Developing an Introductory Computer Science Course for Pre-service

Teachers

Computational thinking (CT) involves breaking a problem into smaller
components and solving it using algorithmic thinking and abstraction. CT is no
longer exclusively for computer scientists but for everyone. While CT does not
necessarily require programming, learning programming to enhance CT skills at
a young age can help shape the next generation of children with knowledge that
can help them succeed in our technological world. In order to produce teachers
who are able to incorporate programming and CT into their future classrooms, we
created an introductory Computer Science course (CS0) targeting future K-8
STEM teachers yet open to any student to enroll and learn computer science. We
used a mixed-methods approach, examining both quantitative and qualitative data
based on self-reported surveys, classroom artifacts, and focus groups from four
semesters of data. We found that after taking the course, students’ self-efficacy
in CT increased and while education students initially had lower confidence in
their computing abilities than computer science students in the course, by the end
of the semester there were no differences in their perceived and actual coding
abilities when compared with computer science students. Furthermore, education
students had many ideas on how to incorporate similar projects into their own

future classrooms.

Keywords: computational thinking; coding; CS0; pre-service teachers; computer

science for all

1 Introduction

Technology is ubiquitous with 81% of Americans reporting to be online daily, and 28%
of those online almost constantly (Perrin & Kumar, 2019). By providing students with a
foundation in Computer Science (CS), we can better prepare them for the future.
However, in the United States, females report a lower interest in CS than males,
minority students have less access to computers at home, and African American/Black

students have fewer CS classes in schools (Google Inc. & Gallup Inc., 2016a). In order

to address the lack of diversity and the gender gap with regard to CS, we need to engage
all students with foundational CS skills early on in their classrooms. However, schools
report a lack of qualified teachers in CS, and due to priorities with other classes in the
curriculum, principals and superintendents would like CS education merged with other
subjects (Google Inc. & Gallup Inc., 2016b). In order for teachers to be able to
integrate computer science concepts in their classrooms we need to provide training for
in-service and pre-service teachers and think about what is CS and how to train teachers
to be able to use it in their classrooms.

Computational Thinking (CT) is a central component of CS. It is a type of
problem-solving using decomposition, abstraction, and algorithmic thinking. In the
United States, CT is now a principal part of the K-12 Computer Science Framework
(2016) and included as a required practice in the Next Generation of Science Standards
(NGSS), the K-12 science content standards in the United States. Wing (2006) argues
that CT skills should no longer be only for computer scientists, but for everyone. In
order to ensure that CT is truly available for all, Wing (2008) stresses that these skills
need to be taught to children early on. The recent “Computer Science for All” initiative
encourages exposing children in K-12 schools to CS and CT skills.

Yadav, Stephenson, and Hong (2017) point out that while in-service teachers are
receiving professional development training opportunities in CT, there is less
preparation happening at the pre-service teacher level. Therefore, our goal is to provide
future teachers with the training necessary in CT and coding in order for them to be able
to use these skills in their future classrooms. Our university has an undergraduate math
and science content preparation program for pre-service elementary and middle school

teachers. In order to prepare these future teachers to be able to use CT and coding in

their future courses we created an introductory Computer Science course, called

Computer Science for All, that will be required for students in this program.

To improve the design of the course, a CS university professor teamed up with
a K-8 CS teacher who is also a CS integration specialist and instructional coach for her
school district. This collaboration provided a way to start the process on integrating
current pedagogical CS content into the course with real examples on how future
teachers can use what they are learning in their classrooms.

To design the course, we used a CSO framework. CSO0 is a course typically
targeted for early Computer Science majors who are not ready for CS1, the first
programming course. Rather than having computer science students register for a
programming language like C++ or Java, a CS0 course can be a good precursor to better
prepare them for programming courses and improve retention rates in CS1 (Doyle,
2005; M Rizvi & Humphries, 2012). We created a CS0O course that, while housed in the
CS department, will become a required course for students in our pre-service STEM K-
8 teacher program. We allowed students in other disciplines to register for it as well to
demonstrate that computer science is for all. Everyone can benefit from having a basic
understanding of CS, and it is a skill particularly useful in pre-service teacher programs

in order for future teachers to use CS skills in their classrooms.

2 Background

2.1 Incorporating CT in Pre-service and In-service Classrooms

Shute et al. (2017) conducted a thorough review of CT in the literature, which they
define as a “conceptual foundation required to solve problems effectively and efficiently
(i.e., algorithmically, with or without the assistance of computers) with solutions that

are reusable in different contexts.” In the United Kingdom, a guide for teachers was

produced to understand CT based on five concepts: algorithmic thinking,
decomposition, generalization, abstraction, and evaluation (Csizmadia et al., 2015).
Using CT, students can break complex problems into simpler ones that are easier to
solve through algorithmic thinking, decomposition, abstraction, and finding patterns.
Wing (2006) argues that CT is becoming a fundamental skill as important as reading,
writing, and arithmetic. Mishra et al. (2013) reason that using CT moves children from
being consumers of technology to creative problem solvers with skills they can use later
to enhance their chosen field.

Shute et al. (2017) found when reviewing the CT literature that Scratch and
LEGO robotics were often used to increase CT skills. Scratch is easily accessible
through the Web, allows students to “remix” existing projects, and exposes students to
common programming concepts, such as sequences, loops, parallelism, events,
conditionals, operators, and data (Brennan & Resnick, 2012). Scratch is a popular
educational programming language used in elementary and middle schools and uses
blocks that connect together to create programs (Resnick et al., 2009). Similarly, LEGO
robotics use pieces that easily snap together and allow students to create new structures
and ideas (Resnick et al., 2009). It also uses a visual programming platform, where
students can drag-and-drop blocks of code to the screen, but instead of seeing output on
the screen they can view the output of their code as the robot itself responds to the
commands, providing a physical representation of the code. This physical representation
of code through robotics can help foster students’ understanding of abstraction (a key
component of CT), which elementary students often struggle with.

Grover et al. (2015) included an introductory computer science course in a
seven-week curriculum for middle school students and included an assessment to

evaluate students’ ability to transfer what they learned in a block-based Scratch

environment to a more text-based programming language. They found that after
explaining the syntax to them, students were able to understand text-based code
snippets.

Maloney et al. (2008) examined 536 Scratch projects in an after school club and
found that students were engaged with programming in Scratch and used many
programming concepts such as user interaction, loops, conditionals, and communication
and synchronization. Similarly, Meerbaum-Salant, Armoni, and Ben-Ari (2010) found
that while middle school students had some difficulties with initialization, variables, and
concurrency, overall most students were able to understand computer science concepts.
Weese and Feldhausen (2017) used Scratch in a summer STEM institute for 5t-9th
graders and found students had increased self-efficacy in CT after the program.

Scratch has also had promising results when used in pre-service teacher
classrooms. In a science methods course for pre-service teachers, Adler and Kim
(2018) found that pre-service teachers were able to model science concepts using
Scratch and had ideas for incorporating it as a tool in their own future classrooms.
Cetin (2016) compared Scratch-based instruction with the C programming language for
pre-service teachers and found that participants using Scratch had better programming
performance. Scratch can be an effective way to introduce pre-service teachers to
programming concepts in a visually intuitive and user-friendly way before using a text-
based language.

Just as Scratch can increase students’ CT skills, many educational programming
robots have been used to enhance CT skills for pre-service teachers (Jaipal-Jamani &
Angeli, 2017) and in K-12 classrooms (Berland & Wilensky, 2015; Bers, Flannery,
Kazakoff, & Sullivan, 2014; Papadakis & Orfanakis, 2016). loannou and Makridou

(2018) reviewed articles pertaining to educational robotics with regard to CT and found

that educational robots can enhance students’ cognitive and social skills. Jaipal-Jamani
and Angeli (2017) modified a science methods course for pre-service elementary
teachers to include robotics using the LEGO WeDo robots, which are designed for
second through fourth grade students, and found that there was an increase in pre-
service teachers’ interest in learning about robotics, self-efficacy to use robotics when
teaching science, and in their computational thinking skills. Kim et al. (2018) used
robotics as a medium to examine debugging methods used by pre-service teachers.
They found that locating bugs was difficult for pre-service teachers and that they could
be taught more effective strategies for debugging.

Yadav et al. (2017) argue for the exposure of pre-service teachers to CT in their
education technology courses in order for them to have a foundation in CT which they
can later learn to integrate into the content through a methods course. We argue for a
separate new course for pre-service teachers, based on CS0 courses, which prepare early
computer science majors with coding and CT skills. Rather than including a couple of
modules in an existing course to increase CT skills, we created a 15-week computer

science course that will be required for educators using a CSO framework.

2.2 CS0: An Introductory Computer Science Course

Many computer science programs often face declining retention rates and low
performance in CS1, the first programming course. To improve student retention and
performance, many universities have been incorporating a CS0 course that computer
science students can take before CS1 (e.g., Doyle, 2005; Rizvi & Humphries,

2012). CSO courses often include engaging and intuitive drag-and-drop programming
languages to introduce students to programming concepts, such as Scratch, Alice, MIT
App Inventor, and Robotics (e.g., Anewalt, 2008; Powers, Ecott, & Hirshfield, 2007; M

Rizvi & Humphries, 2012; Turbak, Sherman, Martin, Wolber, & Pokress, 2014;

Uludag, Karakus, & Turner, 2011). These drag-and-drop programming languages are
considered visual programming languages and can be simpler for those new to coding,
as they eliminate the need to worry about syntax, such as including braces or a
semicolon, or remembering the name of a keywords or functions, due to the drag-and-
drop nature of these languages. Rather than typing, these environments rely on block-
based coding.

Moskal, Lurie, and Cooper (2004) developed an introductory computer science
course with Alice, which has a 3D environment, and found that for high risk students,
the course significantly improved their grades in CS1 as well as their retention in
computer science. Powers et al. (2007), however, found that while the object-oriented
approach of Alice makes it a good choice at the university level, it can lead to
misconceptions on how object-oriented languages work.

Malan and Leitner (2007) propose using Scratch in earlier CS courses before
students have been introduced to a first language like Java. They found that using
Scratch excited students in addition to introducing them to programming. Rizvi et al.
(2011) created a CSO course with Scratch and found that students in the course had a
high self-efficacy in programming, and performance in CS1 for students who took CSO
was greater than in previous years. In a later study, Rizvi and Humphries (2012) found
retention rates improved since introducing the CS0 course and this pattern continued the
following year.

Robotics are also used in CSO courses through visual programming
environments. Grabowski and Brazier (2011) used LEGO Mindstorms robots in CS0 to
help with recruitment and retention and found that students were interested and engaged
in the course and that the retention rate of students who completed the course was

100%. Pearce and Nakazawa (2008) created three CSO courses at their university on

Web, Introduction to Robotics, and Storytelling with Alice. They found this approach
increased enrollment in CS1 by 77%, with Alice and robotics helping retain more
students in CS1 than the traditional Web CSO.

Turbak et al. (2014) used the block-based programming environment, MIT App
Inventor, to introduce events in a CS0 course and found many challenges and ways in
which introducing events with App Inventor could be improved. Rather than relying on
one programming environment, Uludag et al. (2011) used a unique combination of
Scratch, LEGO Mindstorms robotics, and App Inventor in a single CSO course, which
could attract both majors and non-majors.

In addition to computer science majors, CSO courses have been used to
introduce computer science concepts to non-computer science majors. Cliburn (2006)
created an introductory course for non-majors and found that the course led to more
students enrolling and succeeding in programming courses.

While CSOs often use visual programming languages to introduce computer
science concepts, some CS0 courses focus on incorporating text-based languages, such
as Python. Agarwal and Agarwal (2006) discuss how Python is a good choice for CS0
as the syntax is simpler than other high-level languages which will minimize students’
difficulties with learning a first language.

We decided to create a CSO course for educators that, while open to any major,
will be required for our math and science pre-service elementary and middle school
teachers and focuses on teaching computational thinking and programming concepts,
using two visual-based programming platforms, Scratch and LEGO Mindstorms
Education EV3 robots, and concluding with a text-based programming language. We
chose Scratch and LEGO robots due their success being used in CS0 courses

(Grabowski & Brazier, 2011; Malan & Leitner, 2007; M Rizvi & Humphries, 2012;

Mona Rizvi et al., 2011; Uludag et al., 2011) as well as in K-8 (Grover et al., 2015;
Ioannou & Makridou, 2018; Maloney et al., 2008; Resnick et al., 2009; Weese &
Feldhausen, 2017) and pre-service teacher classrooms (Adler & Kim, 2018; Cetin,
2016; Jaipal-Jamani & Angeli, 2017). We chose the LEGO Mindstorms, rather than the
LEGO WeDo, as the Mindstorms are designed for children ages 10 and up and more of
the pre-service teachers in our program were future middle school teachers and we did
not have time to cover both in a single course. Furthermore, after learning with the
LEGO Mindstorms, pre-service teachers who want to use the WeDo sets in their future
classrooms should be able to easily transfer what they learned to the LEGO WeDo,
which is designed for younger children.

The goal of this new course is to introduce future K-8 teachers to environments
that they can later use in their own teaching. One of our fundamental learning
objectives is to integrate CS within an interdisciplinary context, relating concepts to

other disciplines such as science, mathematics, and the social sciences.

Our research questions are as follows:

(1) Can a CSO course significantly improve pre-service teachers’ self-efficacy in
CT?

(2) How will education students compare to CS students in the same course?

(3) After completing this course, will pre-service teachers be prepared to

incorporate CT and coding into their future classrooms?

3 Methodology

In order to assess the effectiveness of the new Computer Science CS0 course, Computer
Science for All, we used a mixed-methods approach, where we collected both
quantitative and qualitative data in a single study (Johnson & Onwuegbuzie, 2004). In
addition to collecting and analyzing artifacts and grades from the course projects, we
collected data from a pre- and post-survey of students enrolled in the course each
semester. In order to gather qualitative data and triangulate the quantitative results, we
also conducted focus groups which was limited to the education students enrolled in the
course.

Data collection occurred after we obtained approval from our university’s
institutional review board. The pre- and post-surveys as well as the focus groups were
conducted by our grant external evaluator and were optional and anonymous. This
minimized potential research ethics difficulties with regard to the power relationship

between the instructor and students.

3.1 Participants

Participants included students enrolled in the Computer Science for All course in all
four semesters that it was offered. To recruit students for this new course, we posted
flyers around campus, particularly targeting STEM and education areas. In addition,
advisors for both computer science and the STEM elementary and middle school
education program mentioned the course to students they spoke to. While this course
will become a requirement for those education students, at the time it was offered it was
not yet a requirement.

Sixty eight students (42 male and 26 female) enrolled in the course (20 in Spring
2018, 17 in Fall 2018, 15 in Spring 2019, and 16 in Fall 2019). Of those 68 students, 18

(26%) were from education, 25 (37%) were computer science students, 3

interdisciplinary studies, 2 in graphic design, 2 in biology, 2 in accounting, 2 in
management, 1 mathematics, 1 marketing,] human resource development, 1 justice
studies, 1 communication, and 9 undeclared majors.

Of the 25 Computer Science students, many were early on in their majors: six
had not yet taken CS1 (the first programming course), eight enrolled in the course
alongside CS1, and four took it along with the second programming course. Seven of
the CS students were advanced majors taking the course as it fulfilled a general
education requirement. For the early CS students, particularly those who had not yet
taken programming 1 or were currently taking it alongside programming 1, they
registered due to a recommendation from a faculty member or advisor. The education
students who registered for the course did so based on a recommendation from their
program advisor who told them about the course. Note that two of the education
students were current teachers. One was a CS teacher who took the course to help
prepare her for CS endorsement courses, and the other was a mathematics teacher who
wanted to learn more about CS to potentially teach it in his school. Furthermore, one
student listed as education later switched her major to Computer Science after taking the
course. Lastly, one Computer Science student is listed twice as he failed both the

course and programming 1 and took them together again the following year.

3.2 Implementation of Computer Science for All

In the first week of the course, students were introduced to the Computer Science for
All initiative and they were required to read “Computational Thinking for Teacher
Education” (Yadav et al., 2017) in order to understand why CS is important in pre-
service teacher curricula. Class discussions included how CS fits into almost every
discipline and helps with real world situations such as robotics in healthcare and

predicting natural disasters.

In the second week of the course, we described why computational thinking is
important in K-12, and how it is now one of the Science and Engineering Practices in
the Next Generation of Science Standards (NGSS) in the United States. We used hands-
on computational thinking exercises that were not on a computer. For example, students
created algorithms for brushing their teeth, helping their classmate create a peanut butter
and jelly sandwich, and allowing a hypothetical robot to walk in a square. They also
learned to develop their own flowcharts for everyday activities. Examples of student
flowcharts include getting ready for school in the morning or taking care of a pet cat’s
needs. They were also provided with additional computational thinking activities, such
as using abstraction and decomposition in an activity from Google’s computational
thinking course to figure out how many guesses it would take to determine which
species on Earth someone was thinking of. In another example, we used a sorting
activity where students form groups and sort a bag of material anyway they like but
must justify the method they used to sort the material. In the third week, students were
introduced to coding concepts using pseudocode and then visual-based programming
exercises through the Hour of Code (https://studio.code.org/courses).

The majority of the semester was devoted to using two visual programming
languages, Scratch and LEGO Mindstorms EV3 Education robotics, due to their
graphical approach to programming that can be simpler for those new to coding. These
environments have “low floor, high ceiling” capabilities, which Grover and Pea (2013)
describe as having a simple learning curve for beginners, but more functionality and
options for advanced learners. In addition, these skills can be easily transferred into
their own future elementary and middle school classrooms.

Using Scratch and robotics, students were introduced to programming with

loops, conditionals, and variables through programming in visual programming

https://studio.code.org/courses

environments. While Scratch allows students to use programming concepts and view
what they code through characters, stories, and games on their computers, robotics
allows them to demonstrate similar programming skills while also learning about
hardware, actuators, and sensors. At the end of the Scratch unit students were given an
assignment to create an educational game or story using Scratch. Some examples of
student work included lessons and games using Scratch to teach mathematics, history,
geography, and even British slang. One student created a mathematics race, in which
the faster you answer math questions correctly, the faster your sprite reaches the finish
line. As the levels go on, the opponent's speed increases, prompting the player to
answer the questions at an even quicker speed.

In the robotics weeks of the course, students first built the robot and then
engaged in programming challenges, such as creating a mini-version of a driverless car,
where the robot can spot and react to the changing colors on a ‘traffic light” in addition
to detecting and responding to obstacles.

We also wanted to introduce text-based programming to the students, as most
programming languages are text-based and we did not want them to later fear or shy
away from text-based code. In our first semester offering the course, we used VPython
as it is based on the Python programming language, which is a good first programming
language to learn, and also has a 3D interactive modeling component where students
can visualize what they are coding in three dimensions, and it can be useful when
demonstrating physics concepts. In subsequent semesters, we used Python rather than
VPython to expose students to text-based programming with similar concepts they
already used in Scratch and robotics, without the need to teach additional concepts as it

was many of their first time exposed to text-based programming.

In the subsequent three semesters, we also required students to read some
sections of the book “Stuck in the Shallow End,” which discusses why few minorities
enter into CS and is also required reading for CS teachers at the public high schools in
our area. This led to discussions on equity, and our female and minority students shared
how they identified with the assigned reading as they were directed away from STEM
in their own classroom experiences as children and provided with other activities
instead.

While class exercises generally consisted of multidisciplinary teams of students,
a final project of the semester grouped students in groups of 2-4 with others from
similar disciplines and required each group to choose one of the platforms that we
covered (primarily Scratch and Robotics), a lesson/topic of their choice, and a grade
level if applicable. Students in education fields were intentionally grouped together in
order for them to be able to focus on creating lesson plans that could be included in their
own future classrooms. We also grouped CS students together, particularly the
advanced ones, as we did not want advanced CS students to take over and do the coding
if placed with students newer to programming.

Some of the education team projects included: presenting a lesson teaching
distributive, commutative, and associative number properties with Scratch targeting 6t
grade, creating an interactive quiz/game teaching algebra to middle school students with
Scratch, and creating velocity scenarios with questions which their future 8 grade
students would need to answer through hands-on programming and data logging with
the robots. With the computer science groups, some example of projects included
creating a project on teaching loops with Scratch, playing Tic Tac Toe using artificial

intelligence through Scratch, and a garbage collector robot with LEGO Mindstorms.

4 Results

4.1 Survey Results

We conducted pre- and post-surveys at the beginning and end of each semester. Out of
the 68 students who took the course, 48 students completed both a pre- and a post-
survey (14 in the first semester, 13 in the second, 12 in the third semester, and 9 in the
fourth semester). Of those 48 students, their majors included: 13 (27%) Education
students, 20 (42%) Computer Science students, 2 (4%) Biology students, and 4 (8%)
undecided majors. The remaining 9 students were in Accounting, Business
Management, Communication, Economics, Graphic Design, Human Resource
Development, Interdisciplinary Studies, Marketing, and Mathematics. Note that one
education student who completed the survey was a current teacher while the rest were
pre-service teachers.

Using a 5-point Likert scale ranging from 1 = ‘Strongly Disagree’ to 5 =
‘Strongly Agree’, we asked students questions pertaining to their confidence in
computing and coding skills. Students’ perception of their ability to write code and
their understanding of how computer scientists approach problems significantly
increased from the beginning and end of the semester (see Table 1). While their
confidence in learning computer science concepts did not increase significantly, the
mean values for the pre- and post-survey were high. Furthermore, education students’
understanding of computing concepts well enough to incorporate them into their future

classrooms increased from the beginning to end of the course.

Table 1. Pre- and Post-test Means for Students in CS0O (n=48)

CT Statement | Paired t (df) | Mean Pre (S.D.) | Mean Post (S. D.)
Significant

I have the ability to write code for | t(46)=-4.40*** | 3.26 (1.34) 4.19 (0.96)

a computer programa

I understand how computer t(47)=-2.40* 3.83 (1.02) 4.23 (0.93)

scientists approach problems

I understand computing or t(12)=-3.49** | 3.00 (1.15) 3.92 (0.76)

technology concepts well enough
to incorporate them in my future
classroomo

Not Significant

I am confident that I can learn t(47)=-1.07 4.31(0.62) 4.46 (0.80)
computer science concepts

*p<.05; #¥*p<.01; ***p<.0001

a The wording on this question changed from the first semester to subsequent semesters.
Furthermore, one student left this statement blank.

b Only educators’ responses are reported here (n=13).

In addition to reporting on the gains of the students, we compared computer
science and education students as the majority of our students were from these two
disciplines. A multivariate Wilk’s Lambda test was conducted examining the three
measures for education and computer science students, and these measures were found
to be significantly different in the pre-test (Wilk’s Lambda=0.584, F(3, 29)=6.89,
p=0.0012) though not significantly different in the post-test (Wilk’s Lambda=0.933,
F(3, 29)=0.69, p=0.5663). We therefore conducted univariate t-tests (see Table 2) to
compare each of the measures for computer science and education students and found
that there were significant differences between computer science students and education
students in their ratings for each item in the pre-survey. Education students rated each
of these items significantly lower than computer science students in the beginning of the
semester. However, in the post-survey there were no significant differences. This
implies that by the end of the semester, education students felt as comfortable with

coding and computing as the computer science majors did.

Table 2. Comparison of Education (n=13) vs. Computer Science Students (n=20)

CT
Statement

Major

Pre-Test

Post-Test

Mean
(S.D.)

t values

Mean
(S.D.)

t values

I have the
ability to
write code
for a
computer
program

CS

420 (1.11)

ED

2.38 (1.12)

t(31)=4.59**

4.25 (0.97)

4.31(0.63)

£(31)=-0.19

I
understand
how
computer
scientists
approach
problems

CS

4.40 (0.88)

ED

3.46 (0.78)

t(31)= 3.12*

4.35 (0.99)

4.46 (0.66)

t(31)=-0.36

Iam
confident
that I can
learn
computer
science
concepts

CS

4.60 (0.60)

ED

4.00 (0.58)

t(31)= 2.85*

4.60 (0.94)

4.38 (0.77)

£(31)=0.69

*p<.01; **p<.0001

After the first semester of the course, we created a Computational Thinking

scale used in subsequent semesters of the course for determining students’ self-efficacy

in CT.

e [am able to break a complex problem into smaller, more manageable parts
or components so that it can be solved using a computer.
e [am able to manipulate a system's variables or components to achieve a
desired result.
e [am able to modify existing computer code to complete small tasks in
subject areas | am familiar with.

I am able to create computer code to complete small tasks in subject areas |
am familiar with.

I can analyze or interpret a program's output or data.

I understand how computational skills/tools could be applied to a variety of
topics.

I understand how computers can be programmed to develop solutions to
problems.

I am confident in my ability to use computational thinking to understand or
analyze problems.

We conducted a factor analysis which showed the items loading as a single
factor with factor loadings greater than .70 (three items were removed as they had factor
loadings lower than .70). This new CT scale had a high level of reliability with a
Cronbach’s Alpha of .94 on the pre-test and .96 on the post-test.

Using a paired t-test on the CT scale comparing students’ perceived
computational thinking skills at the beginning and end of the semester, we found that
student’s self-efficacy in CT improved from the beginning (M=3.44, SD=0.96) to end

(M=4.03, SD=0.88) of the course, t(31)=-3.32, p=0.002.

4.2 Focus Group Results

We also conducted focus groups both during Spring 2018 and Fall 2019 semesters. The
spring focus group contained four out of six of the education students enrolled in the
course and who were able to attend, and the Fall focus group had all four educations
students enrolled in the course at that time (note that one student later changed majors to
CS). The transcribed data revealed that the students were happy they took the course
and felt block-based coding helped them understand CT. While some of the education
students had been introduced to CT modules in other courses in their education
program, they felt that exposure to this foundational course helped bring into
perspective what they saw in the other courses. In addition, they reported that having
more than one programming environment (Scratch and Robotics) helped build their
confidence by showing them that the fundamental algorithms are still the same even
though the programming environment may look different.

After taking the course, one student mentioned starting a robotics club in her
future school or creating a computer science class for girls only. A second student said
that this course motivated the student to be a better teacher since it provided ideas

beyond using chalk and a board. Another student said that while s/he does not want to

teach computer science, this class taught him/her how to be a better science and math

teacher through the incorporation of computer science into those classes.

4.3 Final Project Results

Similar to our survey results, which showed no differences in students confidence in
their computing abilities when compared with CS students at the end of the semester,
there were no significant differences found in the final project grades for education
(M=93.14, SD=8.07) and computer science (M=85.59, SD=16.72) students; t(41)=
-1.77, p=0.0843. While the overall average grade for student projects was 85.42 out of
100, the average for education students was above that at 93.14. By the end of the
course, education students were able to master the material.

Each student had to answer questions individually based on their project as well.
While variables were required in the project, a couple of education students used the
term variable incorrectly. For example, when asked “What variables did you use in
your program?” one student wrote about the 19 sprites she used, another education
student wrote about creating voice recordings, and another education group did not use
variables in their LEGO Mindstorms project.

In their project write-ups, students were also asked about different problems or
ideas they had for the future. While many of the education students did have ideas for
projects for math, science, English, and history, a couple of students mentioned how
they as teachers would create Scratch projects for the students to use, but they did not

mention requiring their future students to create similar programs.

5 Discussion

While previous studies modified existing courses for pre-service teachers to include
coding and computational thinking (Adler & Kim, 2018; Jaipal-Jamani & Angeli, 2017,
Kim et al., 2018; Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014), Mason and Rich
(2019) recommend a discrete course to prepare teachers in CT and coding or for it to be
integrated across the curriculum. Our work is part of a larger work that does both. In
this paper we describe the inclusion of a new 15-week foundational computer science
course for pre-service elementary and middle school STEM teachers. Similar to CSO
courses (Cliburn, 2006; M Rizvi & Humphries, 2012; Uludag et al., 2011), which are
generally used for early computer science students, we designed a computer science
course which focused on two visual programming environments, Scratch and LEGO
Mindstorms, in order to prepare our pre-service teachers to use computational thinking
in their future classrooms. Using two platforms in the same course allowed preservice-
teachers to see that though a new programming environment may look different, the
concepts are still the same.

While our course was developed for pre-service STEM teachers, we opened the
course to all interested students. Students’ self-efficacy in CT increased significantly
from the beginning to end of the course. While it is not surprising that in the beginning
of the semester education students did not feel as confident in their ability to learn
computer science and use coding as the computer science students, we found that at the
end of the semester there were no longer any differences. This implies that after taking
the course, education students felt as comfortable with CT and coding as students who
were CS majors. In fact, we had one education student switch majors after the course to
CS. Previous studies on multidisciplinary collaboration have had CS majors and non-

CS majors work on interdisciplinary projects where CS students are working on the

coding, and in those cases CS students perform better on computing self-assessments
than non-CS majors (Pulimood, Pearson, & Bates, 2016; Way & Whidden, 2014), our
findings show that when CS majors and education students are studying the same
material in the same course non-CS students were able to perform as well in coding.
Like Cliburn (2006), we found that CSO worked well for non-computer science majors,
however, unlike Cliburn (2006), whose goal was to recruit students into CS1, our
primary goal is for our future teachers to use computer science in their future
classrooms. Papadakis and Kalogiannakis (2019), similarly, found promising results
when using Scratch in a semester-long course for pre-service Kindergarten teachers.

Therefore, to answer our first two research questions, we found that including a
CSO0 course into a curriculum for pre-service teachers did improve students’ self-
efficacy in CT, and education students’ confidence in their CT ability was similar to CS
students by the end of the course.

Our third research question asked whether education students would be prepared
to use CT in their future classrooms after taking the course. We found that while
students were more confident in their own coding skills at the end of the semester and
had many ideas for implementing it in the future, as we saw from the focus group, we
noticed during the final project that some students were not able to articulate how what
they were currently learning could be used in their future classrooms. Several students
mentioned creating coding projects for their students to use, but they did not discuss
their students coding the activities on their own. Therefore, we plan to incorporate
more specific examples in future iterations of the course on how the content they are
learning can be used or modified to create relevant lessons in their own classrooms. We

plan to emphasize that the goal of the final project is not only for them to incorporate

coding into a lesson, but to impart similar methods into their teaching so that their
future students can use similar coding skills in their own projects.

Just as CS programs have been incorporating CS0 courses into their curriculum
to better prepare computer science students with fundamental skills they will need to be
successful in their later programming courses (Doyle, 2005; M Rizvi & Humphries,
2012), we need to provide our future educators with a complete CS course in order for
them to have the basic skills they need to be successful at incorporating CT into their
future classrooms. We recommend that pre-service teacher programs include an
introductory computer science course that introduces future teachers to CT and coding.
Future educators should be required to take this course to better prepare them with the
foundation they need when they will hopefully come across CT modules in their later
content and pedagogy courses, and for them to have the skills to use CT and coding in
their future classrooms as educators. This will produce numerous K-8 students who
will be exposed to computational thinking and coding at a young age. In this paper, we
outline the steps we took to create this course in the hope that more pre-service teacher
programs include CS courses in their curricula.

While the Computer Science for All course will become a requirement for our
STEM K-8 teacher program, we plan to show this course to advisors in all of our
education programs so that they can encourage their students to take this course as well.
Pre-service teachers in every area can benefit by using coding and computational
thinking in their future classrooms, whether they teach STEM or Social Studies (Giiven
& Gulbahar, 2020) and Language Arts (Wolz, Stone, Pearson, Pulimood, & Switzer,
2011). Furthermore, we plan to modify the course to include more topics on data,
which is relevant for the social sciences. While one of our education teams used the

robotics’ data logging feature in their final project, we would like to update the course

to have all students work with data. Requiring more learning on data, particularly with
practical topics directed for K-8, can enhance our classroom learning. While the
Computer Science for All course was developed for pre-service teachers, a couple of in-
service teachers took the course as well and future work will examine using Computer

Science for All to train in-service teachers.

5.1 Lessons Learned

Below we outline lessons learned with possible solutions for future implementation of a

CSO for Educators:

5.1.1 Difficulty with Text-Based Programming

Our first semester used VPython to introduce text-based programming after students
used Scratch and robotics. We noticed that students in the course had the easiest and
fastest time learning Scratch and the most difficulty with coding with VPython. Scratch
has many tutorials built in for students to easily learn how to accomplish many tasks.
Some reasons for their difficulty with VPython may include (1) text-based
programming is more difficult than drop-and-drop languages, (2) when teaching
VPython we needed to introduce additional elements such as the 3D environment (X, Y,
and Z axis) in addition to the inclusion of some physics concepts such as vectors.
Therefore, we decided in subsequent semesters to introduce students to Python rather
than VPython, thereby focusing only on a text-based language and using the concepts
they learned throughout the semester without additional components. Some studies
have reported difficulties when transferring concepts between block-based to more text-
based approaches (Chetty & Barlow-Jones, 2012; Powers et al., 2007; Weintrop &
Wilensky, 2016) and others report that using a visual-based approach, rather than a text-

based one, can lead to improved learning and level of interest in future computing

courses (Weintrop & Wilensky, 2017). Therefore, we decided to shorten the length of
time we focused on text-based programming in general in order to ensure that the
majority of the course dealt with visual-based programming for their first exposure to

computer science.

5.1.2 Varying Levels of Student Ability

Despite students being paired up with multidisciplinary teams for in-class exercises,
some groups were able to advance and master exercises much more quickly than others.
There were two solutions used to address the varying skills of the students in the course.
The first was additional challenges placed in each in-class exercise so that those groups
who were faster always had additional work they could do while the others were
completing the main tasks. The second was the inclusion of a computer science student
helper in the course. This student was considered a kind of peer leader, who was an
advanced computer science student and attended each hands-on coding class to assist
the instructor by also walking around the room and helping answer questions students
may have with their specific code. This helped groups that needed additional support
catch up by having an extra person available around the classroom at all times to assist
students with their code. Studies on in-service teachers and computational thinking
exercises have found differentiated assignments and peer mentoring helpful in
elementary school classrooms (Israel, Pearson, Tapia, Wherfel, & Reese, 2015). By
using these techniques in the classroom, we are demonstrating methods the pre-service

teachers can try when integrating computing in their future classrooms.

5.1.3 Difficulty with Programming Terminology

As shown from their final projects, while the education students performed well, they

had some confusion regarding understanding programming keywords, such as variables.

We also noticed them struggling with the term conditionals. While CS students were
more familiar with terminology from previous programming experience or courses,
education students rely on other disciplines such as learning about variables in math and
science and conditionals from English Language Arts which causes some confusion at
first. Grover et al. (2015) used a CT curriculum which included getting students
comfortable with CS vocabulary through a “word wall” where terms and definitions
were listed both on a course tab and pasted on the wall. Future CSO implementation can
reinforce programming vocabulary to ensure that the education students can use

programming jargon correctly.

6 Conclusion

This study discusses the inclusion of an introductory computer science CS0 course
placed in a curriculum for future elementary and middle school science and math
teachers. Using visual programming languages, pre-service teachers were able to create
programs and develop ideas for inclusion in their own future classrooms. Results
demonstrate that students’ self-efficacy in their CT skills increased from the beginning
to end of the semester in addition to education students’ understanding of computing
concepts they can incorporate into their future classrooms. Furthermore, while at the
beginning of the semester education students rated their coding and confidence in
computing skills lower than computer science students in the course, by the end of the
semester there were no perceived or actual coding differences. In addition, towards the
end of the semester they had many ideas for including coding into their future careers
through the creation of a robotic clubs, a female-only computer science course, and

incorporating computational thinking in their future science and math classrooms.

Acknowledgements

OMITTED FOR BLIND REVIEW

References

Adler, R. F., & Kim, H. (2018). Enhancing future K-8 teachers’ computational thinking
skills through modeling and simulations. Education and Information Technologies,

23(4), 1501-1514. https://doi.org/10.1007/s10639-017-9675-1

Agarwal, K. K., & Agarwal, A. (2006). Simply Python for CS0. J. Comput. Sci. Coll.,
21(4), 162—-170.

Anewalt, K. (2008). Making CS0 fun: an active learning approach using toys, games
and Alice. J. Comput. Sci. Coll., 23(3), 98-105.

Berland, M., & Wilensky, U. (2015). Comparing Virtual and Physical Robotics
Environments for Supporting Complex Systems and Computational Thinking.
Journal of Science Education and Technology, 24(5), 628—647.
https://doi.org/10.1007/s10956-015-9552-x

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational
thinking and tinkering: Exploration of an early childhood robotics curriculum.
Computers & Education, 72, 145-157.
https://doi.org/https://doi.org/10.1016/j.compedu.2013.10.020

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. American Education Researcher
Association. Vancouver, Canada. Retrieved from https://dam-

prod.media.mit.edu/x/files/~kbrennan/files/Brennan_Resnick_ AERA2012_CT.pdf

Cetin, I. (2016). Preservice Teachers’ Introduction to Computing: Exploring Utilization
of Scratch. Journal of Educational Computing Research, 54(7), 997-1021.
https://doi.org/10.1177/0735633116642774

Chetty, J., & Barlow-Jones, G. (2012). Bridging the gap: the role of mediated transfer

for computer programming.

Cliburn, D. C. (2006). A CSO course for the liberal arts. Proceedings of the 37th

SIGCSE Technical Symposium on Computer Science Education. Houston, Texas,

USA: ACM. https://doi.org/10.1145/1121341.1121368

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., & Woollard,
J. (2015). Computational thinking: a guide for teachers. Retrieved from

https://community.computingatschool.org.uk/resources/2324

Doyle, J. K. (2005). Improving performance and retention in CS1. J. Comput. Sci. Coll.,
21(1), 11-18.

Google Inc. & Gallup Inc. (2016a). Diversity Gaps in Computer Science: Exploring the
Underrepresentation of Girls, Blacks and Hispanics. Retrieved July 1, 2019, from
http://services.google.com/th/files/misc/diversity-gaps-in-computer-science-

report.pdf

Google Inc. & Gallup Inc. (2016b). Trends in the state of computer science in U.S. K-
12 schools. Retrieved July 1, 2019, from http://goo.gl/j291E0

Grabowski, L., & Brazier, P. (2011). Robots, recruitment, and retention: Broadening
participation through CS0. In Frontiers in Education Conference.

https://doi.org/10.1109/FIE.2011.6142918

Grover, S., & Pea, R. (2013). Computational Thinking in K—12. Educational
Researcher, 42(1), 38—43. https://doi.org/doi:10.3102/0013189X12463051

Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended
computer science course for middle school students. Computer Science Education,

25(2), 199-237. https://doi.org/10.1080/08993408.2015.1033142

Giiven, 1., & Gulbahar, Y. (2020). Integrating Computational Thinking into Social
Studies. The Social Studies, 1-15.

loannou, A., & Makridou, E. (2018). Exploring the potentials of educational robotics in
the development of computational thinking: A summary of current research and
practical proposal for future work. Education and Information Technologies, 23(6),

2531-2544. https://doi.org/10.1007/s10639-018-9729-z

Israel, M., Pearson, J. N., Tapia, T., Wherfel, Q. M., & Reese, G. (2015). Supporting all
learners in school-wide computational thinking: A cross-case qualitative analysis.
Computers & Education, 82,263-279.
https://doi.org/https://doi.org/10.1016/j.compedu.2014.11.022

Jaipal-Jamani, K., & Angeli, C. (2017). Effect of Robotics on Elementary Preservice
Teachers’ Self-Efficacy, Science Learning, and Computational Thinking. Journal
of Science Education and Technology, 26(2), 175-192.
https://doi.org/10.1007/s10956-016-9663-z

Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed Methods Research: A Research
Paradigm Whose Time Has Come. Educational Researcher, 33(7), 14-26.
Retrieved from http://www jstor.org/stable/3700093

K—12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org

Kim, C., Yuan, J., Vasconcelos, L., Shin, M., & Hill, R. B. (2018). Debugging during
block-based programming. Instructional Science, 46(5), 767-787.
https://doi.org/10.1007/s11251-018-9453-5

Malan, D. J., & Leitner, H. H. (2007). Scratch for Budding Computer Scientists. In
Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education (pp. 223-227). New York, NY, USA: ACM.
https://doi.org/10.1145/1227310.1227388

Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming
by choice: urban youth learning programming with scratch. In Proceedings of the
39th SIGCSE technical symposium on Computer science education (pp. 367-371).
Portland, OR, USA: ACM. https://doi.org/10.1145/1352135.1352260

Mason, S. L., & Rich, P. J. (2019). Preparing elementary school teachers to teach
computing, coding, and computational thinking. Contemporary Issues in
Technology and Teacher Education, 19(4). Retrieved from
https://www.citejournal.org/volume-19/issue-4-19/general/preparing-elementary-

school-teachers-to-teach-computing-coding-and-computational-thinking

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M. (2010). Learning computer science
concepts with scratch. Proceedings of the Sixth International Workshop on
Computing Education Research. Aarhus, Denmark: ACM.
https://doi.org/10.1145/1839594.1839607

Mishra, P., Yadav, A., Henriksen, D., Kereluik, K., Terry, L., Fahnoe, C., & Terry, C.
(2013). Rethinking Technology & Creativity in the 21st Century: Of Art &
Algorithms. TechTrends, 57(3), 10—14. https://doi.org/10.1007/s11528-013-0655-z

Moskal, B., Lurie, D., & Cooper, S. (2004). Evaluating the effectiveness of a new
instructional approach. Proceedings of the 35th SIGCSE Technical Symposium on
Computer Science Education. Norfolk, Virginia, USA: ACM.
https://doi.org/10.1145/971300.971328

Papadakis, S., & Kalogiannakis, M. (2019). Evaluating a course for teaching
introductory programming with Scratch to pre-service kindergarten teachers.

International Journal of Technology Enhanced Learning, 11(3), 231-246.

Papadakis, S., & Orfanakis, V. (2016). The combined use of Lego Mindstorms NXT
and App Inventor for teaching novice programmers. In International Conference

EduRobotics 2016 (pp. 193-204). Springer.

Pearce, J., & Nakazawa, M. (2008). The Funnel That Grew Our Cis Major in the Cs
Desert. In Proceedings of the 39th SIGCSE Technical Symposium on Computer
Science Education (pp. 503-507). New York, NY, USA: ACM.
https://doi.org/10.1145/1352135.1352304

Perrin, A., & Kumar, M. (2019). About three-in-ten US adults say they are ‘almost

constantly’online. Pew Research Center.

Powers, K., Ecott, S., & Hirshfield, L. M. (2007). Through the looking glass: teaching
CS0 with Alice. Proceedings of the 38th SIGCSE Technical Symposium on
Computer Science Education. Covington, Kentucky, USA: ACM.
https://doi.org/10.1145/1227310.1227386

Pulimood, S. M., Pearson, K., & Bates, D. C. (2016). A study on the impact of
multidisciplinary collaboration on computational thinking. In Proceedings of the

47th ACM technical symposium on computing science education (pp. 30-35).

Resnick, M., Maloney, J., Monroy-Herndndez, A., Rusk, N., Eastmond, E., Brennan, K.,
... Kafai, Y. (2009). Scratch: programming for all. Commun. ACM, 52(11), 60—67.
https://doi.org/10.1145/1592761.1592779

Rizvi, M, & Humphries, T. (2012). A Scratch-based CSO0 course for at-risk computer
science majors. In 2012 Frontiers in Education Conference Proceedings (pp. 1-5).

https://doi.org/10.1109/FIE.2012.6462491

Rizvi, Mona, Humphries, T., Major, D., Jones, M., & Lauzun, H. (2011). A CSO course
using Scratch. J. Comput. Small Coll., 26(3), 19-27.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017, November 1). Demystifying
computational thinking. Educational Research Review. Elsevier Ltd.

https://doi.org/10.1016/j.edurev.2017.09.003

Turbak, F., Sherman, M., Martin, F., Wolber, D., & Pokress, S. C. (2014). Events-first
programming in APP inventor. J. Comput. Sci. Coll., 29(6), 81-89.

Uludag, S., Karakus, M., & Turner, S. W. (2011). Implementing ITO/CSO with scratch,
app inventor forandroid, and lego mindstorms. Proceedings of the 2011
Conference on Information Technology Education. West Point, New York, USA:
ACM. https://doi.org/10.1145/2047594.2047645

Way, T., & Whidden, S. (2014). A loosely-coupled approach to interdisciplinary
computer science education. In Proceedings of the International Conference on
Frontiers in Education: Computer Science and Computer Engineering (FECS) (p.
1). The Steering Committee of The World Congress in Computer Science,

Computer

Weese, J., & Feldhausen, R. (2017). STEM Outreach: Assessing Computational
Thinking and Problem Solving. In 2017 American Society for Engineering
Education Annual Conference & Exposition (ASEE). Columbus, Ohio.

Weintrop, D., & Wilensky, U. (2016). Bringing blocks-based programming into high
school computer science classrooms. In Annual Meeting of the American

Educational Research Association (AERA). Washington DC, USA.

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based
programming in high school computer science classrooms. ACM Transactions on

Computing Education (TOCE), 18(1), 1-25.

Wing, J. M. (2006). Computational thinking. Commun. ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 366(1881), 3717-3725.
https://doi.org/10.1098/rsta.2008.0118

Wolz, U., Stone, M., Pearson, K., Pulimood, S. M., & Switzer, M. (2011).
Computational thinking and expository writing in the middle school. ACM

Transactions on Computing Education (TOCE), 11(2), 1-22.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational
Thinking in Elementary and Secondary Teacher Education. ACM Transactions on
Computing Education, 14(1), 1-16. https://doi.org/10.1145/2576872

Yadav, A., Stephenson, C., & Hong, H. (2017). Computational Thinking for Teacher
Education. Communications of the ACM, 60(4), 55—62.

	1 Introduction
	2 Background
	2.1  Incorporating CT in Pre-service and In-service Classrooms
	2.2  CS0: An Introductory Computer Science Course

	3 Methodology
	3.1 Participants
	3.2 Implementation of Computer Science for All

	4 Results
	4.1 Survey Results
	4.2 Focus Group Results
	4.3  Final Project Results

	5 Discussion
	5.1 Lessons Learned
	5.1.1 Difficulty with Text-Based Programming
	5.1.2 Varying Levels of Student Ability
	5.1.3 Difficulty with Programming Terminology

	6 Conclusion
	Acknowledgements
	References

