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Abstract—Human activity recognition based on wireless sens-
ing is advantageous at various features such as privacy preser-
vation, but also very challenging due to the instability of wireless
signals. This paper proposes a deep learning driven wireless
human activity recognition solution based on Multiple-Input-
Multiple-Output (MIMO) radar sensing. User activities are first
sensed by a low-power Frequency-Modulated Continuous Wave
(FMCW) MIMO radar. Then a sequence of 3D images are
generated out of the reflected signal strength. Next, deep neural
networks (DNNs) are designed to analyze the correlation among
the sequential 3D images to recognize various types of human
activities. This work has developed: 1) a large dataset containing
over 1,500 training videos of six different types of indoor
activities, 2) a customized deep learning video data-loader to
select proper training data in each training epoch, 3) a deep
recurrent neural network (RNN) model to recognize human
activities based on radar imaging results. This solution has been
extensively evaluated in a research lab room. The results show
that the solution is able to generate wireless imaging frame-by-
frame, and it can achieve over 86.7% accuracy in recognizing
six different types of human activities.

I. INTRODUCTION

Human activity recognition (HAR) plays a key role in many
smart systems, especially in smart health. For example, an
effective system is able to alert family members when young
and elderly people are in adversary conditions. Conventional
HAR systems are either based video cameras or wearable
devices, while camera-based solutions raise privacy issues and
wearable devices are inconvenient in daily use. Hence, it is
important to design an HAR system that is privacy friendly
while requiring no users’ attention. Therefore, an HAR system
embedded and quietly working in the background environment
is favored.

In this work, we propose a robust deep-learning based wire-
less HAR system with two main modules. The first module
constructs 3D activity images from raw wireless signals by
using an MIMO FMCW radar. The second module recognizes
activities with a deep learning model working on the 3D
activity images. The highlights of this work are as follows.
First, the radar device is out of commodity at very low
power. Second, the captured signal image is at very high
resolution in that the radar operates from 3.3GHz to 10GHz.
Third, a Convolution Neural Network (CNN) is designed to
extract features from the 3D continuous signal images. Forth,
a Recurrent Neural Network (RNN) is designed to exploit the

temporal features in the sequence of 3D activity signal images
for the HAR recognition.

The rest of the paper is as follows. Section II briefly reviews
previous HAR solutions. Then Section III discusses our pro-
posed deep learning driven MIMO radar based HAR system,
including the system architecture, radar wireless imaging and
the deep learning model designed for activity recognition. The
performance evaluation is presented in Section IV. Section V
concludes this work and hints the future work.

II. RELATED WORK

The related works in HAR include camera based solutions,
more recent RGB-D camera based solutions, wearable sensor
based solutions and RF based solutions. All of those solutions
will be investigated and discussed in this section.

A. Camera Based Solutions

Most traditional camera-based HAR solutions exploited
trajectory features [1], [2] such as dense trajectories (DT) and
improved dense trajectories (iDT). The recent years have seen
many camera-based HAR solutions based on deep convolution
networks and recurrent networks [3]–[8]. More recently, a
two-stream (spatial stream and temporal stream) convolution
network solution was proposed to improve action detection
accuracy [3]. Another work adopted long-short term memory
(LSTM) network and achieved an 88.6% accuracy on UCF-
101 datasets [6]. In 2017, the structured segment network
(SSN) was proposed to detect each action instance via a
structured temporal pyramid, and was evaluated on untrimmed
videos [4]. This novel design allows to not only recognize
actions, but also localize the start and end frames of the action,
which outperforms previous methods on THUMOS14 [9].

B. Sensor Based Solutions

Wearable sensor based solutions typically use accelerator
and Gyroscope [10] to collect raw data, then analyze these
data to recognize human motions and activities. Many of such
solutions use smart phones as the data collection tool [11]–
[13]. Inertial measurement unit (IMU) sensor that combines
accelerometer and gyroscope sensor has also been widely
used in wearable devices [14]. Those sensors can collect
linear acceleration, rotation angle, the angular velocity of
targets wearing these sensors. The sensors’ raw data are
then processed with various algorithms to recognize human
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activities [15]–[17]. Recently some solutions have attempted
to combine camera-based and wearable sensor-based data for
improved performance in accuracy as well as efficiency [18].

C. RF Based Solutions

Radar sensors and RF devices have been recently exploited
for smart home applications using either FMCW radar [19]–
[22] or off-the-shelf devices [23]–[25]. A research group at
MIT designed an FMCW MIMO radar sensing testbed to
detect human motions [19] and it can even capture human
figures through a wall [20], [21]. Off-the-shelf devices such
as ultrasonic sensor or walabot [26] have been also used to
recognize human activities [23]–[25]. Avrahami et al. proposed
a human activity recognition scheme based on 2D heat maps
generated by walabot, while Zhu et al. [24] used traditional
signal processing algorithms with clustering machine learning
scheme to recognize human actions. Both of them claim an
accuracy over 80%.

III. DEEP LEARNING DRIVEN MIMO RADAR BASED HAR

In this work, we propose a deep learning driven MIMO
radar based HAR solution, which consists of two modules: the
first one capturing and constructing users’ activity images and
the second one recognizing the activities. The entire process
is performed in five major steps: 1) establishing a labeled 3D
wireless radar imaging dataset for training, 2) extracting high-
level features of each 3D radar imaging frame with a Deep
Neural Network (DNN), 3) learning temporal activity features
of the labeled training data with a LSTM network, 4) fine-
turning the learning procedure for each specific activity, and
5) recognizing a real-time activity based its 3D radar imaging
sequence.

A. System Architecture

As shown in Figure 1, the radar sensed raw wireless signals
of activity was first converted into 3D wireless image frames,
and a DNN is used as the filter to get rid of non-continuous
frames, which is shown in the purple block. Next, the activity
wireless imaging clips are passed into a CNN-RNN network
model, where the CNN is used to extract high-dimensional
features of a frame, and RNN is trained to recognize the
activity based on the given feature sequence from the CNN,
which is illustrated in blue-green. The trained CNN-RNN is
then used with a sliding window technique to recognize an
activity based on the radar sensed raw signals.

B. MIMO Radar Imaging

To enable real-time activity imaging with an ambient radar,
we design a framework, called Human Image Capturing based
on FMCW Radar (HICFR), to scan the surroundings with
FMCW chirps and an MIMO antenna array. HICFR builds
a 3D coordinate system as shown in Figure 2(a). While
FMCW chirps are used to compute the direct distance between
an object and a receive antenna, the 2D antenna array can
identify spatial directions. It emits parallel FMCW chirps from
multiple antennas to scan the 3D volume of surroundings.

��������	
���
��
��

�����
����������
��������
��
������������	�
�����	

������������
������
���������

������������
�
�
��

����������	�����
�
���

�
�����
�
���
���������
��

���
�
���	�����
�
��
�������

�������
��������
������������������� 

�������	�
��������
�����������

	�
�!�
��
�""�
�
�
��

������� #$��
�����
����� 

Fig. 1: System Architecture

HICFR converts a signal amplitude value to a color depth.
Consequentially, a 3D image is constructed from the scan of
the 3D volume of the surroundings with the MIMO FMCW
radar. Due to the instability and unreliability of wireless
signals in practice, it is likely that some of a sequence of
scans will be missed or corrupted, which results in missed
3D wireless imaging frames during an activity. To address
this problem, a Deep Neural Network (DNN) interpolator is
designed to frames to make up those frames for a continuous
sequence of activity wireless images.

In Figure 2(a), θ is the elevation angle to detect the height
of a target, and φ is width angle to capture the width of
the a target. R is the FMCW signal travel distance from a
transmission antenna to a target head, and R′ is the hypotenuse
of a triangle whose angle is θ when R rotates a degree of
φ. The scan range is the sector where the triangle passes. In
our case, θ is from −30° to 30° and φ is from −60° to 60°.
The direct travel distance R can be calculated with FMCW in
formula (1) as below:

R =
c| � t|

2
=

c| � f |
2(df/dt)

(1)
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Fig. 2: 3D MIMO Radar Imaging

Figure 2 shows a generated wireless image, where it can
be clearly observed that an object with purple color has direct
distance R as 150cm to the radar, with a width angle φ being
40°, elevation angle θ being from −30° to −5°.
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C. Deep Learning Driven Activity Recognition

The recognition module of this work is called Deep Learn-
ing Driven Human Activity Recognition based on MIMO
Radar Imaging (DARI), which recognizes human activity in
six categories: fall, stand up still, walk, sit-to-stand and stand-
to-sit. It takes a sequence of continuous 3D MIMO radar
images as videos for its input. For every 3D frame of an input
wireless imaging video, CNN is designed to extract the spatial
features. Then the extracted features of each frame are used
as input to an RNN, particularly LSTM, to further extract
the temporal correlation among the frames of an activity. The
output of the last RNN cell gives the confidence score of each
type of activity. The difference or loss between the predicted
confidence with the ground-truth label is then backpropagated
to update the LSTM parameters in training.

1) Video Dataset Construction: Video dataset is con-
structed in two steps: 1) collecting continuous videos for
activities; 2) segmenting the frames and labeling them.

In the very beginning, our system generates real-time
stacked 3D MIMO radar images that are then passed through
the DNN interpolator as described in Section III-B above. To
gather enough training data, the data collection runs for a long
time with a variety of activities performed. Then, the videos
are manually segmented and cropped to make sure every
activity is associated with a fixed number of frames, which are
labeled with the corresponding activity category. Note that an
activity may be labeled with more than one categories, e.g. the
“fall” activity has two category labels: fall and stand-up. At the
end, six categories have been labeled: sit-to-stand, stand-to-sit,
still, walk, fall, and stand-up. Each category has many video
clips of 3D radar frames which represent the corresponding
activity. The reason for cropping and segmentation into a fixed
number of frames is to meet the input requirement of the deep
learning activity recognition model as discussed as follows.

2) Deep Learning Activity Recognition: The deep learning
activity recognition comprises two deep learning networks: 1)
a Convolution Neural Network (CNN) and 2) an Recurrent
Neural Network (RNN). While the CNN extracts the spatial
features of a 3D wireless image, the RNN analyzes the
temporal features among those 3D wireless frames. The RNN
infers the activity category.

In our work, the CNN is a feature extractor. It contains
input, convolution, pooling, and fully connected layers, but
not the output layer as in a classifier. Given a 3D radar image
frame, our CNN extracts and builds the feature map, which is
the input to the RNN recognition module.

We denote fp the final feature map, and fp[t] the feature
map of the 3D radar image at moment t. We also introduce K
as the number of frames. Equation 2 shows the detail of the
RNN. When given input (fp[t−K], fp[t−K +1], ..., fp[t]),
RNN produces y[t] as the human activity at moment t. Each
frame of an activity has almost equal contribution to the
output. The RNN module exploits the sequential (temporal)
correlation among the given frames of an activity, which means
it predicts upon the order of input.

Refer to Equation 2 where the output of the kth unit is
denoted as hk. There are three kinds of weight matrices,
Wxh, Whh and Why respectively. While Wxh is associated
with the input fp, Whh relates to output of the recurrent unit
hk, and Why is the key factor of the output sample y[t]. In
the middle of two recurrent units, an activation function σh

enables the non-linearation between the previous output and
the present input. The other activation function, denoted as σy ,
usually a tanh function, regulates the output falling between
+1 to −1. To describe the forward propagation of the RNN
model, we denote fp[t − K] and h0 as the initial input. In
the beginning, fp[t−K] is fed to the first recurrent unit, and
then multiplies its weight matrix Wxh. Meanwhile, the weight
matrix Whh combines with h0 and forms the initial previous
output. The sum of Whhh0, Wxhfp[t − K + 1] and bias bh
passes through the activation function σh and produces h1.
This process repeats at every recurrent unit and finally ends
at the Kth layer, where y[t] is computed with hK , Why , by
and the activation function σy . The output y[t] is a vector that
contains the probability of every activity at moment t.

h1 = σh(Whhh0 +Wxhfp[t−K + 1] + bh)

hk = σh(Whhhk−1 +Wxhfp[t−K + k] + bh)

y[t] = σy(Whyhk + by)

(2)

D. Sliding Window Enhancement
Because of the wireless uncertainties, the radar image

sequence likely contains outliers and exceptions. To reduce
the impact of such abnormalities, we design a real-time sliding
window scheme to smooth out the abnormalities for improved
recognition performance. This enhancement is based on our
trained RNN model. As shown in Figure 3, suppose our trained
RNN takes four frames as input at one time, which means K
in equation 2 is equal to 4. As discussed earlier, the output
of the HRCIF system is a sequence of continuous 3D radar
frames generated in real-time. To predict the current activity,
we need to retrieve previous frames and put them together as
the input of RNN. For example, to predict the human activity
at moment t = 4, we need the previous three frames, which
represent by the blue dotted block in Figure 3, which is also
considered in the RNN module. The output of this block y[4]
is the vector contains the probabilities of all activities. With
time passing, the block dotted block slides one frame to the
next to generate the next activity probability vector.
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Fig. 3: Sliding Window Recognition

IV. PERFORMANCE EVALUATION

A. Evaluation Platform and Settings
We reuse the radar platform in our previous work [27]

that introduced the whole process of generating radar im-
ages stream, which is an off-the-shelf radar sensor called
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Walabot [26]. It is compact and low-cost with a board size
of 72mm ∗ 140mm. The average power is lower than -
41dbm/MHz. The frequency range of FMCW chirp emitted
by Walabot is 3.3GHz-10GHz, which is capable to detect a
distance of 10 meters.

Referring to Section III-C, there are three main steps in
the DARI solution: 1) constructing dataset, 2) training the
CNN-RNN framework, and 3) using the CNN-RNN model for
recognition. The performance evaluation has been conducted
over these steps.

1) Video Dataset Construction: For each activity type, we
collect more than 20 radar videos, each of which is longer
than ten minutes. Since the HICFR system processes one
frame every second, the recorded video has a frame rate as
fps, which means we have overall 20 ∗ 10 ∗ 60 = 12000
frames in total. Since those frames are recorded in real-time,
one video contains different activities. For example, when
recording the activity “fall”, the user also walks before falling
down. However, the RNN model demands that a sequence
of frames only correspond to exactly one activity. Hence,
we manually cut and crop our original videos into the fixed
number of frames with only one ground truth label. In our case,
we tested the video size (number of frames) of 3, 5 and 8. For
each video size, we collect 93 samples for fall, 79 samples for
stand-up, 93 samples for sit-to-stand, 82 samples for stand-to-
sit, 96 samples for walk and 81 samples for still. The total
training data set contains 3 ∗ sum(samples) = 1572 activity
samples, for the six different categories with three video sizes.

2) Activity Recognition Network: Section III-C2 introduces
a CNN-RNN framework to achieve activity recognition. Figure
4 shows the main flow graph of the DARI system. It can
be clearly observed that the target gradually falls from the
bottom row in the figure, which is used as ground truth. The
second row from the bottom representing the output of HICFR
is our training samples for the “fall” activity, with a sample
size 5, which means the K mentioned in Section III-C2 is
equal to five. From the first radar image to the last one, the
frames record the position changes of the target during the
“fall” activity. The first frame shows that the target stands
with the angle of 60° and the direct distance 150cm. The
purple volume going down along with the wide angle because
the target moves to the centering direction of the radar from
frame #2 to frame #3. With falling onto the ground, the last
two frames show that the detected target position in elevation
angle is very low, and that the visualization indicates the target
falling to the ground. The RNN model enables the system to
understand what activity is shown in the five frames. Before
this RNN model, a CNN model, a revised ResNet18, is used
to extract the spatial features of those frames: the last fully
connected layer is revised to generate 64 features and the
softmax layer is removed. Then we take the 64 features of
every frame as the feature map (fp) to feed into the RNN
model.

Training strategy: The training strategy for the DARI sys-
tem is unique since it contains two types of neural network. We
use a pre-trained resNet18 to extract features, and this period

does not update any parameters of resNet18. In this way, it
is guaranteed that the CNN extracts exactly the same features
from the same input frame during the whole training process,
which means whatever is the difference between prediction
and label, it does not change the original weights, kernels and
bias parameters of the CNN model. In other words, the training
process is not end-to-end. We keep the CNN parameters and
only train the RNN model. The backpropagation function also
only updates the parameters of the RNN model.

Video loader: In the training stage, the training dataset
needs to shuffle data to reduce the variance and making sure
that models remain general and not overfit. The shuffling
process demands that dataset is loaded in a random order. In
the beginning of each iteration, we create a list of dictionary
named l1 to store all training videos, with the key being the
video name and the value is the label. Then we randomly
create a list l2 with the same length of l1, but the value in
each cell represents the order of video index. Then we can
generate l3 that is shuffled from l1 and l2. For example, l1 =
[{”walk 1” : ”walk”}, {”walk 2” : ”walk”}, {”fall 1” :
”fall”}, {”still 1” : ”still”}] l2 = [3, 0, 1, 2] l3 =
[{”walk 2” : ”walk”}, {”fall 1” : ”fall”}, {”still 1” :
”still”}, {”walk 1” : ”walk”}]. The video is loaded in the
order shown in l3.

Hypo-parameters Settings
CNN body ResNet18
CNN pooling Maxpooling
CNN last-layer Fully Connected (512, 64)
RNN hidden size 100
RNN layers 1
RNN optimizer SGD optimizer
RNN learning rate 0.01
RNN momentum 0.9
RNN lr scheduler step size = 30, gamma=0.4

TABLE I: CNN and RNN Configurations
Training hypo-parameters: The configurations of the

CNN and RNN models are shown in Table I. The hypo-
parameters include: learning rate α, momentum β and ini-
tial h0. We adopt the SGD optimizer to update parameters
with learning rate = 0.01 and momentum = 0.9, and
a lr schedular is used to adjust the learning rate with
stepsize = 30 and gamma = 0.4. The loss function is as
in Equation 3, where x is the output of RNN, the dimension
of x is (1, number of activity types), and label is the label
of the current activity. Thus x[j] means the confidence with
which our system recognizes the given video as jth activity,
and x[label] is the confidence with which the recognition
is correct. We trained the system with 1572 videos for 100
iterations on the platform with two GTX 1080 Ti GPUs with
cuda acceleration.

loss(x, label) = −log(
ex[label]
∑

j e
x[j]

) (3)

B. Result Analysis

1) Accuracy: We trained three RNNs with the input video
size of 3, 5, 8 respectively. Table II shows the training accuracy
of these three RNN models. As can be observed, the RNN
with the video size 3 has the worst prediction accuracy: less
than 60%. The reason is that video size 3 is too short for the
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Fig. 4: Deep Learning Activity Recognition

video to contain all information about an activity. From human
perspective, we need at least 3 continuous frames which
indicate human stay on the ground to determine that is a fall
activity. Overall, the RNN model with video size 5 performs
best with 86.7% accuracy. The RNN with video size 8it has
the best performance for fall and stand-up detection. However,
the larger the video size more likely contains information of
more than one activity, which will hurt the recognition of the
short activities, e.g, sit-to-stand, and stand-to-sit.

Activity frame length=3 frame length=5 frame length=8
fall 33.3% 89.2% 91.4%
stand-up 46.8% 91.1% 97.4%
sit-to-stand 40.8% 78.4% 38.8%
stand-to-sit 58.5% 80.4% 42.7%
walk 45.8% 82.3% 45.8%
still 96.2% 100% 100%
overall 52.3% 86.7% 68.5%

TABLE II: Recognition Accuracy
2) Confusion Matrix and Convergence: We also compare

the convergence of the prediction and the ground truth, then
generate the confusion matrix as shown in Figure 5(a)(b)(c).
The confusion matrix shows the number of correct recogni-
tions and wrong recognitions. For example, the first row and
first column of Figure 5(a) is 31, which means that there
are 31 samples of “fall” recognized correctly as “fall”. The
first row and second column of Figure 5(a) is 9, meaning that
there are 9 samples of “fall” incorrectly recognized as stand-
up. It turns out the RNN with framelength = 3 is likely
to misunderstand “fall” and stand-to-sit, stand-up and sit-to-
stand, walk and stand-to-sit. The RNN with framelength = 8
performs well with first two categories, but not for some
quick movement and activities e.g., sit-to-stand, stand-to-sit
and walk.

The RNN with framelength = 3 has problem in converge
for one hundred epochs. The RNN with framelength = 8
finally converges at very low loss after wide fluctuations. The

RNN with framelength = 5 converges very quickly and
stays stable during the rest of epochs.

V. CONCLUSION

This paper proposes a deep learning driven wireless hu-
man activity recognition solution based on Multiple-Input-
Multiple-Output (MIMO) radar sensing. User activities are
first sensed by a low-power Frequency-Modulated Continuous
Wave (FMCW) MIMO radar array. Then 3-dimension images
are generated out of the radar signals. Next, deep neural
networks are designed to analyze the correlation among the
sequential images and consequently recognize various types of
human activities. This solution has been extensively evaluated
in a research lab. The result shows the high performance of the
solution in recognizing six different types of human activities.
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Capturing the human figure through a wall. ACM Transactions on
Graphics (TOG), 34(6):219, 2015.

[22] Mingmin Zhao, Tianhong Li, Mohammad Abu Alsheikh, Yonglong
Tian, Hang Zhao, Antonio Torralba, and Dina Katabi. Through-wall
human pose estimation using radio signals. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 7356–
7365, 2018.

[23] Shangyue Zhu, Hanqing Guo, Junhong Xu, and Shaoen Wu. Distance
based user localization and tracking with mechanical ultrasonic beam-
forming. In 2018 International Conference on Computing, Networking
and Communications (ICNC), pages 827–831. IEEE, 2018.

[24] Shangyue Zhu, Junhong Xu, Hanqing Guo, Qiwei Liu, Shaoen Wu,
and Honggang Wang. Indoor human activity recognition based on
ambient radar with signal processing and machine learning. In 2018
IEEE International Conference on Communications (ICC), pages 1–6.
IEEE, 2018.

[25] Daniel Avrahami, Mitesh Patel, Yusuke Yamaura, and Sven Kratz. Below
the surface: Unobtrusive activity recognition for work surfaces using rf-
radar sensing. In 23rd International Conference on Intelligent User
Interfaces, pages 439–451. ACM, 2018.

[26] Walabot. https://walabot.com/.
[27] Hangqing Guo, Nan Zhang, Wenjun Shi, ALI-AlQarni Saeed, Shaoen

Wu, and Honggang Wang. Real-time indoor 3d human imaging based
on mimo radar sensing. In 2019 IEEE International Conference on
Multimedia and Expo (ICME), pages 1408–1413. IEEE, 2019.

Authorized licensed use limited to: Milner Library Illinois State University. Downloaded on August 12,2020 at 16:05:12 UTC from IEEE Xplore.  Restrictions apply. 


