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Well-resolved measurements of the small-scale dissipation statistics within turbulent
channel flow are reported for a range of Reynolds numbers from Reτ ≈ 500 to
4000. In this flow, the local large-scale Reynolds number based on the longitudinal
integral length scale is found to poorly describe the Reynolds number dependence
of the small-scale statistics. When a length scale based on Townsend’s attached-eddy
hypothesis is used to define the local large-scale Reynolds number, the Reynolds
number scaling behaviour was found to be more consistent with that observed in
homogeneous, isotropic turbulence. The Reynolds number scaling of the dissipation
moments up to the sixth moment was examined and the results were found to be
in good agreement with predicted scaling behaviour (Schumacher et al., Proc. Natl
Acad. Sci. USA, vol. 111, 2014, pp. 10961–10965). The probability density functions
of the local dissipation scales (Yakhot, Physica D, vol. 215 (2), 2006, pp. 166–174)
were also determined and, when the revised local large-scale Reynolds number is
used for normalization, provide support for the existence of a universal distribution
which scales differently for inner and outer regions.
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1. Introduction

One of the most significant milestones in the study of turbulence is the classical
theory presented by Kolmogorov (1941). A cornerstone of this theory is the
assumption that the small scales of turbulence are homogeneous and isotropic.
Furthermore, these smallest scales are assumed to demonstrate universal characteristics
which depend only on the mean rate of dissipation of the turbulent kinetic energy,
〈ε〉, and the kinematic viscosity, ν. Thus leading to the definition of the Kolmogorov
length scale, ηK ∼ (ν3/〈ε〉)1/4. A great body of evidence has been produced to support
Kolmogorov’s concept of small-scale universality, particularly through collapse of the
high-wavenumber portion of the energy spectrum scaled using ν, 〈ε〉 and ηK (i.e.
Grant, Stewart & Moilliet 1962; Saddoughi & Veeravalli 1994).

In Kolmogorov’s theory, the average flux of energy from the turbulent-kinetic-
energy-producing turbulence, characterized by length scale L, down to the smallest
scales, characterized by ηK , is equal to 〈ε〉 for sufficient separation of L and ηK . Here,
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〈 〉 describes an ensemble-averaged quantity and 〈ε〉 can be found by averaging the
instantaneous dissipation rate of turbulent kinetic energy

ε = ν
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where t is time, ui represents the fluctuating components of the velocity vector such
that ui(x, t) = Ui(x, t) − 〈Ui(x, t)〉 with Ui the components of the instantaneous
local velocity vector. Within the inertial subrange, in which the spatial separation
represented by vector r is in the range L � |r| � ηK , the longitudinal structure
functions, Sn are predicted to follow power law behaviour such that

Sn ≡ 〈(δru)n〉 = An

( |r|
L

)ζn

, (1.2)

where δru is the longitudinal velocity increment defined as

δru = (ui(xj + rj) − ui(xj))

(
ri

|r|
)

. (1.3)

According to Kolmogorov’s theory, ζn = n/3. However, experimental investigations
(for example Anselmet et al. 1984) have revealed that ζn exhibits anomalous scaling
whereby it deviates from Kolmogorov’s linear scaling and instead has nonlinear
dependence on n. This anomalous scaling has been attributed to spatial intermittency
in the fine structure of the turbulence. Several phenomenological models have been
introduced to account for this intermittency, perhaps the most prominent being that
of multifractal formalism (for example, see Frisch 1995).

The dissipation range has also long been recognized as being highly intermittent
(Batchelor & Townsend 1949) with ε(x, t) being composed of spatially intermittent
regions of high rates of turbulent dissipation. Thus, given that ηK is defined using the
mean dissipation rate, it does not reflect the intermittent nature of ε. It is therefore
necessary to refine the notion of one mean dissipation length scale to that of a whole
continuum of local dissipation scales. One approach is to define a local dissipation
scale, η, whereby

η|δηu| ∼ ν (1.4)

in which the velocity increment δηu is found from (1.3) when |r| = η (Paladin &
Vulpiani 1987). This is equivalent to identifying instances where the local Reynolds
number based on η and δηu is unity. This Reynolds number is then also associated
with fluid motion at the cross-over scales between the inertial subrange and the
viscous dissipation range.

Within the framework of multifractal formalism (Paladin & Vulpiani 1987; Nelkin
1990; Frisch & Vergassola 1991) it has been demonstrated that

η(h) ∼ LRe−1/(1+h)
L , (1.5)

where there exists a spectrum of h related to the fractal dimension of their support.
The local large-scale Reynolds number ReL = 〈|δLu|〉L/ν describes the energy
containing motions, with δLu defined from (1.3) when |r| = L. The Kolmogorov result

that ηK ∼ LRe−3/4
L , is recovered for h = 1/3; however, a consequence of intermittency

is that h < 1/3, resulting in the existence of local cross-over scales smaller than ηK .
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Biferale (2008) used these foundations to produce an analytical expression for the
probability density function (PDF) of η.

An alternative approach to modelling the continuum of dissipation scales was
suggested by Yakhot (Yakhot & Sreenivasan 2004, 2005). By letting η2n be an order
dependent matching distance between the inertial and dissipative behaviour of S2n(|r|),
the scale η2n becomes

η2n = (〈[∂xu]2n〉)1/(ζ2n−2n)[(2n − 1)!!〈ε〉2n/3L(2n/3)−ζn]1/(2n−ζ2n). (1.6)

This implies that the cross-over scale η is a random field, in that the value of η
depends on the order of the structure function being considered. Yakhot & Sreenivasan
(2004) found, using the exact equations for the nth-order longitudinal structure
functions, that

η2n ∼ LRe1/(ζ2n−ζ2n+1−1)
L , (1.7)

which recovers the Kolmogorov result when ζn = n/3. When combined with (1.4) for
|r| → η and assuming 〈∣∣∣∣∂u

∂x

∣∣∣∣
n〉

≈
〈∣∣∣∣δηu

η

∣∣∣∣
n〉

(1.8)

an expression for the Reynolds number dependence of the moments of ε can be found
such that

〈εn〉 ∼ Redn
L , (1.9)

where

dn = n + ζ4n

ζ4n − ζ4n+1 − 1
. (1.10)

Support for this dependence was found within the direct numerical simulation (DNS)
results for box and channel flow turbulence (Schumacher 2007; Hamlington et al.
2012) and its universality amongst different types of flow recently demonstrated by
Schumacher et al. (2014) through comparison of the Reynolds number dependence
of the moments of ε produced within box, channel flow and Rayleigh–Bérnard
convection.

As η is a random field, a description of its PDF is of interest and Yakhot (2006)
found an analytical expression describing the PDF of η. When normalized by η0,
this analytic result was found to be in good agreement with the PDFs calculated
from the very high-resolution DNS data of three-dimensional homogeneous isotropic
box turbulence of Schumacher (2007). The scale η0 can be considered approximately
analogous to ηK (Hamlington et al. 2012) and is found from (1.7). To do so, the
approximation ζ2n = 2an − 4bn2 is utilized with a = 0.383 and b = 0.0166 (Yakhot

2006) giving η0 = LRe−1/(1+a−b)
L = LRe−0.73

L . The ratio η0/ηK is thus expected to be
close to unity, increasing slowly as Re0.02

L .
PDFs of η/η0 were also determined experimentally by Bailey et al. (2009) in

low-Reynolds-number turbulent pipe flow at the centreline and within the upper
logarithmic layer. These results were found to be in good agreement with those
calculated from homogeneous isotropic DNS, supporting the hypothesis that the form
of the PDF, and hence the organization of η, is universal; even for low Reynolds
numbers where there is no discernible inertial subrange.

Similar PDFs were also measured by Zhou & Xia (2010) in turbulent Rayleigh–
Bérnard convection. However, despite finding good agreement between the PDFs
calculated at different locations within the flow and at different Rayleigh number, they



On the universality of local dissipation scales in turbulent channel flow 237

found a higher probability of scales smaller than η0 compared to Schumacher (2007)
and Bailey et al. (2009). They attributed this discrepancy to increased intermittency
caused by the presence of thermal plumes smaller than ηK .

Recently, Hamlington et al. (2012) calculated the PDFs of η/η0 from DNS results
within turbulent channel flow and found that they exhibited strong wall-normal
dependence, particularly near the wall. Similar location dependence of the PDF was
also observed in free-shear flow by Morshed, Venayagamoorthy & Dasi (2013) who
related this spatial dependence to the large-scale shear using a mean-shear Reynolds
number. In both studies, the PDFs determined within regions of reduced shear were
found to be in agreement with those measured in homogeneous isotropic and nearly
homogeneous-isotropic turbulence by Schumacher (2007) and Bailey et al. (2009).

These recent results imply that mean shear impacts the distribution of the local
dissipation scales, at least at the low Reynolds numbers at which these studies were
conducted. Although universality in Reynolds number dependence of 〈εn〉/〈ε〉n was
observed between different flows by Schumacher et al. (2014), it was found using data
from homogeneous isotropic turbulence, the centreline of channel flow and the centre
of the Rayleigh–Bérnard convection cell; locations where mean shear is negligible or
minimized. As implied by the assumption of homogeneity and isotropy in the small
scales, truly universal behaviour of the small-scale statistics would require that they
should also be independent of location within a particular flow.

In the present paper, we experimentally examine the Reynolds number and mean
shear dependence of the dissipation moments and η distributions in channel flow and
observe that much of the previously observed spatial dependence can be attributed to
how the results are normalized. To obtain these statistics we took advantage of recent
advances in thermal anemometry and employ a nanoscale thermal anemometry probe
(Bailey et al. 2010; Vallikivi & Smits 2014) to resolve the small-scale turbulence in
the channel flow with sub-Kolmogorov-scale resolution.

2. Experiment description
The experiments were conducted in a turbulent channel flow wind tunnel located at

the University of Kentucky. This facility had a channel half-height of h = 50.8 mm
and could achieve area averaged velocity Ub = 30 m s−1, resulting in Reynolds
numbers up to Reb = 2hUb/ν = 1.9 × 105 or Reτ = huτ /ν = 4000, where uτ = (τw/ρ)0.5

with τw the wall shear stress and ρ the density. Air was driven through the channel
using an in-line blower located at the inlet with the flow conditioned by a series of
six flow conditioning screens and a 9:1 contraction before entering a channel section.
The channel section had an aspect ratio of 9:1, expected to provide quasi-2-D flow at
the centreline (Zanoun, Durst & Nagib 2003) and was equipped at the channel inlet
with a boundary-layer trip consisting of a 50 mm wide section of 120 grit sand paper
followed by a 100 mm wide section of 60 grit sandpaper. The distance from the
channel inlet to the test location was 246h, allowing the turbulence to reach a fully
developed state naturally (Monty 2005) before entering the measurement section. This
measurement section was 24h long and was equipped with an insert located at the
centre of the upper surface for introducing instrumentation into the flow. Following
the measurement section, an additional 12h long section isolated the measurement
section from exit conditions. Surface roughness was measured on a sample of the
measurement section wall using a stylus surface profilometer. The sample was found
to have an r.m.s. roughness height of 268 nm along the grain of the aluminium and
334 nm across the grain, corresponding to 2.5 % of the viscous length scale at the
highest Reynolds number reported here.
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To determine the friction velocity, the channel facility was outfitted with static
pressure taps every 12h along its length, which allowed determination of the pressure
loss in the fully-developed section of the channel using a simple momentum balance
(see, for example Pope 2000). For this experiment, the nine pressure taps closest
to the measurement section were measured by an array of 1000 Pa transducers. All
transducers were calibrated before the experiment using a liquid manometer with
±0.06 Pa accuracy.

Measurements of streamwise velocity, U1, were conducted over a range of
wall-normal distances, y = x2, at Reτ = 490, 950, 2080 and 4100. At the lowest
Reynolds number, these measurements were made using a conventional hot-wire
probe constructed from platinum-core Wollaston wire etched to a sensing length
of 
 = 0.50 mm and diameter of 2.5 μm. The resulting 
+ = 
uτ /ν < 5 with the
maximum 
/ηK ≈ 2 occurring close to the wall. The probe was driven by a constant
temperature anemometer (Dantec Streamline CTA) system at an overheat ratio of 1.6
producing a measured square-wave frequency response of fsw = 60 kHz. The CTA
signal was low pass filtered at 60 kHz using an analogue 4-pole Butterworth filter
(Krohn-Hite model 34A) before being digitized at fs = 200 kHz by a 16-bit data
acquisition system (National Instruments NI-PCI 6123).

To achieve the higher spatial and temporal resolutions required for the three higher
Reynolds number cases, a nanoscale thermal anemometry probe (NSTAP) was used
(Bailey & Smits 2010; Vallikivi & Smits 2014). These probes have been successfully
employed in the measurement of turbulent wall-bounded flows at both low and high
Reynolds numbers (Vallikivi et al. 2011; Hultmark et al. 2012, 2013; Bailey et al.
2014). The probe used in this study had a sensing element measuring 60 μm long
× 2 μm wide × 100 nm thick, resulting in 
+ = 1, 3 and 5 with corresponding
maximum 
/ηK ≈ 0.4, 1.1 and 2.12. The NSTAP was operated in the same system as
the conventional probe, although at a resistance overheat ratio of 1.2 which resulted
in a square-wave frequency response of fsw = 120, 160 and 111 kHz for Reτ = 950,
2080 and 4100, respectively. Corresponding low-pass filter frequencies were 100, 150
and 100 kHz and digitization frequencies were fs = 200, 300 and 200 kHz.

Calibration of the probes took place in situ, directly prior to, and following, each
measurement run using a Pitot probe located at the channel centreline. Static pressure
was measured by two interconnected 1 mm diameter static taps located 25.4 mm
apart, equidistant from the centre plane. To maximize sensitivity over the range of
calibration velocities, the pressure difference between Pitot tube and static taps was
measured simultaneously by four transducers having sensitivities of 12.5, 125, 750
and 1000 Pa. As with the static taps along the channel length, all transducers were
calibrated before the experiment using a liquid manometer with ±0.06 Pa accuracy.
Air temperature was monitored by a thermistor probe located in the measurement
section of the channel and CTA bridge voltages corrected in post-processing for any
measured temperature drift (Tavoularis 2005). A fourth-order polynomial was used to
fit the calibration curves which were used to convert the measured time dependent
voltage into time series of U1.

To traverse the probes in the channel, a nano-stepping traverse equipped with a
high-accuracy linear encoder was used (500 nm resolution and ±3 μm accuracy).
The relative position of the hot-wire relative to the wall was set using an electrical
contact switch which triggered at the initial probe position for each measurement. The
distance of the probe to the wall at this initial measurement location was determined
with a distance measuring microscope with an accuracy of ±5 μm (Titan Tool Supply
ZDM-1) and was nominally 85 μm for the hot-wire probe and 50 μm for the NSTAP.
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Reτ Ub uτ ν/uτ Probe 
+ fsw fs TsUb/h Symbol
(m s−1) (m s−1) (μm) (kHz) (kHz)

490 2.7 0.15 100 HW 5 60 200 21 000 0
950 5.6 0.28 53 NSTAP 1 120 200 43 000 1
2100 14.2 0.64 23 NSTAP 3 160 300 83 900 3
4100 29.2 1.2 13 NSTAP 5 111 200 34 500 E

TABLE 1. Experimental conditions.

Traverses were made with the number of measurement positions and sample times,
Ts, adjusted for each Reynolds number to ensure converged statistics for each case.
Experimental conditions are summarized in table 1.

3. Describing the large scales
Within this section we present the measured statistics traditionally used to describe

the small scales and use these results to justify the need for a modified descriptor
for L in the local large-scale Reynolds number. As typically required for thermal
anemometry (i.e. Meneveau & Sreenivasan 1991), Taylor’s frozen flow hypothesis
(Taylor 1938) was invoked in the calculation of all spatial statistics in order
to translate temporal information into spatial information. Here, the local mean
streamwise velocity was assumed to be the convective velocity of all turbulent scales
such that �x1 ≈ 〈U1〉�t. Although Taylor’s hypothesis is generally accepted to be
a reasonable approximation for the smallest scales of turbulence, which are the
focus of the current study, it is also well known to introduce error in translating the
larger scale, long-wavelength motions from the temporal to spatial domain (i.e. Zaman
& Hussain 1981; del Álamo & Jiménez 2009).

To estimate ηK an estimate of 〈ε〉 must first be found. One approach is to
assume local isotropy which allows 〈ε〉 to be determined from integration of the
one-dimensional dissipation spectrum D(k1) (Townsend 1976) such that

〈ε〉 ≈ 15ν

∫ kc

0

D(k1) dk1 ≈ 15ν

∫ kc

0

k2
1E11(k1) dk1. (3.1)

Here D(k1) was, in turn, approximated using the longitudinal one-dimensional energy
spectrum E11(k1) and the streamwise wavenumber found from Taylor’s hypothesis
using k1 ≈ 2πf /〈U1〉. Since the turbulence signals were oversampled in the present
measurements, the integration cutoff kc was required to prevent contamination of the
〈ε〉 estimate by the f 2 noise of the anemometer (Saddoughi & Veeravalli 1996). This
cutoff wavenumber was selected using the frequency where an inflection appeared in
the frequency spectrum. In other words, the frequency at which instrumentation noise
was of the same order as the turbulent signal.

The measured longitudinal one-dimensional energy spectra are shown in figure 1(a)
for several y positions at each Reτ with the corresponding one-dimensional dissipation
spectra presented in figure 1(b). The spectra in figure 1(a) have been scaled using
Kolmogorov scaling and, as expected, the scaled spectra collapse at large k1ηK . Note
that, even at the highest Reτ measured, there is little evidence of the existence of an
appreciable inertial subrange. In addition, it was found that for y+ = yuτ /ν < 30 the
collapse of the spectra degraded, which is believed to be due to a breakdown in the
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FIGURE 1. (a) Normalized longitudinal one-dimensional energy spectra measured at y+ ≈
30 and 100, and at y/h = 0.2, 0.5 and 1. (b) Corresponding estimate of the dissipation
spectra. Symbols as in table 1.

validity of the assumptions used to calculate 〈ε〉. For this reason, results from y+ < 30
are not included here.

The wall normal distribution of inner-scaled dissipation 〈ε〉+ = 〈ε〉0.4y/u3
τ is shown

alongside the inner-scaled Kolmogorov scale η+
K =ηKuτ /ν in figure 2(a,b), respectively.

In both cases, the inner-scaled profiles collapse within the range y+ < 0.2Reτ ,
consistent with the dependence of the small-scale properties within the inner layer
being dependent only on wall shear stress and viscosity. The collapse within the
range y+ < 100 is particularly interesting, given the lack of Reynolds number scaling
of the statistics of the large scales for this flow, as reflected, for example, in the
growth in the near-wall peak in 〈u2

1〉+ with Reτ (i.e. as discussed in Marusic et al.
2010), but is consistent with the scaling observed by Hutchins et al. (2009) in their
high-pass filtered streamwise Reynolds stress.

Although the statistics describing the smallest scales follow inner scaling, Reynolds
number dependence near the wall can be observed in the Taylor microscale, which
here is estimated from

λf ≈
(

30ν〈u2
1〉

〈ε〉
)0.5

(3.2)

and shown as profiles of λ+
f = λf uτ /ν in figure 2(c). Given that λf is a hybrid scale

formed from a mix of large and small-scale statistics, it is not surprising that the
Reynolds number dependence of the large-scale statistics is evident in λ+

f .
It is often convenient, particularly in homogeneous isotropic turbulence, to

characterize the turbulence using the Taylor-scale Reynolds number

Reλ = λf 〈u2
1〉0.5

√
2ν

. (3.3)

The wall-normal dependence of Reλ is provided in figure 2(d). Whereas at low Reτ the
maximum value of Reλ occurs near the wall at the location of the near-wall production
cycle, as Reτ increases a local maximum of Reλ develops in the outer layer near
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FIGURE 2. Wall normal dependence of: (a) mean dissipation rate; (b) Kolmogorov scale;
(c) Taylor microscale; (d) Taylor Reynolds number; (e) integral length scale; and (f ) large-
scale Reynolds number. Symbols as in table 1.

y+ ≈ 0.3Reτ . The increase of this outer peak with Reτ outpaces the near-wall increase
in Reλ with Reτ . This reflects the increasing confinement in large scales as the near-
wall production cycle moves closer to the wall. Thus, even though the turbulence
intensity near the wall increases with Reτ , the increase in turbulence Reynolds number
is limited. Conversely, in the outer layer, the large scales remain O(h) and the increase
in turbulent kinetic energy production with increasing Reτ results in a comparatively
larger increase in Reλ compared to near the wall. Note that the non-monotonic wall-
normal dependence of Reλ results in multiple wall-normal locations having identical
Reλ at the same Reτ .

The integral length scale is commonly used to describe the scale of the energy-
containing eddies and is defined from the longitudinal autocorrelation. Here, Taylor’s
hypothesis is used to find the integral length scale as

L = 〈U1〉
〈u2

1〉
∫ τc

0

〈u1(t + τ)u1(t)〉 dτ . (3.4)
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FIGURE 3. Dependence of (a) L/η and (b) Reλ on ReL and dependence of (c) L∗/η and
(d) Re∗

λ on Re∗
L. Symbols as in table 1, solid symbols indicate measurement locations

where y/h < 0.5.

In practice, small experimental bias and precision errors often result in slow
convergence of the integral, so the an upper bound of τc was applied. The criterion
used here was that of integrating either to the first zero-crossing, or first inflection of
the autocorrelation, whichever occurs at a lower value of τ .

The wall-normal dependence of L+ = Luτ /ν is presented in figure 2(e) and is found
to be O(Reτ ) far from the wall, decreasing towards the wall. The corresponding
values of ReL are shown in figure 2( f ) and, as with Reλ, at a single Reτ there
exists multiple y locations with the same value of ReL. To calculate ReL, the average
velocity increment was estimated by time averaging |δLu| ≈ |u1(t + L/〈U1〉) − u1(t)|
for all t.

The non-monotonic wall-normal dependence of the statistics presented in figure 2
reveals the challenge of defining suitable Reynolds number scaling of the small-scale
statistics. For example, classical theory suggests L/ηK ∼ Re0.75

L and Reλ ∼ Re0.5
L (see,

for example, Frisch 1995). Thus, one would expect Reλ to have the same value at a
certain ReL, likewise for the ratio L/ηK . However, as shown in figure 3(a,b), this is
not the case. For both figure 3(a,b) the general trend agrees with the scaling predicted
by classical theory. It is also clear that there is both Reτ and y influence within these
trends. It is worthwhile noting that the Reτ dependence is evident even at relatively
high y/h, where the large-scale anisotropy is weak and thus the lack of scaling cannot
be attributed to anisotropy of the large scales.

In the phenomenological description of turbulence, the scale L is intended to
represent scales at the top of the inertial cascade and have nearly Gaussian statistics.
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However it is now understood that the large-scale structure of wall-bounded flow
consists of several classes coherent motions. Such motions include the sublayer
streaks observed by Kline et al. (1967), hairpin vortices in the near-wall region
(Head & Bandyopadhyay 1981), low wavenumber large-scale motions which have
been associated with the occurrence of bulges of turbulent fluid at the edge of the
wall layer (Kim & Adrian 1999; Guala, Hommema & Adrian 2006; Balakumar &
Adrian 2007) and meandering, very-large-scale motions or superstructures observed
in the overlap region and, for pipes and channel flows, the wake region as well (Kim
& Adrian 1999; Tomkins & Adrian 2005; Guala et al. 2006; Balakumar & Adrian
2007; Hutchins & Marusic 2007; Monty et al. 2007, 2009). In addition, large-scale
eddies far from the wall interact with smaller scales near the wall by introducing
long wavelength velocity fluctuations through a modulation process (Mathis, Hutchins
& Marusic 2009).

Given the complex makeup of the energy containing motions, the integral scale will
represent an amalgam of these multiple influences and bias towards longer motions,
particularly near the wall, rather than accurately represent eddies with approximately
Gaussian statistics at the top of the inertial cascade, as assumed in theoretical
treatments (i.e. as done by Yakhot 2006). Thus, it should not be surprising that use
of the integral scale for defining ReL in channel flow is ineffective at capturing the
same Reynolds number scaling observed in simpler flows.

Instead, we define a length-scale L∗ intended to describe the locally smallest energy-
producing (i.e. active) eddies. Correspondingly we can define

Re∗
L = 〈|δLu∗|〉L∗

ν
, (3.5)

λ∗
f =

(
30ν〈(δLu∗)2〉

〈ε〉
)0.5

, (3.6)

and

Re∗
λ = λ

∗
f 〈|δLu∗|〉√

2/ν
, (3.7)

where δLu∗ is the longitudinal velocity increment, defined in (1.3), with |r| = L∗.
To find L∗, we assume validity of Townsend’s attached eddy hypothesis, which

states that Reynolds-stress-contributing eddies centred at y are confined by the wall
and therefore cannot have a scale larger than y (Townsend 1976). We also note that
Perry, Henbest & Chong (1986) hypothesized that the energy containing range of
the power spectrum will depend only on uτ , k1, y and h given that eddies will only
interact if their sizes are comparable. This leads to the assumption that non-local
eddies of scale h will contribute only to the low-wavenumber range of the spectrum
for y � h such that

E11

u2
τ

= g1(k1h) (3.8)

and that, following the attached eddy hypothesis, the moderate to high wavenumber
portion of the energy-containing range of the spectrum will consist of contributions
from eddies scaling with y such that

E11

u2
τ

= g2(k1y). (3.9)
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Although Perry et al. proposed that at sufficiently high Reynolds number an overlap
region of validity would exist, leading to a k−1

1 scaled subrange, experimental evidence
provided by Morrison et al. (2004) and Vallikivi, Ganapathisubramani & Smits
(2015), amongst others, find little support for this overlap region. However, these
studies do demonstrate that within the turbulent wall region (y/h � 0.15) the low
wavenumber portion of the spectrum scales with h and the high wavenumber portion
of the spectrum scales with y, as predicted by (3.8) and (3.9). This suggests that
the smallest energy-containing eddies, and thus the top of the inertial cascade, is
composed of eddies which scale with y. Note also that the largest possible isotropic
eddies centred at a given y will have a scale ∝y.

We therefore assume that an appropriate length scale to describe the local, active
contributions to the Reynolds stress, and upper bound of the inertial subrange, is one
that is ∝y for y � h which leads to the definition of L∗ = 0.8y. The constant of
proportionality of 0.8 has no theoretical basis but was simply the value found to be
most effective at non-dimensionalizing the dissipative motions for y � 0.5h. However,
the results were found to be largely insensitive the constant selected with the greatest
sensitivity found in the y dependence of the local dissipation scales presented later in
§ 5.

It is therefore expected that L∗ will result in a value of local-large-scale Reynolds
number representing local contributions to Reynolds stress that are free of the
non-local, large-scale contributions to velocity fluctuations via amplitude modulation
(referred to as ‘inactive’ eddies by Townsend) which cause L near the wall to be of
the same order as h.

The improvement in scaling behaviour through the use of L∗ is demonstrated by the
dependence of L∗/η and Re∗

λ on Re∗
L as shown in figure 3(c,d), respectively. In both

cases, the agreement with the classical theory is much improved for y/h < 0.5, with
the Reτ and y influence on the turbulence parameters in this range captured by the
revised description of the large scales. The resulting collapse of the results suggests
that Re∗

L is suitable for describing the Reynolds number dependence of the small-scale
dissipative statistics in wall-bounded flow, at least for y/h < 0.5, where the attached
eddy hypothesis can be assumed to be valid.

4. Moments of dissipation rate
As previously noted, through definition of dissipation as a fluctuating field, Yakhot

(2006) arrived at (1.9) as a description for the Reynolds number dependence of
the moments of the dissipation rate. This theory was tested by Schumacher (2007)
using low-Reynolds-number DNS of homogeneous isotropic turbulence and again
by Hamlington et al. (2012) using DNS of turbulent channel flow. In both cases,
good agreement was found with the theory. However, for turbulent channel flow,
Hamlington et al. (2012) observed that the moments of the dissipation rate exhibited
both wall-normal dependence and Reτ dependence, and thus only the Reynolds number
dependence of the nearly isotropic centreline was used to evaluate the exponent n.
Therefore, it has yet to be demonstrated that the dissipation rate in the increasingly
anisotropic turbulence for y < h follows the predicted scaling.

As the thermal anemometry probe used in the present study was only capable of
resolving the streamwise component of velocity, measurement of the all components
of the time-dependent local rate-of-deformation tensor was not possible. Hence, the
dissipation rate was calculated using the one-dimensional surrogate

ε(t) ≈ 15ν

(
∂u1

∂x1

)2

. (4.1)
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FIGURE 4. (a) Normalized dissipation moment. (b) Normalized dissipation moments.
Symbols as in table 1 with solid symbols in (a) indicating measurement locations where
y > 0.6h and solid symbols in (b) indicating measurement locations where y < 0.5h.

As noted by Pope (2000) for example, such surrogates are only assumed to be
qualitatively similar to the instantaneous dissipation. Here, to estimate this surrogate,
Taylor’s hypothesis and a first-order finite difference were employed such that

ε(t) ≈ 15ν
1

〈U1〉2

[
u1(t + �t) − u1(t)

�t

]2

(4.2)

with �t = 1/fs. In the present case, to remove contamination from instrumentation
noise, an additional zero-phase, eigth-order digital Butterworth filter was applied to
the data with a cutoff frequency selected at the frequency at which the spectra is at
a local minimum. Estimates of 〈ε〉 determined from both (3.1) and (4.2) were found
to be in agreement, providing confidence in the implementation of (4.2).

The Reynolds number dependence of the normalized dissipation moments 〈εn〉/〈ε〉n

calculated from the time series determined from (4.2) is shown in figure 4 for n = 2–4.
When the Reynolds number dependence is examined in terms of the local large-scale
Reynolds number using the integral length scale, ReL, as is done in figure 4(a), there
is no clear trend in the data, and the Reτ and y+ dependence observed in Hamlington
et al. (2012) is observed. There is also little support for the scaling described by (1.9)
in these results.

However, when the Reynolds number dependence of the dissipation moments
is expressed using the local large-scale Reynolds number Re∗

L, there is significantly
improved collapse of the data amongst the results at different y and Reτ . For Re∗

L �200
the trend is reversed, suggesting insufficient separation between energy-containing and
dissipative motions for (1.9) to be valid. Hamlington et al. (2012) also observed a
similar increase for their lowest Reynolds number case and attributed it to enhanced
dissipation introduced by bursting of coherent structures. For Re∗

L > 200, the predicted
power law behaviour can be observed, at least up to y/h < 0.8, which exceeds the
limit at which Re∗

L is expected to be a valid descriptor for the large scales. It is
expected that as y → h, and the large-scale turbulence becomes increasingly isotropic,
L becomes a more suitable descriptor for the large scales. Indeed, as shown in
figure 4(a) in which data points where y > 0.6h have been highlighted, far from
the wall the dissipation moments appear to follow a power law scaling with ReL.
This is coarsely analogous to the inner/outer scaling used to describe the Reynolds
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FIGURE 5. (a) Normalized dissipation moment data used in the fit to (1.9). Symbols
as in table 1 with hollow symbols indicating data points where y < 0.6h and horizontal
axis Re∗

L whereas solid symbols indicating data points where y > 0.8h and horizontal axis
ReL. (b) Results from fit of (1.9) for n = 1–6. Square symbols are the values found by
Schumacher et al. (2007) from DNS of homogeneous isotropic turbulence, circles are
results from the fit using Re∗

L and data points where y < 0.6h and were found to be
dn =[0.18 0.50 0.92 1.4 1.8]. Triangles are results from the fit using data points using ReL
and y/ > 0.85h and were found to be dn = [0.17 0.48 0.89 1.3 1.8]. Solid line (1.9) using
(4.3). Error bars represent 90 % confidence level of n estimated from regression analysis.

scaling of the mean flow and, to a lesser extent, the Reynolds stresses, however the
ranges in which each form of scaling applies appears to be slightly different in the
present case.

To quantitatively compare the Reynolds number dependence to the existing theory,
the exponent dn was determined for n = 2–6 by separately fitting (1.9) for the range
Re∗

L > 300 and y/h < 0.6 using Re∗
L, and for the range y/h > 0.8 using ReL. The

two sets of data points used in this fit are shown in figure 5(a) and the resulting
dependence of dn on n is shown in figure 5(b). Also shown in figure 5(b) are the
homogeneous and isotropic turbulence DNS results of Schumacher, Sreenivasan &
Yakhot (2007) and (1.9) with ζn estimated using

ζn ≈ 1.15n
3(1 + 0.05n)

(4.3)

as provided in Yakhot & Sreenivasan (2004). Not only is excellent agreement found
between the Re∗

L dependent scaling near the wall and the ReL dependent scaling in
the outer layer but also, for n � 4, with the results of Schumacher (2007) and the
theory of Yakhot (2006). Note that the agreement with the theory decreases as n
increases, uncertainty in the measured moments decreases, (1.9) requires increasingly
higher moments, and the validity of (4.3) decreases. However it is apparent that the
present results support the validity of the scaling suggested by (1.9) not only for
homogeneous isotropic turbulence but also for anisotropic, channel-flow turbulence,
with the caveat that the local large-scale Reynolds number must be suitably defined
for the channel-flow case.

5. Scaling of local dissipative scales
As noted earlier, although initial studies of homogeneous or near-homogeneous

turbulence (Schumacher 2007; Bailey et al. 2009) suggested that the PDFs of η were
universal, subsequent investigations in which the PDFs of dissipation scales were
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FIGURE 6. (Colour online) Forms of the PDF of local dissipation scales normalized by η0

for Reτ = 490, 950 and 2080. Line style indicates Reτ with dash-dot-dot lines indicating
Reτ = 490, dashed lines indicating Reτ = 950, and solid lines indicating Reτ = 2080.

determined in turbulent shear flows (Hamlington et al. 2012; Morshed et al. 2013)
have indicated that they were dependent on the local large-scale shear. However, § 4
demonstrated that when the length scale in the local large-scale Reynolds number is
selected to better describe the inertial eddies at the upper bound of the inertial
subrange, then the Reynolds number dependence of the dissipation rate better
reflects the predicted behaviour within the high shear region near the wall. Here,
we investigate the impact that selection of integral scale descriptor has on the scaling
of the distribution of local dissipation scales, η.

Following (1.4), the PDF of η represents the probability of an eddy of length
scale r1 = η having a local Reynolds number Reη = |δru|r1/ν ∼ 1. The calculation of
the distribution of these scales largely follows that of Bailey et al. (2009), whereby
the velocity difference at time t is estimated by assuming r1 ≈ 〈U1〉�t and that
δru ≈ [u1(t + 〈U1〉�t) − u1(t)]. For a particular discrete measurement time, t, Reη

was calculated over the range 0 < r1 < 4L. Each instance where Reη was between
0.5 and 2 was counted as a single occurrence of dissipation at a scale η = r1. This
process was performed for all t to generate Q(η), the count of occurrences when
0.5 < Reη < 2 for each value of η. A PDF of η could then be found by normalizing
such that ∫ 4L

0

Q(η) dη = 1. (5.1)

Note that the integral does not converge as the upper bound increases. It is not clear
if this is an artefact of using Taylor’s frozen flow hypothesis or a characteristic of
the PDF. However, the analytical calculations of the PDF made by Biferale (2008)
had power law decay of the large-scale tails, which produced similar behaviour. The
PDFs were calculated with unfiltered time series, as well as with the digitally filtered
time series used for the analysis in § 4, and were found not to be impacted by the
presence or absence of filtering. However, the PDFs at Reτ = 4100 were found to have
insufficient temporal resolution to resolve their small-scale tail and are not included
here.

The PDFs calculated from all measurement locations are shown in figure 6
normalized by η0 = LRe−0.73

L . The distributions normalized this way are consistent
with previously reported distributions determined experimentally, numerically and
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analytically. These distributions are highly skewed and characterized by a broad tail
stretching into the large scales, a peak near 2η0 and a much narrower tail at small
scales. Also, close inspection of figure 6 shows that the PDFs do not collapse. As also
observed in Hamlington et al. (2012), there is increasing probability of η/η0 occurring
at larger scales as y+ → 0. This wall-normal dependence is highlighted in figure 7(a,b)
which better displays the bias towards large scales for y+ < 100, highlighted by the
trend in the most probable scale, ηmax/η0. However, unlike Hamlington et al. (2012),
whose investigation was limited to Reτ < 600, in the present case there is also a
slight Reτ dependence evident.

Thus, when η0 is used as a scaling parameter, as in figure 7(a,b), the results
suggest non-universality of the small scales and dependence on the large-scale
shear (as also suggested by Morshed et al. (2013)). Although this non-universality
could be attributed to insufficient scale separation at the Reynolds numbers in the
present investigation, in the previous sections, L was demonstrated to be an imperfect
descriptor for the large scales and hence the normalization parameter η0 derived from
L is also likely to be an imperfect descriptor of the small scales. Instead, following
§§ 3 and 4 we define

η∗ = L∗Re∗ −0.73
L . (5.2)

The PDFs of η are shown normalized by η∗ in figure 7(c) for y/h < 0.5 and
demonstrate greatly improved collapse when compared to figure 7(a). Although
not evident in figure 7(c), some scatter is evident in the small-scale tail of the
PDFs normalized by η∗ when viewed on logarithmic axes, but it is likely that this
scatter is due to experimental error introduced by the stricter temporal resolution
requirements which occur as Reτ increases. Note that the analytical PDF of Biferale
(2008) demonstrated Reynolds number dependence in the small-scale tail, although
in the form of an increasingly wider tail at higher Reynolds numbers which was the
opposite of the behaviour observed in the present results.

The improved collapse when normalized by η∗ is highlighted in the wall-normal
dependence presented in figure 7(d). For y/h < 0.5, ηmax/η

∗ is constant for all Reτ

with the contours of Q(η/η∗) also showing much less Reτ dependence when compared
to figure 7(b). For y/h > 0.5 there is increased Reynolds number dependence in the
PDFs as the attached eddy hypothesis used to define L∗ becomes increasingly invalid.
However, as noted by both Bailey et al. (2009) and Hamlington et al. (2012), scaling
with η0 results in collapse of the PDFs far from the wall, re-iterating the inner/outer
scaling analogy observed in § 4 in which near the wall, the PDFs can be expected to
normalize on η∗ = f (L∗) and far from the wall the PDFs can be expected to normalize
on η0 = f (L).

6. Conclusions
Measurements with high temporal and spatial resolution were conducted in turbulent

channel flow up to Reτ ≈ 4000 using a nanoscale thermal anemometry probe. The
data were used to examine the scaling behaviour of the dissipative range of turbulence.
Specifically, through analysis of the Reynolds number dependence of the moments of
dissipation rate and the distribution of the dissipative length scales.

In conventional analysis of the small-scale structure, the energetic turbulence is
described by a local large-scale Reynolds number, ReL using length and velocity
scales intended to describe the turbulence at the top of the inertial cascade. In
practice, this large-scale Reynolds number is often implemented using the local
integral length scale of the turbulence. However, it was found that in channel flow
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FIGURE 7. (Colour online) (a) PDFs of local dissipation scales normalized by η0 for
y < 0.5h from Reτ = 490, 950 and 2080 and (b) isocontours of all PDFs from Reτ = 490,
950 and 2080 normalized by η0 showing wall normal dependence. (c) PDFs of local
dissipation scales normalized by η∗ for y < 0.5h from Reτ = 490, 950 and 2080 and
(b) isocontours of all PDFs from Reτ = 490, 950 and 2080 normalized by η∗ showing
wall normal dependence. Lines indicate Reτ with dash-dot-dot lines indicating Reτ = 490,
dashed lines indicating Reτ = 950, and solid lines indicating Reτ = 2080. Symbols in (b,d)
as in table 1 showing location of maximum probability with filled symbols indicating
measurement points where y < 0.5h. Contour levels in (b,d) are spaced 0.025 apart.
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the use of the integral length scale to define ReL resulted in non-unique values of
small-scale statistics at a single value of ReL. This potentially suggests a breakdown of
classical scaling, most likely due to the introduction of additional length and velocity
scales by the presence of the solid boundary. The non-unique scaling behaviour
also runs contrary to the concept of small-scale universality, whereby one would
expect the scaling of small-scale statistics to be uniquely defined by the large-scale
Reynolds number (as employed as a test of universality by Schumacher et al. 2014,
for example), and to be independent of location and independent of anisotropy of the
large scales.

In wall-bounded flow, where there are both inner-scaled and outer-scaled regions,
defining a suitable local Reynolds number for scaling the small-scale statistics is
complicated by inner–outer region interactions. Near the wall, these interactions
prevent the integral length scale from obeying inner scaling. For example, recent
observations have demonstrated that the near-wall turbulence is modulated by
large-scale eddies in the outer region. Hence, the integral length scale near the
wall will be biased towards larger length scales; reflecting non-local, inactive (i.e.
non-Reynolds stress producing) outer-scaled influences.

Within the near wall region, the higher wavenumber bound of the energetic portion
of the energy spectrum scales with distance from the wall, which suggests a definition
of local large-scale based on distance from the wall, which results in a Reynolds
number here referred to as Re∗

L. This Reynolds number represents eddies closer to the
top of the inertial cascade and is thus more closely related to the theoretical intent of
the local large-scale Reynolds number. Furthermore, this length-scale definition also
represents the largest possible isotropic eddies at a given wall-distance.

When the Reynolds number dependence of the small-scale statistics was tested using
Re∗

L there was a noticeable improvement in the agreement between the Reynolds
number dependence of ηK and λf with that predicted for homogeneous isotropic
turbulence. The moments of the dissipation rate and distribution of dissipation
scales were also found to be better described by Re∗

L, with a clear transition of
scaling behaviour observed at Re∗

L ≈ 200. This transition is consistent with the
observations made by Schumacher et al. (2014) who noted that small-scale statistics
shift away from being Gaussian for Re > 250. Schumacher et al. also concluded that
the small-scale dynamics reach an asymptotic state at this relatively low Reynolds
number.

The scaling with Re∗
L degrades in the outer region, where the attached eddy

hypothesis loses validity. Instead, in the outer region, as noted by Bailey et al. (2009)
and Hamlington et al. (2012), the small-scale statistics scale with ReL, suggesting that
the dissipation scales follow an inner/outer scaling analogy in which near the wall
the dissipation can be expected to be better described by Re∗

L and far from the wall
the statistics can be better described by ReL. It was found that these disparate scaling
regions closely follow the traditional inner/outer wall-bounded flow definitions.

Although the results support universality of the small-scale description of turbulence
suggested by Yakhot & Sreenivasan (2004, 2005), Yakhot (2006) in high shear
turbulence, it should be noted that the revised definition of the local large scale
Reynolds number presented here has only been tested in channel flow at relatively
low Reynolds numbers. It is not yet clear whether this definition of Re∗

L will hold for
other wall-bounded flows, or at higher Reynolds numbers. Furthermore, by definition,
Re∗

L is limited to wall-bounded flow. A definition of local large-scale Reynolds number
suitable for generalized shear flow is still required to compare the local small-scale
statistics between different types of shear flows.
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