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Instrumented unmanned air vehicles (UAVs) represent a new way of conducting atmospheric science, 
particularly within the atmospheric boundary layer where the air is turbulent. However, using auto-
nomous UAVs for airborne measurement requires active control methods capable of following altitude 
commands despite unknown and turbulent disturbances to the air. Filtered dynamic inversion (FDI) 
is a control method with desirable command-following and disturbance-rejection properties for this 
application. FDI requires limited model information and is thus robust to parametric uncertainty, which 
arises in modeling UAV dynamics. In this paper, FDI is implemented in an altitude-flight-control system 
for an autonomous fixed-wing UAV. The control system is validated in simulation with a nonlinear 
dynamic model of a small fixed-wing UAV. The control system is also implemented and validated in flight 
experiments with turbulent wind conditions. Experimental results show that FDI yields improved altitude 
and pitch command following as compared to a classical (e.g., proportional-integral) flight-control system. 
In particular, experimental data demonstrate that the average power of the altitude and pitch command-

following errors with FDI is smaller than those with proportional-integral control.
© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Advances in sensor miniaturization have improved the viability 
of small unmanned air vehicles (UAVs) for a wide range of applica-
tions, including precision agriculture, search and rescue, and aerial 
surveillance. In addition to these vision-sensing applications, small 
UAVs can also be used to take meteorological measurements [1–5].

For several decades, manned aircraft have been used for at-
mospheric research such as conducting weather reconnaissance; 
measuring wind, temperature, and humidity profiles [6–8]; mea-

suring atmospheric turbulence [9]; and tracking pollutant concen-
trations [10]. Small UAVs have advantages over manned aircraft, 
including reduced operational costs and the ability to operate and 
obtain measurements close to the Earth’s surface [11]. Despite 
their potential, the use of UAVs for atmospheric research is still in 
its infancy, focusing on remotely piloted UAVs for obtaining wind, 
temperature, and humidity profiles [12,13]. Measurements during 
autonomous flight have been reported in Refs. [1,4,14–16].

Two of the traits, namely, small size and light weight, that 
are driving the increase in UAV usage for meteorological mea-

surements also introduce challenges. Specifically, small lightweight 
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UAVs are susceptible to the quasi-random forcing introduced by 
turbulence in the atmospheric boundary layer near the Earth’s sur-
face [17]. This boundary layer is the predominant region of interest 
for studying transport processes between the surface and the at-
mosphere. However, turbulence in the boundary layer can disturb 
a UAV’s flight path and, thus, adversely impact the statistical accu-
racy of measurements from onboard sensors.

To improve the suitability of small lightweight UAVs as sensor 
platforms, it is necessary to improve their ability to correct for the 
impact of wind gusts induced by the turbulence. One approach is 
to improve the capabilities of the flight-control system. This paper 
examines the use of filtered dynamic inversion (FDI) for altitude 
control of a small fixed-wing UAV. FDI is a control method for 
highly uncertain minimum-phase linear dynamic systems, and is 
effective for command following in the presence of unmeasured 
disturbances [18,19]. In particular, Ref. [18] shows that for suffi-

ciently large choice of a single control parameter, FDI makes the 
average power of the command-following error arbitrarily small 
despite unmeasured disturbances (e.g., turbulent wind). FDI is also 
effective for systems with nonlinear dynamics [20]. In this paper, 
an FDI control system is designed and implemented on a small 
fixed-wing UAV to achieve effective altitude command following in 
the presence of turbulent wind.

The main contributions of this paper include the design of 
an FDI flight-control system for a small fixed-wing UAV, and the 
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Nomenclature

Filtered dynamic inversion

A, B, C state-variable system matrices

x state variable
u control input
w disturbance input
y output

Hd first nonzero Markov parameter

d relative degree
p� d/dt differential operator
αm, βm reference-model polynomial matrices

r reference-model input
ym reference-model output
z� y − ym error

Pz average power of z
u∗ ideal dynamic inversion control
ρ FDI controller order
k FDI parameter

ηk FDI polynomial

Nonlinear UAV dynamics

F I inertial frame

oI center of F I
ı̂I, ĵI, k̂I orthogonal unit vectors of F I
FB body frame

oB center of FB, which is the center of mass

ı̂B, ĵB, k̂B orthogonal unit vectors of FB
⇀
r position of oB relative to oI . . . . . . . . . . . . . . . . . . . . . . m

X, Y , Z components of 
⇀
r resolved in F I . . . . . . . . . . . . . . . . . m

⇀
v velocity of oB relative to oI with respect to F I . m/s

vB
⇀
v resolved in FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s

U , V , W components of vB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
⇀
ω angular velocity of FB relative to F I . . . . . . . . . . rad/s

ωB
⇀
ω resolved in FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad/s

P , Q , R components of ωB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad/s

φ, θ, ψ yaw, pitch, roll Euler angles . . . . . . . . . . . . . . . . . . . . . rad

m mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg
⇀

I physical inertia matrix . . . . . . . . . . . . . . . . . . . . . . . kgm2

Ixx, Iyy, Izz moments of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . kgm2

Ixz product of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kgm2

⇀

Fa aerodynamic force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

Xa, Ya, Za components of 
⇀

Fa resolved in FB . . . . . . . . . . . . . . . . . N
⇀

FT thrust force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N

XT, YT, ZT components of 
⇀

FT resolved in FB . . . . . . . . . . . . . . . . . N
⇀
g acceleration due to gravity . . . . . . . . . . . . . . . . . . . . m/s2
⇀

Mc moment due to aerodynamic force . . . . . . . . . . . . Nm

L, M, N components of 
⇀

Mc resolved in FB . . . . . . . . . . . . . Nm
⇀
vw wind velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s
⇀
vr �

⇀
v − ⇀

vw relative velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s

U r, V r, W r components of 
⇀
vr resolved in FB . . . . . . . . . . . . . . . m/s

α angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad

β sideslip angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad

VT airspeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s

δe elevator deflection angle . . . . . . . . . . . . . . . . . . . . . . . . rad

δr rudder deflection angle . . . . . . . . . . . . . . . . . . . . . . . . . rad

δa aileron deflection angle . . . . . . . . . . . . . . . . . . . . . . . . . rad

FDI flight control system

h�−Z altitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

hd altitude command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Ud speed command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m/s

θd pitch command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad

uT throttle command

ue elevator command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad

θ̃ � θd − θ pitch error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad

Ph(t1, t0) average power of the altitude error on the [t0, t1)
time interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

Pθ (t1, t0) average power of the pitch error on the [t0, t1)
time interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad2

kh,p altitude controller proportional gain
kh,i altitude controller integral gain
gT engine gain
kT,p speed controller proportional gain
kT,i speed controller integral gain
Ck transfer function for FDI pitch controller

Linearized equations of motion for longitudinal flight

U0 equilibrium ı̂B-direction velocity . . . . . . . . . . . . . . . m/s

W0 equilibrium k̂B-direction velocity . . . . . . . . . . . . . . . m/s

θ0 equilibrium pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad

XT,0 equilibrium ı̂B-direction thrust . . . . . . . . . . . . . . . . . . . N

δe,0 equilibrium elevator deflection . . . . . . . . . . . . . . . . . rad


U ı̂B-direction velocity perturbation . . . . . . . . . . . . . . m/s


W k̂B-direction velocity perturbation . . . . . . . . . . . . . . m/s


θ pitch perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad


XT ı̂B-direction thrust perturbation . . . . . . . . . . . . . . . . . . N


δe elevator deflection perturbation . . . . . . . . . . . . . . . . rad

xl state variable for longitudinal flight
Al dynamics matrix for longitudinal flight
B l,XT


XT input matrix for longitudinal flight
B l,δe 
δe input matrix for longitudinal flight
τe elevator servomechanism time constant . . . . . . . . . . s


Ud speed command perturbation . . . . . . . . . . . . . . . . . . m/s


ue elevator command perturbation . . . . . . . . . . . . . . . . rad

G transfer function for linearized longitudinal flight 
dynamics from 
ue to 
θ

G̃k closed-loop transfer function for linearized dynam-

ics from 
ue to θ̃ with FDI control

Other parameters

br wing span. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

cr mean cord length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Sr planform area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

ρa density of air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m2

kθ,p baseline pitch controller proportional gain
kθ,i baseline pitch controller integral gain
kφ,p roll controller proportional gain
kφ,i roll controller integral gain
Ts sample time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
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testing and validation of this FDI control system through numer-

ical simulations and flight experiments. The flight experiments 
and numerical simulations demonstrate that FDI reduces the al-
titude command-following error as compared to a classical (e.g., 
proportional-integral) controller. Experimental data demonstrate 
that the average power of the altitude error with FDI is smaller 
than those with proportional-integral control.

2. Filtered dynamic inversion

FDI is a feedback control method for uncertain linear time-

invariant dynamic systems that are minimum phase (i.e., invariant 
zeros contained in the open-left-half complex plane) and poten-
tially subject to unmeasured disturbances (e.g., turbulent wind). To 
illustrate FDI, consider the state-variable dynamic system

ẋ(t) = Ax(t) + Bu(t) + w(t), (1)

y(t) = Cx(t), (2)

where t ≥ 0, A ∈ R
n×n , B ∈ R

n×m , C ∈ R
m×n , x(0) ∈ R

n is the 
initial condition, x(t) ∈ R

n is the state, u(t) ∈ R
m is the control, 

y(t) ∈ R
m is the output, w(t) ∈ R

n is an unmeasured disturbance, 
and (A, B, C) is controllable and observable. We assume that the 
invariant zeros of (A, B, C) are contained in the open-left-half 
complex plane. The relative degree d from u to y is the small-

est integer i such that the ith Markov parameter Hi � C Ai−1B is 
nonzero. FDI relies on knowledge of d and Hd; however, A, B , and 
C are otherwise unknown.

Let αm be a real monic m ×m polynomial matrix with degree 
d, where detαm is Hurwitz (i.e., the roots are in the open-left-half 
complex plane), and let βm be a real m × m polynomial matrix 
with degree not greater than d. Next, let p � d/dt denote the 
differential operator, and consider the reference-model dynamics 
αm(p)ym(t) = βm(p)r(t), where t ≥ 0, r(t) ∈ R

m is the reference-
model command, and ym(t) ∈ R

m is the reference-model output.
Our objective is to design an output-feedback control such that 

the output trajectory y follows the reference-model trajectory ym, 
and thus, the error z � y − ym is small. More specifically, we 
seek to make the average power Pz � limt→∞ 1

t

∫ t
0 zT(τ )z(τ ) dτ of 

the error small. In this study, we consider the pitch and altitude 
command-following errors for a fixed-wing UAV.

If αm = βm and the reference model initial conditions are se-
lected appropriately, then ym = r. In this case, z = y − r, and 
the objective is to make y follow r. In this study, we focus on 
reference-model dynamics with αm = βm.

The ideal dynamic-inversion control is given by

u∗ � −H−1
d

[
αm(p)y − βm(p)r − pd y + C Adx

]

− H−1
d

[
d−1∑
i=0

C Ad−1−ipi w

]
, (3)

and it follows from [18, Lemma 1] that if u = u∗ , then limt→∞ z(t)

= 0 and Pz = 0. Thus, the ideal dynamic-inversion control u∗ ac-

complishes the control objective. However, Eq. (3) is not imple-

mentable, because u∗ depends on measurement of the full state x
and the disturbance w as well as knowledge of A, B , and C .

Instead, we generate the control u by passing u∗ through a low-

pass filter. We consider the control u that satisfies

ηk(p)u = ηk(0)u∗, (4)

where ηk(s) is a monic polynomial in s with degree ρ ≥ d and 
real coefficients that are functions of a real parameter k. Define 
η̄k(s) � (ηk(s) −ηk(0))/s. The polynomial ηk is a design parameter, 
which is selected to satisfy the conditions:

Fig. 1. Inertial and body frames. The inertial frame F I is centered at oI , and the body 
frame FB is fixed to the UAV at its center of mass oB.

(C1) There exists k0 > 0, such that for all k > k0, ηk is Hurwitz.

(C2) For all ε > 0, there exists kε > k0 such that for all k > kε , 
supω∈R

∣∣∣ η̄k( jω)
ηk( jω)

∣∣∣ < ε .

See Ref. [18] for choices of ηk that satisfy (C1) and (C2). For exam-

ple, ηk(s) = (s + k)ρ satisfies (C1) and (C2).
The control u cannot be implemented using Eq. (4) because u∗

depends on x, w , A, B , and C . To express u as an implementable 
control, taking the dth derivative of Eq. (2) and using Eq. (1) yields

pd y = Hdu + C Adx+
d−1∑
i=0

C Ad−1−ipi w. (5)

Substituting Eq. (5) into Eq. (3) implies that u∗ = u −H−1
d

[αm(p)y −
βm(p)r], and combining with Eq. (4) yields the filtered-dynamic-

inversion control

pη̄k(p)u(t) = −ηk(0)H
−1
d

[
αm(p)y(t) − βm(p)r(t)

]
. (6)

The FDI control is designed using the relative degree d, Markov 
parameter Hd , reference-model polynomials αm and βm, and the 
filter polynomial ηk , which depends on the real parameter k.

It follows from [18, Theorem 1] that, for sufficiently large k > 0, 
the FDI control, given by Eq. (6), stabilizes the dynamic system, 
given by Eqs. (1) and (2), and makes Pz arbitrarily small. This 
paper uses FDI to improve the average power of the altitude 
command-following error for a small fixed-wing UAV in turbulent 
wind conditions.

3. Nonlinear dynamics for a fixed-wing UAV

Let F I be an inertial frame, that is, a frame in which Newton’s 
second law is valid. Let oI denote the center of F I , which has or-
thogonal unit vectors ı̂I , ĵI , and k̂I . Let FB denote the body frame, 
which is fixed to the UAV at its center of mass oB and has orthog-
onal unit vectors ı̂B, ĵB, and k̂B as shown in Fig. 1.

The position of the center of mass oB relative to oI is 
⇀
r =

X ı̂I + Y ĵI + Zk̂I , and the velocity of oB relative to oI with re-
spect to F I is 

⇀
v � I·⇀r = Ẋ ı̂I + Ẏ ĵI + Ż k̂I , where I·

⇀
r is the time 

derivative of 
⇀
r with respect to F I . Let 

⇀
ω be the angular veloc-

ity of FB relative to F I . Let [ · ]B denote a physical vector re-
solved in the body frame FB. Thus, 

⇀
v and 

⇀
ω are resolved in FB

as vB � [⇀v ]B = [U V W ]T and ωB � [⇀ω]B = [P Q R]T. Let φ, 
θ , and ψ be the yaw, pitch, roll Euler angles defined by a 3–2–1 
rotation sequence, which is standard in flight dynamics [21].

Let m be the UAV’s mass, and let 
⇀

I be the UAV’s physical in-
ertia matrix relative to the center of mass. We make the following 
assumptions:

(A1) Flight conditions are low speed and low altitude.
(A2) m is constant.
(A3) The UAV is rigid.
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(A4) The UAV is symmetric about the ı̂B–k̂B plane.

(A5) The thrust force acts through the center of mass.

(A6) The thrust force is in the ı̂B–k̂B plane.

Assumption (A1) implies that oI can be any point on the Earth’s 
surface and the curvature of the Earth can be neglected. Assump-

tion (A2) implies that dm/dt = 0, while (A2) and (A3) imply that 
d([⇀I ]B)/dt = 0. Assumption (A4) implies that [⇀I ]B can be ex-
pressed as

[⇀I ]B =
⎡
⎣ Ixx 0 −Ixz

0 Iyy 0

−Ixz 0 Izz

⎤
⎦ ,

where Ixx, Iyy, and Izz are moments of inertia, and Ixz is a product 
of inertia. Assumption (A5) implies that the thrust force does not 
cause any moment about the center of mass, and (A6) implies that 
the thrust force in the ĵB direction is zero.

Let 
⇀

Fa be the aerodynamic force, and let 
⇀

FT be the thrust force, 

which are resolved as [⇀

Fa]B = [Xa Ya Za]T and [⇀

FT]B = [XT YT ZT]T, 
where (A6) implies that YT = 0. Thus, Newton’s second law in the 
body frame yields

mv̇B +m�vB =m[⇀g ]B + [⇀

Fa]B + [⇀

FT]B, (7)

where � �
[

0 −R Q

R 0 −P

−Q P 0

]
and 

⇀
g = gk̂I is the acceleration due to 

gravity.

The moment about the UAV’s center of mass due to the aero-
dynamic forces is denoted by 

⇀

Mc, which is resolved in FB as 

[ ⇀

Mc]B = [L M N]T. Thus, Euler’s equation yields

[ ⇀

Mc]B = [⇀I ]Bω̇B + �[⇀I ]BωB. (8)

The nonlinear equations of motion, given by Eqs. (7) and (8), 
depend on the aerodynamic forces Xa, Ya, and Za, and aerody-
namic moments L, M , and N . We now develop a nonlinear model 
of those forces and moments. Let 

⇀
vw denote the velocity of the 

wind, and define the relative velocity 
⇀
vr �

⇀
v − ⇀

vw, which is re-
solved in FB as [⇀vr]B = [U r V r W r]T. Define the airspeed VT �√
U2

r + V 2
r + W 2

r , angle of attack α � tan−1 W r/U r, and sideslip 
angle β � sin−1 V r/VT. Let δe, δr, and δa denote the angular de-
flections of the elevator, rudder, and ailerons, respectively.

The aerodynamic forces Xa and Za, and the aerodynamic mo-

ment M are each assumed to be functions of VT, α, β , Q , δe, δr, 
and δa. Similarly, Za, L, and N are assumed to be functions of VT, 
α, β , P , R , δe, δr, and δa. In this paper, the aerodynamic forces 
and moments do not depend on α̇ or β̇ , because these dependen-
cies, which cannot be estimated using steady-state fluid dynamic 
analysis, are assumed to be negligible.

We use Taylor-series expansions to approximate Xa, Ya, Za, L, 
M , and N in a neighborhood of ωB = 0 and δe = δr = δa = 0. 
For example, we approximate Xa as Xa = (Xa)0 + (∂ Xa/∂Q )0 Q +
(∂ Xa/∂δe)0 δe + (∂ Xa/∂δr)0 δr + (∂ Xa/∂δa)0 δa, where (·)0 means 
that the function is evaluate at (P , Q , R, δe, δr, δa) = 0. Each term 
in each Taylor-expansion is an explicit function of VT, α, and β .

For the UAV in this study, the functional approximations for the 
aerodynamic forces and moments Xa, Ya, Za, L, M , and N are esti-
mated using Athena Vortex Lattice (AVL), which is a vortex lattice 
aerodynamics solver. For example, Xa depends on the functions 
(Xa)0, (∂ Xa/∂Q )0, (∂ Xa/∂δe)0, (∂ Xa/∂δr)0, and (∂ Xa/∂δa)0. The 
value of each function is estimated for 524 values of (VT, α, β). 
Specifically, the value of each function is estimated for (VT, α, β) ∈
{10, 15, 20, 25, 30, 35} × {−π

6
, −π

9
, − π

15
, − π

30
,− π

45
, − π

90
, 0, π

90
, π
45

,

Fig. 2. Guidance and control system. The altitude, pitch, and speed controllers use 
feedback of the altitude h, pitch θ , and speed U r to generate the throttle command 
uT and elevator command ue.

π
30

, π
15

, π
9
, π

6
} × {−π

6
, − π

15
, − π

45
, 0, π

45
, π
15

, π
6
}, where VT is in m/s, 

α is in rad, and β is in rad. Then, each function is approximated 
using linear interpolation between the 524 values.

4. FDI control system

Consider the guidance and control system shown in Fig. 2, 
which uses mission information, GPS measurements, and speed 
command Ud as well as feedback of the pitch θ , speed U r , and al-
titude h �−Z to generate throttle command uT and elevator com-

mand ue. The guidance system uses mission information and GPS 
measurements to generate the altitude command hd. The outer-
loop altitude controller uses the command hd and feedback h to 
generate the pitch command θd. The speed controller uses the 
speed command Ud and feedback U r to generate the throttle com-

mand uT, while the pitch controller uses θd and the feedback θ to 
generate the elevator command ue.

Our control objective is altitude command following in the 
presence of an unknown and potentially turbulent wind. Let 
Ph(t1, t0) denote the average power of altitude error over the time 
interval [t0, t1), that is,

Ph(t1, t0) �
1

t1 − t0

t1∫
t0

[
hd(τ ) − h(τ )

]2
dτ .

We propose reducing Ph(t1, t0) by implementing FDI in the multi-

loop control system in Fig. 2. However, the linearized UAV transfer 
function from elevator command ue to altitude h is nonminimum 
phase. Thus, FDI cannot be used to control altitude h directly. In-
stead, the pitch error θd−θ is used as a surrogate for altitude error 
hd − h. As shown in the next section, the linearized transfer func-
tion from ue to θ is minimum phase. Consider the average power 
of the pitch error over the time interval [t0, t1), which is

Pθ (t1, t0)�
1

t1 − t0

t1∫
t0

[
θd(τ ) − θ(τ )

]2
dτ .

Since the UAV’s linearized transfer function from ue to θ is mini-

mum phase, the main result of Ref. [18] suggests that FDI can be 
used to make limt1→∞ Pθ (t1, t0) arbitrarily small.

We present an FDI flight-control system, where inner-loop pitch 
control uses FDI, while inner-loop speed control and outer-loop al-
titude control uses proportional-integral (PI) control.

4.1. Altitude control

An altitude error outer-loop controller is used to generate the 
pitch command θd. Consider the PI controller

θd(t) = kh,p

[
hd(t) − h(t)

] + kh,i

t∫
0

[
hd(τ ) − h(τ )

]
dτ , (9)

where kh,p ∈ R is that proportional gain and kh,i ∈ R is the integral 
gain.
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4.2. Speed control

The thrust force is assumed to act only in the ı̂B direction, 
which implies that ZT = 0. The engine dynamics are assumed to be 
negligible. Specifically, the thrust force XT is proportional to throt-
tle command uT, that is, XT = gTuT, where gT ∈ R is the engine 
gain. For speed control, consider the PI controller

XT(t) = kT,p
[
Ud(t) − U r(t)

] + kT,i

t∫
0

[
Ud(τ ) − U r(τ )

]
dτ , (10)

where kT,p ∈ R is the proportional gain and kT,i ∈ R is the integral 
gain.

4.3. Pitch control

FDI is implemented as the pitch controller. Recall from Sec-
tion 2 that FDI requires limited model information, specifically, 
the relative degree d and Markov parameter Hd of the linearized 
transfer function from the control ue to the pitch θ . FDI also re-
quires that the linearized transfer function from ue to θ is mini-

mum phase. To examine these requirements, Eqs. (7) and (8) are 
linearized about a constant-velocity, constant-altitude, wings-level 
flight condition. In this case, φ = V = P = R = L = N = Ya = 0. We 
also assume that there is no wind, that is, 

⇀
vw = 0.

Let U0, W0, θ0, XT,0, and δe,0 denote the equilibrium ı̂B-direc-
tion velocity, k̂B-direction velocity, pitch, thrust, and elevator de-
flection used in the linearization. Define the perturbation vari-
ables 
U (t) � U (t) − U0, 
W (t) � W (t) − W0, 
θ(t) � θ(t) − θ0, 

XT(t) � XT(t) − XT,0, and 
δe(t) � δe(t) − δe,0. Using the stan-
dard aircraft linearization process [21], we obtain the linearized 
equations of motion for longitudinal flight, which are

ẋl(t) = Alxl(t) + B l,δe
δe(t) + B l,XT

XT(t), (11)

where xl(t) �
[

U (t) 
W (t) Q (t) 
θ(t)

]T
, and

Al =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
m

∂ Xa
∂U

∣∣∣
0

1
m

∂ Xa
∂W

∣∣∣
0

1
m

∂ Xa
∂Q

∣∣∣
0
− W0 −g cos θ0

1
m

∂ Za
∂U

∣∣∣
0

1
m

∂ Za
∂W

∣∣∣
0

1
m

∂ Za
∂Q

∣∣∣
0
+ U0 −g sin θ0

1
Iyy

∂M
∂U

∣∣∣
0

1
Iyy

∂M
∂W

∣∣∣
0

1
Iyy

∂M
∂Q

∣∣∣
0

0

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B l,δe �

⎡
⎢⎢⎢⎢⎢⎢⎣

1
m

∂ Xa
∂δe

∣∣∣
0

1
m

∂ Za
∂δe

∣∣∣
0

1
Iyy

∂M
∂δe

∣∣∣
0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

, B l,XT
�

⎡
⎢⎢⎣

1
m
0

0

0

⎤
⎥⎥⎦ ,

where the subscript zero indicates evaluating at the forced equilib-
rium.

Define 
Ud(t) � Ud(t) − U0, and cascading the speed control 
(10) with the longitudinal dynamics (11) yields

χ̇ (t) = Aχ(t) + Bδe
δe(t) + BUd

Ud(t), (12)

where χ(t) �
[
xT
l
(t) xT,i(t)

]T
, xT,i(t) ∈ R is the integrator state of 

Eq. (10), and

A�
[
Al −mkT,pB l,XT

BT
l,XT

kT,iB l,XT

−mBT
l,XT

0

]
, (13)

Bδe �
[
B l,δe

0

]
, BUd

�
[
B l,XT

1

]
. (14)

The pitch perturbation is given by 
θ(t) = Cθχ(t), where Cθ �
[0 0 0 1 0]. Thus, the linearized transfer function from 
δe
to 
θ is Cθ (sI −A)−1Bδe .

The elevator actuator dynamics are modeled by τeδ̇e(t) +δe(t) =
ue(t), where τe > 0 is the time constant associated with the ele-
vator servomechanism. Define the elevator command perturbation 

ue(t) � ue(t) − δe,0, and it follows that the elevator actuator dy-
namics are

τe
δ̇e(t) + 
δe(t) = 
ue(t). (15)

Therefore, Eqs. (12)–(15) imply that the linearized transfer 
function from 
ue to 
θ is

G(s) � 1/τe

s + 1/τe
Cθ (sI −A)−1Bδe

= b3s
3 + b2s

2 + b1s + b0

s6 + a5s5 + a4s4 + a3s3 + a2s2 + a1s + a0
, (16)

where a0, . . . , a5, b0, . . . , b3 ∈ R. The Routh stability criteria imply 
that G is minimum phase if and only if b0, b1, b2, b3 have the same 
sign and b1b2 − b0b3 > 0.

For the small fixed-winged UAV considered in this paper, the 
numerator coefficients b0, b1, b2, b3 are all negative and b1b2 −
b0b3 > 0, which implies that G is minimum phase. Since the rela-
tive degree is d = 3, we consider the FDI controller (6) with m = 1, 
αm = βm, and ρ ≥ d = 3. In this case, Eq. (6) becomes

pη̄k(p)
ue(t) = ηk(0)

Hd

αm(p)
[
θd(t) − θ(t)

]
, (17)

where the degree of αm is 3, and Eqs. (12)–(15) imply that the 
first nonzero Markov parameter is Hd = b3 = 1

Iyyτe
∂M
∂δe

∣∣∣
0
. Taking 

the Laplace transform of Eq. (17) yields the FDI controller trans-
fer function

Ck(s) �
ηk(0)αm(s)

Hdη̄k(s)s
,

where the subscript k denotes the dependence on the FDI pa-
rameter k. The linearized closed-loop transfer function from pitch 
command to pitch error is G̃k � 1/(1 + GCk). It follows from [18, 
Theorem 1] that, for sufficiently large k > 0, G̃k is asymptotically 
stable and the average power of the pitch error limt1→∞ Pθ (t1, t0)
is arbitrarily small.

5. FDI design for a small fixed-wing UAV

5.1. Description of the UAV

We constructed a fixed-wing UAV using the AeroWorks EDGE 
540T mid-winged remote-controlled aircraft. The airframe had an 
unswept, tapered wing with span br = 1.52 m, mean chord length 
cr = 0.2975 m, and planform area Sr = 0.4534 m2. The lead-
ing edge of the horizontal stabilizer was located 0.806 m from 
the leading edge of the wing. The fully loaded aircraft had mass 
m = 4.48 kg at takeoff with the center of gravity located 70 mm 
aft of the wing’s leading edge, in accordance with the manu-

facturer’s specifications. For propulsion, the UAV used an Elec-
triFly RimFire 0.80 brushless outboard electric motor, which was 
rated for 1300 W constant output. The motor was mounted along 
the ı̂B axis. The electric motor was powered by two 8S lithium-

polymer batteries wired in series, each with capacity 5000 mAh. 
This setup was capable of nine minutes of flight. The principle mo-

ments of inertia were measured using the experimental procedure 
in [22]; they were Ixx = 0.1778 kgm2, Iyy = 0.3287 kgm2, and 
Izz = 0.4231 kgm2. Aerodynamic coefficients for the airframe were 
estimated using AVL (as described in Section 3), and the values are 
available in [23].



246 J. Mullen et al. / Aerospace Science and Technology 54 (2016) 241–252

The low-rate control deflections recommended by the manu-

facturer were used during flight. Thus, the elevator was limited 
to a 15◦ deflection. The elevator servo was a Hitec HS-645MG 
High-Torque 2BB Metal Gear servo, which had a maximum angular 
velocity of 300◦/s.

5.2. FDI control system design

The altitude and speed control parameters kh,p, kh,i , kT,p, and 
kT,i are designed using the longitudinal UAV dynamics linearized 
about a constant-velocity, constant-altitude, wings-level flight con-
dition, where U0 = 19.9 m/s, W0 = 1.95 m/s, θ0 = 5.6◦ , and δe,0 =
−3.94◦ . Using simulation-based tuning, the PI controller parame-

ters are selected as kh,p = 1.6, kh,i = 0.2, kT,p = 2, and kT,i = 0.5.

We use the linearized transfer function (16) to design the FDI 
controller (17). To obtain a model of the linearized transfer func-
tion (16), we require estimates of the aerodynamic coefficients in 
Eq. (11), and an estimate of the elevator servomechanism time 
constant τe. The aerodynamic coefficients are estimated using AVL. 
Next, we note that the elevator servomechanism has approximately 
60◦ full-stroke angle (i.e., ±30◦). The servomechanism time con-
stant τe is approximated by assuming that the full-stroke (i.e., 60◦) 
step response of the servomechanism reaches but does not ex-
ceed the servomechanism’s maximum angular velocity of 300◦/s. 
It follows from Eq. (15) that if 
ue is the 60◦-step function, then 

δe(t) = 60 −60e−t/τe deg. Thus, the rate of 
δe(t) reaches a max-

imum at t = 0+ , and 
δ̇e(0
+) = 60/τe. To approximate τe, we let 

60/τe = 300 deg/s, or, equivalently, τe = 0.2 s. Note that the ele-
vator dynamics for full-scale aircraft are often assumed to be first 
order with a time constant of 0.1 s [24, p. 59]. In this study, the 
elevator dynamics are assumed to be slower with time constant 
τe = 0.2 s.

Together, the aerodynamic coefficients from AVL and the time 
constant τe yield the linearized transfer function G , where b3 =
−636.6, b2 = −3, 472, b1 = −1, 729, b0 = −355.7, a5 = 17.29, 
a4 = 188.0, a3 = 690.4, a2 = 321.9, a1 = 170.5, and a0 = −2.480. 
The zeros of G are approximately −4.93 and −0.264 ± j0.209, 
where j = √−1. The zeros of G are in the open-left-half complex 
plane, which verifies that G is minimum phase.

The FDI controller (17) requires knowledge of the relative de-
gree d = 3 and the first nonzero Markov parameter Hd . No other 
UAV model information is required in order to design the FDI con-
troller. The Markov parameter Hd is estimated using

Hd = 1

Iyyτe

∂M

∂δe

∣∣∣∣
0

≈ ρaV
2
T Srcr(CMδe |0)
2Iyyτe

, (18)

where ρa = 1.22 kg/m3 is air density, and CMδe is the derivative of 
dimensionless pitching moment coefficient with respect to elevator 
angle, which can be estimated using wind tunnel data or compu-

tational fluid dynamics software. We compute Hd using Eq. (18), 
with measured values for Sr , cr, and Iyy, and the AVL estimate for 
CMδe |0. In general, VT is a function of time. However, [18, Corol-
lary 1] demonstrates that FDI is robust to uncertainty in Hd . The 
assumption that Hd is known can be replaced by the assumption 
that the sign of Hd is known and an upper bound H̄d on the mag-

nitude of Hd is known. In this case, Hd in Eq. (17) is replaced by 
sgn(Hd)H̄d . Although the numerical and physical experiments are 
performed at VT = 20 m/s, we compute the upper bound H̄d using 
Eq. (18) with VT = 25 m/s. In this case, we obtain sgn(Hd) = −1

and H̄d = 1005.

To design the FDI controller, we select the controller order 
ρ , the filter polynomial ηk , and the reference-model polynomial 
αm. Selecting ρ = d + 1 yields the lowest order strictly proper 
controller, that is, a controller that does not include direct feed 
through of the feedback signal. Numerical testing suggests that the 

minimum stabilizing value of the parameter k with ρ = d +1 tends 
to be smaller than the minimum stabilizing value of the parameter 
k with ρ > d + 1. Thus, we select ρ = d + 1 = 4.

The filter polynomial ηk is selected to have degree ρ and satisfy 
(C1) and (C2). We let ηk(s) = (s +k)4. Other choices of ηk are given 
in Ref. [18].

The reference-model polynomial αm can be interpreted as the 
desired closed-loop dynamics for the pitch error. Specifically, the 
roots of αm are target pole locations for the closed-loop trans-
fer function G̃k � 1/(1 + GCk). In fact, as k → ∞, d closed-loop 
poles tend toward the roots of αm, while the remaining closed-
loop poles either tend toward the open-loop zeros or diverge to 
infinity through the open-left-half complex plane [19]. In this case, 
3 poles of G̃k tend toward the roots of αm, 3 poles of G̃k tend 
toward the zeros of G , and the remaining 4 poles of G̃k diverge 
through the open-left-half complex plane. Since αm is Hurwitz and 
G is minimum phase, it follows that G̃k is asymptotically stable for 
sufficiently large k.

Since the roots of αm represent target closed-loop pole loca-
tions, it is often desirable to design each root of αm to be heavily 
damped (i.e., the ratio of the real part to the imaginary part is 
large). Physical limitations should also be taken into considera-
tion for the design of αm. For example, it is not practical for the 
roots of αm to have large magnitude relative to the magnitude 
of the open-loop poles. Since closed-loop poles tend toward the 
roots of αm, it follows that forcing closed-loop poles to have large 
magnitude might require prohibitively large elevator deflections δe. 
Every open-loop pole of G has magnitude less than 11 rad/s. Thus, 
we select αm such that each root is heavily damped (specifically, 
real) and has magnitude less than 11 rad/s. Specifically, we let 
αm(s) = (s + 4)(s + 6)(s + 8). In this case, the FDI controller (17)
becomes

[
p4 + 4kp3 + 6k2p2 + 4kp

]

ue(t) = − k4

H̄d

αm(p)θ̃(t), (19)

where θ̃ (t) � θd(t) − θ(t) is the pitch error and k is positive. It can 
be shown from direct computation that the linearized closed-loop 
transfer function G̃k is asymptotically stable for all k ≥ 12.

5.3. Baseline pitch control

We also design a PI controller, which is a standard flight con-
troller, to evaluate the relative performance of FDI. This PI pitch 
controller is


ue(t) = −kθ,p

[
θd(t) − θ(t)

] + kθ,i

t∫
0

[
θd(τ ) − θ(τ )

]
dτ , (20)

where kθ,p, kθ,i ∈ R. Note that the linearized longitudinal transfer 
function G is relative degree 3, and classical root locus for a rel-
ative degree 3 system shows that at least one closed-loop pole 
diverges into the open-right-half complex plane as the magnitude 
of the gain kθ,p is increased. Thus, the gain kθ,p cannot be made 
arbitrarily large without destabilizing the closed-loop dynamics.

We use root locus to examine potential designs of the PI con-
troller gain kθ,p and the controller zero location kθ,i/kθ,p. For any 
choice of the zero kθ,i/kθ,p, the closed-loop dynamics are unsta-
ble if kθ,p is larger than approximately 2.25. For example, assume 
kθ,i/kθ,p = −0.2. Then, for all kθ,p ∈ (0.005, 2.2), every closed-loop 
pole is in the open-left-half complex plane, and the closed-loop 
dynamics are asymptotically stable. However, for all kθ,p > 2.2, at 
least one closed-loop pole is in the open-right-half complex plane, 
and the closed-loop dynamics are unstable. The closed-loop dy-
namics are also unstable for all kθ,p < 0.
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Fig. 3. Bode plots of the PI and FDI pitch controllers. Both the PI and FDI controllers have 
integral action. The magnitude of the FDI controller increases across all frequencies 
as k is increases.

The gains kθ,p = 0.5 and kθ,i = −0.1 were designed through 
numerical testing. These gains provide the best closed-loop pitch 
command following of all designs considered. While the gain kθ,p

can be increased up to 2.2 before destabilizing the closed-loop 
dynamics, values of kθ,p larger than 0.5 result in worse behav-
ior because the closed-loop transfer function has a pair of lightly 
damped poles.

We used the linearized transfer function to determine stabiliz-
ing values of kθ,p and kθ,i . Then, we used numerical testing with 
the nonlinear model to determine values that yielded the best per-
formance. In contrast, the FDI controller design relied on knowl-

edge of only d and Hd.

Fig. 3 shows the Bode plot of the PI pitch controller (20) and 
the Bode plot of FDI pitch controller (19) for different values of k. 
Recall that the closed-loop dynamics with the FDI controller are 
asymptotically stable for all k ≥ 12, and notice that increasing k
increases the magnitude of the FDI controller across all frequen-
cies. Thus, increasing k tends to reduce the magnitude of the G̃k , 
which, in turn, tends to improve pitch command following. In con-
trast to the FDI parameter k, the PI controller gain kθ,p cannot be 
made arbitrarily large without destabilizing the closed-loop trans-
fer function. Thus, the magnitude of the PI controller cannot be 
increased to improve pitch command following. Fig. 3 shows that 
for k ≥ 25, the magnitude of the FDI controller is larger than the 
magnitude of the PI controller across all frequencies.

6. Closed-loop numerical simulations

This section presents numerical simulations of the nonlinear 
UAV model (7) and (8), where the aerodynamic parameters are es-
timated using AVL. We implement the altitude, speed, and pitch 
control system from the previous section. The performance of the 
FDI pitch controller (19) is compared to the performance of the PI 
pitch controller (20). All simulations use the physical UAV param-

eters given in Section 5.1. Since the UAV is a mid-winged aircraft 
that is approximately symmetric about the ı̂B–ĵB plane, it follows 
that the product of inertia Ixz is small relative to the moments of 
inertia Ixx, Iyy, and Izz. For simplicity, we assume Ixz = 0.

To maintain wings-level flight, we consider the roll-to-aileron PI 
controller δa(t) = kφ,pφ(t) + kφ,i

∫ t
0 φ(τ ) dτ , where kφ,p = 0.5 and 

kφ,i = 1. The roll control allows us to focus on the longitudinal 
dynamics. For all simulations, the initial heading is ψ(0) = 0, and 
the heading is nearly constant, that is, ψ(t) ≈ 0 for all t ≥ 0.

Two 3-dimensional stochastic realizations are used to model 
the wind in the inertial frame F I . The first wind model is band-
limited, zero-mean, unit-variance Gaussian white noise. The sec-

Fig. 4. Average power of pitch error and average power of altitude error as functions of k.
As k increases, Pθ (t1, t0) decreases and Ph(t1, t0) decreases. For k > 15, the average 
power Pθ (t1, t0) of the pitch error with the FDI controller is less than that with the 
PI controller. For k > 12, the average power Ph(t1, t0) of the altitude error with the 
FDI controller is less than that with the PI controller.

ond wind model is an approximation for turbulence. This approx-
imation is a zero-mean, unit-variance Gaussian random sequence 
whose power spectrum is filtered to decay in wavenumber space 
with a −5/3 roll-off from 0.005 s−1 to 10 s−1, which approximates 
the Kolmogorov theory [25] for the inertial subrange of the power 
spectrum of the high Reynolds number turbulence that is typical 
for the atmosphere [17]. The second wind model is thus a coarse 
approximation for turbulence.

Example 1. Average power of pitch error and average power of altitude 
error as functions of k. Consider the flight scenario with a constant 
altitude command hd(t) ≡ h0 = 100 m and where the wind dis-
turbance is the Gaussian white-noise wind model. Fig. 4 shows 
the average power Pθ (t1, t0) of the pitch error and the average 
power Ph(t1, t0) of the altitude error for different values of k and 
where t0 = 20 s and t1 = 100 s. For FDI, Pθ (t1, t0) decreases as k
increases. In fact, Fig. 4 suggests that Pθ (t1, t0) can be made ar-
bitrarily small for sufficiently large k, which supports the analytic 
results in Ref. [18, Theorem 1]. In addition, Ph(t1, t0) decreases 
as k increases; however, Fig. 4 suggests that Ph(t1, t0) cannot be 
made arbitrarily small. Fig. 4 also demonstrates that, for all k > 15, 
Pθ (t1, t0) and Ph(t1, t0) with the FDI controller (19) is less than 
that with the PI controller (20). The PI performance cannot be 
improved by increasing kθ,p, because the closed-loop system is un-
stable if kθ,p > 2.2. �

Example 2. Power spectral density with Gaussian white-noise wind. 
Consider the flight scenario with a constant altitude command 
hd(t) ≡ h0 = 100 m and where the wind disturbance is the Gaus-
sian white-noise wind model. The time-domain pitch error and 
altitude error are each divided into 59 segments of 164 s with 82 s 
of overlap between time-adjacent segments. The frequency-domain 
data are calculated by averaging the ratios of the discrete Fourier 
transforms from the 59 segments. Fig. 5 shows the power spectral 
density of the pitch error and the altitude error. Increasing the FDI 
parameter k tends to decrease the magnitude of the pitch-error 
power spectral density. For k ≥ 25, the pitch-error power spectral 
density with the FDI controller is lower than that with the PI con-
troller (20) at all frequencies less than 2 Hz. Increasing the FDI 
parameter k also tends to decrease the magnitude of the altitude-
error power spectral density at certain frequencies. Specifically, for 
k ≥ 25, the altitude-error power spectral density with FDI is lower 
than that with PI across the 1-to-2.5 Hz frequency range. �



248 J. Mullen et al. / Aerospace Science and Technology 54 (2016) 241–252

Fig. 5. Pitch-error and altitude-error power spectral densities. The pitch-error power 
spectral density with the FDI controller (for k ≥ 25) is lower than that with the 
PI controller for frequencies less than 2 Hz. The altitude-error power spectral den-
sity with the FDI controller (for k ≥ 25) is lower than that with the PI controller 
across most of the 0-to-25 Hz frequency range.

Fig. 6. Step altitude commands and turbulent wind. The FDI controller exhibits better 
pitch command following and altitude command following than the PI controller.

Example 3. Step altitude commands and turbulent wind. Consider the 
flight scenario where hd is series of steps, filtered through the first-
order, unity-DC-gain, low-pass filter 2/(s + 2) and where the wind 
disturbance is the turbulent wind model. The FDI parameter is 
k = 25. Fig. 6 provides time histories of pitch θ , pitch command θd, 
pitch error θd − θ , altitude h, altitude command hd, altitude error 
hd −h, speed U r, and elevator command ue. For the FDI controller, 
Pθ (t1, t0) = 0.427 deg2 and Ph(t1, t0) = 5.69 m2, where t0 = 20 s

and t1 = 100 s. For the PI controller, Pθ (t1, t0) = 1.642 deg2 and 
Ph(t1, t0) = 7.56 m2. The ratio of the PI average power of pitch er-
ror to the FDI average power of pitch error is 3.84. The ratio of the 
PI average power of altitude error to the FDI average power of alti-
tude error is 1.33. The FDI controller (19) improves Pθ (t1, t0) and 
Ph(t1, t0) relative to the PI controller (20). �

6.1. Discretization of the FDI control system

We now examine the impact of discretizing the FDI control 
system, given by Eqs. (9), (10), and (19), for implementation on 

Fig. 7. Average power of pitch error and average power of altitude error as functions of 
k with discrete-time FDI and sample time Ts ∈ {0.01, 0.02, 0.04} s. For each Ts , as k
increases, Pθ (t1, t0) decreases, reaches a minimum, and then increases. For Ts ∈
{0.01, 0.02} s, the discrete-time FDI controller can improve Pθ (t1, t0) relative to 
the PI controller. For Ts ∈ {0.01, 0.02, 0.04} s, the discrete-time FDI controller can 
improve Ph(t1, t0) relative to the PI controller.

the digital autopilot, which is described in Section 7. The digi-
tal autopilot and its sensor package has limited bandwidth, and 
thus, we examine digital implementation of Eqs. (9), (10), and (19)
with sample frequencies no faster than 100 Hz. In fact, the au-
topilot sensors provide data at a sample time of 0.02 s (i.e., a 
sample frequency of 50 Hz). Each controller (9), (10), and (19) is 
discretized using a zero-order hold on the input and a uniform 
sample time Ts. We now repeat Example 1 with the discrete-time 
FDI control. We use the nonlinear aircraft dynamics (7) and (8), 
and the same physical UAV parameters in Section 5.1.

Example 4. Average power of pitch error and average power of alti-
tude error as functions of k with discrete-time FDI and sample time Ts ∈
{0.01, 0.02, 0.04} s. Consider the flight scenario with a constant 
altitude command hd(t) ≡ h0 = 100 m and where the wind distur-
bance is the Gaussian white-noise wind model. Fig. 7 shows the 
average power Pθ (t1, t0) of the pitch error and the average power 
Ph(t1, t0) of the altitude error as a function of k for the discrete-
time FDI controller with sample time Ts ∈ {0.01, 0.02, 0.04} s. Note 
that t0 = 20 s and t1 = 100 s. Fig. 7 demonstrates that for each 
Ts, as k increases, Pθ (t1, t0) decreases until reaching a minimum. 
Increasing k further, causes Pθ (t1, t0) to increase and eventually 
leads to an unbounded pitch response (i.e., instability). However, 
for Ts ∈ {0.01, 0.02} s, the discrete-time FDI controller improves 
the average power Pθ (t1, t0) of the pitch error relative to the 
PI controller. Note that reducing sample time Ts from 0.04 s to 
0.01 s, reduces the minimum value of Pθ (t1, t0) and increases the 
associated value of k. Similarly, for Ts ∈ {0.01, 0.02, 0.04} s, the 
discrete-time FDI controller improves the average power Ph(t1, t0)
of the altitude error relative to the PI controller. Furthermore, as 
Ts decreases, the Pθ (t1, t0) versus k plot and the Ph(t1, t0) versus 
k plot for the discrete-time FDI controller approaches that of the 
continuous-time FDI controller. �

Example 4 demonstrates that for Ts ≤ 0.02 s, the discrete-time 
FDI controller can improve pitch and altitude command follow-

ing relative to the PI controller. Repeating Example 3 with the 
continuous-time FDI controller (19) replaced by the discrete-time 
FDI controller with Ts = 0.02 s results in closed-loop responses 
that are indistinguishable from the plots shown in Fig. 6.



J. Mullen et al. / Aerospace Science and Technology 54 (2016) 241–252 249

7. Altitude control experiment

This section describes an experimental implementation of the 
FDI controller (19) and the PI controller (20) on the small fixed-
wing UAV described in Section 5.1.

7.1. UAV autopilot hardware

The flight controller was an Ardupilot Mega 2.5, which is 
an open-source autopilot based on the Arduino computing plat-
form. The Ardupilot featured an Invensense MPU-6000 six-axis 
accelerometer and gryoscope, Measurement Specialties MS5611-

01BA03 barometer, Honeywell HMC5883L-TR magnetometer, and 
uBlox LEA-6H GPS system. A Pitot-static probe and pressure trans-
ducer provide airspeed sensing to measure U r. The pressure trans-
ducer was a Freescale Semiconductor MPXV7002, which had a 
±2 kPa range, which approximately corresponds to a 0-to-55 m/s 
sensing range for U r.

The Ardupilot operates using the Arduplane software package, 
which is open-source. The altitude h, latitude, longitude, speed U r , 
Euler angles φ, θ , ψ , and angular rates P , Q , R are available for 
feedback. To implement the PI and FDI pitch controllers, we al-
tered the pitch controller module of the Arduplane v2.74b source 
code. The revised function responsible for inputting a pitch error 
and outputting an elevator servomechanism command was imple-

mented at 50 Hz. The software was designed to allow switching 
between the PI and FDI pitch controllers in flight and to reset all 
states of the controllers to zero following the change of controller. 
Both the PI and FDI pitch controllers were discretized using a zero-
order hold at 50 Hz and augmented with a discrete-time approach 
to prevent integrator windup from saturation of the elevator ser-
vomechanism. See Ref. [26] for the anti-windup approach.

To gather data, the Arduplane firmware was altered to log al-
titude h, altitude error hd − h, commanded elevator deflection ue, 
pitch command θd, and pitch θ at 50 Hz. The UAV’s distance from 
its next waypoint was also logged. During flight, the ground crew 
was able to monitor position, attitude, and speed; change the pre-
defined tunable parameters using Mission Planner v1.3.1 software; 
and toggle between the FDI and PI pitch controllers.

7.2. Flight location and flight path

Experiments were conducted at the Lexington Model Airplane 
Club Facilities located in Lexington, Kentucky. The field featured a 
paved runway that is approximately 200 m long, oriented WSW 
and ENE, to match the predominant spring-to-fall wind direction.

The objective of the test flights was to evaluate the altitude and 
pitch command-following performance of FDI compared to that of 
the PI controller. To minimize systematic errors in the flight data 
due to transient weather changes, each test flight consisted of one 
portion of the flight operated under PI control and one portion of 
the flight operated under FDI control. The flight controller that was 
used first during the test flight was randomly selected.

The clockwise flight path is also shown in Fig. 8, where the 
waypoints A through H were all 100 m above a constant refer-
ence ground elevation. A lap was defined as starting and ending 
at point A and took approximately one minute to complete. Each 
test flight consisted of six laps and began with the aircraft taking 
off in the WSW direction under manual control. Manual control 
was maintained as the aircraft gained altitude and turned to align 
approximately with the H–A segment at approximately 100 m alti-
tude. The aircraft was then switched into automatic control, using 
either the PI or FDI inner pitch control loop, before reaching way-

point A. The first lap was completed under autonomous flight con-
trol; however, this lap was excluded from the analysis to minimize 

Fig. 8. Flight path. The experimental flightpath resembles a clockwise oval racetrack. 
The flight path is designed such that the aircraft is flying straight and level for as 
long as possible.

the influence of initial conditions introduced by the manual con-
trol. The second and third laps (beginning and ending at waypoint 
A) were used for analysis of the first controller. Between waypoints 
D and E on the fourth lap, the pitch controller was changed from 
PI to FDI or FDI to PI. This fourth lap was also excluded from anal-
ysis. The fifth and sixth laps (beginning and ending at waypoint A) 
were performed under autonomous flight and were used for anal-
ysis of the second controller. Following completion of the sixth lap 
at waypoint A, control was returned to the pilot who landed the 
aircraft on the runway in the WSW direction.

During autonomous flight, telemetry data was monitored by the 
ground crew to ensure nominal operation of the UAV. However, 
these data were transmitted at intervals which were dependent 
on communication quality. Therefore, data analysis was performed 
using the data logged to on-board memory by the autopilot at 
the fixed 50 Hz rate. These data were downloaded to the ground 
station following completion of each test flight. In processing the 
data, the distance-to-waypoint data were used to extract individual 
measurement segments of the data corresponding to each con-
troller.

All flight tests reported in this paper were conducted on Tues-
day May 27, 2014 in clear weather. Flights 1, 2, and 3 had rela-
tively constant winds from the WSW direction at 7 knots, whereas 
Flight 4 had relatively constant winds from the W direction at 12 
knots. All flight tests used the same pitch and altitude controller 
parameters as in the simulations. Specifically, we used the FDI pa-
rameters ηk(s) = (s + k)4, αm(s) = βm(s) = (s + 4)(s + 6)(s + 8), 
H̄d = 1, 005, and sgn(Hd) = −1; the PI pitch control parameters 
kθ,p = 0.5 and kθ,i = −0.1; and the altitude control parameters 
kh,P = 1.6 and kh,I = 0.2. The FDI parameter k was different for 
each flight.

7.3. Experimental results

Flights 1, 2, 3, and 4 were conducted with the FDI parame-

ters k = 12, k = 25, k = 30, and k = 30, respectively. Time histories 
of the pitch angle θ , pitch error θd − θ , altitude h, aircraft speed 
U r, and elevator servo input ue from the measurement portions of 
each test flight are shown in Figs. 9, 10, 11 and 12 for Flights 1, 
2, 3, and 4, respectively. The corresponding discrete power spectral 
densities of the pitch error and altitude error are shown in Figs. 13, 
14, 15 and 16. The average power Pθ (t1, t0) of the pitch error and 
the average power Ph(t1, t0) of the altitude error is examined for 
all flights, where t1 − t0 = 150 s. For brevity, the arguments t1 and 
t0 are omitted.

For k = 12, the pitch and altitude response demonstrated 
low-frequency oscillations at approximately 0.2 Hz as shown in 
Fig. 9. As a result, the PI controller displayed significantly better 
pitch command following, with |θd − θ | < 6◦ for PI compared to 
|θd − θ | > 12◦ for FDI. Interestingly, the maximum altitude devi-
ations for both FDI and PI were within the ±7 m of the target 
altitude of 100 m; however, the FDI controller had more frequent 
excursions from the target range. As a result Pθ = 40.09 deg2 for 
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Fig. 9. Time histories for Flight 1 (k = 12). Neither the pitch error nor altitude error 
with FDI is reduced relative to that with PI.

Fig. 10. Time histories for Flight 2 (k = 25). The pitch error and altitude error with FDI 
are reduced relative to that with PI.

FDI, whereas Pθ = 8.05 deg2 for PI. This resulted in Ph = 7.97 m2

for FDI, and Ph = 5.60 m2 for PI. Thus, at k = 12, the ratio of the 
PI average power of pitch error to the FDI average power of pitch 
error was 0.20, and the ratio for the average power of the altitude 
error was 0.70. As shown in Fig. 13, the FDI controller’s worse per-
formance was largely due to the 0.2 Hz oscillations. In fact, even 
at the relatively low value k = 12, the FDI controller demonstrated 
improved pitch command following at low frequency (i.e., less than 
0.1 Hz). This, however, did not result in improved altitude tracking 
at low frequency.

For k = 25, the pitch and altitude command following of the FDI 
controller improved significantly. As shown in Fig. 10, the excur-
sions of θd−θ are typically under ±4◦ for FDI compared to ±7◦ for 
PI. This resulted in lower amplitude excursions in altitude as well. 
However, as can be observed in the time series of ue , to accom-

plish this there is more demand for actuation at higher frequen-

Fig. 11. Time histories for Flight 3 (k = 30). The pitch error and altitude error with FDI 
are reduced relative to that with PI.

Fig. 12. Time histories for Flight 4 (k = 30). The pitch error and altitude error with FDI 
are reduced relative to that with PI.

cies. For FDI, Pθ = 2.62 deg2, and for PI, Pθ = 13.71 deg2, resulting 
in a ratio of 5.23. Similarly, for FDI, Ph = 3.93 m2, and for PI, Ph =
10.14 m2, resulting in a ratio of 2.58. As shown in Fig. 14, the im-

provement in pitch command following occurred primarily at fre-
quencies less than 0.2 Hz. Conversely, the improvement in altitude 
command following occurred at frequencies greater than 1 Hz.

Two flight tests were completed at the highest value k = 30. In 
both cases, the FDI controller demonstrated improvements over the 
PI controller with trends similar to those observed in the k = 25

flight test as shown in Figs. 11 and 12. The higher value of k re-

sulted in further reduction of the average power of pitch error and 
the average power of altitude error. For FDI, Pθ was reduced to 
1.38 deg2 for Flight 3 and 1.09 deg2 for Flight 4 compared to the 
PI values of 14.47 deg2 for Flight 3 and 11.16 deg2 for Flight 4. The 
ratio between the values of Pθ was 10.52 and 10.21 for Flight 3 
and Flight 4, respectively. Similar reductions were observed in Ph . 
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Fig. 13. Power spectral densities for Flight 1 (k = 12). The magnitude of the pitch er-
ror with FDI is smaller than that with PI at low frequency (i.e., less than 0.1 Hz). 
However, the magnitude of the pitch error with FDI is larger than that with PI at 
frequencies above 0.2 Hz. For the altitude error, the magnitude with FDI is larger 
than that with PI at almost all frequencies.

Fig. 14. Power spectral densities for Flight 2 (k = 25). The magnitude of the pitch er-
ror with FDI is smaller than that with PI below 0.2 Hz. For the altitude error, the 
magnitude with FDI is smaller than that with PI at almost all frequencies.

For FDI, Ph was 3.60 m2 and 2.47 m2 for Flight 3 and Flight 4 
compared to the PI values of 10.90 m2 and 7.09 m2. The ratios be-
tween the values of Ph was 3.03 and 2.87 for Flight 3 and Flight 4, 
respectively. The corresponding discrete power spectral densities 
of the measured pitch and altitude error shown in Figs. 15 and 16
demonstrate that the improved pitch command following occurred 
primarily at frequencies less than 0.2 Hz, whereas the improved 
altitude command following occurred at low frequency for Flight 3 
and across the entire frequency range for Flight 4.

These results are summarized in Table 1, which shows Pθ and 
Ph for each flight. In analyzing the results, we assume that the 
atmospheric turbulence did not change appreciably during a sin-
gle flight but may have changed between flights. This assumption 
is supported by the repeated test case of k = 30, which produced 
only 3.0% difference between measured Pθ ratios and 5.4% differ-
ence between measured Ph ratios, despite an approximately 20% 
difference in Pθ and Ph between the two flights.

The frequency-domain results are consistent with the numeri-

cally predicted response shown in Fig. 5. Notably, for k = 12, the 
experimental and numerical pitch errors both shows an increase 
in frequency content for FDI relative to PI from 0.1 to 0.3 Hz, and 
a significant decrease in frequency content for FDI relative to PI at 
low frequencies (i.e., less than 0.1 Hz). In addition, the experimen-

tal low-frequency (i.e., less than 0.2 Hz) pitch error is smaller for 

Fig. 15. Power spectral densities for Flight 3 (k = 30). The magnitude of the pitch er-
ror with FDI is smaller than that with PI below 0.2 Hz. For the altitude error, the 
magnitude with FDI is smaller than that with PI at almost all frequencies.

Fig. 16. Power spectral densities for Flight 4 (k = 30). The magnitude of the pitch er-
ror with FDI is smaller than that with PI below 0.2 Hz. For the altitude error, the 
magnitude with FDI is smaller than that with PI at almost all frequencies.

Table 1
Summary of experimental flight results.
Flight k Pθ (deg2) Ph (m2)

PI FDI Ratio PI FDI Ratio

1 12 8.05 40.09 0.20 5.60 7.97 0.70

2 25 13.71 2.62 5.23 10.14 3.93 2.58

3 30 14.47 1.38 10.52 10.90 3.60 3.03

4 30 11.16 1.09 10.21 7.09 2.47 2.87

larger values of k. This is consistent with the numerical results in 
Fig. 5.

Comparing the experimental PI-to-FDI ratios for Pθ and Ph , we 
note that the ratios are larger for larger k, in accordance with the 
predictions of the numerical simulations in Section 6. Qualitatively, 
the k dependence of the experimental ratios is consistent with 
the numerical predictions. However, quantitatively, the experiment 
shows larger PI-to-FDI ratios than the numerical simulations, in-
dicating that the FDI improvement over PI is more pronounced in 
the experimental results. One possible source of variation between 
the experimental and numerical results is airspeed error, which 
is coupled to the UAV pitch dynamics and a simplified PI speed 
controller is implemented in the numerical simulations. In the ex-
periment, the average power of the airspeed error for PI, ranged 
from 0.76 to 1.63 m2/s2, whereas for FDI, it ranged from 0.28 to 
0.72 m2/s2. Hence, the decreased performance of the PI pitch con-
troller could have been accentuated by the throttle control.
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The flight path is another difference between simulation and 
experiment. The simulations used roll control but did not imple-

ment a heading controller. In the simulations, the roll angle was 
regulated to zero (i.e., level flight). In the experiment, a guidance 
loop provided roll commands based on heading error. Thus, if FDI 
performance is superior to PI for non-level flight, then the nonzero 
experimental UAV roll could help explain the improved experimen-

tal performance of FDI relative to PI.
Differences between the estimated value of H̄d and the ac-

tual experimental value could cause changes in the average pow-

ers of performance for FDI. Underestimating H̄d can change the 
high-k-stabilizing nature of FDI, while overestimating H̄d tends to 
reduce the value of k needed to achieve a prescribed level of per-
formance.

8. Conclusions

Small fixed-wing UAVs have significant potential for scientific 
meteorological investigations. Maximizing the utility of data ac-
quired by onboard sensors will require improvements in gust-
rejection capability of the aircraft. One avenue for improving gust 
rejection is through improvements in the flight controller. In this 
paper, FDI is implemented in the altitude control loop of the flight 
controller of a small fixed-wing UAV. The FDI performance is com-

pared to that of a classical PI controller. One key advantage of FDI 
for this application is that it requires limited model information 
and is effective for command following in the presence of unmea-

sured disturbances.
Simulations using a nonlinear UAV model demonstrated that, 

for values of the FDI parameter k > 15, there was a noticeable de-
crease in the average power of altitude error compared to that of 
the PI controller, with a reduction in average power of altitude er-
ror of approximately 50% achieved for k > 30. These improvements 
were observed in the form of improved rejection of disturbances 
at high frequencies. Similar performance was observed when sim-

ulations where conducted using a discretized FDI controller, except 
that the maximum value of k which can be stably implemented is 
limited by the sample time.

Experiments were also conducted using a small fixed-wing UAV 
consisting of a low-cost, open-source autopilot integrated into a 
commercial off-the-shelf remote-control airframe. Test flights were 
conducted using both the PI and FDI control, with different val-
ues of k tested. Measurements of average power of altitude error 
demonstrated the same trends as observed in the simulations, 
namely, a decrease in error with increasing k. Comparison be-
tween PI and FDI power spectral densities of altitude error were 
also qualitatively similar to those observed in simulations. Quan-
titatively, the difference between simulation and experiment came 
in the form of an improvement in the observed performance of 
the FDI controller relative to the PI controller in experiment, with 
a 65% reduction in average power of altitude error observed when 
k = 30, coming predominantly at high frequency. Differences be-
tween the simulation and experiment are believed to be due to a 
combination of differences in the implementation of the throttle 
controller, differences in flight path, and differences between the 
estimated and actual value of the first nonzero Markov parameter.

These results demonstrate that measurable performance im-

provement is possible for small fixed-wing UAVs, and this im-

provement can enhance the feasibility of small UAVs as a low-cost 
meteorological test platform. In addition, the results demonstrate 
the suitability of FDI for making these performance improvements.
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