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Abstract—Recently, there have been several proposals to
develop visual recommendation systems. The most advanced
systems aim to recommend visualizations, which help users to
find new correlations or identify an interesting deviation based
on the current context of the user’s analysis. However, when
recommending a visualization to a user, there is an inherent risk
to visualize random fluctuations rather than solely true patterns:
a problem largely ignored by current techniques.

In this paper, we present VizCertify, a novel framework to
improve the performance of visual recommendation systems
by quantifying the statistical significance of recommended vi-
sualizations. The proposed methodology allows to control the
probability of misleading visual recommendations using both
classical statistical testing procedures and a novel application of
the Vapnik Chervonenkis (VC) dimension towards visualization
recommendation which results in an effective criterion to decide
whether a recommendation corresponds to a true phenomenon
or not.

Index Terms—Visualization, Recommendation
FWER, Data Exploration, Visual Recommendation

Systems,

I. INTRODUCTION

Recently many visual recommendation engines [1]-[8] have
been proposed to help savvy and unsavvy users with data
analysis. While some recommendation engines (e.g., [2], [8],
[4]) aim to recommend better visual encodings, others (e.g.,
SeeDB [1], DeepEye [7], MuVE [5], or VizDeck [6]) aim to
automatically recommend entirely new visualization to help
users finding interesting insights.

While the latter are significantly more powerful, they also
significantly increase the risk of finding false insights. This
happens whenever a visualization is used as a device to repre-
sent statistical properties of the data. Consider a user exploring
a dataset containing information about different wines. After
browsing the data for a while, she creates a visualization of
wines ranked by origin showing wines from France to be
apparently higher rated. If her only takeaway is, that in this
particular dataset wines from France have a higher rating,
there is no risk of a false insight. However, it is neither in the
nature of users to constrain themselves to such thinking [9],
nor would visualizing the data be insightful then. Rather, users
most likely would infer that French wines are generally rated
higher; generalizing their insight to all wines. Statistically
savvy users will now test whether this generalization is ac-
tually statistically valid using an appropriate test. Even more
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technically savvy users will also consider other hypothesis they
tried and adjust the statistical testing procedure to account
for the multiple comparisons problem. This is important since
every additional hypothesis, explicitly expressed as a test or
implicitly observed through a visualization, increases the risk
of finding insights which are just spurious effects.

The issue with visual recommendation engines: What
happens when visualization recommendations are generated
by one of the above systems? First, the user does not know if
the effect shown by the visualization is actually significant
or not. Even worse, she can not use a standard statistical
method and simply test the effect shown in the visualization for
significance. Visual recommendation engines are potentially
checking hundreds of thousands of visualizations for their
interesting-factor. As a result, by testing large quantities of
visualizations it is very likely that a system will find something
“interesting” regardless of whether the observed phenomenon
is actually statistically valid or not. A test for significance for
the recommended visualization should therefore consider the
whole testing history.

Why not a holdout? Advocates of visual recommendation
engines usually argue that visual recommendations systems
are meant to be hypothesis generation engines, which should
always be validated on a separate hold-out dataset. While this
is a valid method to control false discoveries, it is has several
unpractical implications: (1) None of the found insights from
the exploration dataset should be regarded as an actual insight
before they are validated. This is clearly problematic if one
observation may steer towards another during the exploration.
(2) Splitting a dataset into an exploration and a hold-out set can
significantly reduce the power (i.e., the chance to find actual
true phenomena). (3) The hold-out needs to be controlled for
the multi-hypothesis problem unless the user only wants to
use it exactly once for a single test.

In this paper, we present VizCertify, a first framework to
make visual recommendation engines “safe”.

Scope: As already pointed out in [10], [11], even defining
a hypothesis test for a visualization is notoriously hard. We
therefore, decided to focus on the visual recommendation
technique proposed by SeeDB for histograms as it uses a
clear semantic for what “interesting” means and rumored to be
implemented in a widely-used commercial product. SeeDB [1]
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makes recommendations based on a reference view; it tries
to find a visualization whose underlying data distribution is
different from the one’s the user is currently shown (i.e.,
the implicit test performed by SeeDB is for difference in
sub-populations). However, our techniques can be extended
to other visualization frameworks and hypothesis generation
tools (e.g., Data Polygamy [12]) provided that the chosen
“Interestingness” criterion can be evaluated by a statistical test.

Contributions: The core idea of VizCertify is to estimate
the interest of candidate recommendations and automatically
adjusts the significance value based on the search space to
account for the multiple-hypothesis pitfall. With this work we
make the following contributions:

o We formalize the process of making visualization recom-
mendations as statistical hypothesis testing.

« We propose a method based on the use of VC dimension,
which allows controlling the probability of observing
false discoveries during the visualization recommendation
process. VizCertify allows control of the Family Wise Er-
ror Rate (FWER) at a given control level § € (0,1). Our
method provides finite sample FWER control whereas
classical statistical approaches (i.e., the chi-squared test)
ensure asymptotic FWER control.

« We evaluate the performance of our system, in compari-
son with SeeDB via extensive experimental analysis.

The remainder of this paper is organized as follows: In Sec-
tion II we give a definition of the visualization recommenda-
tion problem in rigorous probabilistic terms. In Section III we
discuss possible approaches for the visualization recommen-
dation problem, and highlight why they suffer due to having
to account for a high number of statistical tests. In Section IV
we introduce our VizCertify approach to overcome these
problems. In Section V we present an extensive experimental
evaluation of the effectiveness of VizCertify.

II. BACKGROUND

In the following, we first provide an intuitive example on
how SeeDB makes recommendations (Section II-A) before
formalizing SeeDB’s technique and its connection to hypoth-
esis testing.

A. A SeeDB Recommendation Example

SeeDB makes recommendations based on a reference vi-
sualization, referred to as a reference view, by adding or
modifying filter conditions to find sub-populations of the
data, referred to as target views, which if visualized in the
same way show the largest deviation from the reference view.
For example, consider the reference view in Figure la over
a survey dataset we conducted with 2,644 participants on
Amazon Mechanical Turk for 35 (mostly unrelated) multiple-
choice questions. It shows that the majority do not believe
Astrology. Based on this visualization, SeeDB’s top 3 rec-
ommended visualization are shown in Figure 1b-1d. SeeDB
proposes various ways to measure the difference between two
visualizations to rank the visualization. For this experiment
we configured SeeDB to use the Chebyshev distance. For
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example, Figure 1b shows that people who prefer cheese-
flavored potato chips are more likely to believe in Astrology.

However, the visualizations alone do not answer the ques-
tion, if the shown difference is actually statistically significant
or not. In contrast, VizCertify would automatically mark the
reference view in Figure la and lc as statistically significant,
but disregard the visualizations in Figure 1b and 1d. Important
to note is, that the top-ranked visualization, Figure 1b, is
not considered statistically significant, but the second one is;
so higher rank does not necessarily imply higher statistical
significance.

Obviously, detecting statistically significant differences is
challenging as it depends on the data size, the number of
tested hypothesis by the user and the recommendation system.
Furthermore, while it is easy to define what a test means with
a two-bar chart histogram, it is much harder for visualizations
with multiple bars. Finally, it has to be pointed out that
in the case of SeeDB increasing the data size does not
necessarily mitigate the problem as SeeDB automatically adds
filter conditions to create ever smaller sub-populations.

B. Problem set-up

In this work we assume that D (e.g., our survey data)
consists of n records chosen uniformly at random and inde-
pendently from a universe 2. We can imagine (2 in the form
of a two-dimensional, relational table with N rows and m
columns, where each column represents a feature or attribute
of the records.

We refer to D as the sample dataset or the training dataset
and denote by Fp the probability distribution that generated
the sample D. Alternatively, one can consider D as a sample
of size n from a distribution Fp that corresponds to a possibly
infinite domain. As discussed in Section I rather than enabling
users to only interpret visualizations for some particular data
set, we want to make sure that a system provides them with
statistical guarantees when they try to generalize their results
over ). While not universally verified, these assumptions do
indeed hold for many realistic datasets (e.g., for a controlled
survey as in our running example).

C. Visualizations

As outlined previously our focus is on bar graphs. To
simplify the presentation, we restrict our discussion in the
following on categorical features/attributes, but it is possible to
use our techniques with continuous features by standard bin-
ning techniques. Thus, we can define SeeDB’s recommended
visualization as:

Definition 1: A bar graph visualization V is a tuple
(D, F XY, AGG) which describes the result of a query of
the form
SELECT X, AGG(Y) FROM D WHERE F GROUP BY X
which can be plotted as a bar graph. The aggregate AGG is
partitioned according to the values of a discrete feature X, after
filtering the records of the input dataset D by predicate F.

Again for simplicity we focus in the following on
COUNT (Y) aggregates. However, our approach can be ex-
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Fig. 1: An example of SeeDB [1] and VizCertify on survey data. VizCertify only recommends (a) and (c).

tended with minor modifications to the average AVG (Y)
aggregate.

Visualizations as distributions: Thus, the bar graph ob-
tained by a query of the above form can be seen as a histogram
of the probability mass function (pmf) of a discrete random
variable X corresponding to the feature X conditioned (or
filtered) on the predicate (or event) F'. This correspondence
between visualizations and distributions provides us with a
natural criterion to compare visualizations by evaluating their
statistical difference.

To close the connection to statistical testing, we further
define the support of a visualization V' as the number of
records of D which satisfy the predicate F', and denote it
as |V|. The selectivity of a visualization V, denoted as ~yy, is
defined as the fraction of records which satisfy F':

= [DI|F|/ID]. (1)

The aggregate COUNT (Y) corresponds to the number of
records which satisfy the query predicate F' grouped according
to the values of the feature X, henceforth referred as the
“group-by” feature.

Extensions While our definition seems restrictive to SeeDB
and certain aggregations, it our results can easily be extended
to other types of visualizations (e.g., heat maps) and systems,
and in some cases do not require any modifications. For
example, without any significant changes our techniques can
be used to make Data Polygamy [12], an automatic correlation
finder, “safe”. Similarly, it is possible to extend our techniques
to other types of counting-based visualizations (e.g., heat
maps). In contrast, we do not consider Min or Max aggregates,
which are supported by SeeDB as useful as they (obviously)
can not represent statistically significant behavior of distri-
butions. However, if they would be expressed as conditional
expectations (e.g., aggregates in the form Y|Y > ¢ for some
constant ¢ € R), our framework can in fact handle them.

D. Visualization recommendations

An user starts with a reference visualization V; for which
visualizations {V;},=2, . ¢ shall be recommended that are
interesting with respect to V;. A candidate visualization Vj
is defined to be interesting with respect to a visualization
Vi if and only if V, and V; have a different distribution
of the group-by feature X under the predicates associated
with V; and V, respectively. Consistently, SeeDB defines the
best recommendations as the ones, which have the highest
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difference with respect to V; among all eligible candidates
{V4}4=2....¢- Note that we constrain candidates to share the
same group-by feature with the reference visualization to
guarantee that the visualizations are in the same user context.

A visualization V5 is an eligible candidate for recommen-
dation with respect to a reference visualization V; if the two
are “different enough”. That is, if their distance d(V4,V2) is
larger than some given threshold value e:

Vs, interesting w.r.t V; <= d(V1,V2) > e.

In its simplest form, ¢ may be zero. However it makes more
sense to define € in terms of a minimum visual distance €y
required by a user to spot a difference [13] when shown both
visualizations. That is, a recommended visualization is only
interesting if it shows a strong visual difference usually for a
subset of the currently selected data.

In this work, we use the Chebyschev distance to decide
whether two visualizations are different. Given two pmfs D;
and Dy over the same support set X = {z1,za,...,2,}, the
Chebyschev distance between D; and Ds is defined as:

(@)

Here, Prp, (z) denotes the probability of a random variable
taking value = according to the distribution Prp, ().

We justify this choice of distance measure for two visu-
alizations by its ability to capture the maximum difference
between pairs of corresponding columns of the two bar plots
(or histograms).

d(Dy, Dy) := max Prp, () — Prp, (),

III. STATISTICALLY SAFE VISUALIZATIONS

While the statistical pitfalls of exploratory data analysis
are well understood and documented ( [14], [15]) the con-
nection to visualizations only has been rigorously studied
recently [11], [16], [17].

A first crucial demand for a system that provides users
with visualizations unveiling interesting relationships amongst
visualizations is to provide tools allowing the analyst to
ascertain that phenomena being observed are actually statisti-
cally relevant. Furthermore, results displayed need to exhibit
characteristics that are non-random and visually intelligible.
That is, a user looking at two visualizations should both be
able to understand that they are different and why they are
different without worrying whether visual features are due to
missing support or random noise.
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Thus in probabilistic terms the question becomes how likely
it is that the visualization is also interesting with respect to the
underlying distribution Fp for a dataset D available to the
visualization itself. Recalling the correspondences drawn in
Section II-C, each query with a filter predicate F corresponds
to an event E over 2. Consider a visualization of a histogram
of a (discrete and finite) variable X conditioned on an event
E # 0, denoted X|E as defined in Definition 1. The true
values (in Fp) for k € dom X are given by p; := P(X =
k|E). Given a dataset { X1, ..., X,,} we estimate the pj, values
as

Pr = Z?:l H{Xi:k, X,€E}

>oicr Lixiemy
If in D the histogram of X |E is visually different from the his-
togram of X, what can we tell about the difference between the
histograms in Fp? Here, we say that the difference between
two visualizations V; and Vs is statistically significant if and
only if the difference observed between the two in the finite
sample D is due to a difference between the two histograms
with respect to Fp. The recommendation problem is thus
the task of verifying that visualizations flagged as interesting
with respect to D generalize to interesting visualizations with
respect to the frue underlying distribution Fp.

3

A. Classical statistical testing

In the classical statistical testing setting, our problem could
be formulated either as a goodness-of-fit test or as a homo-
geneity test. Example of classical goodness-of-fit (resp., ho-
mogeneity) tests include the single sample (resp., two sample)
x2-test for discrete distributions or the Kolmogorov-Smirnov
test for continuous random variables. However, there are major
difficulties in applying classical standard statistical tests to the
visualization problem.

First, depending on the input data the correct test needs to
be selected. For example, when using a y2-test over discrete
attributes, each bucket must not be empty. A general rule
of thumb to make sure estimates are reliable is to have at
least 5 samples per bucket. Further, there need to be enough
samples to actually use the x2-test. Else, Fisher’s exact test
should be used for small sample sizes. In addition to each
test being only applicable to certain input data, they generally
consider different notion of difference, and, hence, interest.
Such nonhomogeneity may considerably hinder the user’s
ability to connect the results of the test to the notion of a
significant visual difference.

A second issue has to do to with opportunely defining the
hypotheses to be tested so that they allow recognizing visual
differences in a meaningful way. Consider for this a ¢-test that
essentially compares whether the observed mean resembled
the expected mean. Naturally, a consequence is that if they
differ the candidate query should get recommended. This
may however lead to many wrong recommendations merely
because the null hypothesis used is too simple and gets rejected
too often.

Third, classical tests, such as the x2-test, only offer asymp-
totic guarantees. That is due to the fact the validity of the test
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hinges on the fact that the p-value of true null-hypotheses is
uniformly distributed between 0 and 1. While this holds as the
size of the size of the available sample grows, such assumption
does not generally holds for samples of finite, small, size.
For skewed distributions or queries that return only a small
number of rows this is problematic. For example, when using
a x2-test for a heavily skewed discrete distribution with a high
number of degrees of freedom (e.g., > 20), a high number
of samples are required for the the observed test statistic to
converge to the x? distribution. In contrast, our VizCertify
method ensures rigorous finite sample FWER control with no
further assumption of the test statistics of true null hypotheses.

Lastly, while it might be tempting to combine statistical
testing with a selection heuristic based on the distance measure
introduced in (2), this would not eliminate the risk of false
discoveries. While the initial statistical tests identify some
candidate visualizations as different from the reference, they
do not provide guarantees on the statistical significance of such
difference (see the examples in Section V-C).

B. Recommendation validation via estimation

Rather in VizCertify we use the sample dataset D to
obtain approximations of the visualization according to the
entire global sample space (). Consider a single histogram
visualization Vj, and assume it is comprised of K bars, one
for each of the K possible values of the chosen group-by
feature X. Let py, (z1),...,py, (zx), denote the normalized
bars corresponding to Vi, i.e. Zszl py, () = 1. Note that
such bars denote the probability of a randomly chosen record
from Q for the event X = xz; conditioned on the fact that
a record satisfies the predicate associated with V;. Using D
and Equation 3 we estimate py, (z;) with py, (2;). In order to
provide guarantees for these estimates, it is necessary to bound
the maximum difference between the correct and estimated
sizes of bars in the normalized histograms.

In particular for a given d (i.e., our level of control for false
positive recommendations) we want to compute the minimum
value € € (0, 1) such that Prp (|py, (z;) — Py, (x;)| > €) < 0.
In addition, € quantifies the accuracy of an estimation py, (x;)
obtained by its empirical counterpart py, (z;).

Let F' denote the predicate associated with our visualization
V1. We denote as Q|F (resp., D|F) the subset of €2 (resp., D)
which is composed by those records that satisfy the predicate
F'. Given X the value py, (z;) (resp., Py, (x;)) corresponds to
(resp., is computed as) the relative frequency of records such
that X = x; in Q|F (resp., D|F) which is expressed in the
following fact:

Fact 1: Let D be an uniform random sample of {2 composed
by m records. For any choice of predicate, as specified in
Definition 1, the subset D|F is a uniform random sample of
Q|F of size |D|F)|.

As a direct consequence py, (x;) is an unbiased estimator for
Py, ().

Ep [py, (z:)] = pv, (). “4)
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In order to bound the estimation error |py, (z;) — Py, (x;)] it
is therefore sufficient to bound the deviation from expectation
of the empirical estimate py, (z;). Chernoff-Bounds [18] yield

Pro (Ipy, (21) = v ()] > ) < PS5
which can be rewritten to

Prp (Ipy, (a:) = v ()] > ) <M (6)
using the selectivity of a visualization 7y, and n = |D|.

Equation (6) implies that a higher selectivity of a visualization
leads to a better estimate and vice versa. Even though the
method based on an application of the Chernoff bound appears
to be very useful and practical, it is important to note that it
only offers guarantees on the quality of the approximation of
a single bar for a single visualization. While it is in general
possible to combine multiple applications of the Chernoff
bound, the required correction leads to a quick and marked
decrease of the quality of the bound. For a visualization V;
composed by K bars a bound on all bars would be

Prp ( max |py, (x:) — Dy, (x:)] > e) < Ke~2mine
i=1,...,

through the union bound [18]. While tolerable for small K,
the performance decreases for larger K leading potentially to
a complete loss of significance of the bound itself.

C. Adaptive Multi-Comparisons

If we let a recommendation system explore an unlimited
number of possible visualizations, it will eventually find an
“interesting” one, even in random data. To avoid this, one may
test every visualization recommendation on an independent
sample that has not been used during the exploration and
recommendation process yet. However, this solution is not
practical for a system that explores many possible visual-
izations. Moreover, it is desirable for a system to use the
entirety of the available data because it would allow to discover
all interesting insights and bolsters the confidence of any
statistical method being used in addition.

Assume that in our exploration of possibly interesting vi-
sualizations we tried ¢ different visualization patterns, and we
computed for each of these patterns a bound h;, i = 1,...,¢,
on the probability that the corresponding observation in the
sample D does not generalize to the distribution with respect
to €. It is tempting to conclude that the probability that none
of the ¢ visualizations generalize is bounded by Zle hi.
Unfortunately, this probability is actually much larger when
the choice of the tested visualization depends of the outcome
of prior tests. This phenomenon is often referred to as Freed-
man’s paradox [19] and the only known practical approach to
correct for it is to sum the error probability of all possible
tests, not only the tests actually executed'. Note that standard
statistical techniques for controlling the Family-Wise- Error-
Rate (FWER) or the False Discovery Rate (FDR) require that

ITheoretical methods, such as differential privacy [20] claim to offer an
alternative method to address this issue. In practice however, the signal is lost
in the added randomization before it becomes practical.
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the collection of tests is fixed independent of the data and
therefore do not apply to an interactive or adaptive exploration
scenario.

A possible solution would be fixing a-priory the set of
possible visualizations to be considered (e.g., those obtained
by predicates combining at most k features). Let M denote the
size of such set. By recommending visualization that pass the
individual visualization test with confidence level < o/M we
are guaranteed, by the union bound, that the probability that
any of our recommendations does not generalize is bounded by
a. As we show in the experiments section this method is only
effective for relatively small search space, as for high values
of M the individual tests become extremely conservative with
a consequent overall loss of statistical power.

IV. STATISTICAL GUARANTEES VIA UNIFORM
CONVERGENCE BOUNDS

In order to overcome the challenge of multiple comparisons,
we propose to use Vapnik-Chernovenkis (VC) dimension to
constraint the visualizations toonly statistically valid ones. To
our knowledge, this is the first use of VC-dimensions for
visualizations or recommendation systems in general.

A. VC-Dimension Background

The Vapnik-Chernovenkis (VC) dimension is a measure
of the complexity or expressiveness of a family of indicator
functions (or equivalently a family of subsets) [21]. Formally,
VC-dimension is defined on range spaces:

Definition 2: A range space is a pair (X, R) where X is a
(finite or infinite) set and R is a (finite or infinite) family of
subsets of X. The members of X are called points and those
of R are called ranges.

Note that both X and R can be infinite. Consider now a
projection of the ranges into a finite set of points A:

Definition 3: Let (X, R) be a range space and let A C X

be a finite set of points in X.

1) The projection of R on A is defined as
Pr(A)={rnA : r e R}

2) If Pr(A) = 241, then A is said to be shattered by R.

The VC-dimension of a range space is the cardinality of the
largest set shattered by the space:

Definition 4: Let (X,R) be a range space. The VC-
dimension of (X, R), denoted VC(X,R) is the maximum
cardinality of a shattered subset of X. If there are arbitrary
large shattered subsets, then VC(X, R) = occ.

Note that a range space (X, R) with an arbitrarily large (or
infinite) set of points X and an arbitrary large family of ranges
R can have bounded VC-dimension (see section IV-B). VC-
dimension, allows to characterize the sample complexity of a
learning problem as it is allows to obtain a tradeoff between
the number of sample points being observed by a learning
algorithm and the performance achievable by the algorithm
itself.

Consider a range space (X, R), and a fixed range r € R.
If we sample uniformly at random a set S C X of size
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m := | S| we know that the fraction ‘LTQT‘ rapidly converges to

the frequency of elements of r in X. A finite VC-dimension
implies an explicit upper bound on the number of random
samples needed to achieve such convergence within a pre-
defined error bound (known as uniform convergence property).
For a formal definition we need to distinguish between finite
X, where we case estimate the sizes r, and infinite X, where
we estimate Pr(r), the frequency of  in a uniform distribution
over X.

Definition 5 (Absolute approximation): Let (X, R) be a
range space and let 0 < e < 1. A subset S C X is an absolute
e-approximation for X iff for all » € R we have that for finite
SCX,

rl _1SAr]
RO
[22] establishes an interesting connection between the VC
dimension of a range space (X, R) and the number of sam-
ples which are necessaries in order to obtain absolute e-
approximations of X itself.

Theorem 1 (Sample complexity [22]): Let (X,R) be a
range-space of VC-dimension at most d, and let and 0 <
€,0 < 1. Then, there exists an absolute positive constant ¢
such that any random subset S C X of cardinality

]2 5 (d+1og,57")

@)

®)

is an e-approximation for X with probability at least 1 — 4.
The constant ¢ was shown experimentally [23] to be at most
0.5. Indeed, we use ¢ = 0.5 in our experimental evaluation.

B. Statistically Valid Visualization using VC

To apply the uniform convergence method via VC dimen-
sion to the visualization setup, we consider a range space
(Q, R), where € is global domain, and R consists of all the
possible subsets of X that can be selected by visualizations
predicates. That is, R includes all the subsets that correspond
to any bar for any visualization which can be selected using the
appropriate predicate filter. Given a choice of possible allowed
predicates, we refer to the associate set of ranges as the “query
range space” and denote it as ().

The VC dimension of a query range class is a function of the
type of select operators (i.e., >, <, >, <, =, #) and the number
of (non-redundant) operators allowed on each feature in the
construction of the allowed predicates. Note that depending
on the domain of the selected features and the complexity
according to which the predicate filters can be constructed,
the number of possible predicates may be infinite. In order
to use the VC-approach it is however sufficient to efficiently
compute a finite upper bound of the VC-dimension of the
set of allowed predicates. In order to use the results from the
previous section, we have to ensure that the sample D provides
an e-approximation for the values py, for all the visualizations
being part of the query range space (). To accomplish this, we
introduce the following, well known, property:

Fact 2: Let (X, R) be a range space of VC dimension d.
For any X’ C X, the VC-dimension of (X', R) is bounded
by d.

246

In conjunction with Theorem 1 this synthesizes:

Lemma 1: Let (Q, Q) denote the range space of the queries
being considered with VC dimension bounded by d, and let
0 € (0,1). Let D be a random subset of 2. Then there exists
a constant ¢, such that with probability at least 1 — ¢ for any
filter F' defined in () we have that the subset D|F' is an ep-
approximation of Q|F" with:

C

d+1 -1,

€F 2

Proof: Fact 1 ensures that given the dataset D, for any
choice of a predicate F' we have that D|F is a random sample
of Q|F. Therefore regardless of the specific choice of the
predicate, we have that the VC dimension of the reduced range
(Q|F, Q) is bounded by d. From Theorem 1 we have that if:
D] > 5 (d+1og,07") ©)

then D|F is an € approximation for the respective set Q|F. H

Lemma 1 provides us an efficient tool to evaluate the quality
of our estimations py of the actual ground truth values py
for any choice of predicate associated with the visualization.
In particular, Lemma 1 verifies that the quality decreases
gradually the more selective the predicate associated with a
visualization is. That is, the smaller the cardinality of |D|F
the higher the uncertainty €.

Corollary 1: Let D be a random sample from €2, and let
@ be a query range space with VC dimension bounded from
above by d. For any visualization with ¥V € @ and for any
value ¢ € (0,1) we have that

b}

Pr{|pv(X = =) — pyx=x,)| > €} <3, (10)

c 1
E> W —— [d+1 -
6—\/DF|< * °g26>’

F' denotes the predicate associated with the visualization V
and and X denotes the group-by feature being considered.

where

1)

C. The VizCertify validation criteria

Consider now a given reference visualization V; and a
candidate recommendation Vs, both using X as the group-by
feature, were the domain of X has K values (i.e., dom(X)
{z1,...,xK}). With probability 1 — ¢ the empirical estimates
of the normalized columns are accurate within €. Let &
(resp., €2) denote the uncertainty such that with probability
of at least 1 — 0 we have ||py, (z;) — py,(2;)| < € and
lpv, () — Py, (x;)|| < € according to Lemma 1. Thus, if
|y, (z;) — Py, (z;)| > € + €& we can conclude that with
probability of at least 1 — ¢ we have py, (z;) # py, (z;). This
leads to:

Theorem 2: For any given § € (0,1), VizCertify ensures
FWER control at level § while offering visual recommenda-
tions if

max _|py, (z;) — Py, (z;)| > max{é; + &, ep}

x;edom X
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with €; o denoting the uncertainty given by Corollary 1 and a
threshold €y, > 0 denoting visual discernability.

Proof: VizCertify recognizes two visualizations to be
statistically different (and hence, interesting) when the most
different pair of corresponding columns differs by no more
than the error in its estimates. Due to the uniform convergence
bound ensured by the application of VC dimension, the
probabilistic guarantees of this control hold simultaneously for
all possible pairs of reference and candidate recommendation
visualizations. ]
This VC dimension based approach is agnostic to the adaptive
nature of the testing as it accounts preemptively for all
possible evaluations of pairs of visualizations. Theorem IV-C
allows us thus to design the following algorithm for the visual
recommendation problem:

Algorithm 1 VizCertify: Recommendations with VC dimen-
sion

Input: Starting visualization V; , query space (), sample dataset
D, FWER target control level 6 € (0, 1).

Output: A set of statistically safe recommendations Y.

Y + > Empty list of recommendations
X < the group-by feature being considered.

Fy, < the predicate associated with V1.

_ d+logy 51
€] & S22
! 2[D[Fy, |

for all V' € Q do
F\r < the predicate associated with V'.
& dtlog 51
2[D[Fy]
dist < maxy,; cdom(X) ‘ﬁ\h (ml) - ﬁVQ (xl)|
interest < dist — (€1 + €2)
if dist > max{€; + €, ev } then
Y.append([V', interest)

> Uncertainty in V1 approx.

e A T e

return sort Y according to interest value (and uncertainty).

Our VizCertify approach can be reworked to resemble a two-
sample test, when we assume that there is uncertainty in the
reconstruction of both the reference V; and the candidate Vs.
In some scenarios, the reference visualization may be not
have any uncertainty (e.g., when using a flat distribution as
reference). In this case, it is sufficient to recommend Vs if
and only if

Imax [Py, (%:) — Py, (74)] > éa.

z;€dom(X)
D. VC dimension of the Query Range Space

For practical implementation it is sufficient to bound the
VC dimension of the class of queries being considered. Since
features are assumed to be equipped with a natural metric,
constraints on values of a certain feature can be expressed
using operators >, <, = and #. This corresponds to selecting
intervals (either open or close) of the possible values of a
feature. For each feature, these clauses are connected by
means of logical or V. We characterize the complexity of
such connection by the minimum number of non-redundant
open and close intervals of the value. In particular we say
that a connection of intervals is non-redundant is there is no
connection of fewer intervals that selects the same values. The
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VC dimension of this class of queries can then be characterized
according to:

Lemma 2: Let Q denote the class of query functions such
that each query is a conjunction of connections of disjunctive
clauses on the value of distinct features. The VC dimension
of @ is then:

m
VC(Q) =) 20+, (12)
i=1
where «; (resp., 3;) denotes the maximum number of non-
redundant closed (resp., open) intervals of values correspond-
ing to the connection of constraints regarding the value of the
i-th feature, for 1 <7 < m.

Proof: The proof is by induction on ¢: in the base case we
have ¢ = 1. In this case, the VC dimension of Q corresponds
to the VC dimension of the union of o closed intervals and
31 open intervals on the line. By a simple modification of
well-known “folklore” textbook result according to which the
VC dimension of the union of j closed intervals on R is 27,
we have that @ it has VC dimension at most 2a; + 3. Let
us now inductively assume that the statement holds for ¢ > 1.
In order to conclude the proof we shall verify that it holds for
i+ 1 as well.

Assume towards contradiction that there exists a set X of
23111 2a; + B; points that can be shattered by Q. From the
inductive hypothesis, we have that for any subset of X with
more than 23:1 2a; + f3; cannot be shattered by the family
of query functions which can express constraints only on the
features 1,2, ...,7. Without loss of generality let X’ denote
one of the maximal subsets of X which can be shattered using
only the constraints on the features 1,2,...,¢. Recall that
the queries in Q are constituted by logical conjunctions (i.e.,
“and”) of connections (i.e.,“or” statement) of constraints on
a feature. Hence, for any function in Q if any of the 7 + 1
connections are such that they assume value “false”, then
the query will not select such point regardless of the value of
the remaining ¢ connections being conjuncted.

Consider any assignment 7 of {0,1} to the points in X’
and let r, the range which realizes such shattering.

If r, would assign to any point in X \ X’ value “0”, then,
according to the structure of the queries, no constraint on the
(i + 1)-th feature would allow to assign to it value “1”, and,
hence, it would not be possible to shatter X.

Note that for any assignment 7 of {0, 1} to the points in X',
there may may not exists two ranges 71 and ro such that based
solely on constraints on the first ¢ features, on would assign
“0” to a point in X \ X’ and the other would assign “1” to the
same point. If that would be the case, then i would be possible
to shatter 22‘21 205 + B; points using just constraints on the
first ¢ features and this would violate the inductive hypothesis.

Without loss of generality, in the following we can therefore
assume that for any assignment 7 of {0,1} to the points in
X'’ the ranges that realize such assignment just based on the
first ¢ features would assign “1” to all the points in X \ X'.
This implies that the shattering of the points in X \ X' relies
solely on the constraints on the values of the i + 1-th feature.
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Fig. 2: Example 1: the Top-3 SeeDB recommendations for the reference (a) do not pass the VizCertify control.

If there were US elections tomorrow,
o which party would you support?
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Fig. 3: Example 2: out of the Top-3 SeeDB recommendations for the reference (a) only (b) passes the VizCertify control.

Consider now the points in X \ X', according to our as-
sumption | X\ X’| = 2,11+ Bi+1. As discusses in the base of
the induction, it is not possible to shatter 2av; 11 + B;4.1 points
using just a4+ (resp., Bi+1) closed (resp., open) intervals on
the (¢ + 1)-th dimension.

Hence, it is not possible to shatter X and we have a
contradiction. |

E. Query complexity vs. minimum selectivity

When exploring the space of possible recommendations by
growing a filter condition one clause at a time (i.e., multiple
non-trivial clauses are added), with more claused added the
number of records selected by the predicate will decrease.
Therefore, it is reasonable to start evaluating simpler predicate
filters first and then proceed depth-first by adding more and
more clauses. While reasonable, this procedure will likely
explore still a large number of queries. However, most of the
filters obtained by composing a high number of filters will
yield visualizations supported by a few sample points which
are intrinsically unreliable.

Our VC dimension approach recognize this fact and can
be also leveraged to limit the search space. As discussed in
Section IV-E, the lower the selectivity yp, the higher the
uncertainty €. From Corollary 1 it follows

e> \/(d+ 108, 571) (2n7) "

Since € < d(V1,Vs2) < 1, this implies that all visualizations
with selectivity

13)

v < (d+logy67Y) (2n) " (14)

are not going to be recommended as interesting. As a direct
consequence, Equation 14 allows to prune the search space by
eliminating from the exploration queries which are “not worth
to be considered” possible recommendations.
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By taking into consideration the selectivity of a candidate
visualizations, our method automatically adjusts the threshold
of interest for each candidate visualization. From a different
perspective this may be also used to limit the structure (i.e., the
VC dimension) of all queries being considered when ensuring
that each candidate visualization, which differs from the
reference by at least 0, is marked as a safe recommendation.
When v, o are the selectivities for the two visualizations, the
maximum VC dimension guaranteeing these requirements can
be obtained from (13) as:

d < 0*min{vy;,y2}n —logy(671).
V. EXPERIMENTS

In this section, we show how our framework can be applied
towards both real data (i.e. the collected survey data) and
synthetic data.

A. Anecdotal examples

To illustrate how VizCertify restricts the recommended
visualizations, we used again the survey data from Figure 1la.
Our first example shows that a system without statistical
control may lead the user to false insights due to random
noise in the sample. Consider, the reference view in Figure 2a,
which shows the believe of our participants in “Obesity being
a disease” and SeeDB’s top recommendations in Figure 2a to
2d, which either emphasize the reference view (more people
agreeing or disagreeing). Just looking at the filter conditions, it
is rather obvious that all of them should have very little impact
on “if people believe in obesity as a result” and VizCertify
would not recommend any of them.

In contrast, in our second example we look at Democrats
vs Republican supporters (reference view is shown in Fig-
ure 3a and the top 3 recommendations in Figure 3b-3d. Here,
the top visualization would be recommended (Figure 3b),
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Fig. 4: Blue dots represent the interest scores of all evaluated
visualizations. The € curve denotes the threshold for recommendation
using VC dimension = 4 to achieve F'W ER < 0.05. The lower the
VC dimension the more the € curve takes the form of an “L”.

which intuitively makes sense, but the other two visualizations
are not recommended by VizCertify. Especially, Figure 3d
would probably count as very interesting, as republicans and
democrats are equally split in the support of marijuana, but
VizCertify considers it as not statistical significant given
the survey data size. Thus, if a non-savvy journalist would
have used SeeDB over this dataset, VizCertify could have
potentially prevented a very questionable news headline.

Note, that it is not the case, that the highest ranked visu-
alizations are necessarily the most statistical significant ones
as our leading example in Figure la to Figure 1d already
demonstrated.

B. Random data leads to no discoveries

A meaningful baseline for any safe visual recommendation
system is to make sure that random data does not lead to any
recommendations. To demonstrate that the VC approach will
not recommend any false positives, we generated a synthetic
dataset with uniformly distributed data. 100, 000 samples were
generated in total with the first column being selected as
aggregate and the other 3 columns as features.

The aggregate is uniformly distributed over {1,2,3,4} and
each of the 3 features are uniformly distributed over {1, ..., 9}.
With simple predicates (i.e. a queries formed from < clauses
solely) there are 1331 visualizations to be explored (a dummy
value of 400 was used in the queries to make a feature
active or not. E.g. consider a query of the form (X; < 8) A
(X2 < 400) A (X3 < 3). In this query, feature X5 has no
effect on the rows returned since (X7 < 8) A (X3 < +00) A
(X3 <3) = (X1 <8)A(X3 < 3). Note that using +oo-values
in the clauses does not change the VC dimension.). As a
reference, a uniform distribution over {1, 2, 3,4} was chosen.
This means, that the expected support of any visualization is at
least 105 /93 samples which is a fair amount to estimate 4 bars.
When not accounting for the multiple comparison problem p-
values below the threshold of @ = 0.05 occur inevitably. A
system without FWER guarantees would classify them thus
as false positives. Using Bonferroni (or other comparable
corrections) remedies at the cost of incurring a noticeable loss
in statistical power.

In comparison, the lowest € the VC approach guarantees is
€min = 0.0059. As discussed in IV-B the required threshold €
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observed
expected

0 2 4 6 8 10 12 14 16

Fig. 5: Comparing two close distributions that however should
not be recommended since the visual difference criterion
according to the VC dimension approach is not met.

to be met by the Chebychev norm induced distance measure
doo depends on the selectivity ~ of the query. The necessity of
this can be observed in Figure 4 too. With the interestingness
scores (distances) being lower than the curve defined by € for
all queries in Figure 4 the VC approach does not recommend
any false positives in this experiment. Using different distribu-
tions instead of the uniform one showed comparable results.

C. Statistical Testing vs. VC approach

While classic statistical testing in the form of a y2-test is
correct building block for a VRS, in some situations a -
test is unable to spot meaningful visual differences which
would however be recognized by our VizCertify approach.
Assume we had a query that yielded m = 1,200 out of
n = 10,000 samples and a perfect estimator for the true
distribution function of the reference and the query distribution
which shall be distributed as in Figure 5. A x2-test would yield
a p-value of of 2.54 - 1075 implying that they are different
when no more than 1967 visualizations under Bonferroni’s
correction are tested. However, at a VC dimension of 10
(0 = 0.05) the required € must be at least 0.22 which is
nearly twice as high as the 0.1 difference at the first bar
as shown in Figure 5. Thus, the VC approach would not
select this visualization as being significantly different enough
given the modest sample size. The x2 test would recommend
this visualization though since it only spots that there is a
difference but not whether the difference is significant enough.

Such scenarios occurr in practice especially due to outliers
in the data (e.g., for one feature value there are only 1-5
samples that would lead without any correction to a correct
recommendation). Though a heuristic may ignore visualiza-
tions with less than 5 samples, this would come at the cost
of ignoring rare phenomena and while using an arbitrary
threshold.

This reinforces that a VRS using the x2-test would cor-
rectly identify two visualizations being different but can not
guarantee a meaningful difference in terms of a distance which
is crucial to build usable systems without luring the user into
a false sense of security. One may argue that filtering out
visualizations after having performed statistical testing would
remedy this (which may work in practice when the interest
score is high enough), but then there was no guarantee that
the distances observed are statistically guaranteed.
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Fig. 6: Chi-square distance d,2> and minimum number of samples
Nmin required to reject Ho with Bonferroni correction, o' = 0.05
and 10° queries.

Furthermore we want to underscore the point that the Chi-
squared test is indeed a very powerful test but that the correct
estimation of the distribution dominates the selectivity. Le.,
when we guarantee that the estimates for the probability
mass function are close enough to the true values, a testing
procedure like x2-test will even under a million possible
hypothesis only need a small number of samples to spot a
difference between two distributions. We thereby define the
required number of point estimates to be in the range of
2 < K <100 bars as meaningful.

In Figure 6 it is shown that even low values for the y2-
distance d? only require queries with hundreds of samples to

X
be identified correctly.

VI. RELATED WORK & CONCLUSION

[24] introduced the VC approach to provide e-
approximations for the selectivity of queries. Whereas they
also consider joins in addition to multi-attribute selection
queries, by restricting to AND conjunctions over multiple
attributes as used naturally in OLAP we were able to lower
the required VC dimension.

Recent work [25] introduced the problem of group-by
queries leading to wrong interpretations, specifically in the
case when AVG aggregates are used. To remedy this, the
notion of a biased query is introduced. However, they do not
account for the multiple comparison problem and also have
no significant distance notion.

[10] introduced various control techniques for interactive
data exploration scenarios. Whereas it accounts for the mul-
tiple comparison problem, it does not solve the problem of
pointing out a statistical different enough distance between
two visualizations.

[1] provides an approach to effectively compute visu-
alizations over an exponential search space by using reuse
of previous results and approximate queries. Visualizations
are recommended by treating group-by results as normalized
probability distributions and using various distance measures
between two probability distributions to yield a ranking in or-
der to recommend top-k interesting visualizations. The authors
found that the actual choice of the distance did not really alter
results, which does not come at a great surprise given their
relations as pointed out in [26].
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Conclusion: In this work, we demonstrated why visual
recommendation systems require techniques to prevent users
from making false discoveries. We further proposed a novel
way to control false discoveries for visual recommendations
systems based on VC dimensions.

As described in [27] zooming into particular interesting
regions of the data is a key task performed by users in the
data exploration setting. Our technique provides a simple and
effective methodology which can be applied to a wide range
of data. We believe our VC approach can be easily extended
to allow for more complicated query types such as these.
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