Optimal Adaptive Sampling for Boundary
Estimation with Mobile Sensors

Phillip Kearns, John Lipor

Department of Electrical & Computer Engineering

Portland State University
Email: {kearns, lipor}@pdx.edu

Abstract—We consider the problem of active learning in the
context of spatial sampling for boundary estimation, where the
goal is to estimate an unknown boundary as accurately and
quickly as possible. We present a finite-horizon search procedure
to optimally minimize both the final estimation error and the
distance traveled for a fixed number of samples, where a tuning
parameter is used to trade off between the estimation accuracy
and distance traveled. We show that the resulting optimization
problem can be solved in closed form and that the resulting policy
generalizes existing approaches to this problem.

I. INTRODUCTION

A fundamental challenge to modern science and engineering
is the ability to rapidly and accurately sense the environment.
Harmful algae blooms impair access to drinking water [1],
traffic-related pollutants impact urban health [2], and wildfires
present a persistent threat to safety and air quality in the
western United States [3]. We consider the third example as a
motivating problem, where our goal is to determine the spatial
extent of hazardous particulate matter from wildfire smoke (see
Fig. 1). In this case, all points with pollutant concentration
above or below a fixed threshold can be considered as two
classes in a binary classification problem, where the goal is to
estimate the decision boundary as quickly as possible. Further,
we consider the case where such measurements are obtained
by a mobile sensor such as an unmanned aerial vehicle.

Algorithms designed to rapidly determine the decision
boundary fall within the category of active learning or adap-
tive sampling [4, 5] and typically try to maximize information
gain per sample. However, in the above example, there is a
significant cost associated with both the time to take a single
sample and the distance traveled throughout the sampling pro-
cedure. Hence, standard approaches to active learning based
in search space reduction [6—8] or adaptive submodularity [9],
which seek to minimize only the number of samples taken, will
be accompanied by potentially dramatic drawbacks in terms
of total sampling cost. Newer, bisection-style search methods
like quantile search (QS) [10, 11] balance the above costs
by sampling a certain fraction into the remaining interval at
each step, effectively trading off between number of samples
and distance traveled. Though these improve upon previous
methods in terms of total sampling time, neither guarantees to
find the optimal search procedure.

In this work, we propose a finite-horizon (FH) sampling
procedure that optimally balances the distance traveled dur-
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Fig. 1: Map of air quality following California’s Camp Fire. Points represent
air quality measurement stations and contours are generated with a Gaussian
regression. The red contour represents a PM2.5 estimate of greater than 60
ug/m?3 as a decision boundary.

ing the search with the final interval size after obtaining
N measurements. We show that for a one-dimensional step
function, fixing IV allows the resulting cost to be optimized in
closed form, eschewing the need for dynamic programming.
The work of [10] shows we can combine a series of one-
dimensional search procedures to estimate a two-dimensional
boundary. We also derive the expected number of samples
necessary to fall below a given final estimation error and
the best policy for various search time parameters. Further,
we show that QS can be viewed as an instance of the
proposed FH algorithm in the case where N = 1 (greedy
sampling). Empirical results demonstrate that our sampling
strategy outperforms existing approaches and agrees with our
analytical predictions in terms of the resulting distance traveled
and average interval size.

II. PROBLEM FORMULATION & RELATED WORK
As stated in the introduction, the full two-dimensional

boundary estimation can be reduced to a series of one-
dimensional search problems, where we wish to locate the
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change point of a one-dimensional step function, i.e., a func-
tion from the class

F = {f@ : [0,1] —R: fg(.%‘) = 1[079)(.%),9 S [0,1]}7

where 1g(z) denotes the set indicator function. These one-
dimensional estimates may then be combined either in a
piecewise-linear fashion [10] or using Gaussian process re-
gression [12] as illustrated in Fig. 2.

Assume we obtain observations {Y,,}Y_, € {0,1}" from
the sample locations {X,,}_, in the unit interval in a se-
quential fashion according to Y,, = fy(X,,), where 6 is the
actual, unknown, change point location. Under this model,
each sample obtained reduces the interval (hypothesis space)
in which the change point may lie. Our goal is then to estimate
the change point location while minimizing the sampling cost
for a fixed number of samples, a function of both the final
expected interval size and expected distance traveled.

A. Related Work

Many previous approaches to finding an unknown change
point are based in search space reduction [6-8] and do not
permit the inclusion of general or dynamic costs such as the
time between sampling points or potential need for recharging.
Because these methods do not take into account these extra
parameters, they tend to result in bisection-type solutions [13]
that will have higher total sampling cost. Methods that seek
to maximize hypothesis space reduction at each step can be
classified as “greedy” search methods. Greedy methods in
active learning [6, 7] lack theoretical guarantees of minimum
total sampling cost, and even those that incorporate realistic
costs into the algorithm formulation [14] have been shown to
perform worse than the QS algorithm in [10] when applied to
distance-penalized searches.

A popular greedy approach to active learning relies on the
concept of adaptive submodularity (AS). AS is a diminishing
returns principle that states samples are more informative early
on in the search procedure, and [9] shows that a greedy
procedure is optimal up to a constant factor. However, AS is
a property of set functions and does not consider a sequential
dependency among sampling locations. While [15] provides a
theoretical analysis of greedy active learning with non-uniform
costs, the authors only consider the case of query costs being
fixed. In contrast, our scenario has non-uniform and dynamic
costs which depend on the distance between points.

In [16], the authors introduce the idea of adaptive data
collection for mobile path planning, where previous samples
are used to guide the motion of the sensing vehicles for further
sampling. An interesting extension is provided in [17], where
the authors consider the constraint that the robot has limited
energy. However, both works require a coarse sampling of
the entire feature space to estimate a scalar field, which is
not applicable to our problem. Though the energy constraint
is insightful, the authors mix a network of stationary sensors
with a mobile sensor to minimize integrated error, whereas
we focus on minimizing the final boundary error using only a
single mobile sensor.

Fig. 2: Two-dimensional boundary estimate from series of one-dimensional
searches. Each search is performed using FH sampling (blue dots). The black
line represents the true boundary and the final estimate (red line with gray
confidence bounds) is obtained using Gaussian process regression with a
periodic squared exponential kernel.

Of primary relevance to the work presented in this paper
is the work of [10], which introduces the Quantile Search
(QS) algorithm for determining the change point of a one-
dimensional step function while balancing sampling and travel
costs. QS is a generalization of binary bisection [13, 18, 19],
where the idea is that by successively sampling a fixed fraction
1/m into the remaining hypothesis space (defined by an
interval), the desired tradeoff between number of samples and
distance traveled can be achieved. This work was extended in
[11], where the key observation is that QS can be improved
by allowing the fraction 1/m to grow as the hypothesis
space shrinks. Yet, neither algorithm provides guarantees of
optimality in terms of the total sampling cost. We believe
that this work is the first to provide a theoretical guarantee
of optimal search procedure for an environment with non-
uniform, dynamic sampling costs.

III. PROPOSED ALGORITHM & ANALYSIS

It is convenient, while not restrictive, to define search
strategies in terms of the fraction of the remaining interval
to move at each step, whether forward or backward, in an
analogous fashion to [10, 11]. The resulting class of policies is
adaptive to the unknown location of 6 and non-restrictive in the
sense that any optimal policy will not sample in locations with
probability zero (locations outside the remaining interval).

Begin with a uniform prior on the change point 6, and let the
N fractions be {xn}ﬁ;l. A straightforward Bayesian update
yields the posterior distribution after each sample. Let Hy be
the entropy of the posterior distribution after N observations,
Dy be the total distance traveled, and A > 0 be a tuning
parameter that governs the tradeoff between these costs. We
define the total sampling cost, J, after N observations

J(l‘l,...,xN):Eg [eHN"f‘/\DN]. (1)
Note that for a uniform distribution on an interval of length
a, edn = elog@) = - thus, (1) is equivalent to minimizing

a weighted combination of the (expected) final interval length
and expected distance traveled.
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Fig. 3: Performance of proposed FH algorithm for spatial sampling for fixed /N samples. Each data point represents the final value obtained after following
the optimal N-step policy. Left-to-right: average entropy of hypothesis space, average distance traveled, and average total cost after last sample.

A. Analysis of Sampling Cost

We now demonstrate that the cost (1) can be minimized
in closed form, resulting in an optimal policy that subsumes
the QS algorithm. The theorem below provides a closed-form
analysis of the cost (1). This simplified form allows us to
compute the optimal sampling fractions in linear time.

Theorem 1. Let )\ € [0,2] and assume the change point has
distribution 6 ~ Unif([0, 1]). Further, assume the N measure-
ments are defined via N fractions x1,...,xN denoting the
proportion of the current hypothesis space to sample. Define

&=22+(1—2)% i=1,...,N.

Then,

N N i—1
J(l‘l,...,l’j\[):Hfi—F/\Z.Tngj. (2)
i=1 i=1 7=0

Proof. By Lemma 1 below, we have that

N
E[e"~] =]] ¢
i=1

Let Dy be the distance traveled after N samples. Note that

n
D, = E xieHi‘l.
i=1

Therefore

N
E[Dy]=E | ze'i
i=1

N
= inE [eH"'—l] .
i=1

Applying Lemma 1 then yields

Lemma 1. Let Hy be the length of the hypothesis space after
N measurements. Under the conditions of Theorem 1, we have

N

E[e"N] =] (27 + (1 — 2:)%). 3)
i=1

Proof. First note that under the uniform distribution on the unit

interval, the exponentiated differential entropy is the length of

the hypothesis space after N samples. The proof will proceed

by induction on N. Consider the base case, N = 1, for which

it is trivial to show that

Ele] =2+ (1-x1)* =6

Now assume that (3) holds for some N € N. Sampling
some fraction x4, into the remaining hypothesis space e/~
results in two potential entropies

Hy

Hyis TNi+1€ w/ probability TN41
e = .
(1 —xn.1)efl»  w/ probability 1—2zn1-
Therefore
Bl = ol Bl + (1 - o) Bl

= (2R + (1 —an41)?) E[e"Y]
N+1
= H (m? +(1- x1)2) .
i=1
O

Thm. 1 shows that the entropy and distance components of
the sampling cost can both be written in terms of the expected
reduction in interval size ¢;. This form allows us to compute
the minimum of (1) in closed form.

Theorem 2. Under the same conditions as Thm. 1, the optimal
sampling fractions are of the form

1 1
N i—1 fk;zi—)\r, k=1,...,N. @)
Pk
= ; jl;lofj where py = 1 and
N N i—1
The proof is completed by applying linearity of expectation.
p p y applying y p - or = H{:HL)\Z% ng, k=1,...,N—1,
i=k+1 i=k+1  j=k+1
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depends only on the fractions Tyy1,...,TN.

Proof. The gradient of the total cost (2) is

-1
g—; = (H@-) (4 = 2) pr + ),

i=1
and setting the gradient to zero yields:
1 1

xl:§— Tpl
O

Thm. 2 shows further that the optimal policy may be
computed in linear time, beginning with = and proceeding
backwards. Further, taking N = 1 results in a policy that
samples a constant fraction of the remaining interval at each
step, which is exactly the strategy of the QS algorithm. Hence,
QS may be considered an instance of our proposed method
with N = 1. When A > 2, the cost of performing even a single
non trivial sample, Az, is larger than the expected entropy
reduction, 1 — &;; thus the trivial sample which requires no
displacement is preferred.

B. Samples Needed for Fixed Estimation Error

By Lemma 1, we have the expected length of the hypothesis
space after N samples. In certain instances, it is desirable
to use a threshold on the final interval size to terminate the
search procedure. When this is the case, we apply the results
of Theorem 2 and eq. (4) to calculate the optimal fraction
for the final step and then proceed backwards, calculating
the fractional policy at each preceding step until an interval
smaller than the desired final error is expected. Pseudocode
for finding the optimal policy starting with a given interval
of length L and subject to a desired final estimation error is
given in Algorithm 1.

Algorithm 1 Calculating Policy for Expected Convergence

1: Input: interval length L, penalty A, stopping error €

2: Initialize: oy + 1 — 23,1« 1
3: while L][[&; > ¢ do
3
4: TN—] < % — >\/(4pr1)
5: l+1+1
6: end while
70 N <1

C. Search Procedure Description

In the case where a search terminates only after a certain
estimation error has been obtained, we follow a two-phase
procedure. Before the search begins, we use the method
presented in Algorithm 1 to calculate the IV steps such that the
expected interval size is less than ¢. In the first stage of the
search, samples are taken according to this optimal N-step
policy. If the desired error has been met before all samples
have been taken, the search terminates. However, if the desired
error has not been met after these N samples, the algorithm

then performs a greedy search (optimal 1-step policy, line 7)
until the interval is sufficiently small. Pseudocode is provided
in Algorithm 2.

Algorithm 2 Finite Horizon Search

1: Input: policy z, stopping error

2: Imitialize: Xg <« 0, Yg < 1,a+ 0,0+ 1, n+ 1
3: while b —a > ¢ do

4. if n < N then

5: X 4 Ty

6: else

7: T <— % — %

8: end if

9: ifY,_1 =1 then

10: X, — X1 +z(b—a)
11:  else

12: Xn+ Xpn1—z(b—a)
13:  end if

14 Y, « f(X,)

15 a=max{X;:Y;=1,i<n}
16: b=min{X,:Y; =0,i <n}
17 0, « ot

18: n<+<n+1

19: end while

IV. SIMULATIONS

In this section, we verify the performance of the proposed
finite-horizon sampling policy. To obtain a profile of perfor-
mance as a function of A\, we range 6 over 100 uniformly-
spaced values in the interval (0,1) for 5 values of A €
[0.1, 1.8]. Fig. 3 shows the resulting average entropy, distance
traveled, and final cost for each corresponding N-step policy.
The figures demonstrate that our proposed method indeed
obtains a tradeoff between average final entropy and distance
traveled via the tuning parameter A. Further, comparing with
the expected entropy and distance calculated in Section III-A,
we see that our theoretical results closely match the empirical
values obtained. Additionally, we see that as the number of
samples increases the total cost decreases. While our cost
function trades off final entropy against distance traveled (and
thus prefers a longer procedure in which more, less aggressive
samples will result in both less error and less potential
overshoot), another potential cost function to minimize is the
total sampling time.

A. Minimizing Sampling Time

If we seek to minimize the total time that a vehicle takes
to complete a search, we need to consider a cost function of
the form

JT(.’El, .. .,Z‘N) =T,N+1T.D.

where T, and 7} represent the time per sample and time
per unit distance travelled. In order to minimize this cost in
expectation, we follow a three-step procedure. First, calculate
the number of samples, N, and total distance, D), expected
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Fig. 4: Components of the time-penalized FH search procedure. Left: N and D) to reach an interval of 0.01 for each value of A. Middle: values of A\* for
each ratio of Ty /Ts. Right: average improvement of FH search over QS and UTB algorithms.

for each value of A to converge below a desired error €. Then,
for every ratio of T3 /T, select \* according to

A* =arg min T, Ny + T Dy.
A

Finally, perform the N-step FH search for the selected value
of A according to section III-C and Algorithm 2.

We compare the performance of this method with the
existing QS [10] and Uniform-to-Binary search (UTB) [11]
algorithms. We consider the same grid over 6 for 1000
different ratios of T} /T in the range of 1x 10~* to 1 x10° with
Ts = 100 as the base sampling cost. Fig. 4 shows the resulting
improvement in sampling time obtained via the proposed FH
policy. When the T3 /T ratio is small and the total search time
is short, we see an improvement of approximately 34% over
both UTB and QS. At the highest ratios of T} /Ts where the
search is much longer, the relative improvement decreases to
roughly 1-2%.

V. CONCLUSION

We have presented a novel active learning algorithm for
spatial sampling that optimally balances the final estimation
error and the distance traveled for a fixed number of samples.
We have derived the closed-form solution and to the best of
our knowledge, believe that this work is the first to provide a
theoretical guarantee of optimal search procedure for an envi-
ronment with non-uniform, dynamic sampling costs. We have
also shown how our solution generalizes existing approaches
to this problem, and empirical results indicate the performance
benefits of finite-horizon search over existing methods in the
literature.

A number of open questions remain. In this work, we have
considered only the case of noiseless measurements drawn
from a uniform distribution. Extending to noisy measurements
as done in [10] and non-uniform priors are important next
steps. While the search parameter A allows for various search
costs (sampling time, travel time, recharging, etc.) to be
approximated in a compact state space notation, we have only
provided a formula for converting travel and sample time
into our notation. Finally, by following [10, 18] we have
generalized a one-dimensional search to a two-dimensional
problem, but optimal methods for two-dimensional search
continues to be an interesting problem.
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