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Abstract—Recently, there have been several proposals to
develop visual recommendation systems. The most advanced
systems aim to recommend visualizations, which help users to
find new correlations or identify an interesting deviation based
on the current context of the user’s analysis. However, when
recommending a visualization to a user, there is an inherent risk
to visualize random fluctuations rather than solely true patterns:
a problem largely ignored by current techniques.

In this paper, we present VizCertify, a novel framework to
improve the performance of visual recommendation systems
by quantifying the statistical significance of recommended vi-
sualizations. The proposed methodology allows to control the
probability of misleading visual recommendations using both
classical statistical testing procedures and a novel application of
the Vapnik Chervonenkis (VC) dimension towards visualization
recommendation which results in an effective criterion to decide
whether a recommendation corresponds to a true phenomenon
or not.

Index Terms—Visualization, Recommendation Systems,
FWER, Data Exploration, Visual Recommendation

I. INTRODUCTION

Recently many visual recommendation engines [1]–[8] have

been proposed to help savvy and unsavvy users with data

analysis. While some recommendation engines (e.g., [2], [8],

[4]) aim to recommend better visual encodings, others (e.g.,

SeeDB [1], DeepEye [7], MuVE [5], or VizDeck [6]) aim to

automatically recommend entirely new visualization to help

users finding interesting insights.

While the latter are significantly more powerful, they also

significantly increase the risk of finding false insights. This

happens whenever a visualization is used as a device to repre-

sent statistical properties of the data. Consider a user exploring

a dataset containing information about different wines. After

browsing the data for a while, she creates a visualization of

wines ranked by origin showing wines from France to be

apparently higher rated. If her only takeaway is, that in this
particular dataset wines from France have a higher rating,

there is no risk of a false insight. However, it is neither in the

nature of users to constrain themselves to such thinking [9],

nor would visualizing the data be insightful then. Rather, users

most likely would infer that French wines are generally rated

higher; generalizing their insight to all wines. Statistically

savvy users will now test whether this generalization is ac-

tually statistically valid using an appropriate test. Even more

technically savvy users will also consider other hypothesis they

tried and adjust the statistical testing procedure to account

for the multiple comparisons problem. This is important since

every additional hypothesis, explicitly expressed as a test or

implicitly observed through a visualization, increases the risk

of finding insights which are just spurious effects.

The issue with visual recommendation engines: What

happens when visualization recommendations are generated

by one of the above systems? First, the user does not know if

the effect shown by the visualization is actually significant

or not. Even worse, she can not use a standard statistical

method and simply test the effect shown in the visualization for

significance. Visual recommendation engines are potentially

checking hundreds of thousands of visualizations for their

interesting-factor. As a result, by testing large quantities of

visualizations it is very likely that a system will find something

“interesting” regardless of whether the observed phenomenon

is actually statistically valid or not. A test for significance for

the recommended visualization should therefore consider the

whole testing history.

Why not a holdout? Advocates of visual recommendation

engines usually argue that visual recommendations systems

are meant to be hypothesis generation engines, which should

always be validated on a separate hold-out dataset. While this

is a valid method to control false discoveries, it is has several

unpractical implications: (1) None of the found insights from

the exploration dataset should be regarded as an actual insight

before they are validated. This is clearly problematic if one

observation may steer towards another during the exploration.

(2) Splitting a dataset into an exploration and a hold-out set can

significantly reduce the power (i.e., the chance to find actual

true phenomena). (3) The hold-out needs to be controlled for

the multi-hypothesis problem unless the user only wants to

use it exactly once for a single test.

In this paper, we present VizCertify, a first framework to

make visual recommendation engines “safe”.

Scope: As already pointed out in [10], [11], even defining

a hypothesis test for a visualization is notoriously hard. We

therefore, decided to focus on the visual recommendation

technique proposed by SeeDB for histograms as it uses a

clear semantic for what “interesting” means and rumored to be

implemented in a widely-used commercial product. SeeDB [1]
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makes recommendations based on a reference view; it tries

to find a visualization whose underlying data distribution is

different from the one’s the user is currently shown (i.e.,

the implicit test performed by SeeDB is for difference in

sub-populations). However, our techniques can be extended

to other visualization frameworks and hypothesis generation

tools (e.g., Data Polygamy [12]) provided that the chosen

“interestingness” criterion can be evaluated by a statistical test.

Contributions: The core idea of VizCertify is to estimate
the interest of candidate recommendations and automatically

adjusts the significance value based on the search space to

account for the multiple-hypothesis pitfall. With this work we

make the following contributions:
• We formalize the process of making visualization recom-

mendations as statistical hypothesis testing.

• We propose a method based on the use of VC dimension,

which allows controlling the probability of observing

false discoveries during the visualization recommendation

process. VizCertify allows control of the Family Wise Er-
ror Rate (FWER) at a given control level δ ∈ (0, 1). Our

method provides finite sample FWER control whereas

classical statistical approaches (i.e., the chi-squared test)
ensure asymptotic FWER control.

• We evaluate the performance of our system, in compari-

son with SeeDB via extensive experimental analysis.

The remainder of this paper is organized as follows: In Sec-

tion II we give a definition of the visualization recommenda-

tion problem in rigorous probabilistic terms. In Section III we

discuss possible approaches for the visualization recommen-

dation problem, and highlight why they suffer due to having

to account for a high number of statistical tests. In Section IV

we introduce our VizCertify approach to overcome these

problems. In Section V we present an extensive experimental

evaluation of the effectiveness of VizCertify.

II. BACKGROUND

In the following, we first provide an intuitive example on

how SeeDB makes recommendations (Section II-A) before

formalizing SeeDB’s technique and its connection to hypoth-

esis testing.

A. A SeeDB Recommendation Example

SeeDB makes recommendations based on a reference vi-

sualization, referred to as a reference view, by adding or

modifying filter conditions to find sub-populations of the

data, referred to as target views, which if visualized in the

same way show the largest deviation from the reference view.

For example, consider the reference view in Figure 1a over

a survey dataset we conducted with 2, 644 participants on

Amazon Mechanical Turk for 35 (mostly unrelated) multiple-

choice questions. It shows that the majority do not believe

Astrology. Based on this visualization, SeeDB’s top 3 rec-

ommended visualization are shown in Figure 1b-1d. SeeDB

proposes various ways to measure the difference between two

visualizations to rank the visualization. For this experiment

we configured SeeDB to use the Chebyshev distance. For

example, Figure 1b shows that people who prefer cheese-

flavored potato chips are more likely to believe in Astrology.

However, the visualizations alone do not answer the ques-

tion, if the shown difference is actually statistically significant

or not. In contrast, VizCertify would automatically mark the

reference view in Figure 1a and 1c as statistically significant,

but disregard the visualizations in Figure 1b and 1d. Important

to note is, that the top-ranked visualization, Figure 1b, is

not considered statistically significant, but the second one is;

so higher rank does not necessarily imply higher statistical

significance.

Obviously, detecting statistically significant differences is

challenging as it depends on the data size, the number of

tested hypothesis by the user and the recommendation system.

Furthermore, while it is easy to define what a test means with

a two-bar chart histogram, it is much harder for visualizations

with multiple bars. Finally, it has to be pointed out that

in the case of SeeDB increasing the data size does not

necessarily mitigate the problem as SeeDB automatically adds

filter conditions to create ever smaller sub-populations.

B. Problem set-up

In this work we assume that D (e.g., our survey data)

consists of n records chosen uniformly at random and inde-

pendently from a universe Ω. We can imagine Ω in the form

of a two-dimensional, relational table with N rows and m
columns, where each column represents a feature or attribute
of the records.

We refer to D as the sample dataset or the training dataset
and denote by FD the probability distribution that generated

the sample D. Alternatively, one can consider D as a sample

of size n from a distribution FD that corresponds to a possibly

infinite domain. As discussed in Section I rather than enabling

users to only interpret visualizations for some particular data
set, we want to make sure that a system provides them with

statistical guarantees when they try to generalize their results

over Ω. While not universally verified, these assumptions do

indeed hold for many realistic datasets (e.g., for a controlled

survey as in our running example).

C. Visualizations

As outlined previously our focus is on bar graphs. To

simplify the presentation, we restrict our discussion in the

following on categorical features/attributes, but it is possible to

use our techniques with continuous features by standard bin-

ning techniques. Thus, we can define SeeDB’s recommended

visualization as:

Definition 1: A bar graph visualization V is a tuple(D, F,X, Y,AGG
)

which describes the result of a query of

the form

SELECT X, AGG(Y) FROM D WHERE F GROUP BY X
which can be plotted as a bar graph. The aggregate AGG is

partitioned according to the values of a discrete feature X, after

filtering the records of the input dataset D by predicate F.

Again for simplicity we focus in the following on

COUNT(Y) aggregates. However, our approach can be ex-
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(a) Reference View (b) SeeDB Top 1 (c) SeeDB Top 2 (d) SeeDB Top 3

Fig. 1: An example of SeeDB [1] and VizCertify on survey data. VizCertify only recommends (a) and (c).

tended with minor modifications to the average AVG(Y)
aggregate.

Visualizations as distributions: Thus, the bar graph ob-

tained by a query of the above form can be seen as a histogram

of the probability mass function (pmf) of a discrete random

variable X corresponding to the feature X conditioned (or

filtered) on the predicate (or event) F . This correspondence

between visualizations and distributions provides us with a

natural criterion to compare visualizations by evaluating their

statistical difference.

To close the connection to statistical testing, we further

define the support of a visualization V as the number of

records of D which satisfy the predicate F , and denote it

as |V |. The selectivity of a visualization V , denoted as γV , is

defined as the fraction of records which satisfy F :

γV := |D|F |/|D|. (1)

The aggregate COUNT(Y) corresponds to the number of

records which satisfy the query predicate F grouped according

to the values of the feature X, henceforth referred as the

“group-by” feature.

Extensions While our definition seems restrictive to SeeDB

and certain aggregations, it our results can easily be extended

to other types of visualizations (e.g., heat maps) and systems,

and in some cases do not require any modifications. For

example, without any significant changes our techniques can

be used to make Data Polygamy [12], an automatic correlation

finder, “safe”. Similarly, it is possible to extend our techniques

to other types of counting-based visualizations (e.g., heat
maps). In contrast, we do not consider Min or Max aggregates,

which are supported by SeeDB as useful as they (obviously)

can not represent statistically significant behavior of distri-

butions. However, if they would be expressed as conditional
expectations (e.g., aggregates in the form Y |Y > c for some

constant c ∈ R), our framework can in fact handle them.

D. Visualization recommendations

An user starts with a reference visualization V1 for which

visualizations {Vq}q=2,...,Q shall be recommended that are

interesting with respect to V1. A candidate visualization Vq

is defined to be interesting with respect to a visualization

V1 if and only if Vq and V1 have a different distribution

of the group-by feature X under the predicates associated

with V1 and Vq , respectively. Consistently, SeeDB defines the

best recommendations as the ones, which have the highest

difference with respect to V1 among all eligible candidates

{Vq}q=2,...,Q. Note that we constrain candidates to share the

same group-by feature with the reference visualization to

guarantee that the visualizations are in the same user context.

A visualization V2 is an eligible candidate for recommen-

dation with respect to a reference visualization V1 if the two

are “different enough”. That is, if their distance d(V1, V2) is

larger than some given threshold value ε:

V2 interesting w.r.t V1 ⇐⇒ d(V1, V2) > ε.

In its simplest form, ε may be zero. However it makes more

sense to define ε in terms of a minimum visual distance εV
required by a user to spot a difference [13] when shown both

visualizations. That is, a recommended visualization is only

interesting if it shows a strong visual difference usually for a

subset of the currently selected data.

In this work, we use the Chebyschev distance to decide

whether two visualizations are different. Given two pmfs D1

and D2 over the same support set X = {x1, x2, . . . , xn}, the

Chebyschev distance between D1 and D2 is defined as:

d (D1, D2) := max
x∈X

|PrD1
(x)− PrD2

(x) |, (2)

Here, PrD1 (x) denotes the probability of a random variable

taking value x according to the distribution PrD1 (x).
We justify this choice of distance measure for two visu-

alizations by its ability to capture the maximum difference

between pairs of corresponding columns of the two bar plots

(or histograms).

III. STATISTICALLY SAFE VISUALIZATIONS

While the statistical pitfalls of exploratory data analysis

are well understood and documented ( [14], [15]) the con-

nection to visualizations only has been rigorously studied

recently [11], [16], [17].

A first crucial demand for a system that provides users

with visualizations unveiling interesting relationships amongst

visualizations is to provide tools allowing the analyst to

ascertain that phenomena being observed are actually statisti-
cally relevant. Furthermore, results displayed need to exhibit

characteristics that are non-random and visually intelligible.

That is, a user looking at two visualizations should both be

able to understand that they are different and why they are

different without worrying whether visual features are due to

missing support or random noise.
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Thus in probabilistic terms the question becomes how likely

it is that the visualization is also interesting with respect to the

underlying distribution FD for a dataset D available to the

visualization itself. Recalling the correspondences drawn in

Section II-C, each query with a filter predicate F corresponds

to an event E over Ω. Consider a visualization of a histogram

of a (discrete and finite) variable X conditioned on an event

E �= ∅, denoted X|E as defined in Definition 1. The true

values (in FD) for k ∈ domX are given by pk := P(X =
k|E). Given a dataset {X1, . . . , Xn} we estimate the pk values

as

p̂k :=

∑n
i=1 �{Xi=k, Xi∈E}∑n

i=1 �{Xi∈E}
. (3)

If in D the histogram of X|E is visually different from the his-

togram of X , what can we tell about the difference between the

histograms in FD? Here, we say that the difference between

two visualizations V1 and V2 is statistically significant if and

only if the difference observed between the two in the finite

sample D is due to a difference between the two histograms

with respect to FD. The recommendation problem is thus

the task of verifying that visualizations flagged as interesting

with respect to D generalize to interesting visualizations with

respect to the true underlying distribution FD.

A. Classical statistical testing

In the classical statistical testing setting, our problem could

be formulated either as a goodness-of-fit test or as a homo-
geneity test. Example of classical goodness-of-fit (resp., ho-

mogeneity) tests include the single sample (resp., two sample)

χ2-test for discrete distributions or the Kolmogorov-Smirnov

test for continuous random variables. However, there are major

difficulties in applying classical standard statistical tests to the

visualization problem.

First, depending on the input data the correct test needs to

be selected. For example, when using a χ2-test over discrete

attributes, each bucket must not be empty. A general rule

of thumb to make sure estimates are reliable is to have at

least 5 samples per bucket. Further, there need to be enough

samples to actually use the χ2-test. Else, Fisher’s exact test

should be used for small sample sizes. In addition to each

test being only applicable to certain input data, they generally

consider different notion of difference, and, hence, interest.

Such nonhomogeneity may considerably hinder the user’s

ability to connect the results of the test to the notion of a

significant visual difference.

A second issue has to do to with opportunely defining the

hypotheses to be tested so that they allow recognizing visual

differences in a meaningful way. Consider for this a t-test that

essentially compares whether the observed mean resembled

the expected mean. Naturally, a consequence is that if they

differ the candidate query should get recommended. This

may however lead to many wrong recommendations merely

because the null hypothesis used is too simple and gets rejected

too often.

Third, classical tests, such as the χ2-test, only offer asymp-
totic guarantees. That is due to the fact the validity of the test

hinges on the fact that the p-value of true null-hypotheses is

uniformly distributed between 0 and 1. While this holds as the

size of the size of the available sample grows, such assumption

does not generally holds for samples of finite, small, size.

For skewed distributions or queries that return only a small

number of rows this is problematic. For example, when using

a χ2-test for a heavily skewed discrete distribution with a high

number of degrees of freedom (e.g., > 20), a high number

of samples are required for the the observed test statistic to

converge to the χ2 distribution. In contrast, our VizCertify

method ensures rigorous finite sample FWER control with no

further assumption of the test statistics of true null hypotheses.

Lastly, while it might be tempting to combine statistical

testing with a selection heuristic based on the distance measure

introduced in (2), this would not eliminate the risk of false

discoveries. While the initial statistical tests identify some

candidate visualizations as different from the reference, they

do not provide guarantees on the statistical significance of such

difference (see the examples in Section V-C).

B. Recommendation validation via estimation

Rather in VizCertify we use the sample dataset D to

obtain approximations of the visualization according to the

entire global sample space Ω. Consider a single histogram

visualization V1, and assume it is comprised of K bars, one

for each of the K possible values of the chosen group-by

feature X . Let pV1
(x1), . . . , pV1

(xk), denote the normalized

bars corresponding to V1, i.e.
∑K

k=1 pV1
(xk) = 1. Note that

such bars denote the probability of a randomly chosen record

from Ω for the event X = xi conditioned on the fact that

a record satisfies the predicate associated with V1. Using D
and Equation 3 we estimate pV1

(xi) with p̂V1
(xi). In order to

provide guarantees for these estimates, it is necessary to bound

the maximum difference between the correct and estimated

sizes of bars in the normalized histograms.

In particular for a given δ (i.e., our level of control for false
positive recommendations) we want to compute the minimum

value ε ∈ (0, 1) such that PrD (|pV1
(xi)− p̂V1

(xi)| > ε) < δ.

In addition, ε quantifies the accuracy of an estimation pV1
(xi)

obtained by its empirical counterpart p̂V1(xi).

Let F denote the predicate associated with our visualization

V1. We denote as Ω|F (resp., D|F ) the subset of Ω (resp., D)

which is composed by those records that satisfy the predicate

F . Given X the value pV1
(xi) (resp., p̂V1

(xi)) corresponds to

(resp., is computed as) the relative frequency of records such

that X = xi in Ω|F (resp., D|F ) which is expressed in the

following fact:

Fact 1: Let D be an uniform random sample of Ω composed

by m records. For any choice of predicate, as specified in

Definition 1, the subset D|F is a uniform random sample of

Ω|F of size |D|F |.
As a direct consequence p̂V1

(xi) is an unbiased estimator for

pV1
(xi).

ED [p̂V1
(xi)] = pV1

(xi). (4)
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In order to bound the estimation error |pV1
(xi) − p̂V1

(xi)| it

is therefore sufficient to bound the deviation from expectation
of the empirical estimate p̂V1(xi). Chernoff-Bounds [18] yield

PrD (|pV1
(xi)− p̂V1

(xi)| > ε) ≤ e−2|D|F |ε2 . (5)

which can be rewritten to

PrD (|pV1(xi)− p̂V1(xi)| > ε) ≤ e−2γV1
nε2 (6)

using the selectivity of a visualization γV1
and n = |D|.

Equation (6) implies that a higher selectivity of a visualization

leads to a better estimate and vice versa. Even though the

method based on an application of the Chernoff bound appears

to be very useful and practical, it is important to note that it

only offers guarantees on the quality of the approximation of

a single bar for a single visualization. While it is in general

possible to combine multiple applications of the Chernoff

bound, the required correction leads to a quick and marked

decrease of the quality of the bound. For a visualization V1

composed by K bars a bound on all bars would be

PrD

(
max

i=1,...,K
|pV1

(xi)− p̂V1
(xi)| > ε

)
≤ Ke−2γV1

nε2

through the union bound [18]. While tolerable for small K,

the performance decreases for larger K leading potentially to

a complete loss of significance of the bound itself.

C. Adaptive Multi-Comparisons

If we let a recommendation system explore an unlimited

number of possible visualizations, it will eventually find an

“interesting” one, even in random data. To avoid this, one may

test every visualization recommendation on an independent

sample that has not been used during the exploration and

recommendation process yet. However, this solution is not

practical for a system that explores many possible visual-

izations. Moreover, it is desirable for a system to use the

entirety of the available data because it would allow to discover

all interesting insights and bolsters the confidence of any

statistical method being used in addition.

Assume that in our exploration of possibly interesting vi-

sualizations we tried � different visualization patterns, and we

computed for each of these patterns a bound hi, i = 1, . . . , �,
on the probability that the corresponding observation in the

sample D does not generalize to the distribution with respect

to Ω. It is tempting to conclude that the probability that none

of the � visualizations generalize is bounded by
∑�

i=1 hi.

Unfortunately, this probability is actually much larger when

the choice of the tested visualization depends of the outcome

of prior tests. This phenomenon is often referred to as Freed-

man’s paradox [19] and the only known practical approach to

correct for it is to sum the error probability of all possible

tests, not only the tests actually executed1. Note that standard

statistical techniques for controlling the Family-Wise- Error-

Rate (FWER) or the False Discovery Rate (FDR) require that

1Theoretical methods, such as differential privacy [20] claim to offer an
alternative method to address this issue. In practice however, the signal is lost
in the added randomization before it becomes practical.

the collection of tests is fixed independent of the data and

therefore do not apply to an interactive or adaptive exploration

scenario.

A possible solution would be fixing a-priory the set of

possible visualizations to be considered (e.g., those obtained

by predicates combining at most k features). Let M denote the

size of such set. By recommending visualization that pass the

individual visualization test with confidence level ≤ α/M we

are guaranteed, by the union bound, that the probability that

any of our recommendations does not generalize is bounded by

α. As we show in the experiments section this method is only

effective for relatively small search space, as for high values

of M the individual tests become extremely conservative with

a consequent overall loss of statistical power.

IV. STATISTICAL GUARANTEES VIA UNIFORM

CONVERGENCE BOUNDS

In order to overcome the challenge of multiple comparisons,

we propose to use Vapnik-Chernovenkis (VC) dimension to

constraint the visualizations toonly statistically valid ones. To

our knowledge, this is the first use of VC-dimensions for

visualizations or recommendation systems in general.

A. VC-Dimension Background

The Vapnik-Chernovenkis (VC) dimension is a measure

of the complexity or expressiveness of a family of indicator

functions (or equivalently a family of subsets) [21]. Formally,

VC-dimension is defined on range spaces:

Definition 2: A range space is a pair (X,R) where X is a

(finite or infinite) set and R is a (finite or infinite) family of

subsets of X . The members of X are called points and those

of R are called ranges.

Note that both X and R can be infinite. Consider now a

projection of the ranges into a finite set of points A:

Definition 3: Let (X,R) be a range space and let A ⊂ X
be a finite set of points in X .

1) The projection of R on A is defined as

PR(A) = {r ∩A : r ∈ R}.
2) If PR(A) = 2|A|, then A is said to be shattered by R.

The VC-dimension of a range space is the cardinality of the

largest set shattered by the space:

Definition 4: Let (X,R) be a range space. The VC-
dimension of (X,R), denoted VC(X,R) is the maximum

cardinality of a shattered subset of X . If there are arbitrary

large shattered subsets, then VC(X,R) = ∞.

Note that a range space (X,R) with an arbitrarily large (or

infinite) set of points X and an arbitrary large family of ranges

R can have bounded VC-dimension (see section IV-B). VC-

dimension, allows to characterize the sample complexity of a

learning problem as it is allows to obtain a tradeoff between

the number of sample points being observed by a learning

algorithm and the performance achievable by the algorithm

itself.

Consider a range space (X,R), and a fixed range r ∈ R.

If we sample uniformly at random a set S ⊂ X of size
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m := |S| we know that the fraction
|S∩r|
|S| rapidly converges to

the frequency of elements of r in X . A finite VC-dimension

implies an explicit upper bound on the number of random

samples needed to achieve such convergence within a pre-

defined error bound (known as uniform convergence property).

For a formal definition we need to distinguish between finite

X , where we case estimate the sizes r, and infinite X , where

we estimate Pr(r), the frequency of r in a uniform distribution

over X .

Definition 5 (Absolute approximation): Let (X,R) be a

range space and let 0 ≤ ε ≤ 1. A subset S ⊂ X is an absolute

ε-approximation for X iff for all r ∈ R we have that for finite

S ⊆ X , ∣∣∣∣ |r||X| −
|S ∩ r|
|S|

∣∣∣∣ ≤ ε. (7)

[22] establishes an interesting connection between the VC

dimension of a range space (X,R) and the number of sam-

ples which are necessaries in order to obtain absolute ε-
approximations of X itself.

Theorem 1 (Sample complexity [22]): Let (X,R) be a

range-space of VC-dimension at most d, and let and 0 <
ε, δ < 1. Then, there exists an absolute positive constant c
such that any random subset S ⊆ X of cardinality

|S| ≥ c

ε2
(
d+ log2 δ

−1
)

(8)

is an ε-approximation for X with probability at least 1− δ.

The constant c was shown experimentally [23] to be at most

0.5. Indeed, we use c = 0.5 in our experimental evaluation.

B. Statistically Valid Visualization using VC

To apply the uniform convergence method via VC dimen-

sion to the visualization setup, we consider a range space

(Ω, R), where Ω is global domain, and R consists of all the

possible subsets of X that can be selected by visualizations

predicates. That is, R includes all the subsets that correspond

to any bar for any visualization which can be selected using the

appropriate predicate filter. Given a choice of possible allowed

predicates, we refer to the associate set of ranges as the “query
range space” and denote it as Q.

The VC dimension of a query range class is a function of the

type of select operators (i.e., >,<,≥,≤,=, �=) and the number

of (non-redundant) operators allowed on each feature in the

construction of the allowed predicates. Note that depending

on the domain of the selected features and the complexity

according to which the predicate filters can be constructed,

the number of possible predicates may be infinite. In order

to use the VC-approach it is however sufficient to efficiently

compute a finite upper bound of the VC-dimension of the

set of allowed predicates. In order to use the results from the

previous section, we have to ensure that the sample D provides

an ε-approximation for the values pV for all the visualizations

being part of the query range space Q. To accomplish this, we

introduce the following, well known, property:

Fact 2: Let (X,R) be a range space of VC dimension d.

For any X ′ ⊆ X , the VC-dimension of (X ′, R) is bounded

by d.

In conjunction with Theorem 1 this synthesizes:

Lemma 1: Let (Ω, Q) denote the range space of the queries

being considered with VC dimension bounded by d, and let

δ ∈ (0, 1). Let D be a random subset of Ω. Then there exists

a constant c, such that with probability at least 1− δ for any

filter F defined in Q we have that the subset D|F is an εF -

approximation of Ω|F with:

εF ≥
√

c

|D|F | (d+ log2 δ
−1).

Proof: Fact 1 ensures that given the dataset D, for any

choice of a predicate F we have that D|F is a random sample

of Ω|F . Therefore regardless of the specific choice of the

predicate, we have that the VC dimension of the reduced range

(Ω|F,Q) is bounded by d. From Theorem 1 we have that if:

|D| ≥ c

ε̄2
(
d+ log2 δ

−1
)

(9)

then D|F is an ε̄ approximation for the respective set Ω|F .

Lemma 1 provides us an efficient tool to evaluate the quality

of our estimations p̂V of the actual ground truth values pV
for any choice of predicate associated with the visualization.

In particular, Lemma 1 verifies that the quality decreases

gradually the more selective the predicate associated with a

visualization is. That is, the smaller the cardinality of |D|F |,
the higher the uncertainty ε̄.

Corollary 1: Let D be a random sample from Ω, and let

Q be a query range space with VC dimension bounded from

above by d. For any visualization with V ∈ Q and for any

value δ ∈ (0, 1) we have that

Pr{∣∣pV(X = xi)− p̂V(X=Xi)

∣∣ ≥ ε̄} < δ, (10)

where

ε̄ ≥
√

c

|D|F |
(
d+ log2

1

δ

)
, (11)

F denotes the predicate associated with the visualization V
and and X denotes the group-by feature being considered.

C. The VizCertify validation criteria

Consider now a given reference visualization V1 and a

candidate recommendation V2, both using X as the group-by

feature, were the domain of X has K values (i.e., dom(X) =
{x1, . . . , xK}). With probability 1− δ the empirical estimates

of the normalized columns are accurate within ε̄. Let ε̄1
(resp., ε̄2) denote the uncertainty such that with probability

of at least 1 − δ we have ‖pV1
(xi) − p̂V1

(xi)‖ ≤ ε̄1 and

‖pV2
(xi) − p̂V2

(xi)‖ ≤ ε̄2 according to Lemma 1. Thus, if

|p̂V1(xi) − p̂V2(xi)| > ε̄1 + ε̄2 we can conclude that with

probability of at least 1− δ we have pV1(xi) �= pV2(xi). This

leads to:

Theorem 2: For any given δ ∈ (0, 1), VizCertify ensures

FWER control at level δ while offering visual recommenda-

tions if

max
xi∈domX

|p̂V1
(xi)− p̂V2

(xi)| > max{ε̄1 + ε̄2, εV}
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with ε̄1,2 denoting the uncertainty given by Corollary 1 and a

threshold εV ≥ 0 denoting visual discernability.

Proof: VizCertify recognizes two visualizations to be

statistically different (and hence, interesting) when the most

different pair of corresponding columns differs by no more

than the error in its estimates. Due to the uniform convergence

bound ensured by the application of VC dimension, the

probabilistic guarantees of this control hold simultaneously for

all possible pairs of reference and candidate recommendation

visualizations.

This VC dimension based approach is agnostic to the adaptive

nature of the testing as it accounts preemptively for all
possible evaluations of pairs of visualizations. Theorem IV-C

allows us thus to design the following algorithm for the visual

recommendation problem:

Algorithm 1 VizCertify: Recommendations with VC dimen-

sion

Input: Starting visualization V1 , query space Q, sample dataset
D, FWER target control level δ ∈ (0, 1).
Output: A set of statistically safe recommendations Y .

1: Y ← [] � Empty list of recommendations
2: X ← the group-by feature being considered.
3: FV1 ← the predicate associated with V1.

4: ε̄1 ← d+log2 δ−1

2|D|FV1
| � Uncertainty in V1 approx.

5: for all V ′ ∈ Q do
6: FV′ ← the predicate associated with V ′.
7: ε̄′ ← d+log2 δ−1

2|D|FV′ |
8: dist ← maxxi∈dom(X) |p̂V1(xi)− p̂V2(xi)|
9: interest ← dist− (ε̄1 + ε̄2)

10: if dist ≥ max{ε̄1 + ε̄2, εV } then
11: Y.append([V ′, interest]
12: return sort Y according to interest value (and uncertainty).

Our VizCertify approach can be reworked to resemble a two-

sample test, when we assume that there is uncertainty in the

reconstruction of both the reference V1 and the candidate V2.

In some scenarios, the reference visualization may be not

have any uncertainty (e.g., when using a flat distribution as

reference). In this case, it is sufficient to recommend V2 if

and only if

max
xi∈dom(X)

|p̂V1
(xi)− p̂V2

(xi)| > ε̄2.

D. VC dimension of the Query Range Space

For practical implementation it is sufficient to bound the

VC dimension of the class of queries being considered. Since

features are assumed to be equipped with a natural metric,

constraints on values of a certain feature can be expressed

using operators ≥,≤,= and �=. This corresponds to selecting

intervals (either open or close) of the possible values of a

feature. For each feature, these clauses are connected by

means of logical or ∨. We characterize the complexity of

such connection by the minimum number of non-redundant
open and close intervals of the value. In particular we say

that a connection of intervals is non-redundant is there is no

connection of fewer intervals that selects the same values. The

VC dimension of this class of queries can then be characterized

according to:

Lemma 2: Let Q denote the class of query functions such

that each query is a conjunction of connections of disjunctive

clauses on the value of distinct features. The VC dimension

of Q is then:

V C (Q) =

m∑
i=1

2αi + βi, (12)

where αi (resp., βi) denotes the maximum number of non-

redundant closed (resp., open) intervals of values correspond-

ing to the connection of constraints regarding the value of the

i-th feature, for 1 ≤ i ≤ m.

Proof: The proof is by induction on i: in the base case we

have i = 1. In this case, the VC dimension of Q corresponds

to the VC dimension of the union of α1 closed intervals and

β1 open intervals on the line. By a simple modification of

well-known “folklore” textbook result according to which the

VC dimension of the union of j closed intervals on R is 2j,

we have that Q it has VC dimension at most 2α1 + β1. Let

us now inductively assume that the statement holds for i > 1.

In order to conclude the proof we shall verify that it holds for

i+ 1 as well.

Assume towards contradiction that there exists a set X of∑i+1
j=1 2αj + βj points that can be shattered by Q. From the

inductive hypothesis, we have that for any subset of X with

more than
∑i

j=1 2αj + βj cannot be shattered by the family

of query functions which can express constraints only on the

features 1, 2, . . . , i. Without loss of generality let X ′ denote

one of the maximal subsets of X which can be shattered using

only the constraints on the features 1, 2, . . . , i. Recall that

the queries in Q are constituted by logical conjunctions (i.e.,

“and”) of connections (i.e.,“or” statement) of constraints on

a feature. Hence, for any function in Q if any of the i + 1
connections are such that they assume value “false”, then

the query will not select such point regardless of the value of

the remaining i connections being conjuncted.

Consider any assignment π of {0, 1} to the points in X ′

and let rπ the range which realizes such shattering.

If rπ would assign to any point in X \X ′ value “0”, then,

according to the structure of the queries, no constraint on the

(i + 1)-th feature would allow to assign to it value “1”, and,

hence, it would not be possible to shatter X .

Note that for any assignment π of {0, 1} to the points in X ′,
there may may not exists two ranges r1 and r2 such that based

solely on constraints on the first i features, on would assign

“0” to a point in X \X ′ and the other would assign “1” to the

same point. If that would be the case, then i would be possible

to shatter
∑i

j=1 2αj + βj points using just constraints on the

first i features and this would violate the inductive hypothesis.

Without loss of generality, in the following we can therefore

assume that for any assignment π of {0, 1} to the points in

X ′ the ranges that realize such assignment just based on the

first i features would assign “1” to all the points in X \X ′.
This implies that the shattering of the points in X \X ′ relies

solely on the constraints on the values of the i+ 1-th feature.
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(a) Reference View (b) SeeDB Top 1 (c) SeeDB Top 2 (d) SeeDB Top 3

Fig. 2: Example 1: the Top-3 SeeDB recommendations for the reference (a) do not pass the VizCertify control.

(a) Reference View (b) SeeDB Top 1 (c) SeeDB Top 2 (d) SeeDB Top 3

Fig. 3: Example 2: out of the Top-3 SeeDB recommendations for the reference (a) only (b) passes the VizCertify control.

Consider now the points in X \ X ′, according to our as-

sumption |X\X ′| = 2αi+1+βi+1. As discusses in the base of

the induction, it is not possible to shatter 2αi+1+βi+1 points

using just αi+1 (resp., βi+1) closed (resp., open) intervals on

the (i+ 1)-th dimension.

Hence, it is not possible to shatter X and we have a

contradiction.

E. Query complexity vs. minimum selectivity

When exploring the space of possible recommendations by

growing a filter condition one clause at a time (i.e., multiple

non-trivial clauses are added), with more claused added the

number of records selected by the predicate will decrease.

Therefore, it is reasonable to start evaluating simpler predicate

filters first and then proceed depth-first by adding more and

more clauses. While reasonable, this procedure will likely

explore still a large number of queries. However, most of the

filters obtained by composing a high number of filters will

yield visualizations supported by a few sample points which

are intrinsically unreliable.

Our VC dimension approach recognize this fact and can

be also leveraged to limit the search space. As discussed in

Section IV-E, the lower the selectivity γF , the higher the

uncertainty ε̄. From Corollary 1 it follows

ε̄ ≥
√
(d+ log2 δ

−1) (2nγ)
−1

(13)

Since ε̄ ≤ d(V1,V2) ≤ 1, this implies that all visualizations

with selectivity

γ ≤ (
d+ log2 δ

−1
)
(2n)

−1
(14)

are not going to be recommended as interesting. As a direct

consequence, Equation 14 allows to prune the search space by

eliminating from the exploration queries which are “not worth
to be considered” possible recommendations.

By taking into consideration the selectivity of a candidate

visualizations, our method automatically adjusts the threshold

of interest for each candidate visualization. From a different

perspective this may be also used to limit the structure (i.e., the

VC dimension) of all queries being considered when ensuring

that each candidate visualization, which differs from the

reference by at least θ, is marked as a safe recommendation.

When γ1,2 are the selectivities for the two visualizations, the

maximum VC dimension guaranteeing these requirements can

be obtained from (13) as:

d ≤ θ2 min{γ1, γ2}n− log2(δ
−1).

V. EXPERIMENTS

In this section, we show how our framework can be applied

towards both real data (i.e. the collected survey data) and

synthetic data.

A. Anecdotal examples

To illustrate how VizCertify restricts the recommended

visualizations, we used again the survey data from Figure 1a.

Our first example shows that a system without statistical

control may lead the user to false insights due to random

noise in the sample. Consider, the reference view in Figure 2a,

which shows the believe of our participants in “Obesity being

a disease” and SeeDB’s top recommendations in Figure 2a to

2d, which either emphasize the reference view (more people

agreeing or disagreeing). Just looking at the filter conditions, it

is rather obvious that all of them should have very little impact

on “if people believe in obesity as a result” and VizCertify

would not recommend any of them.

In contrast, in our second example we look at Democrats

vs Republican supporters (reference view is shown in Fig-

ure 3a and the top 3 recommendations in Figure 3b-3d. Here,

the top visualization would be recommended (Figure 3b),
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Fig. 4: Blue dots represent the interest scores of all evaluated
visualizations. The ε̄ curve denotes the threshold for recommendation
using VC dimension = 4 to achieve FWER ≤ 0.05. The lower the
VC dimension the more the ε̄ curve takes the form of an “L”.

which intuitively makes sense, but the other two visualizations

are not recommended by VizCertify. Especially, Figure 3d

would probably count as very interesting, as republicans and

democrats are equally split in the support of marijuana, but

VizCertify considers it as not statistical significant given

the survey data size. Thus, if a non-savvy journalist would

have used SeeDB over this dataset, VizCertify could have

potentially prevented a very questionable news headline.

Note, that it is not the case, that the highest ranked visu-

alizations are necessarily the most statistical significant ones

as our leading example in Figure 1a to Figure 1d already

demonstrated.

B. Random data leads to no discoveries

A meaningful baseline for any safe visual recommendation

system is to make sure that random data does not lead to any

recommendations. To demonstrate that the VC approach will

not recommend any false positives, we generated a synthetic

dataset with uniformly distributed data. 100, 000 samples were

generated in total with the first column being selected as

aggregate and the other 3 columns as features.

The aggregate is uniformly distributed over {1, 2, 3, 4} and

each of the 3 features are uniformly distributed over {1, ..., 9}.

With simple predicates (i.e. a queries formed from ≤ clauses

solely) there are 1331 visualizations to be explored (a dummy

value of +∞ was used in the queries to make a feature

active or not. E.g. consider a query of the form (X1 ≤ 8) ∧
(X2 ≤ +∞) ∧ (X3 ≤ 3). In this query, feature X2 has no

effect on the rows returned since (X1 ≤ 8) ∧ (X2 ≤ +∞) ∧
(X3 ≤ 3) ≡ (X1 ≤ 8)∧(X3 ≤ 3). Note that using +∞-values

in the clauses does not change the VC dimension.). As a

reference, a uniform distribution over {1, 2, 3, 4} was chosen.

This means, that the expected support of any visualization is at

least 105/93 samples which is a fair amount to estimate 4 bars.

When not accounting for the multiple comparison problem p-

values below the threshold of α = 0.05 occur inevitably. A

system without FWER guarantees would classify them thus

as false positives. Using Bonferroni (or other comparable

corrections) remedies at the cost of incurring a noticeable loss

in statistical power.

In comparison, the lowest ε the VC approach guarantees is

εmin = 0.0059. As discussed in IV-B the required threshold ε

Fig. 5: Comparing two close distributions that however should

not be recommended since the visual difference criterion

according to the VC dimension approach is not met.

to be met by the Chebychev norm induced distance measure

d∞ depends on the selectivity γ of the query. The necessity of

this can be observed in Figure 4 too. With the interestingness

scores (distances) being lower than the curve defined by ε for

all queries in Figure 4 the VC approach does not recommend

any false positives in this experiment. Using different distribu-

tions instead of the uniform one showed comparable results.

C. Statistical Testing vs. VC approach

While classic statistical testing in the form of a χ2-test is

correct building block for a VRS, in some situations a χ2-

test is unable to spot meaningful visual differences which

would however be recognized by our VizCertify approach.

Assume we had a query that yielded m = 1, 200 out of

n = 10, 000 samples and a perfect estimator for the true

distribution function of the reference and the query distribution

which shall be distributed as in Figure 5. A χ2-test would yield

a p-value of of 2.54 · 10−5 implying that they are different

when no more than 1967 visualizations under Bonferroni’s

correction are tested. However, at a VC dimension of 10
(δ = 0.05) the required ε must be at least 0.22 which is

nearly twice as high as the 0.1 difference at the first bar

as shown in Figure 5. Thus, the VC approach would not

select this visualization as being significantly different enough

given the modest sample size. The χ2 test would recommend

this visualization though since it only spots that there is a

difference but not whether the difference is significant enough.

Such scenarios occurr in practice especially due to outliers

in the data (e.g., for one feature value there are only 1-5

samples that would lead without any correction to a correct

recommendation). Though a heuristic may ignore visualiza-

tions with less than 5 samples, this would come at the cost

of ignoring rare phenomena and while using an arbitrary

threshold.

This reinforces that a VRS using the χ2-test would cor-

rectly identify two visualizations being different but can not

guarantee a meaningful difference in terms of a distance which

is crucial to build usable systems without luring the user into

a false sense of security. One may argue that filtering out

visualizations after having performed statistical testing would

remedy this (which may work in practice when the interest

score is high enough), but then there was no guarantee that

the distances observed are statistically guaranteed.

249

Authorized licensed use limited to: Brown University. Downloaded on August 12,2020 at 14:56:03 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6: Chi-square distance dχ2 and minimum number of samples
nmin required to reject H0 with Bonferroni correction, α′ = 0.05
and 106 queries.

Furthermore we want to underscore the point that the Chi-

squared test is indeed a very powerful test but that the correct

estimation of the distribution dominates the selectivity. I.e.,

when we guarantee that the estimates for the probability

mass function are close enough to the true values, a testing

procedure like χ2-test will even under a million possible

hypothesis only need a small number of samples to spot a

difference between two distributions. We thereby define the

required number of point estimates to be in the range of

2 ≤ K ≤ 100 bars as meaningful.

In Figure 6 it is shown that even low values for the χ2-

distance d2χ only require queries with hundreds of samples to

be identified correctly.

VI. RELATED WORK & CONCLUSION

[24] introduced the VC approach to provide ε-
approximations for the selectivity of queries. Whereas they

also consider joins in addition to multi-attribute selection

queries, by restricting to AND conjunctions over multiple

attributes as used naturally in OLAP we were able to lower

the required VC dimension.

Recent work [25] introduced the problem of group-by

queries leading to wrong interpretations, specifically in the

case when AVG aggregates are used. To remedy this, the

notion of a biased query is introduced. However, they do not

account for the multiple comparison problem and also have

no significant distance notion.

[10] introduced various control techniques for interactive

data exploration scenarios. Whereas it accounts for the mul-

tiple comparison problem, it does not solve the problem of

pointing out a statistical different enough distance between

two visualizations.

[1] provides an approach to effectively compute visu-

alizations over an exponential search space by using reuse

of previous results and approximate queries. Visualizations

are recommended by treating group-by results as normalized

probability distributions and using various distance measures

between two probability distributions to yield a ranking in or-

der to recommend top-k interesting visualizations. The authors

found that the actual choice of the distance did not really alter

results, which does not come at a great surprise given their

relations as pointed out in [26].

Conclusion: In this work, we demonstrated why visual

recommendation systems require techniques to prevent users

from making false discoveries. We further proposed a novel

way to control false discoveries for visual recommendations

systems based on VC dimensions.
As described in [27] zooming into particular interesting

regions of the data is a key task performed by users in the

data exploration setting. Our technique provides a simple and

effective methodology which can be applied to a wide range

of data. We believe our VC approach can be easily extended

to allow for more complicated query types such as these.
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