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Abstract—In-band full duplex (IBFD) wireless is of utmost
interest to future wireless communication and networking due
to great potentials of spectrum efficiency. IBFD wireless, how-
ever, is throttled by its key challenge, namely self-interference.
Therefore, effective self-interference cancellation is the key to
enable IBFD wireless. This paper proposes a real-time non-
linear self-interference cancellation solution: Deep learning based
Self-Interference Cancellation (DSIC) to enable IBFD wireless. In
this solution, a self-interference channel is modeled by a deep
neural network (DNN). Synchronized self-interference channel
data is first collected to train the DNN of the self-interference
channel. Afterwards, the trained DNN is used to cancel the
self-interference at a wireless node. This solution has been
implemented on a USRP SDR testbed and evaluated in real world
in multiple scenarios with various modulations in transmitting
information including numbers, texts as well as images. It results
in the performance of 17dB in digital cancellation, which is very
close to the self-interference power and nearly cancels the self-
interference at a SDR node in the testbed. The solution yields an
average of 8.5% bit error rate (BER) over many scenarios and
different modulation schemes.

I. INTRODUCTION

Traditional wireless communication, widely used today,
supports bi-directional transmissions in the way of time-
division duplex (TDD) or frequency-division duplex (FDD).
In-band full duplex (IBFD) wireless refers to the bi-directional
transmission on the same frequency band at the same time,
which intuitively boosts the spectrum efficiency and channel
utilization. As the demand of wireless transmission is sharply
increasing, IBFD wireless is very promising in the future.

Although IBFD wireless has been studied for years in
theory and analysis, it has been progressing very slowly for
practical use because of a very challenging issue called self-
interference to be addressed in engineering. Refer to the IBFD
wireless architecture shown in figure 1 where the wireless node
Node1 is receiving data [101, 102, 103, ..., 120] via its antenna
RX1 from the TX2 of Node2, while it is also transmitting
data via its antenna TX1. The consequence is that the power
emitted by the TX1 of Node1 will interfere the TX2’s signal
received at the RX1 of Node1. Such interference is called self-
interference (SI), which completely overshadows the received
signal and leads to the communication failure from Node2
to Node1. To enable IBFD wireless, SI has to be cancelled
so that the overshadowed received signal can be recovered.

Although some solutions have been proposed in the literature,
their performance is not satisfactory.

Node 1 Node 2

SI

Tx1 Rx1 Tx2 Rx2

Fig. 1: IBFD Self-Interference Scenario
In this paper, we target self-interference cancellation (SIC),

the toughest issue in IBFD wireless. We propose a non-linear
SIC solution based on deep learning. We have implemented
this solution on a USRP SDR testbed and evaluated its
performance in the real world with this prototype. In this
work, we have answered three questions: (1) how to collect
synchronized wireless channel information to train the deep
learning model? (2) how to model a wireless channel with a
deep neural network? (3) how to implement an open source
SDR IBFD wireless framework to work in real world?.

In the rest of this paper, Section II reviews the background
of IBFD wireless and literature solutions related to our work.
Next, Section III presents the SI problem with a simulation,
then formulates the theoretical foundation for digital SIC
solutions, and describes our deep learning SIC solution (DSIC)
in details. Then, Section IV presents an open source SDR
framework implementing IBFD wireless on a testbed, followed
by Section V summarizing the performance of our solution in
the tests. This work is finally concluded in Section VI.

II. RELATED WORK

Since the first systematic study of IBFD wireless on a nar-
row band [1], several solutions have been proposed for IBFD
wireless on larger bandwidths [2]–[5]. These IBFD wireless
SIC solutions can be classified into 3 different categories [6]:
(1) antenna cancellation, (2) analog cancellation and (3) digital
cancellation.

Digital cancellation can be further classified into linear
digital cancellation and non-linear digital cancellation. Linear
digital cancellation aims to cancel the deformed digital signals
passing over the environment channel, while non-linear digital
cancellation targets at cancelling non-linear cubic and higher
order elements generated by radio circuits [5], [7]. A team
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at Stanford University designed an FIR filter to emulate the
components of the line of sight signals, then used at modeled
SI channel to emulate and generate the SI signals at a full
duplex node [5]. They also included a non-linear component
in SIC by using a general model in the form of Taylor Series
Expansion. Another work [8] proposed a pre-calibration-based
cancellation technique that linearizes a transmitter and cancels
SI with linear-only cancellation at a receiver, which basically,
converted a non-linear problem to a linear problem and then
solved it. Recently, a significant milestone in SIC is present
from Columbia University [9], their digital SIC algorithm with
a highest non-linearity order of 7 is implemented in LabVIEW
and further suppress the residual SI signal after RF SIC, their
result shows it has averagely 43 dB digital SIC across 20 MHz.

As far as the performance of IBFD wireless solutions is
concerned, some works have reported that the channel capacity
could be doubled on a single-hop link, while in mesh network
the actual benefit of IBFD wireless may be effected by spatial
reuse and asynchronous contention [10]. Other works [5], [11]
shows 1.87 times throughput improvement and 1.42 times
capacity over a half-duplex system at a transmission power
of 20 dBm. A recent work [12] shows that at a certain
situation, IBFD wireless can double the downlink and uplink
throughputs of static TDD. Another recent work reported a
performance improvement by 30% to 66% compared to the
5G Dynamic TDD [12]. Intelligence was also considered for
beamforming [13].

III. DEEP LEARNING BASED DIGITAL
SELF-INTERFERENCE CANCELLATION

A. Theoretical Foundation of Digital Self-Cancellation

Refer to Figure 1 that shows a basic architecture of IBFD
wireless. Suppose that, at a wireless node, the self-transmitted
signal x[n] passes through the SI channel and is transformed
into ysi[n] at the receiver, and denote y[n] the received signal
at the receiver that is a mixture of the SI signal ysi[n] and the
useful signal m[n] from another node. The following formula
(1) can be used to recover the useful signal m[n]. Since
the system knows of its self-transmitted signal x[n], and the
received mixture signal y[n], hence then, the key challenge
to recover the useful signal m[n] is to compute the SI signal
ysi[n] based on the known signal x[n].

m[n] = y[n]− ysi[n] (1)

Denote h[n] the impulse response of SI channel, then the
SI signal ysi[n] can be calculated as:

ysi[n] =
K∑

k=0

h[k]x[n− k] (2)

Based on Formulas (1) and (2), the useful message m[n]
can be obtained if we know h[n]. In practice, however, we
can’t obtain any precise SI channel impulse response h[n]
beforehand. Therefore, what we can do is to estimate the SI
channel response ĥ[n] as accurate as possible, which is used

to replace the real impulse response h[n] in estimating the SI
signal ŷsi[n] as below where K refers to the number of taps:

ŷsi[n] =
K∑

k=0

ĥ[k]x[n− k] (3)

m̂[n] = y[n]− ŷsi[n] (4)

to get m̂[n] as recovered useful signal.
To demonstrate the feasibility of the digital cancellation

concept, a simulation was performed on a GNU Radio SDR
platform, with a framework implemented as in Figure 3.
There are two digital vector sources: useful signal m[n]
being [1, 2, ..., 10], and the SI signal vector [101, 102, ..., 110],
as shown on the top plots in Figure 2. Both of them use
the QPSK modulation, but pass through different simulated
channel models of h[k], which are determined by the settings
of taps. The taps of the useful signal m[n] wireless channel
are [1], while the taps in the SI channel are [1, 1], and the
estimated SI channel taps are [1.1, 0.9]. After passing through
channel models, all of those three streams go into Decimating
FIR filters, which will be described in Section IV. Then the
first time sink receives m[n], the second time sink receives
ysi[n], the third time sink receives y[n], and the last time sink
gets the recovered signal m̂[n] by using formula (4).

The simulation result shown on the bottom plots in Figure
(2) indicates that, even though the estimated SI channel
response ĥ[k] is not completely the same as h[k], the recovered
signal m̂[n] (on the right bottom plot) is actually very similar
to the useful signal m[n] (one the left top plot), in that the
real and image parts of those signals have very similar shapes,
and the relation between the real and image numbers of signal
I-Q phases is almost kept. This result proves that if ĥ[k] are
estimated accurately, then m[n] can be recovered from y[n],
even if y[n] is severely polluted by the SI signal ysi[n].

B. Deep Learning Digital Cancellation

As discussed above, the core of digital SI cancellation is to
estimate the SI channel response ĥ[k]. Rather than modeling
and estimating the SI channel with traditional wireless channel
models as most of literature solutions do, we propose to model
the SI channel response with a deep neural network (DNN).

1) SI Channel Modeling with DNN: A DNN model is
introduced to estimate the SI channel and its structure is shown
in Figure (4).

a) Input and Output: In this DNN model, the input is
denoted as x[n], x[n − 1], ..., x[n − K], and the output is
referred as ye[n]. Instead of modeling the SI channel as a one-
to-one mapping, we model it as a many-to-one DNN, because
the many-to-one model has a similar structure to an FIR filter.
Considering Formula (3), to estimate ŷsi, we need to compute
the sum of ĥ[k]x[n− k], where k varies from 0 to K, which
means that every output of the SI channel not only relates to
the current input x[n], but also previous K samples of x.
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Fig. 2: Digital Cancellation Validation Results
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Fig. 3: Digital Cancellation Validation Framework
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Fig. 4: DNN Model for SI Channel

b) DNN Structure: The simplified and parameterized
structure of the designed DNN is shown in Figure (5). From
the figures of (4) and (5), this DNN has 2 hidden layers, each
of which is followed by an activation function a(·) or Φ(·).
The activation function enables the channel modeling a non-
linear structure. We choose the Relu function for both a(·) and
Φ(·). It should be noted that there is no activation function
after the last layer, because the DNN is used to compute
mapping values, whose range could be any possible rational
number, and it doesn’t need something like Softmax or any
other classification function. The first linear block takes K
input signals and generates an output of 1 ∗ 20 dimensions,

x[n­1]

x[n­2]

x[n­K+1]

x[n­K]

x[n]

.

.
Linear(K,20) Linear(5,1) ye[n]Relu Linear(20,5) Relu

Fig. 5: Simplified Network
where K can be seen as the size of FIR filter taps and means
how many samples are related to output sample. Then the
second linear block takes 1∗20 input signals and generates an
output of 1 ∗ 5 dimensions, and the last linear block takes
the 1 ∗ 20 signals and output a value of 1 ∗ 1 dimension.
In each linear block, the weight matrix and tge bias matrix
are respectively denoted as W [l] and b[l], where l is the layer
number in the DNN. Denote o[l] the output of linear block,
the output of an activation function is referred as a[l]. As a
result,

W [l] =


w

[l]
1,1 w

[l]
1,2 w

[l]
1,3 . . . w

[l]
1,20

w
[l]
2,1 w

[l]
2,2 w

[l]
2,3 . . . w

[l]
2,20

...
...

...
. . .

...
w

[l]
K,1 w

[l]
K,2 w

[l]
K,3 . . . w

[l]
K,20


According to Figure 5, the whole process to work on input
x can be summarized by Formula (5), where x is a matrix
containing from x[n−K] to x[n] and its dimension is (1∗K).

o[1] = xW [1] + b[1] a[1] = a(o1)

o[2] = a[1]W [2] + b[2] a[2] = a(o2)

o[3] = a[2]W [3] + b[3] ye[n] = o[3]
(5)

c) Loss Function: We choose the Mean Square Error
(MSE) as the loss function, because the difference between
an estimate ye[n] and the real y[n] could be an either positive
or negative number. The optimization goal of this DNN model
is to generate the ye[n] as similar as possible to y[n]. As a
result, the optimization during the DNN training is formulated
as:

loss =
M∑

m=0

||ym − ye,m||2 (6)
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where M is the mini-batch size of training data and ye,m is
an output of the DNN when feeds mth training data, and ym
is a collected real SI sample coming through the SI channel.
Each parameter of the DNN network such as W [l] and b[l]

will be updated through back-propagation in every epoch by
deviating this loss function.

2) DNN Training: To train this DNN, we need to construct
a training dataset to be in the dimension of ((N−K+1)∗K)
due to the input x dimension is (1 ∗ K), where N is total
number of samples in training dataset. To achieve this, a
recurrent scheme is employed to generate K samples for
each input. For example, suppose the input samples are
[s1, s2, s3, s4, s5, s6, s7, s8, s9], and K equal to 3, the dataset
is constructed as below :

dataset =


s1 s2 s3
s2 s3 s4
s3 s4 s5
...

...
...

s7 s8 s9


Then a training mini-batch is generated by randomly select-

ing a mini-batch size number of rows from the dataset. The
benefit of using mini-batch to feed data is the faster and more
stable convergence of loss function compared to using one
sample at one time, because the loss derivation takes more
than one samples so that any exceptional sample will only
have little impact on the direction of convergence.

C. Deep Learning Digital Cancellation Framework

With the SI channel modeled by a DNN discussed above,
our proposed deep learning digital cancellation framework, as
illustrated in 6, includes: (1) SI channel probing, (2) SI channel
data collection, (3) DNN SI channel model training, and (4)
DNN model data loading for digital cancellation, which are
presented in details in the following.

Probing Collecting Training Loading

Fig. 6: Basic Steps of Our Design
1) SI Channel Probing: The first step of our design is

to probe the SI channel. In this period, an IBFD wireless
node sends designated probing signals or vectors x from its
transmission chain while its receiver chain senses what is
received. The designated probing signals will pass the SI
channel and transform to unknown received SI signals denoted
by ysi.

2) SI Channel Data Collection: Following the SI channel
probing, the framework collects and records the I and Q
components of both the probing complex signals x and the
received SI signals ysi. Both of them are baseband complex
signals, and their I and Q components comprise constellation
points on a modulation constellation map.

3) DNN SI Channel Model Training: With the data of x and
ysi collected, they are then used to train a DNN SI channel
model in a supervised learning way. The structure of the DNN
SI channel model is explained in details in the next section
III-B1.

4) Loading for Digital Cancellation: After the DNN SI
channel model is sufficiently trained, the trained model is
loaded into the receiver chain. In IBFD wireless communi-
cation later, this trained DNN channel model estimates the
SI signal ŷsi according to the Formula (5). Meanwhile, the
receive chain recovers the received useful signal m based on
Formula (3) with the SI signal ŷsi estimated by the trained
DNN SI channel model.

IV. PROTOTYPE IMPLEMENTATION

To perform the assessment in real world, we have im-
plemented our solution into a SDR prototype testbed of
GNURadio and two USRP X310 nodes. GNURadio is the
software that can customize the wireless radio and works with
UHD, the USRP node driver. USRP X310 nodes are generic
SDR hardware. To implement our solution to work in the real
world, several challenges are confronted.

A. Modulation in Gnuradio

The first challenge is in modulation. To achieve a higher
data transmission rate, modulation functions should be im-
plemented. The Modulation block in GNURadio takes byte
stream as input, and output I − Q complex samples. If we
want to apply our design on those I − Q complex samples,
we have to design a way transforming message data from byte
stream to those complex samples.

ModulationByte
Stream

rrc filterUpsampleConstellation
Mapping 

IQ samples
pulse shaping

Fig. 7: Inner Block in Modulation

1) Constellation Mapping: In GNURadio, the first block
in Modulation is the Constellation Mapping block, which
takes k bits, where k = log2M , and M is number of
constellation points, and generates output pulse of In-phase
(I) and Quadrature (Q) signals. Suppose the input is a char
57, which takes one byte in a bit sequence of 00111001.
Take QPSK as example, in this case, M = 4 and k = 2, if
the constellation map is designed as Figure (8a). Every time
only two bits of the bit sequence 00111001 are modulated,
i.e. 00 to 1 + 0j, 11 to 0 − 1j, 10 to 0 + 1j and 01 to
−1 + 0j. As a result, the modulated complex sequence is
[1 + 0j, 0−1j, 0 + 1j,−1 + 0j] for this bit sequence as shown
in Figure (8b).

2) Up-sampling and Pulse shaping: After symbols are
generated as shown in Figure (8b), they are processed with
up-sampling. The up-sampling ratio depends on a sample-per-
symbol parameter. For example, an up-sampling ratio of 4
means every symbol is represented by 4 samples. Noted that a
sample in digital informtion is a sampling point in a continuous
signal. Since square pulse has large ISI, a pulse shaping filter
follows up-sampling, which is a root-raised-cosine filter to
reshape the pulse to transmit in the channel. This filter results
in a better frequency domain response, and it achieves 0 ISI
in theory when two root-raised-cosine filters are combined
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Fig. 8: Modulation Process

together as one raised cosine filter as in Equation (7). Figure
(8c) shows what I/Q samples look like after up-sampling and
pulse shaping. Those samples are then the exact inputs to the
SI channel, and are what we need to collect.

Hrc(f) = Hrrc(f) ·Hrrc(f) (7)

B. Synchronized Data Collection

The second challenge to the prototype is how to synchronize
the collected channel data. It is very difficult to collect syn-
chronized input signals to SI channel and their corresponding
output signal from the SI channel because there is a random
delay in the signal processing chain of USRP hardware.
Collecting the input signals to the SI channel data starts as
soon as the program starts. However, the output signal from
the SI channel data to be collected by the receiving chain of the
USRP node is randomly delayed. This delay can be host and
USRP communication delay or driver communication delay.

As for the USRP random delay problem, researchers have
presented a method to address this issue by calculating the
barker code correlation [14]. A barker code is added at the
head of every source signal sequence. At a receiver, once if
the receive chain has all barker codes in its buffer, it can extract
a synchronized signal. We have implemented a bark code
based frame synchronization block tin GNURadio, to identify
a synchronized signal in the frame synchronization block by
inserting a probe function in main stream of GNURadio signal
processing chain.

C. Loading Module

Another implementation challenge is about loading the
DNN model for digital cancellation, because there is no deep
learning module in GNURadio. After we collect synchronized
SI channel input and output data and train the DNN channel
model, we save all of the DNN parameters such as W [l]

and b[l] into a dictionary data structure. The DNN model is
implemented in Pytorch, but a loading module block is created
in GNURadio to load the trained model parameter dictionary,
and the known input signal is forwarded to this model to

generate an estimated ye[n]. Algorithm 1 below shows the
implementation of loading and SI cancellation.
Algorithm 1 SI Cancellation

Input: input vector source x[n], baseband complex signal
y(t)
Output: output vector source m̂[n]
Description: This algorithm input x[n] and y(t), where y(t)

is sum complex signals contains SI signal ysi(t) and useful
signal m̂(t), then cancel ŷsi(t) from y(t) to recover m̂[n]

1: N = log2M
2: for k < length(x[n]) do
3: x(t) =Modulate(x[k], N)
4: k = k + 1

5: ŷsi(t) = load model([x(t), x(t − 1), ..., x(t − taps +
1)], path)

6: m̂(t) = y(t)− ŷsi(t)
7: m̂[n] = Demodulate(m̂(t), N)
8: return m̂[n]

V. PERFORMANCE

We have conducted extensive performance evaluation of our
solution with the implemented prototype in real world.

A. DNN Loss Convergence

First, we have tested various DNNs with different K to
see the impact of the input size on the DNN parameter
convergence. Figure 9 shows the convergence dynamics of the
MSE loss with K=2, 20, 50 and 100 respectively. Because
each byte contains 8 bits, every 2 bits are modulated into a
QPSK symbol, and each symbol is represented by 4 samples,
16 samples consequently are needed to represent one byte.
Therefore, any sample size smaller than 16 does not contribute
to the learning. This is why the sample size 2 gives nothing
for the network to learn as illustrated on the figure. When the
sample size is larger than 16, the DNN learns something as
shown in Figure 9b. With the taps size increased to 100, the
loss convergences very quick and stays at a very low level,
which means the DNN model can generate a predicted SI
ysi[n] very close to the real SI yreal[n].

B. SI Estimation and Cancellation

We have then tested the performance of the DNN channel
model in estimating the SI after the training. Figure 10 shows
the difference between the real SI signals and the estimated
SI signals. The difference is smaller than 0.02, which means
this solution can cancel at least 10 log10

0.3
0.02 = 7dB, and the

average performance is 10 log10
0.3

0.005 = 17.8dB.

C. Bit Error Rate with SI Cancellation

Further experiments have been conducted to assess the
impact of various modulations on the bit error rate in four envi-
ronment settings: Room1, Room2, Outdoor, and Hallway. We
transmit a vector stream [1, 2, 3, ..., 10] in transmission chain
with three types of modulations (QPSK, 16PSK, and 64PSK)
at the USRP node1, then cancel the SI in GNURadio with the
trained model, next demodulate the complex signals after the
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(a) Sample Size K= 2 (b) Sample Size K= 20

(c) Sample Size K= 50 (d) Sample Size K= 100
Fig. 9: Loss Convergence at Various Input Sample Sizes

Fig. 10: SI Estimation with 100 Taps
SI cancellation to get the vector stream [101, 102, 103, ..., 120]
transmitted by the USRP node2. After that, the reconstructed
vector stream after the SI cancellation is finally compared
with the original vector stream sent by the USRP2 node2
to calculate the bit error rates. These experiments have been
repeated for many times in each of the four scenarios, and the
average bit error rates are calculated as shown in Table I.

Scenario/BER(%) QPSK 16PSK 64PSK
Room1 8.5 25 37.4
Room2 11.2 28 41.6
Outdoor 8.0 21 37.9
Hallway 13.3 27.5 45.1

TABLE I: BER vs Modulations
From the data in the table, the outdoor environment yields

the best performance with our solution. The worst result is
in the hallway, which indicates multi-path fading has a large
impact on the performance. Another observation is that the
performance degrades as the modulation level increases, which
matches to the expectations that lower modulation level is
more robust to transmission errors.

VI. CONCLUSION

In this work, we propose a novel non-linear digital cancella-
tion method based on deep learning to achieve IBFD wireless.

This solution first probes the channel to collect SI channel
data, which are used to train the SI channel DNN. The trained
parameters are used to estimate the SI for cancellation in
the realtime communication. We have implemented this deep
learning SI cancellation solution into a GNURadio prototype
testbed with USRP nodes. The extensive performance eval-
uation shows that (1) the deep learning approach is feasible
to achieve very high accuracy in digital cancellation, (2) the
proposed deep learning model has a fast and stable conver-
gence in the training, (3) the deep learning solution can work
across various modulations in different environments. As other
signal processing modules such as error coding are added, it
is reasonable to expect better performance.
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