLT, there is no advantage in bound-

ing separately Ψ(Fk, x̄)− 2RFk
m and 2RFk

m − 2R̃Fk

x̄,�. Instead,

2Formally, the asymptotic is defined on a triangle array, where rows are
samples of growing sizes. We also assume that all expectations are well-
defined in the corresponding filtration.

we compute a bound on the distribution of Ψ(Fk, x̄)− 2R̃Fk

x̄,�

by analyzing the Doob supermartingale

Ci = E[Ψ (Fk, x̄)− 2R̃Fk

x̄,� | Y1, . . . , Yi]

for i = 0, . . . ,m(� + 1), with respect to the same

Y1, . . . , Ym(�+1) defined as in Section III-A.

As in the finite sample case, the following theorem relies

on a careful analysis of E
[
Z2
i

]
for the martingale difference

sequence Zi = Ci − Ci−1.

Theorem 6. Given a sample x̄ ∼ Dm, a family of functions
Fk which take values in [0, 1], � independent vectors of
Rademacher random variables, and ε, δ ∈ (0, 1), we have:

lim
m→∞

Pr

(
Ψ(Fk, x̄)− 2R̃

Fk
x̄,� > ε

√
�+ 4

√
�+ 20

2
√
�m

)
< 1− Φ (ε) .

Where Φ(x) denotes the cumulative distribution function for
the standard normal distribution.

Proof: The proof closely follows the steps of the proof

of Theorem 4. Consider the Doob supermartingale for the

function Ψ(Fk, x̄)− 2R̃Fk

x̄,�:

Ci = E
[
Ψ(Fk, x̄)− 2R̃Fk

x̄,�|Y1, . . . Yi

]
for i = 0, . . . ,m(�+1),

where for 1 ≤ i ≤ m, Yi = Xi, and the remaining Yi cor-

respond to the m� independent Rademacher random variables

in the � vectors. That is, Yj(m)+i = σj,i, for 1 ≤ j ≤ � and

1 ≤ i ≤ m. Further, let us define the corresponding martingale

difference sequence Zi = Ci − Ci−1.

In order to apply the MCLT, we need to bound∑m(�+1)
i=1 E

[
Z2
i

]
from above, and we need to verify that |Zi|

is bounded.

Note that the sequence Zi defined here corresponds to the

martingale difference sequence by the same name that we

studied in the proof of Theorem 4. As shown in the proof

of Theorem 4, we have
∑m(�+1)

i=1 E
[
Z2
i

] ≤ �+4
√
�+20

4m� , and

|Zi| ≤ 2/m for all 1 ≤ i ≤ m(�+ 1).
Applying the MCLT, we have that as m goes to infinity,∑m(�+1)
i=1 Zi/

√∑m(�+1)
i=1 E [Z2

i ] converges in distribution to

N(0, 1), and thus:

lim
m→∞

Pr

⎛
⎜⎝�(m+1)∑

i=1

Zi

⎛
⎜⎝
√√√√m(�+1)∑

i=1

E [Z2
i ]

⎞
⎟⎠

−1

> ε

⎞
⎟⎠ < 1− Φ (ε) ,

lim
m→∞

Pr

⎛
⎝�(m+1)∑

i=1

Zi > ε

√
�+ 4

√
�+ 20

4m�

⎞
⎠ < 1− Φ (ε) ,

By linearity of expectation, and by applying Theorem 1:
�(m+1)∑
i=1

Zi = Ψ(Fk, x̄)− E [Ψ (Fk, x̄)]− 2
(
R̃Fk

x̄,� −RFk
m

)

≥ Ψ(Fk, x̄)− 2RFk
m − 2

(
R̃Fk

x̄,� −RFk
m

)
;

≥ Ψ(Fk, x̄)− 2R̃Fk

x̄,�;

The statement follows.
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Due to its asymptotic nature, it is not possible to compare

directly the tightness of the bound in Theorem 6 with that

of finite sample bounds such as the one in Theorem 3. Still,

this bound is of great interest in many practical scenarios as it

allows for a much tighter bound for the generalization error.

IV. THE RADABOUND ALGORITHM

The algorithm starts by drawing � independent vectors of

Rademacher variables. These vectors are fixed throughout

the execution of the algorithm. The advantage of fixing the

Rademacher vectors is that (1) we deal with a nested sequence

of events, Fk−1 ⊆ Fk, and (2) the actual computation of the

Rademacher complexity estimate is simple and efficient.

Computing the estimate: At the end of each round k,

the algorithm stores for each of the Rademacher vectors

j = 1, . . . , �, the value M̃Fk
x̄,j = maxf∈Fk

1
|x̄|

∑|x̄|
i=1 f(xi)σi,j .

To update these values, at iteration k + 1, the algorithm

computes

M̃
Fk+1

x̄,j ← max{M̃Fk
x̄,j ,

1

|x̄|
m∑
i=1

fk+1(xi)σi,j}, j = 1, . . . , �.

The estimate of the Rademacher Complexity at round k + 1
is then given by R̃

Fk+1

x̄ = 1
�

∑�
j=1 M̃

Fk+1

x̄,j .

ALGORITHM 1 RADABOUND - Adaptive data analysis

with Rademacher Complexity control

1: procedure RADABOUND(x̄, ε, δ, �)
2: m ← |x̄| 	 Size of the input sample

	 Initialization estimator for Rademacher Complexity

3: for j ∈ {0, 1, . . . , �} do
4: σj ← vector of m iid Rademacher RVs

5: RF0
x̄,j ← 0

	 Main execution body

6: while new k-th query fk from the stream do
7: Fk+1 ← Fk ∪ {fk}

	 Rademacher Average estimation update

8: for j ∈ {0, 1, . . . , �} do
9: R

Fk+1

x̄,j ← max{RFk
x̄,j ,

1
m

∑m
i=1 fk(xi)σj,i}

10: R̃
Fk+1

x̄,� ← 1
�

∑�
j=1 R

Fk+1

x̄,j

	 Control with BIM

11: δ′ ← e
−
(
min 0,ε−2R̃

Fk
x̄,�

)2
/ �+4

√
�+20

2m� + 4ε
3m

	 Control with MCLT- Alternative to 11:

12: or δ′ ← 1− Φ
(
max{0, ε− 2R̃

Fk+1

x̄,� }
√

4�m
�+4

√
�+20

)
	 Overfit control test

13: if δ′ ≤ δ(1− δ) then
14: return 1

m

∑
x∈x̄ f(x)

15: else
16: Halt: Cannot guarantee the statistical

validity of further queries.

Stopping rule: Given real values ε, δ ∈ (0, 1), the procedure

halts at the first k-th step for which it cannot guarantee that

PrL (Ψ(Fk+1, x̄) > ε) ≤ δ.

Recall from (1) that

PrL (Ψ(Fk, x̄) > ε) ≤ Pr (Ψ(Fk, x̄) > ε)

Pr (Ψ(Fk−1, x̄) ≤ ε)
. (7)

Since Pr(Ψ(Fk, x̄) > ε) ≥ Pr(Ψ(Fk−1, x̄) > ε), it is

sufficient to require Pr (Ψ(Fk, x̄) > ε) < δ(1 − δ) to have

PrL (Ψ(Fk, x̄) > ε) ≤ δ, and we can use the bounds obtained

in Theorem 3 or Theorem 6. Thus, we prove

Theorem 7. Given a sample x̄ ∼ Dm, let Fk denote the
set of functions adaptively selected during the first k steps. If
RADABOUND has not halted at step k, then

PrL (Ψ(Fk, x̄) ≤ ε) > 1− δ.

The bound in Theorem 6 based on the MCLT can be used

in RADABOUND as an alternative to the bound in Theorem 3

(lines 11-12 in Algorithm 1). In Section 5, we present an

experimental comparison of performance of RADABOUND

when using the two methods.

V. EXPERIMENTAL RESULTS

We demonstrate the power and efficiency of our technique

through a variety of experiments. Our experimental setup is

similar to the one used in the state-of-the-art [1], except that

all our reported results are for ranges of parameters for which

we actually have provable statistical guarantees.

Experimental Setup: We consider a learning task of classify-

ing vectors composed by d features to the classes “-1” or “1”.

We consider only linear classifier vectors w ∈ {−1, 0, 1}d,

assigning vector x to class h(x) = sign (w · x). The goal of

the learning algorithm is to find a classifier with minimum

expected loss for the 0, 1 hard loss function (0 for correct clas-

sification, 1 otherwise). To model a typical learning scenario,

the learning algorithm is given two independent datasets. A

training set XT and an holdout set XH . We then evaluate

the performance of the learning algorithm using a third,

independent fresh set. Evaluation on the fresh, independent

set provides a baseline for the actual performance of the

classifier being considered on an independent dataset. The

goal of the algorithm being tested if to obtain a classifier

h() which “fits the data” as best as possible, that is the a

classifier which minimizes the Empirical Risk over the holdout

data, that is 1
m

∑
x∈XH

� (h(x), y(x)), where y(x) denotes the

“true label” associated with the data point x and � (h(x), y(x))
denotes the loss function. In our setting we consider the

{0, 1} loss function such that � (h(x), y(x)) = 0 if h(x), y(x
(i.e., the classifier h() assigns the correct label to x), or

� (h(x), y(x)) = 1 otherwise.

Our learning algorithm works as follows: In the first phase,

the algorithm evaluates the correlation between the values of

the features and the labels of the vectors using only the training

dataset XT as ci =
1
m

∑
x∈XT

x[i]l(x). The features are then

sorted (in descending order) according to the absolute values

of their correlations |ci| to the labels.

The actual adaptive analysis of the data occurs in the

second phase of the algorithm using the holdout data XH .
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(a) Bernstein bound

(b) MCLT

Fig. 1: No signal. Feature values from

N (0, 1). δ = 0.1.

(a) Bernstein bound

(b) MCLT bound

Fig. 2: No signal. Feature values from

N (0, 2). δ = 0.15.

(a) Bernstein bound

(b) MCLT bound

Fig. 3: No signal. Feature values from

N (0, 8). δ = 0.2.

The algorithm starts with a classifier w = 0. It then considers

features according to the order computed in the first phase.

That is, features with stronger correlation (either positive or

negative) to the label are considered first. Using the holdout set

XH , the algorithm tests, for each feature, whether assigning

weight -1 or 1 to it improves the performance of the current

best classifier. If that is the case, the classifier is updated with

the new value for the feature; otherwise, the feature is left

with weight zero. Each newly tested classifier is added to

the class function Fk. RADABOUND then computes a new

estimate R̃Fk
m of the Rademacher Complexity of Fk, and uses

it to determinate whether the total accumulated error is below

ε with probability at least 1− δ as discussed in Section IV.

Data generation: In all the experiments |XT | = |XH | =
4000. Each vector in the dataset has 500 features. The es-

timation of the Rademacher Complexity R̃F
x̄,� is computed

according to (3) using � = 32 vectors of Rademacher random

variables. We report results using (a) Bernstein’s Inequality

(Section III-A) and, (b) the MCLT (Section III-A). We con-

sider the two following scenarios:

• No signal in the data: In this setting, each point

x ∈ XH is assigned a label independently and uniformly

at random. The feature values are taken independently
from a normal distribution with expectation 0 and various

variance values. Thus, there is no correlation between the

labels and the values of the features. We report the results

in Figures 1-3.

• Signal in the data: In this setting the “strength” of

the correlation between some features and the labels

is characterized by two parameters: n, the number of

the queries whose value is correlated to the label, and

(positive or negative) bias which defines the strength and

sign of the correlation. We first generate datasets with no

signal, like in the previous setting. We then fix a set of 50
features to be correlated with the label of their vectors.

Letting l(x) be the label of vector x, the 50 correlated

features of x are modified by adding bias× l(x) to their

original value. We report the results in Figures 4-6.

Our experimental evaluation uses synthetic data generated

randomly according to the previously discussed specifications.

Besides being widespread in statistics literature and used in

our most direct term of comparison [2], using synthetic data

is particularly useful in this setting for two main reasons: (i)

it allows evaluate the performance of our testing procedure

while evaluating different settings by modifying its parameters

(e.g., the size of the input sample, the strength of the signal

being observed), and (ii), most importantly, it allows to ver-

ify whether/when overfitting (due to adaptivity) has actually
occurred (i.e., when the blue line in the figures exceeds the

green shaded region). This allows to asses both the correctness
of the method and its power.

Results: The results of the experiments in the no signal (resp.,

signal in the data) setting are displayed in Figures 1-3 (resp.,

Figures 4-6). Each figure above corresponds to several runs of

an experiment with the same parameters but different values

of ε (the error bound). The blue line gives the accuracy of

the best classifier computed after running the corresponding

number of queries on the holdout set XH . The red line gives

the accuracy of the same classifier on fresh data (i.e., the red

line represents the ground truth performance of the classifier

being evaluated on a fresh sample). The vertical bars give

the computed stopping time for each value of ε according to
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(a) Bernstein bound

(b) MCLT bound

Fig. 4: Signal. Feature values from

N (0, 4), δ = 0.1, bias = 0.5.

(a) Bernstein bound

(b) MCLT bound

Fig. 5: Signal. Feature values from

N (0, 2), δ = 0.15, bias = 0.5.

(a) Bernstein bound

(b) MCLT bound

Fig. 6: Signal. Feature values from

N (0, 2), δ = 0.2, bias = 0.25.

the “stopping rule” of RADABOUND. The shaded green area

corresponds to ±ε values around the “true accuracy” of the

classifier (the red line), for the ε value associated with the next

vertical bar. The green shaded area beyond the last bar uses the

same ε as the last bar. In a correct execution of RADABOUND,

the blue line does not exit the green shaded area before the

last vertical bar. The power of RADABOUND is measured by

how close is the last bar to the first time the green line exit

the shaded area.

The results of the experimental evaluations, as presented in

the figures, demonstrate that RADABOUND successfully halts

the sequence of tests before overfitting for the various values of

ε, as the green line corresponding to the values of the function

evaluated on the holdout does not exit the green shaded area

before the corresponding vertical bar. The statistical power

of the procedure is highlighted in particular by the result of

experiments for which there is an actual correlation between

the labels (Figures 4-6) and the value of the features as the

overfitting control ensured by RADABOUND is not achieved

at the expense of detecting the signal in the data.

In several scenarios (e.g., Figures 4 and 6), RADABOUND

halts its execution very close to the first iteration for which

overfit (with respect to the value of ε) actually occurs. RAD-

ABOUND does not appear to be influenced by the distribution

D over the data, but rather it behaves differently depending

on the actual family of functions being tested.

For similar ε, δ parameters, the state-of-the-art

Thresholdout algorithm [1] would require an holdout

dataset of size ∼ 4 × 106 to provide answers to just 10

queries (details in Section VI). In contrast, our experiments

show that RADABOUND can provably handle such parameters

with a holdout set of just 4000 samples, thus with an

improvement of almost three orders of magnitude in terms

of sample complexity. The comparison is further discussed

in Section VI. Using the MCLT leads to a tight analysis

of Ψ(Fk, x̄), which in turn allows testing a higher number

of adaptively chosen classifiers before halting and without

overfitting (Figures 1-6b), compared to the stopping points

obtained using the BIM (Figures 1-6a).

Finally, the fact that even when using the bounds obtained

using the MCLT, the procedure halts correctly, further suggests

that, despite their “asymptotic” nature, these are actually

highly reliable even when dealing with an input sample of

relatively small dimension.

VI. COMPARISON WITH METHODS BASED ON

DIFFERENTIAL PRIVACY

The Thresholdout algorithm [1] provides guarantees sim-

ilar to those of RADABOUND. Thresholdout operates using

two datasets: a public dataset and a private holdout dataset.

Every time a new query is received the algorithm evaluates

its value on both the public and the private dataset. If their

absolute difference is within a given threshold, Thresholdout

returns to the user the value observed on the public dataset

after perturbing it with some noise. Viceversa, if the absolute

difference is higher than a certain threshold, the algorithm

detects that the query being considered is overfitting on

the public dataset. In this case, Thresholdout may instead

provide the value computed on the private dataset after per-

turbing it with noise. As this last operation effectively “leaks”

information regarding the holdout it can be executed up to B
times, where B must be fixed prior to the execution of the

algorithm.
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To characterize the number of queries for which the

Thresholdout algorithm provides provable statistical guar-

antees we apply Theorem 25 in [1] 3. The theorem states that

when testing up to k queries, with up to B = 1 of those

being answered using the private “Holdout set”, the size of

the holdout set must be at least:

n ≥ 96ε−2 ln
(
4kδ−1

)
min{80

√
B ln(1/εδ)}, 16B}

Thus, for k = 10, B = 1, ε = 0.5, and δ = 0.1: the required

sample size is at least

n ≥ 400× 96× ln(400)min{80
√
ln(200), 16} ≥ 3.7× 106.

Therefore, even when requesting such, fairly loose, guarantees,

Thresholdout requires an extremely high sample size in

order to provide reliable answer to a handful of queries.

In contrast, we showed in Section V that RADABOUND can

provably handle problems with these, and better, parameters

while using a holdout set composed by just 4000 samples.

Thus RADABOUND achieves an improvement of almost three

orders of magnitude in terms of sample complexity compared

to Thresholdout.

Further, Thresholdout requires that the user specifies

before the execution the number of queries k which are going

to be adaptively chosen to be tested, and the number B of

maximum times that the algorithm can tolerate overfit on the

public dataset by revealing information from the private “hold-
out” dataset. These requirements limit the adaptiveness of the

process. In contrast RADABOUND uses the holdout dataset

as much as possible without a fixed maximum number of

queries. Finally, using Rademacher Complexity in evaluating

the stopping criterion of the adaptive testing procedure allows

RADABOUND to evaluate the properties of the actual family

of functions tested so far (i.e., their expressiveness), rather

than just its cardinality, in order to provide guarantees on the

quality of the evaluations obtained in the adaptive analysis.

VII. CONCLUSION

We presented a rigorous, efficient and practical method for

bounding the generalization error in an adaptive sequence of

queries tested on the same dataset. While the standard “rule of

thumb” for responsible data analysis and machine learning is

to use a test set only once, our results demonstrate that, with

an appropriate control mechanism, it may be possible to use

the same test set more than once without significantly reducing

the validity of the results. For concreteness, we focused here

on the problem of evaluating the expectations of a set of

functions in the range [0, 1]. This problem corresponds to the

basic machine learning task of evaluating the correctness of

classifiers with bounded [0, 1] loss functions. We note that

3A careful reader will notice that Figures 1-3 in [1] (the same figure
appears as Figures 1 and 2 in [2]) represent an idealized illustration rather
than statistically valid results. For the sample size used in these figures, the
bound on the error probability of the threshold algorithm is not smaller than
1. Furthermore, the results crucially depend on a preprocessing of the two
data sets (lines 95-97 in the “runClassifier” procedure in the python code
in the supporting materials) that is not discussed in the paper.

our methods can be extended to a more general setting, for

example using new concentration bounds on sub-exponential

distributions [23], and self-bounding functions [24].
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