Research 11: Systems & Machine Learning

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Democratizing Data Science through Interactive
Curation of ML Pipelines

Zeyuan Shang! Emanuel Zgraggen' Benedetto Buratti* Ferdinand Kossmann'

Philipp Eichmann? Yeounoh Chung? Carsten Binnig?® Eli Upfal® Tim Kraska'
!Massachusetts Institute of Technology, USA 2Brown University, USA 3TU Darmstadt, Germany

ABSTRACT

Statistical knowledge and domain expertise are key to extract
actionable insights out of data, yet such skills rarely coexist
together. In Machine Learning, high-quality results are only
attainable via mindful data preprocessing, hyperparameter
tuning and model selection. Domain experts are often over-
whelmed by such complexity, de-facto inhibiting a wider
adoption of ML techniques in otherfi elds. Existing libraries
that claim to solve this problem, still require well-trained
practitioners. Those frameworks involve heavy data prepa-
ration steps and are often too slow for interactive feedback
from the user, severely limiting the scope of such systems.
In this paper we present Alpine Meadow, afirst Interactive
Automated Machine Learning tool. What makes our system
unique is not only the focus on interactivity, but also the
combined systemic and algorithmic design approach; on one
hand we leverage ideas from query optimization, on the other
we devise novel selection and pruning strategies combining
cost-based Multi-Armed Bandits and Bayesian Optimization.
We evaluate our system on over 300 datasets and compare
against other AutoML tools, including the current NIPS win-
ner, as well as expert solutions. Not only is Alpine Meadow
able to significantly outperform the other AutoML systems
while — in contrast to the other systems — providing interac-
tive latencies, but also outperforms in 80% of the cases expert
solutions over data sets we have never seen before.

ACM Reference Format:
Zeyuan Shang! Emanuel Zgraggen! Benedetto Buratti? Ferdi-
nand Kossmann' Philipp Eichmann? Yeounoh Chung? Carsten

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on thefi rst page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD 19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06...$15.00
https://doi.org/10.1145/3299869.3319863

1171

Binnig?3 Eli Upfal?> Tim Kraska' . 2019. Democratizing Data Sci-
ence through Interactive Curation of ML Pipelines. In 2019 Inter-
national Conference on Management of Data (SIGMOD ’19), June
30-July 5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3299869.3319863

1 INTRODUCTION

Truly democratizing Data Science requires a fundamental
shift in the tools we use to analyze data and build models
[18]. On one hand it requires to move away from Python-
like scripting languages, SQL and batch processing to visual
and interactive environments [10, 15, 21, 26, 33, 43]. On the
other hand, it requires to significantly reduce the required
expertise to build a machine learning pipeline. Ideally, a user
should be able to specify a high-level task (e.g., predict label
X based on my data), and the system automatically composes
a machine learning pipeline to achieve that task, including
all necessary data cleaning, feature engineering, and hyper-
parameter tuning steps.

The latter challenge is largely referred to as AutoML or
Learning to Learn and comes in variousfl avors. For example,
there already exists a huge amount of work on a subset of
the problem: automatic hyper-parameter tuning and model
family selection. Most noticeable, TuPAQ [35, 37], Hyper-
band [22] and the various Bayesian Optimization approaches
[11, 17, 40] all have the goal to automatically determine the
best model family (e.g., SVM vs Linear regression) or pa-
rameters for a given algorithm (e.g., step-size, kernel, etc.).
However, hyper-parameter and model selection is only one
aspect of automaticallyfi nding the best ML pipeline for a
given task. Rather an end-to-end solution also has to consider
data cleaning operation, feature engineering, and potentially
even data augmentation and transfer learning. For example,
in some cases min-max scaling and feature crosses might
help, whereas in others standard scaling and feature selec-
tion to avoid over-fitting is the better choice. In some cases
filtering out outliers and imputing missing values can have
significant benefits, whereas in others it harms the accuracy.

The closest existing solutions, which allow such end-to-
end training are probably the recent Learning to Learn ap-
proaches tofi nd neural net (NN) architectures [3, 45]. The



Research 11: Systems & Machine Learning

view of some “purist” is that the input of a NN should be
the raw data and that the model - if correctly tuned, for
example, by an automatic NN architecture search — should
do all the rest. However, deep learning based approaches
only work with huge amount of training data and output
a black box solution (i.e., a neural net), which is extremely
hard to interpret. While this approach might be amenable for
some scenarios, many real-world problems are rather small
in terms of data size. For example, in the current DARPA
D3M AutoML competition, only 5% out of the 300 datasets
are actually larger than 10MB. We made similar observations
when working with our partners in industry and hospitals.

More importantly though, we are not aware of a single Au-
toML solution, which can provide interactive response times
to enable users to steer the computation and contribute to
the optimization with their domain knowledge. For example,
Google’s Architecture search can run for weeks [3], whereas
even SciKit-Learn’s Hyperparameter Tuner often take hours
before producing afi rst high-quality result. At the same
time, interactive response times are key: users should see
and understand how the system tries tofi nd the best possible
AutoML pipeline and potentially contribute their knowledge.
For example, a doctor might decide to remove questionable
features from the training set after seeing that the model
starts to rely too much on it. Furthermore, as shown in inter-
active data exploration [44], interactive response times can
improve the rate at which insights are uncovered: a team
might try to build a model quickly during a meeting rather
than having a week-long back and fourth between meetings,
coding and running experiments, etc.

In this paper, we present Alpine Meadow, afi rst interactive
AutoML tool, which is intended to be integrated into a visual
environment similar to Tableau or Vizdom [10]. However, for
this paper our focus is entirely on the ML optimizer rather
than the visual integration and user feedback. Furthermore,
we have a particular focus on small data and traditional sta-
tistical supervised machine learning pipelines, rather than
architecture search for neural nets, unsupervised learning, or
automatic data acquisition and cleaning. While the here de-
scribed optimization framework can be easily extended with
these operations, and in fact, our implementation already
does support many of them (e.g., transfer learning for neural
nets, unsupervised learning) describing and evaluating these
operation in detail is beyond the scope of this paper.

Interestingly, the problem offi nding the best possible ML
pipeline for a given task (e.g., classify X) has many common-
alities with query optimization as already pointed out in
the MLBase vision paper [19]. It requires to explore a po-
tentially enormous search space and select the best possible
plan (i.e., pipeline). We therefore borrow many ideas from
query optimization including rule-based search-space cre-
ation. Yet, what differentiates our approach the most from

1172

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

other AutoML tools is the joint algorithmic and system-based
approach to ML auto-tuning, the focus on interpretable ML
pipelines, and our goal to produce a high quality results in
less than a few seconds.

In summary, our end-to-end interactive and automated
machine learning system makes the following contributions:

e We present a novel architecture of an AutoML system
with interactive responses.

We show how rule-based opimization, can be com-
bined with multi-armed bandits, Bayesian optimiza-
tion and meta-learning tofi nd more efficiently the best
ML pipeline for a given problem. Here, the novelty lies
in the fact how we combine the various techniques
into a single system.

We devise an adaptive pipeline selection algorithm to
prune unpromising pipelines early by comparing train
and validation errors on increasingly larger sample
sizes of training instances.

We show in our evaluation that Alpine Meadow signif-
icantly outperforms other AutoML systems while — in
contrast to the other systems — provides interactive
latencies on over 300 real world datasets. Furthermore,
Alpine Meadow outperforms expert solutions in 80%
of the cases for datasets we have never seen before.
Finally, as of April 2019 Alpine Meadow was ranked
first in DARPA performed D3M Automatic Machine
Learning competition.

The remainder of this paper proceeds as follows. In Sec-
tion 2 we provide a system overview, whereas Section 3 to
7 discuss the different auto-tuning steps. We evaluate our
system and compare with baselines and other systems in
Section 8, summarize related works in Section 9, andfinally
conclude in Section 10.

2 OVERVIEW

In this section we give an overview of Alpine Meadow and
introduce the main terminology.

2.1 System Architecture

Alpine Meadow is part of Northstar[18], a system for Interac-
tive Data Science where domain experts interact with data
through an interactive visual environment called Vizdom[10].
In this environment, a prediction problem can be specified
through drag and drop gestures and can be as simple as
binary classification (i.e. spam detection) or as complex as
graph community detection.

Based on such a problem specification, Alpine Meadow will
automatically begin to search and progressively return ma-
chine learning pipelines to the end-user. The system gradu-
ally optimizes over the search space, and periodically returns
best-so-far pipelines to the end-user. Unlike other AutoML



Research 11: Systems & Machine Learning

systems, we envision our system to be used in an interactive
setting, which allows users to constrain and refine a problem,
early stop a search and embed their domain knowledge.

(W) 2 B)

Pipeline 1
L]
Pipeline 2

Pipeline 3
| [ |

@

Meta-Learning via
History

PlpellneArm 1
74. 38%

PlpellneArm 2

— 4. 25%

Plpellne N Plpellne Arm N

96. 12%
L)

(6) Data Augmentation Update Search Space Model

Figure 1: Optimization loop: (1) search space model,
(2) logical-plan selection, (3) physical-plan selection,
(4) pipelines evaluation and pruning, (5) search space
model update, (6) data augmentation

2.2 The Optimization Process

The core design idea is to solve ML problems by emulating
the decision-making process of an experienced data scientist.
How does an experienced data scientist approach a prob-
lem: First, she would inspect the data and, based on her
experience, make high-level decisions about feature scaling,
embeddings, data cleaning, etc. The key is to start out simple.
Furthermore, the data scientist would probably use a reliable
and often successful model family, such as random forests,
and check for the most common mistakes (e.g., imbalance of
labels or duplicate label columns). Finally, the data scientist
would setup a simple optimization strategy for the primi-
tives’ hyper-paremeters and if the data is large, probably
first try to build a model over a sample of the data. Then,
after initial results, the data scientist will start to modify the
pipeline by adding more complex processing steps, changing
the model family, adding/removing features, increasing the
sample size and so on. It is an iterative and incremental pro-
cess. It is further a process with memory as the data scientist
remembers, what worked well over what data in the past.

This process is exactly what we aimed to mirror and au-
tomate in our system. We therefore broke our architecture
up into steps that data scientists perform, which has the ad-
vantage to make the problem more tractable than treating
it as optimization problem on a gigantic and heterogeneous
space. Figure 1 shows the individual steps in Alpine Meadow:

(1) Search Space: The systemfi rst creates a search space
of logical pipelines. We define a logical pipeline plan as:

DeriNiTION]. Logical Pipeline Plan: a Directed Acyclic
Graph (DAG) of primitives, with their hyper-parameters’ do-
main specification (notfi xed).

We create the logical plans through applying rules, sim-
ilar to how SQL transformation rules can create a space of

1173

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

equivalent logical query plans. For example, a rule might
say that all categorical features should be one-hot encoded,
or that numerical features can be scaled. Also similar to
logical query plans, logical pipelines do not yet contain any
details about how the pipeline should be executed (e.g., no
hyper-parameters are set).

This step is best compared to asking the data scientist: "What
can I do to predict X based on my data" and she lists a whole
bunch of options, e.g., different ways of encoding categorical
features, scaling numerical features and feature selection, and
different models for prediction.

]

Denormalize

Extract Attributes

Extract Numerical Extract Categorical

i strategy: mean | strategy: UniformDistribution

l : (mean, most-frequent, median)

|

Standard Scaler One-Hot Encoder

SVD

Extract Targets

components: 16 : i components: UniformIntegerDistribution
I l (Iower:1 0, upper:256, default=1 28)
SGD Classifier
alpha: 1e-4 loss: log i loss: UniformCategoricalDistribution(...)
average: False  penalty: 1.2 | i average: True/False
epsilon: 1e-4 power_t: 0.25

Figure 2: An example pipeline. The boxes in red show
fixed hyper-parameters and they compose a physical
pipeline plan with this DAG. While the boxes in green
give distribution of hyper-parameters and they com-
pose a logical pipeline with this DAG.

(2) Logical Pipeline Selection: Similar to query opti-
mization the space of all possible logical pipelines can be
huge. We therefore select the most promising logical pipelines
based on a cost/quality model learned from past experiments
to favor fast pipelines to provide better interactivity.

This step is best compared to asking the data scientist “What
should I tryfi rst”. A data scientist will provide you with a few
good general options after taking a quick look at your data.
For example, she might say “Try to normalize all features and
use a boosted decision tree as a start” or she might say, “Given
the data size, don’t even try neural nets”.

(3) Physical Pipeline Selection: After selecting the log-
ical pipelines, they are instantiated into k physical pipeline
plans, which are defined as:



Research 11: Systems & Machine Learning

Algorithm 1: PipelineSelection

Input: Problem P, Dataset D, Q
1 while Q.has_space do
Ip « NextLogicalPipeline(P, D)
pps < NextPhysicalPipelines(lp, k)
Q.putAll(pps)

2
3
4

Algorithm 2: PipelineExecution

Input: Problem P, Dataset D, Q, scorepes;
Output: Pipeline Found
1 while !Q.empty do
p < Q.take()
for score « AdaptivePipelineSelection(p, D) do
if score > scorep.; then

L

| Update models using running history of pipeline;

2

[ B

SCOrepes; <— score

yield pipelinep,s;

=)

DEFINITION2. Physical Pipeline Plan: an end-to-end
solution to a user-defined problem, represented as Directed
Acyclic Graph (DAG) of primitives withfi xed hyper-parameters.

An example of physical pipeline plan is shown in Figure 2.
Physical pipelines are generated from a logical pipeline via
Bayesian optimization. Each logical pipeline hyper-parameters
space has an associated performance-model used tofind
promising configuration. If a logical pipeline has never been
used, there is not any model associated with it, hence we
start out using default or random configurations. As soon
as thefi rst results are collected, our system starts to select
the next hyper-parameters based on Bayesian-Optimization.
The logical and physical plans are a vague analogy to the
query optimization, however, physical pipeline plans don’t
include any implementation details as the physical plans in
query optimization do.

This step is best compared to turning the general pipelines
into actual Python code.

(4) Incremental Execution: For large datasets, it is of-
ten beneficial to run a physical pipeline on a smaller sample
first, and then if the results look promising try it on a larger
portion of the dataset. We therefore, treat every physical
plan as a bandit arm, from which every pull increases the
sample size. The bandit mechanism together with the sam-
pling guarantees that we focus our attention on promising
pipelines early on and get good results quickly, which we
can stream back to the user with short response time.

This is similar to a data scientistfi rst building a model over
a sample of the data before using all available data especially
when the data is big.

1174

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

(5) Iterative Refinement: By evaluating different physi-
cal pipelines, we gathered some experience over the current
dataset that we can use to update our cost- and quality-model
to select logical pipeline and the Bayesian-Optimization model
for selecting physical pipeline.

This step can be best compared to the iterative refinements
that a data scientist performs after that she observes the results
from a tested model.

(6) Data Augmentation: A more recent step that we
started adding to the process is automatic data augmentation.
That is, as part of step (1) we now also consider, if we can use
already trained models as starting solutions or to create new
features. For example, if the goal is to train a classifier based
on only 100 training images, the most promising solution is
to actually transfer an existing model or use existing mod-
els to create more powerful features for the given images.
Currently, we only use this approach for image tasks but
with very remarkable results. While not discussed in detail
in this paper, we briefly outline that our system can easily

be extended to support this.
As we showed, Alpine Meadow tries on a high-level to

emulate the steps a data scientist takes. Furthermore, as the
distinction between a logical pipeline and physical pipeline al-
ready shows, our optimizer has many similarities with tradi-
tional query optimization and a lot of optimization potential
exists as we discuss in the remaining sections. It should also
be noted, that this is not the only way to build an interactive
end-to-end AutoML tool and in Section 7 we discuss alterna-
tive designs. However, like the original Selinger paper [32]
on query optimization, it is a start, and will hopefully result
in various follow up work.

2.3 Algorithmic Walkthrough

Algorithm 1 and 2 provide a simplified outline of the entire
optimization process following the previous described steps
(minus the augmentation). First, we create a master Pipeline
Selection thread running Algorithm 1, and several Pipeline
Execution worker threads. The two are connected through a
fixed size execution queue Q. Every time the queue has free
space, the Pipeline Selection thread tries tofi nd a promising
logical pipeline, and based on it creates k physical pipelines
to execute, which it then adds to the execution queue.
Whereas the worker threads take up a physical pipeline
from the queue and execute it using our sample-based execu-
tion strategy (line 3 in Algorithm 1). Note, that for a single
physical pipeline we receive more than one scores, as we
incrementally train and test the sampled pipelines. If the
score for a pipeline is higher than the so far best seen score,
we report it to the user (line 4-7) and update our history of
pipeline runs to make better decisions in the future (line 7).



Research 11: Systems & Machine Learning

3 RULE-BASED SEARCH SPACE

Data scientists rely on their expertise and past experience
to solve challenging problems. We imitated this process by
adapting the idea of rule-based search space definition com-
monly used in database optimizers to our AutoML system.
Rules in our system encapsulate best practices similar to
those data scientists might use. Given the definitions in the
previous section we propose three kinds of rules: primitive,
parameter and enforcement rules.

Primitive Rules add new primitives to the search space
dependent on the task (e.g., using different algorithms for
classification, regression, recommendation, or graph-related
problems) or the dataset schema (e.g., applying one-hot en-
coding for categorical features). Until now, we have inte-
grated close to hundred primitive rules derived from winning
Kaggle competitions, expert solutions to problems provided
by DARPA, and interviews with data scientists. These rules,
for example, include things like encoding categorical fea-
tures, scaling numerical values, imputation of empty values,
selection of features, choosing models for different problem
types, extracting features from raw text and images, building
the graphs for graph datasets etc. Primitive rules are used to
build and rewrite logical pipelines. Applying a rule can either
start a new logical pipeline or extend existing ones by adding
primitives that operate on all or a subset of columns. What
makes our approach unique is that we create two types of
logical pipelines:

e General logical pipeline: General pipelines always
use primitives over all features if they share the same
semantic type, and only use one primitive type per
category. For example, a general pipeline would en-
code that we run a one hot encoder on all categorical
columns, a min-max scaler on all numerical columns,
then do an SVD on the concatenation of these two
results, and feed them into a SVM. A general pipeline
would thus not use two different encodings for the
same numeric feature, orfi rst apply min max scaling
followed by standard scaling. This approach allows
us to severely restrict the number of general logical
pipeline and also make the transfer learning of pipe-
lines between different datasets possible.
Data-specific logical pipeline: These are logical pipe-
lines with no restrictions on the primitive compositions
and can be dataset dependent. For example, for a prob-
lem of predicting whether a player can be selected
into the hall of fame, we can run a standard scaling on
the number of seasons of the player, and a min max
scaling on the average scores of the player. Obviously,
for any given problem, there can be a large amount of

data-specific logical pipelines.

1175

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Parameter Rules generate reasonable distributions for hyper-
parameters of primitives. For example, a rule might be that
the set of possible values for the kernel of a SVM are linear,
poly, sigmoid or rbf, or that the value for the regularization
factor A should be sampled from a log uniform distribution.

Enforcement Rules check the feasibility of a logical pipeline.
Not every generated logical pipeline is feasible. For example,
most algorithms will fail if not all the categorical features are
encoded into numerical values or raw data (e.g., text) are not
featurized. Alpine Meadow uses enforcement rules to validate
logical pipeline and aborts the generation of unfeasible ones.

For execution of primitive rules, we have the probability
of y to create general logical pipelines or data-specific logical
pipelines. In our implementation, y is set to 0.5. We only
return a logical pipeline when it passes all the enforcement
rules, and users have the opportunity to affect our selection
of logical pipeline here, for example, we can add a enforce-
ment rule to only allow for logical pipeline with SVMs or
logical pipeline with no more than 10 steps. After that, we
execute parameter rules to assign reasonable distributions of
hyper-parameters for primitives of a logical pipeline. Before
applying any rule, we always check the predicate of the rule
to make sure it works for the given problem and dataset.

By applying rules to build the search space, we make the
generation of logical pipeline plansfl exible. It allows to add
new rules to extend the system to support new problems,
datasets and incorporate best practises from machine learn-
ing experts. Moreover, rules also create easy-to-explain solu-
tions for better interpretability by users; especially general
logical pipeline are often easy to understand. Furthermore, it
allows to inspect which set of rules led to the creating of a
specific logical pipeline.

Finally, rules can be learned and automatically added. In
the simplest form, we add a new expansion rule for every
newly-added primitive. For example, if one adds a new fea-
ture scaler for numeric value, we add a rule that the optimizer
can use this new feature scaler for numeric values. However,
it is possible to use the rules to apriori restrict the search
space (e.g., only use this feature scaler if the classifier is
an SVM) and these rules could be learned from Kaggle and
OpenML. In our current implementation, we do not make
such restrictions and leave it up to the meta-learning algo-
rithm to make the right choices early on.

4 PIPELINE LOGICAL PLAN SELECTION

Ideally, we want to select pipelines from the search space,
which worked well in the past over similar datasets. How-
ever, occasionally we want also try out new approaches (e.g.,
an estimator that we never tried before). Furthermore, we
should probably favor solutions in the beginning, which are
more general, fast and reliable, but later specialize and use
more complex models. Finally, we can not enumerate all



Research 11: Systems & Machine Learning

Algorithm 3: NextLogicalPlan (NLP)

Input: Problem #, Dataset D
Output: Next logical pipeline
1 if rand() < fthen  // Selection (Exploitation)
Compute g, 8k and ¢ for each logical pipeline k
using the history
LogicalPlan « select a logical pipeline k with a

2

probability proportional to p + % - Ok

else // Random (Exploration)
5 if random() <y then // General pipeline
L LogicalPlan « general logical pipeline

else // Data-specific pipeline
L LogicalPlan « data-specific logical pipeline

9 return LogicalPlan

potential pipelines; so any strategy has to use some kind of
heuristic to traverse the search space.

Obviously, there is no single “right” way to balance all
these objectives. In the following, wefi rst describe on a high
level how our selection process works, before we discuss the
individual components in more depth.

4.1 Overview

The most important difference between building an AutoML
optimizer and query optimizer is that for ML pipelines we
can actually try and evaluate hundreds if not thousands of
pipelines, while in query optimization once a plan is executed
there is nothing left to try out. The goal of our optimizer
is to select and try out various logical plans in a way that
maximizes the probability that one of them contains the best
possible physical pipeline: often logical pipelines diversity
can help. Furthermore, it is a iterative process: we can stop
the evaluation of a pipeline at any point in time and start a
new one as it deemsfi t; something which rarely pays offin
traditional query optimization, but which is common practice
for ML. Our goal is therefore to build a function called NLP,
short for next logical pipeline, which we invoke to obtain
promising logical pipelines. More importantly, we found that
using past history is the best predictor for future performance
and thus balancing exploitation (leveraging what worked
well in the past) and exploration (trying out new things) are
key tofi nding good solutions. The high-level pseudo-code for
selecting the next logical pipeline is shown in Algorithm 3.
Exploitation To balance the two objectives, exploitation
and exploration, we use a simple random process: with like-
lihood B, we select a general logical pipeline, which worked
well in the past (lines 1-4 in Algorithm 3). We evaluated
B over various datasets (see Appendix A.1) and found that
B = 0.5 provides a good balance. We steer exploitation based

1176

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

on a score measuring how promising each logical pipeline
is, while the score is calculated based on past experiences.
We restrict transferring past experience to general logical
pipelines as we found that it is less reliable for data-specific
pipelines because of the sheer amount of options and the
sensitivity to the dataset. Therefore, Alpine Meadow stores
information about every physical pipeline ever run including
its corresponding logical pipeline,fi nal accuracy, execution
time, task information, and dataset characteristics. This al-
lows us, for example, to calculate the average and variance of
the accuracy and execution time of a model for a given task
and set of data characteristics. Based on this historic infor-
mation and given a new task, Alpine Meadow then creates a
score of every previously run general pipeline. This ranking
is based on the execution time. That is, in the beginning we
rank logical pipelines higher which return quickly, whereas
later execution time might be less of a concern. Finally, its
selects randomly one of the pipelines depending on the score:
the higher the score, the higher the chance that the general
pipeline gets selected. Furthermore, in the moment we re-
ceive results on how well a selected logical pipeline performs,
this information is also stored, which in turn might change
the scores for the next selection.

Exploration In contrast to ensure that Alpine Meadow
also tries new things, with the likelihood 1—f we select a log-
ical pipeline which we have never run before. Here we again
randomly select with likelihood y either a general logical
pipeline, or with likelihood 1—y a data-specific pipeline (lines
4-9 in Algorithm 3). We evaluated y over various datasets
(see Appendix A.1) and found that y = 0.5 provides a good
balance. Note, that by adjusting y over time, we can favor
general pipelines in the beginning and maybe later in the ex-
ecution split it evenly between general and data-dependent
pipelines, which are more specialized. For example, with
a large y, we prefer general logical pipelines, then we are
more likely to generate general ones like the pipeline in
Figure 2. With a smaller y, data-specific pipelines are more
likely chosen, while they are usually more complicated, e.g.,
run min-max scaling on one column and standard scaling
on another column, followed by a PCA. Many ways exists
on how to select the potential logical pipeline for which we
have no experience yet. However, what we found is that
randomly selecting a solution often performs as good as a
more advanced techniques. The reason is, that the number of
general pipelines is relatively small, so that we will anyway
try them all in a short amount of time, if y is not set too
low. In contrast, the number of data-specific pipelines is very
sensitive to the data properties (much more than the general
pipelines) and the search space is so big, that we can often
not create enough samples that any advanced optimization
technique would actually pay off.



Research 11: Systems & Machine Learning

Finally it should be noted, that this selection process does
not yet tune any of the hyper-parameters and that for ev-
ery logical plan we usually try several hyper-parameters, as
explained in Section 5.

4.2 Selecting Based on History

In this section we focus our attention on how we select a
general pipeline from the past (lines 1-4 in Algorithm 3). We
modeled this selection process as a Multi-Armed Bandit
(MAB) problem. We adapt the definition of MAB presented
in [34] to the concept of logical pipeline selection as follows:

DEFINITION3. Multi-Armed Bandits (MAB) Problem:
given a set of actions a € A and a time-budget T, in each
roundt € [T]:

(1) An algorithm picks an arm a; € A

(2) Algorithm observes a reward from the chosen arm a;

Given that the arms reward distributions D, are unknown
and independent,fi nd the algorithm that approximate the best
solution with the smallest reward loss (regret)

We base the selection of past pipelines on MAB as many
algorithms exists approximating the optimal solution; among
the most known are Upper Confidence Bound (UCB) [8] and e-
greedy [39]. This provides us a powerful and proven solution.

Selecting With Bandits The core idea is as follows: (0 -
Init) We have one arm for every related (based on the task
and dataset) general logical pipeline we ran in the past and
we preset a score for each arm based on our past experience.
(1 - Selection) We select an arm (i.e., logical plan) to play
(i-e., run) randomly but proportional to the score. When the
execution is done, we (2 - Store History) store the result
in our history log and (3 - Adjust Scores) adjust the scores
accordingly, and then the process repeats from (1).

They are four core problems we have to address (1) how
we select arms (i.e., pipelines) based on similarity of the task
and data, (2) how we define the score, (3) how we transfer
the past observed performance to the current dataset and
task, and (4) how we adjust the score based on the feedback
we get of actually running pipelines for the given tasks. We
will address those challenges in this order.

4.3 Remembering the Past

Tofi nd related history for a given task and datasets can be
regarded as a meta-learning problem. Meta-learning [7] tries
to infer learning algorithms performances from the perfor-
mance of learning algorithms across different datasets. We
use the same idea from meta-learning to quantify the simi-
larity between datasets. [12] proposes many meta-features
to capture the high-level characteristics of a dataset. Those

include: number of features, the imbalance ratio of classes,
the number of instances, PCA statistics and information-

theoretic features etc.

1177

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Further, [12] proposes a distance function based on the
performances over afi xed set of n representative pipelines
on two datasets. Formally, assume that there are n pipelines
(61, ..., 06n), we use the negative Spearman’s correlation coef-
ficient between the ranked results on both datasets (denoted
asd.):

de(D;, D;) = 1= Corr([fP(0), ..., fP1(6n)],
[0, ... F (0]

where fPi(6,) denotes the computed score after evaluating
pipeline 6; on D;.

For a new dataset D,,,,, since we have not yet evaluated
these n reference pipelines, we can not directly compute d..
However, assume there are N pre-provided datasets, [12]
addressed this by computing d.(D;,D;) forall1 <i,j < N
and using regression methods to learn a function R : RF x
RF — R, mapping from pairs of meta-features < m’, m’ >
to dc(D;, D;j). Then with this learned model, the distance
function can be approximated as

dc(Dnew, Di) ~ R(mnew’ mi)

In our implementations, we built R using a random forest
because of its robustness.

With distance function d., we can get the list of appli-
cable history (i.e., logical pipelines and their performances)
from similar datasets for a given dataset D,.,,, such that
the dataset D associated with the instance of history has
de(Dpew> D) = R(m™®™, m) < 7. In our implementation, we
use 7 = 0.3 and return all pipelines below the threshold to-
gether with their mean performance i, performance variance
d, and averaged execution time c. Each of these pipelines
become a bandit arm, which can then be executed.

4.4 The Scoring Model

We want to balance the expected quality vs time. We there-
fore defined the score for each logical pipeline plan as:

(1)

where p; and Jy are the mean and standard deviation of
the rewards (i.e., quality of the logical pipeline plan) and cx
is the cost, or execution time, for logical pipeline aj based
on the past history. Note, that we divide only the variance
by the execution time and multiply it by 6. Here € is a factor
on how much risk we want to take to try a pipeline, which
might have a high upside (i.e., variance). We normalize the
variance by the execution time as proposed in [23]; so the
higher the potential payback, the longer we are willing to
wait for it. However, we do not adjust the mean reward by
the execution time. A pipeline which always performs good
should be selected from the beginning. However, this is only

0
Sk = pk + — - Ok
Ck



Research 11: Systems & Machine Learning

reasonable as (1) we assume a high parallelism (explained
later), (2) assume that some short running pipelines will
always be selected, and (3) our physical execution quickly
prunes out long running under performing physical pipelines.

The last step to achieve a complete solution to the logical
plan selection problem is the initialization of the scores based
on the history, which involves two main challenges: (1) we
have to identify the similar tasks and according dataset from
the past (i.e., learning from the past), and (2) normalize the
scores to the new problem so that they can actually be used
(i-e., transferring the experience).

4.5 Transferring the Experience

While it seems that we can immediately use the score for-
mula above andfi Il it using the values from the history, we
actually can not. Even for similar datasets, the same physical
pipeline may have different scales of scores (since we only
consider relative rankings to quantify the similarity between
datasets). To this end, for all pipelines of a specific dataset,
we can standardize their scores tofi t into the same scale. For
a pipeline p and its score s, we normalize it as
S~ Hd

8a
where gy and 8y are the mean and standard deviation of
scores of all pipelines on this dataset. We cluster these past
iterations and their normalized scores to their corresponding
logical pipelines, which has the same structure (DAG). Then
we compute the mean ,u;c and standard deviation 5;( for each
logical pipeline k using these normalized scores.

Snew =

4.6 Learning from the Current Experience

Finally, we want to adjust the scores based on the actual
feedback by running pipelines over the actual data. Assuming
U is the just observed new mean quality and p}c is the old
mean quality. We then calculate the new value for ji; by
first normalizing the score and by means of exponential
smoothing as:

. @

where o achieves the trade-off between current results
and history results. In our implementation, we set « = 0.2.In
the future, we plan to make « degrade over time to prioritize
information from current session. The adjustment for the
variance d and execution time cy is very similar.

Furthermore, all pipelines (general and data-specific) which
get selected for execution, will become a new arm as soon as
they return afi rst result. This has the advantage, that as soon
as we try something new, it becomes part of the memory of
our system and the bandit algorithm might select it based
on its score in the future.

'u+a',u'k

. Hk
fire =

1178

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

5 PIPELINE PHYSICAL PLAN SELECTION

For a specific logical pipeline, there exists possibly an infinite
number of physical pipelines with different hyper-parameter
configurations. In order to tofi nd the best possible hyper-
parameters configuration, we uses Bayesian Optimization:

DEerINITION4. Bayesian Optimization (BO): optimiza-
tion strategy thatfi nds a global optimum point x* € X of
a function f : X — R (which analytical form is unknown),
building a surrogate model My of f to guide the optimization.

In our setting, f is the unknown score function that maps
the physical pipelines with their respective performances.
Since the evaluation of f is expensive, we use Bayesian Op-
timization, specifically Sequential Model-Based Optimization
(SMBO), to build a model of f to keep track of which are the
most promising regions in the search space.

For every selected logical pipeline, the optimizer probes
M using a sampling policy tofi nd the next most promising
hyper-parameter configuration to be evaluated. In our work
we use the widely adopted expected improvement (EI) [31]
as sampling policy, due its ability to balance exploration
(search in unexplored regions) and exploitation (search in
promising regions) [16, 31, 38]. We adopt the implementation
of SMBO from [14] which uses a random forest to build
the surrogate model. This random forest is trained using
past configurations performances and estimates for a new
hyperparameter configuration 0, its predictive mean pp and
its variance O'g, to compute for each physical pipeline its
expected improvement with respect to the current best.

Based on SMBO we create k physical pipelines for each
logical pipeline (we set k as 10 in our implementation), and
pushes them into a shared queue that is consumed by the
evaluation module as described next. Here, again we not
only pick the most promising hyper-parameters, but also
introduce some random candidates in its physical pipeline
candidate-list to avoid to get stuck in local optimum point.
Once those physical pipelines evaluation is complete, their
scores are returned and the My updated accordingly.

6 PIPELINE EVALUATION AND PRUNING

We implement the execution engine of Alpine Meadow us-
ing master-slave paradigm to allow scalable training and
testing of physical pipelines and coordinate the work using
a single producer, multiple consumer paradigm as shown
in Algorithm 1 and 2. That is, we have a queue of physical
plans to run of size m, which are picked up by execution
workers. Every time k slots become available, the producer
runs Algorithm 1,fi rst select a logical plan (Section 4), based
on it select k physical pipelines (Section 5) and insert them
to the queue. Those physical pipelines are then picked up
by the workers running Algorithm 2 and executed and the



Research 11: Systems & Machine Learning

®  partial validation

——— train error overview
0.8

O % final validation
00g%, train error bound at iteration: 15

0.6
s x
5 | e

0.4 //"

0.2

0.0

0 10000 20000 30000 40000 50000

train sample size

Figure 3: the more iid train samples we provide to the
physical pipeline, the closer the train and validation
error become.

Algorithm 4: Adaptive Pipeline Selection (APS)
Input: Pipeline pipeline, D
Output: Score (negation of error)

1 Split D into Dyrgin and Dyatidation-

2 Split Dyqin into equal-sized D}, ;,...., DN . -
3 foreachie€1...N do

4 | Train pipeline on D}; !

5 €r'ryalidation < Test Pipeline on D‘ualidatian;
6 if erryaiidation < €rrpes: then

7 €r'Tpest <~ €rTyalidations

8 yield ~€r'’validations

9 errirain < Test pipeline on D)1

10 if errspqin > errpes: then

11

L return -inf

12 return -errygiidation

process repeats. Note, that this approach only works well as
we assume that the number of workers w we have is much
larger than k, w >> k, and m is set to be larger than w.

However, two main problems remain: (1) how do we re-
turn results early based on samples to ensure interactivity,
and (2) can we potentially stop the execution as soon as we
detect that a pipeline is not promising. It turns out, those
problems are actually related as explained next. Finally, our
execution strategy has huge potential for result reuse, which
is explained in Section A.5.

6.1 Incremental Execution and Pruning

To achieve incremental computation and return results early,
as well as reduce the computational resources spent on bad
pipelines we devised Adaptive Pipeline Selection (APS), a
bandits-based pruning strategy able to detect bad performing
pipelines, without using the whole training set.

As shown in Algorithm 4, APS gets as input a dataset D,
and it splits into a training dataset D;,4;, and a validation

1179

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

dataset Dygjidarion- Than splits the train-set into N smaller
samples of the same size Dtlmin, e, Z)g‘r]ain. For each sub-
epoch, APS generates a partial training sample as follows:

DEFINITIONS. Sub-epoch: a partial training phase in which
the sampled physical pipeline trains on a partial training sam-
ple. At sub-epoch i-th the partial training sample is equal to
the union of thefirst D! . UD? . U D! data splits.

train train 7" train

As shown from line 4 to 6, after the partial training phase,
APS computes err,qidarion and updates erryaiidation if nec-
essary. For fast response, we will also return the score (nega-
tion of the error) to the main loop in Algorithm 2 to enable
interactivity, therefore the master can make the decision of
whether using such a pipeline trained on samples by compar-

ing its score with the current best. After this it computes the
physical pipeline partial training error and uses it as a lower

bound of thefi nal test error. Thus at the end each sub-epoch
i, APS applies the following halting criterion:

HALTINGC RITERION1. At sub-epoch i, if the physical
pipeline partial training error is above the best validation
error (seen so far), terminate it.

The halting criterion is based on the facts that err;yqi, <
errses: and they will eventually converge if enough data is
provided (under the iid assumption). This idea is well dis-
played infi gure 3 where the more data we provide to the
physical pipeline the smaller the gap between train and test
error becomes, making the bound on thefi nal test error
tighter and tighter. In the appendix we provide additional
experimental evidence regarding the high correlation be-
tween train-test error, showing in the striking majority of
the tested pipelines, the train error successfully bounds the
final validation error.

The actual execution of APS is asynchronous. At each sub-
epoch the individual threads compare their physical pipeline
partial training and validation results against the current
best performer, and if there is an improvement, they return
it to the end user. APS saves computational resources by
spending less on bad performing physical pipelines and more
on promising ones and returning them faster to the end-user.
This has a direct impact on the system’s interactiveness.

7 DISCUSSION

Pipeline Selection: By combining multi-armed bandit and
Bayesian Optimization (BO), our algorithm essentially adopts
a two-step strategy:fi nding the best primitives (or logical
pipeline), and thenfi nding the best hyper-parameters (or
physical pipeline). Another approach would be to take the
structure of primitives as hyper-parameters, build a giant
search space of all logical pipelines, and use BO over this
space tofi nd the best pipeline. However, such a search space
is highly-heterogeneous and conditional, making it difficult



Research 11: Systems & Machine Learning

to train an accurate regression model. For example, some
hyper-parameters are specific to certain models but for BO
to work all possible parameters need to be represented in
a single feature vector. Updating the search space is also
challenging. For example, if a new primitive (e.g., a new
classification algorithm) is added, we cannot reuse previous
history anymore as the feature space has changed. Moreover,
it is very hard tofi nd good optima with existing optimization
methods when the search space is giant and highly complex.
Finally, it is also difficult to consider performance and
cost at the same time in the traditional BO methods, and
BO is also hardly explainable since it is essentially an opti-
mization method for black-box functions. In contrast, multi-
armed bandits provide a better intuitions what is happening.
Therefore, by combing these two methods, we can inject
context information (e.g., cost of executing physical pipeline)
when solving the multi-armed bandit problem. By splitting
the whole search space into several smaller ones (i.e., logi-
cal pipeline), we can avoid more quickly useless sub search
spaces and build a more accurate BO model with less data
since the complexity of search space is greatly decreased.

Interactivity: As Alpine Meadow is used in the interactive
setting. In order to support interactivity, we employ time-
based cost models that favor fast pipelines early on, train
pipelines over small samplesfi rst, prune unpromising pipe-
lines early, and even make extensive use of caching for our
own developed operators as discussed in Section A.5.

Novelty over auto-sklearn: Our system is similar to auto-
sklearn [11] as both use meta-learning and Bayesian Op-
timization. However, there are several key points where
Alpine Meadow differs significantly from auto-sklearn: 1)
Alpine Meadow uses a rule-based search space, which is
more extensible and supports more problem types than auto-
sklearn (see Figure 4). 2) Alpine Meadow combines multi-
armed bandits with Bayesian Optimization (BO) to better
explore the search space and improve interactivity. That is,
auto-sklearn only returns one pipeline after afi xed time-
budget while Alpine Meadow reports a stream of results with
updates whenever a better pipeline is found. 3) The "warm-
starting” techniques (i.e., the use of meta-learning) are dif-
ferent: auto-sklearn uses a few good pipelines as starting
points, whereas Alpine Meadow uses the history of the qual-
ity and cost of all so far run pipelines. This allows us to
tradeoff between performance and speed, leading to better
performance in early stages. 4) Alpine Meadow adopts the
Adaptive Pipeline Selection to prune unpromising pipelines
at an early stage while auto-sklearn evaluates the pipeline
on the full data, which makes it unable to produce results
quickly, as justified in Figure 6(a).

1180

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

8 EXPERIMENTS

We aim to answer three main questions: (1) How does our
system compare to other state-of-art ML auto-tune systems?
(2) Are we able to return answers more quickly than other
systems, ideally with interactive latencies? (3) How much
do our individual design decisions influence the system?

8.1 Experimental Setup

Datasets For the majority of our evaluation, we use the
datasets provided by the DARPA D3M competition. DARPA’s
program on Data Driven Discovery of Models (D3M) has the
goal to build tools to automatically build models for a given
task with and without human feedback. As part of this pro-
gram DARPA performs competitions every 6 month between
all participating teams including teams from UC Berkeley,
Stanford, MIT, NYU, etc. Every competition compares all
the systems on datasets the teams have never seen before.
However, in order to prepare the teams for the competi-
tion, DARPA released over 300 datasets; 220 classification
datasets, the smallest being 151 records large, the largest
being 1025000 records large, and 80 regression datasets, the
smallest being 159 and the largest being 89640 records large.
Here records refer to either tabular structured data, text-data,
images, and even audio-files.

As mentioned before, our system heavily relies on the past
experience tofi nd good solutions. We therefore randomly
split the datasets evenly into a training and test set; we use
the training datasets to build up history, and only report the
performance on the other half of the data.

Building Up Experience For the training datasets and tasks,
we then extensively try out various pipelines to build up past
experience. That is for every classification dataset we try 66
general logical pipelines, and for every regression dataset 44
regression pipelines. In total we spend 30 minutes per train-
ing dataset to build up sufficient experience to be used for
future tasks. In total, we executed around half a million phys-
ical pipelines, which would take roughly 3 days on a single
machine. However, the training is embarrassingly parallel
and with 20 machines only takes 4 hours.

Baselines We compare against four baselines: (1) hand-made
solutions from DARPA: while some DARPA solutions are
state-of-the-art highly tuned solutions, others only represent
reasonable solutions; a solution a relatively experienced data
scientist can manually come up with in a few days; (2) auto-
sklearn (version 0.4): automatically searched solutions from
auto-sklearn [11], which is the state-of-art open-source Au-
toML system; (3) TPOT (version 0.9) : an interactive AutoML
system using genetic programming [29]; (4) Azure (as of
March 2019): Microsoft Azure AutoML (based on [27]). The
experiments are restricted to AutoML, while feature engi-
neering and other transformation primitives are not evalu-
ated.



Research 11: Systems & Machine Learning

auto-sklearn TPOT Alpine Meadow

Not Supported
Not Supported

Azure

Tabular Classification
Tabular Regression
Graph Matching  Not Supported
Community Detection  Not Supported
Image Classification  Not Supported
Audio Classification  Not Supported
Collaborative Filtering  Not Supported

Not Supported
Not Supported
Not Supported
Not Supported
Not Supported

Not Supported 100%
Not Supported 100%
Not Supported 100%

Figure 4: Comparison of Alpine Meadow with different
systems regarding supported problem/dataset types.
The percentages are calculated by the ratio of datasets
supported by the system.

Metrics for Comparison We use F1 scores for classification
problems and mean squared error for regression tasks. We
further adopted the normalized score normap of system A

over system B from DARPA D3Is\/[ AustoML Competition:
A~ SB

Iss]

Here the score S4 (Sp) is either the F1 score or the negation
of the mean squared error, such that the higher scores are
always better. Intuitively, norm,p measures how much better
system A performs over system B. Note, that this normalized
score is biased; the best possible score is 1 but the worst
can be go to —oo. We decided to use it as it DARPA’s main
measure, but refrain from interpreting absolute values. In
addition to normalized scores, we also use relative ranks to
compare different systems. For example, if system A gets a
F1 score of 0.8 and system B a score of 0.9, the rank is 1 and
2 for system B and A respectively. Here absolute values are
more meaningful, thus we will use relative ranks, as well as
discretized scores (as in Figure 5) to compare between different
implementations. Finally, we report an alternative unbiased
metrics and raw scores in Section A.3 & A.4.

normap =

Hardware Environment All experiments were conducted
on a single machine with a 40-core Intel(R) Xeon(R) CPU E5-
2660 v2 @ 2.20GHz and 256 GB RAM, running with Ubuntu
16.04 and Python 3.6.3. We set the number of workers to 80
on this machine to utilize all hyper-threads.

8.2 Comparison with other Systems

Functionality: Wefi rst compared Alpine Meadow with auto-
sklearn, TPOT, and Azure in terms of how many datasets

they can handle (shown in Figure 4). We found that none

of the other systems can handle image, audio, or collabo-

rativefi ltering problems, whereas Alpine Meadow supports

a wide range of problems. More surprisingly though, none

of the other systems is even able to handle all structured

classification and regression tasks.

Performance: Next, to evaluate the performance of the
different systems over the 150 test datasets, we allocated
each system a time bound of 1h, and for the comparison
of Alpine Meadow and Azure a time bound of 10 minutes.

1181

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

One thing to note is that Azure didn’t support F1 scores,
so we use accuracy as the primary metric for classification
problems for the comparison between Alpine Meadow and
Azure. For all systems, we compute the normalized scores
between Alpine Meadow and the respective system.

Higher scores mean Alpine Meadow outperforms the other
system, whereas a normalized score of 0 means the systems
perform equally well. We further discretize the normalized
scores into “better’: Alpine Meadow outperforms the other
system, “same”: scores are equal, and “worse”: Alpine Meadow
performs worse than the other system. Here we also only
consider the datasets the system was actually able to run and
exclude all datasets for which a system failed or didn’tfind
a solution in the given time bound. The results of this exper-
iment are summarized in Figure 5. Overall, Alpine Meadow
outperforms or equals Azure in 70% of the datasets, 79% for
auto-sklearn and 74% for TPOT.

Alpine Meadow vs. Azure

better (89) &
\ I
same (18) e | ]
| |
worse (42) ° &
Alpine Meadow vs auto-sklearn
better (109) @® o o
\ I
same (10) e |
| |
worse (29) «®
Alpine Meadow vs. TPOT
better (94) S o,
\ I
same (9) e |
|
worse (33) (]
-103-102-10' -10°10° 10! 102 103

normalized score

Figure 5: Comparisons of Alpine Meadow with dif-
ferent systems across multiple test datasets. Normal-
ized scores are computed as Alpine Meadow’s score
over the other system’s score. Scores are discretized
into “better’: Alpine Meadow outperforms other sys-
tem, “same”: scores are equal, and “worse”: Alpine
Meadow performs worse than other system.

Comparison over Time Being able to provide solutions
within interactive latencies is one of the main design goals
of Alpine Meadow. We therefore measured the quality of
the top models auto-sklearn and TPOT return over time.
We excluded Azure from this experiment since they didn’t
support the F1 score and only recently in April 2019 were
able to support all datasets. We ran all systems over our 150
test datasets for 1h again excluding failing datasets. Because
auto-sklearn only returns the result after a pre-defined
time span we run it with various increasing time limits.



Research 11: Systems & Machine Learning

=

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

0.8
0.6
0.4
0.2

successful datasets

—— Alpine Meadow

! --- auto-sklearn

! - TPOT
10!

10?2 10°

time (second)

(a) Number of Successful Datasets

time (second)

(b) Ranks

0.0
/

—0.2 /
/

normalized score

—— Alpine Meadow —0.4

-==-+ auto-sklearn
TPOT

—— Alpine Meadow

auto-sklearn
TPOT

—0.6 /r’ -

102 10° 10! 10?2 103

time (second)

(c) Normalized Score

Figure 6: (a) Time to producefi rst result per dataset (more early results implies better interactivity) (b) Relative
rank of the solutions averaged over all datasets (with 95% confidence bands) over time (lower is better); (c) Nor-
malized scores over the by DARPA provided solutions averaged over all datasets over time (higher is better).

2.5
~
=4
& 20
%)
j=2
o©
o 15
<
1.0
) bayesian bayesian
. bayesian h .
autosklearn bayesian leami meta-learning meta-learning
meta-learning cost cost

aps

VDS
Figure 7: Incremental Comparison with auto-sklearn.
We compare all these systems together and compute
the averaged relative ranks (lower is better).

Figure 6(a) shows when thefi rst result was returned by
the individual systems. We note that Alpine Meadow is able
to return solutions for over a third of the datasets within
1 second and for all datasets after 26 seconds with an av-
erage time per dataset of 2.76 seconds. This can be largely
contributed to the adaptive execution strategy. The curve
of auto-sklearn went down because results were collected
from runs of different time limits, so it found a pipeline for
some datasets in a run of short time while failed to do so in
a run of long time.

Second, in Figure 6(b) we show how the relative average
rank (over all test datasets) of the three systems evolves over
time. Lower rank is better. Alpine Meadow consistently holds
the best rank throughout the entire time span.

Finally, Figure 6(c) depicts the average normalized score
(over all test datasets) where we normalize the system’s score
over the scores of hand-made solutions. Higher normalized
score is better. We note that on average all three systems can
beat hand-made solutions but Alpine Meadow is consistently
leading especially within short time frames.

Incremental Comparison with auto-sklearn Figure 7
shows the incremental comparison (with more techniques
employed) between Alpine Meadow and auto-sklearn. As
we can see, if we only employ Bayesian Optimization in
Alpine Meadow, the performance is relatively close to auto-
sklearn, however, each individual technique (which is either

notin auto-sklearn or employed in different ways)improves
the performance of Alpine Meadow, including meta-learning,

cost-based pipeline selection and adaptive pipeline selection.

1182

Solved Problems Better than Baseline ~ Normalized Score

Alpine Meadow
System 2 40% 27% 0.09
System 3 40% 13% 0.02

DARPA Baseline [IIINI00% N 0% 0.00
System 4 20% 7% -0.07
System 5 87% 47% -0.16
System 6 27% 7% -0.22
System 7 60% 20% -0.59
System 8 87% 53% -0.75
System 9 60% 20% -1.14

System 10 60% 20% “

Figure 8: DARPA D3M AutoML competition (latest re-
sult in March 2018).

DARPA D3M competition As mentioned earlier, as part
of DARPA D3M’s program, DARPA evaluates the auto-ml
solutions of all teams roughly every 6 month over datasets we
have never seen before and also against by DARPA created
expert solutions. Figure 8 shows the released results from
the last DARPA evaluation which was done March 2018
(DARPA did another evaluation over the summer, but still
hasn’t released the results yet). In the table we anonymized
the other team names, which are from places like Stanford,
UC Berkeley, NYU, etc, and report the number of problems
the system can solve, if the system is better than the by
DARPA created expert solution, and the normalized score
to the DARPA expert solution. As it can be seen, currently
Alpine Meadow leads the competition.

8.3 Evaluation of Design choices

To evaluate our design choices, we ran our system for one
hour while enabling or disabling individual components or
optimizations. By comparing the results between with and
without individual design choices, we can have a better un-
derstanding of their benefits. The results are shown in Fig-
ure 9.

Logical Pipeline Plan Selection We ran our system with
four different configurations to justify the effectiveness of
our cost and quality based logical pipeline selection tech-
niques: (1) Random, which always picks up a logical pipeline



Research 11: Systems & Machine Learning

—— quality 17 bayesian

—-— quality+history N -=-= random

quality+history+cost P

28 \w
- === random
\

[ -

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

aps
=== nopruning

T100 10 102 108 100 10!
time (second)

(a) Logical Pipeline Plan Selection

time (second)

(b) Physical Pipeline Plan Selection

\;/\V'\‘ ﬂ ~
\ ) 1 fEh
' AN A Do
A ‘,,L.{

102 10° 10° 10 10? 10°
time (second)

(c) Pipeline Pruning

Figure 9: Evaluation of Design Choices. We reported the ranks of different choices along with time (lower better).

randomly; (2) Quality, which only considers quality with-
out using history (cold-start) when selecting logical pipelines,
and also has some probability to randomly select a logical
pipeline; (3) Quality+History extends Quality by using
history of similar datasets to improve the selection; (4) Qual-
ity+History+Cost further improves Quality+History by
considering cost to prioritize fast pipeline.

As we can see in Figure 9(a), at the early stage, Qual-
ity, Quality+History and Quality+History+Cost both
outperforms Random, it is because them all choose pipelines
with high potential of quality. By taking history into consid-
eration, Quality+History is able tofi nd good results after
thefi rst 100 seconds, however, because it doesn’t consider
cost, it prefers good but probably slow pipelines, it is not
as good as Quality+History+Cost in the early stage. Qual-
ity+History+Cost measures quality, history and cost at
the same time, so it achieves a good tradeoff between fast
response and good performance. Also, by preferring fast
pipelines, we can execute more pipelines andfi ne tune them,
and have a better model of the search space. Eventually, these
methods all converge to high-quality solutions, while Ran-
dom is still not as good since the search space is infinite and
it is difficult tofi nd a good pipeline without any guidance.

Physical Pipeline Plan Generation We ran our system
with and without using Bayesian Optimization for the tuning
of hyper-parameters to justify the effectiveness of our phys-
ical pipeline selection design choices: (1) Random, which picks
random hyper-parameters configurations; (2) Bayesian, which
uses Bayesian Optimization tofi nd the next promising con-
figuration of hyper-parameters.

As shown in Figure 9(b), after a very short amount of time
(10 seconds) Bayesian achieves much better performance.
During thefi rst several seconds, Random and Bayesian are
pretty comparable since Bayesian essentially does random
search atfi rst to learn about the hyperparameter space.

Pipeline Pruning We ran our system with and without us-
ing Adaptive Pipeline Selection to evaluate the effectiveness
of our pipeline early termination method. We compare two
modes: (1) NoPruning, which just trains a pipeline on the
train dataset and tests it on the validation dataset without
pruning anything; (2) Adaptive Pipeline Selection APS, which
prunes unpromising pipelines.

1183

Using APS we are able to to test much more pipelines, ob-
taining better solution in shorter amount of time as depicted
in Figure 9(c). However, as time goes on NoPruning perfor-
mances eventually will converge to APS ones: this is due to
a diminishing returns effect. Testing more and more pipe-
lines leads to decreasing improvements, since the physical
pipelines search space has been gradually covered.

9 RELATED WORK

AutoML Systems: Most automated ML systems focus on
automated learning algorithm selection and hyper-parameter
tuning [4, 6, 13, 23, 24, 36, 45] to make machine learning
curation fully automated for non-ML experts.

Arguable most related to our approach is Auto-sklearn for
which we explained the differences in depth in Section 7.

Spark TuPAQ [36] and Hyperband [22] use variations of
multi-armed bandit (MAB) algorithm to better allocate com-
putational resources for hyper-parameter tuning. However,
their search space is limited to hyper-parameter sets for a
few (often, user specified) learning algorithms. The output
ML pipeline is not practical in that the real-world problems
require end-to-end pipeline curation with careful feature
engineering/selection and data transformation. One major
drawback of MAB-based approach is that the number of
arms (a unique configuration/pipeline) explodes with the
size of the search space, and the total number of arms can
easily exceed the memory size for a full search space with
models, hyper-parameters and pre-processors.

Auto-WEKA [17, 40] or its sister package Auto-sklearn
[11] solves the problem of learning algorithm selection and
their associated hyper-parameter optimization in a com-
bined search space. They also consider various feature se-
lection and data transformation methods to generate end-
to-end ML pipelines. Auto-WEKA uses Sequential Model-
based Algorithm Configuration (SMAC) to explore the large
search space, which is partly discrete and conditional as each
selected algorithm has a different set of associated hyper-
parameters. The idea is that, instead keeping track of all the
possible configurations, the search moves towards a more
promising region based on the previous search and evalua-
tion results. Unfortunately, standalone SMAC optimization
for the large search space can still run for hours if not days.



Research 11: Systems & Machine Learning

In addition, Auto-WEKA and its search space construction
is limited to classification and regression problems only.

TPOT [29] is a tree-based pipeline optimization tool using
genetic programming while requiring little to no input nor
prior knowledge from the user.

Microsoft has recently introduced an AutoML tool via
Azure, based on the work of [27]. They build predictive ML
pipelines combining collaborativefi ltering and Bayesian Op-
timization (BO). In particular they model the search space
as probability distribution defined by a Probabilistic Matrix
Factorization [20] and than use expected improvement as
acquisition function to choose the most promising pipelines.

In Alpine Meadow, we combine BO with MAB to construct
more compact (and dense) search space for Bayesian Opti-
mization, which results in more accurate and efficient search.
Additionally, the current implementation can work with ex-
isting (WEKA [1] and Scikit-learn [30]) ML libraries as well
as custom ML primitives for more complex problems. As a
result, Alpine Meadow can support more complex problem
types (e.g., graph matching, image and audio classification,
etc.), and more importantly, Alpine Meadow finds a compara-
ble ML pipeline much more efficiently and can progressively
improve the quality of the pipeline.

The interactivity aspect differentiates Alpine Meadow from
other systems: we design time-based cost models preferring
fast pipelines early on, incremental training pipelines, and
pipeline early termination to provide better interactivity.

Human-In-The-Loop Data Analytics: There are tools
and systems that focus on the human-in-the-loop aspect
of data science. Hellix aims to accelerate the iterative ML
model training with responsive user feedback [42]. Vizdom
[10] provides a unique pen-and-touch interface for the user
to easily construct ML workflows and interactively refine
the analytics/ML pipelines. Most industry cloud ML services,
such as TensorFlow [2], Amazon SageMaker and Azure Ma-
chine Learning [27], fall into this category, in that they pro-
vide fully-managed environment for ML applications. Unlike
systems, the focus is not automated end-to-end pipeline cura-
tion; the services provide programmable APIs or web-based
interface for ML workflow construction and managed com-
puting resources for the deployment. Alpine Meadow targets
domain experts or users without ML expertise, and instead of
requiring the user to construct a working ML workflow with
selected algorithms and pre-processors, the system generates
one based on the problem description and the data.

Neural Architecture Search: Also related to our work is
neural architecture search, in that we consider deep neural
networks as one of the learning algorithms. Alpine Meadow
currently uses transfer learning [41], a general framework for
re-using models leaned in one task for other tasks, in order

1184

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

to quickly train a neural architecture model. This limits the
search space to afi xed architectures (e.g., the depth and width

of hidden layers, skip connections). Neural networks are hard
to design from scratch, and there are many proposed solution
using similar Bayesian Optimization [5, 25] or Reinforcement
Learning techniques [45]. In the future, we will integrate
some of the automated neural architecture design techniques
for the tasks where deep learning is known to perform best.

10 CONCLUSION AND FUTURE WORK

We have discussed a new approach to Interactive Automated
Machine Learning. This low-latency automatic selection,
based on Multi-Armed Bandits, Bayesian Optimization and
Meta-Learning theory, efficiently explores the pipeline search
space and enables domain experts to bring value to the opti-
mization process. We have tested Alpine Meadow on datasets
with very heterogeneous characteristics, from sample size
to feature types. Our experiments show that when com-
pared against state-of-the-art systems or expert-solutions,
Alpine Meadow generally generates better results in a shorter
amount of time. Nevertheless, the current implementation
of Alpine Meadow leaves some interesting open questions.

First of all, we have found that for many datasets the lack
of sufficient information/signal in the data is a major rea-
son for unsatisfactory performances. This issue can take the
form of a small training set, inadequate or missing features,
or simply an excess of noise. We plan to address those prob-
lems by adding external (relevant) information to the dataset,
performing what in jargon is called Data Augmentation. For
example Alpine Meadow already boosted the performances
of an hand-wrist-size image regression problem using a pre-
trained ResNet neural network to extract high-level features
from the small train set (just 100 images). Given such en-
couraging results, we plan to apply Data Augmentation to a
broader class of tasks under the form of feature extraction,
feature addition and sample enlargement . Second, we want
to explore new types of strategies for our logical pipeline
and physical pipeline optimizer. We plan to investigate a new
scoring model for dataset similarity in order tofi nd rele-
vant datasets with better precision. We also plan to examine
more sophisticated early termination techniques by leverag-
ing shared statistics among the pruning threads. Finally, we
aim to support Neural Network architecture exploration and
compare our system against existing frameworks.

11 ACKNOWLEDGEMENT

This research is funded by the DARPA Award 16-43-D3M-FP-
040, NSF Award RI-1813444, NSF Award IIS-1562657 and NSF
Award IIS-1514491 and supported by Google, Intel, and Mi-
crosoft as part of the MIT Data Systems and Al Lab (DSAIL).



Research 11: Systems & Machine Learning

REFERENCES

[1] [n.d.]. Weka. https://www.cs.waikato.ac.nz/ml/weka/. ([n. d.]).
[2] Martin Abadi et al. 2016. Tensorflow: a system for large-scale machine

[10

[11

[12

(13

(14

(15

[16

(17

[18
[19

[20

[21

[22

]

—

= S

=

=

=

—

—

]

=

=

learning.. In OSDI, Vol. 16. 265-283.

Marcin Andrychowicz et al. 2016. Learning to learn by gradient descent
by gradient descent. In Advances in Neural Information Processing
Systems. 3981-3989.

James Bergstra and Yoshua Bengio. 2012. Random search for hyper-
parameter optimization. Journal of Machine Learning Research 13, Feb
(2012), 281-305.

James Bergstra, Daniel Yamins, and David Daniel Cox. 2013. Making a
science of model search: Hyperparameter optimization in hundreds of
dimensions for vision architectures. (2013).

Carsten Binnig, Benedetto Buratti, Yeounoh Chung, Cyrus Cousins,
Tim Kraska, Zeyuan Shang, Eli Upfal, Robert Zeleznik, and Emanuel
Zgraggen. 2018. Towards interactive curation & automatic tuning of ml
pipelines. In Proceedings of the Second Workshop on Data Management
for End-To-End Machine Learning. ACM, 1.

Pavel Brazdil et al. 2008. Metalearning: Applications to data mining.
Springer Science & Business Media.

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. 2012. Regret analysis of
stochastic and nonstochastic multi-armed bandit problems. Founda-
tions and Trends® in Machine Learning 5, 1 (2012), 1-122.

Moses Charikar et al. 2000. Towards estimation error guarantees for
distinct values. In Proceedings of the nineteenth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. ACM, 268-279.
Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig,
and Tim Kraska. 2015. Vizdom: Interactive analytics through pen and
touch. Proceedings of the VLDB Endowment 8, 12 (2015), 2024-2027.
Matthias Feurer et al. 2015. Efficient and robust automated machine
learning. In Advances in Neural Information Processing Systems. 2962—
2970.

Matthias Feurer et al. 2015. Initializing Bayesian Hyperparameter
Optimization via Meta-Learning.. In AAAIL 1128-1135.

Daniel Golovin et al. 2017. Google vizier: A service for black-box
optimization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 1487-1495.
Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequen-
tial model-based optimization for general algorithm configuration.
In International Conference on Learning and Intelligent Optimization.
Springer, 507-523.

Lilong Jiang, Michael Mandel, and Arnab Nandi. 2013. Gesturequery:
A multitouch database query interface. Proceedings of the VLDB En-
dowment 6, 12 (2013), 1342—-1345.

Donald R Jones, Matthias Schonlau, and William J Welch. 1998. Effi-
cient global optimization of expensive black-box functions. Journal of
Global optimization 13, 4 (1998), 455-492.

Lars Kotthoff et al. 2017. Auto-WEKA 2.0: Automatic model selection
and hyperparameter optimization in WEKA. The Journal of Machine
Learning Research 18, 1 (2017), 826-830.

Tim Kraska. 2018. Northstar: an interactive data science system. Pro-
ceedings of the VLDB Endowment 11, 12 (2018), 2150-2164.

Tim Kraska et al. 2013. MLbase: A Distributed Machine-learning
System.. In Cidr, Vol. 1. 2-1.

Neil Lawrence and Raquel Urtasun. 2009. Non-linear matrix factoriza-
tion with Gaussian processes. Proceedings of the International Confer-
ence on Machine Learning (2009).

Doris Jung-Lin Lee et al. 2017. Accelerating Scientific Data Exploration
via Visual Query Systems. arXiv preprint arXiv:1710.00763 (2017).
Lisha Li et al. 2016. Hyperband: A novel bandit-based approach to
hyperparameter optimization. arXiv preprint arXiv:1603.06560 (2016).

1185

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Tian Li et al. 2018. Ease. ml: towards multi-tenant resource sharing
for machine learning workloads. Proceedings of the VLDB Endowment
11, 5 (2018), 607-620.

Gang Luo. 2016. A review of automatic selection methods for machine
learning algorithms and hyper-parameter values. Network Modeling
Analysis in Health Informatics and Bioinformatics 5, 1 (2016), 18.
Hector Mendoza et al. 2016. Towards automatically-tuned neural
networks. In Workshop on Automatic Machine Learning. 58—65.
Arnab Nandi. 2013. Querying Without Keyboards.. In CIDR.

Melih Huseyn Elibol Nicolo Fusi, Rishit Sheth. 2018. Probabilistic
Matrix Factorization for Automated Machine Learning. arXiv preprint
arXiv:1804.05892 (2018).

Milos Nikolic, Mohammed ElSeidy, and Christoph Koch. 2014. LIN-
VIEW: incremental view maintenance for complex analytical queries.
In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 253-264.

Randal S. Olson et al. 2016. EvoApplications 2016. Chapter Automating
Biomedical Data Science Through Tree-Based Pipeline Optimization,
123-137. http://dx.doi.org/10.1007/978-3-319-31204-0_9

F. Pedregosa et al. 2011. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research 12 (2011), 2825-2830.

Matthias Schonlau, William ] Welch, and Donald R Jones. 1998. Global
versus local search in constrained optimization of computer models.
Lecture Notes-Monograph Series (1998), 11-25.

P Griffiths Selinger et al. 1979. Access path selection in a relational
database management system. In Proceedings of the 1979 ACM SIGMOD
international conference on Management of data. ACM, 23-34.
Tarique Siddiqui et al. 2016. Effortless data exploration with zenvisage:
an expressive and interactive visual analytics system. Proceedings of
the VLDB Endowment 10, 4 (2016), 457-468.

Alex Slivkins. 2018. Introduction to Multi-armed Bandits. In Introduc-
tion to Multi-armed Bandits.

Evan R. Sparks et al. 2015. Automating model search for large scale
machine learning. In Proceedings of the Sixth ACM Symposium on Cloud
Computing, SoCC 2015, Kohala Coast, Hawaii, USA, August 27-29, 2015.
368-380. https://doi.org/10.1145/2806777.2806945

Evan R Sparks et al. 2015. Automating model search for large scale
machine learning. In Proceedings of the Sixth ACM Symposium on Cloud
Computing. ACM, 368-380.

Evan R. Sparks et al. 2015. TuPAQ: An Efficient Planner for Large-
scale Predictive Analytic Queries. CoRR abs/1502.00068 (2015).
arXiv:1502.00068 http://arxiv.org/abs/1502.00068

Niranjan Srinivas et al. 2009. Gaussian process optimization in the
bandit setting: No regret and experimental design. arXiv preprint
arXiv:0912.3995 (2009).

Richard S Sutton, Andrew G Barto, Francis Bach, et al. 1998. Reinforce-
ment learning: An introduction. MIT press.

Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-
Brown. 2013. Auto-WEKA: Combined selection and hyperparameter
optimization of classification algorithms. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 847-855.

Sebastian Thrun and Lorien Pratt. 2012. Learning to learn. Springer
Science & Business Media.

Doris Xin et al. 2018. Accelerating Human-in-the-loop Machine Learn-
ing: Challenges and Opportunities. arXiv preprint arXiv:1804.05892
(2018).

Emanuel Zgraggen et al. 2015. (s| qu) eries: Visual regular expressions
for querying and exploring event sequences. (2015).

Emanuel Zgraggen et al. 2017. How progressive visualizations affect
exploratory analysis. IEEE Transactions on Visualization & Computer
Graphics 8 (2017), 1977-1987.



Research 11: Systems & Machine Learning

S
3.0 TTREENAATM

r X

238
26
10° 10! 10? 10°
time (second)
(a) Varying S
3.4

10t
time (second)

10? 10°

(b) Varying y
Figure 10: Parameter sensitivity: (a) Rank for different
[ values (with 90% confidence bands). The higher the j

the more exploitation, the lower the more exploration.

(b) Rank for different y values (with 90% confidence
bands). The higher y the more general pipelines are
tried, the lower the more data-specific pipelines.

[45] Barret Zoph and Quoc V Le. 2016. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578 (2016).

A APPENDIX

A.1 Parameter Sensitivity

Throughout the paper we used § = 0.5 and y = 0.5 to
balance exploration vs exploitation and general pipelines
vs data-specific pipelines. In the following, we take a closer
look on how these two parameters influence the system
performance.

In Figure 10(a) we analyze the impact of § while keeping
Y constant at 0.5. As it can be seen, f = 1.0 achieved the
best performance in the beginning (lower means better) as
it exploits previous good solutions, while f = 0.0 was the
worst as caused to try pipelines randomly. However, after 10
seconds, = 0.5 performs better than § = 1 as it achieves a
good trade-off between exploitation and exploration.

Figure 10(b) shows the sensitivity to y while keeping f at
0.5. Most interesting is that y = 1.0 works extremely well
until the very end, while 0.5 performs particular well at the
end and reasonable before. The reason is simple: y = 1.0
implies that no data-specific pipelines are used, whereas

1186

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Y = 0.5 gives data-specific pipelines a chance to develop
over time.

In the future, we plan to design strategies that adapt the
value of f and y over time.

A.2 Halting Criterion

The Halting Criterion is motivated by the fact that for a given
model the expected validation error is larger than the ex-
pected training error, hence it is possible to use the training
error as a practical lower bound of the validation error. In Fig-
ure 11 we show the correlation plots for four of the datasets
that we tested. In the plots each point indicates a pipeline
evaluation: blue points are partially trained pipelines; orange
points pipelines trained on the full training set. The points
above the bisector indicate pipelines for which the lower
bound holds (the train error is smaller than the validation er-
ror). Figure 11 and table 1 demonstrate that the bound holds
for a vast majority of the evaluated pipelines and datasets.
Additionally Figures 11(a), 11(b) and 11(c) show a high
correlation between the training and validation error for
three tested datasets: this is a general phenomena that we
found occurring in the vast majority of the tested datasets,
as it is possible to see in correlation column of table 1. A high
correlation between those two measures indicates that in-
creasing the training set leads to a more accurate learning of
the function f : X — Y. While a significantly high correla-
tion between training and validation error occurs in the vast
majority of the tested instances, for particularly ill-formed

datasets (where the signal in the covariates is not sufficient
or well formatted to predict the target variable) this is not

always the case. Sub-figure 11(d), displays an instance with
low correlation in which the trained models are not able to
generate an f that generalizes over the validation set and
which incur in overfitting (low train error, high validation
error). However it is relevant to note that even in this sce-
nario, where two measure are not correlated, the train error
can be still successfully used to lower bound the validation
error.

Correctly Training-
Datasets Bounded Validation
Pipelines (%) | Correlation
Regression 40 75.6 0.867
Classification | 110 85.3 0.736
Total 150 83.9 0.771

Table 1: Training vs. Validation error: Each dataset was
trained on 400-3000 pipelines (5-95 percentiles). We
present the percentage of cases for which validation
error was lower bounded by training error and the
correlation between training and validation error on
those datasets.



Research 11: Systems & Machine Learning

Pearson Correlation: 0.901 Pearson Correlation: 0.933

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Pearson Correlation: 0.832 Pearson Correlation: 0.379

o
o

e

o
o

Validation Error
o
=

o
N}

Partial Training
Full Training: 3020

® Partial Training
@ Full Training: 3060

o
1=}

(o

Partial Training
Full Training: 440

® Partial Training
® Full Training: 670

0.4 0.6 0.8 1.0
Train Error

0.0 0.2

(b) Dataset: Phenome

(a) Dataset: Page Blocks

(c) Dataset: Hill Valley d) Dataset: Anacalcat Data

Figure 11: Training vs. Validation error on 4 different datasets. Each point represents training and validation
error for one pipeline evaluation: blue points are partially trained pipelines; orange points represent pipelines
trained on the full training set. Pipelines that are represented above thefi rst quadrant bisector have been correctly

bounded by the halting criterion.

1.0
0.5
0.0
-0.5

-15 I

pods score

-2.0 g
H —— Alpine Meadow

---- auto-sklearn
TPOT

=25 i
-3.0

10° 10! 102 10°

time (second)

Figure 13: Shows the pods ,; scores of each system av-
eraged over all datasets over time, where the pods ,
scores are computed as each system over the hand-
made solutions (higher is better).

800

[ none
N intra
B intra+inter

test

Figure 14: Evaluation of Caching

train

A.3 Alternative Metric for Comparison

Aswe outlined previously, the DARPA metric is biased. There-
fore, we calculated an alternative metric from [9] for our
comparison defined as:

max(s4,sB)

min(s4,SB)
max(sa,SB)

" min(sa,sB)

SA = SB
pods up = (3)
SA < SB

where s4 and sp are the F1 score or the negative MSE.

1187

Alpine Meadow vs. Azure

better (89) [ H0)

| I
same (18) e | |
worse (42) o @
Alpine Meadow vs auto-sklearn
better (109) @EPe e
| ]
same (10) s |
. |
worse (29) i
Alpine Meadow vs. TPOT
better (94) S5,
| ]
same (9) s |
|
worse (33) @@
-103-102-10' -10°010° 10! 102 103
pods score

Figure 12: Evaluation of Alpine Meadow with different
systems. Shows the pods ,; scores computed as Alpine
Meadow’s score over the other system’s score, and
scores are discretized into “better’: Alpine Meadow out-
performs other system, “same”: scores are equal, and
“worse”: Alpine Meadow performs worse than other
system.

We replot results from Figure 5 in Figure 12 and results
from Figure 6(c) in Figure 13. As we can see, the overall result

didn’t change much even using the more unbiased metric.
Alpine Meadow is able to produce results better than baseline

scores in just a couple of seconds, and is also significantly
better than auto-sklearn and TPOT.

A.4 Raw Scores on All Datasets

We report the raw scores of all compared systems on all
datasets in a GitHub repo https://github.com/vds-automl/
alpine_meadow_submission_2019.



Research 11: Systems & Machine Learning

A.5 Caching and Incremental
Computation

Many pipelines the AutoML tools try share the exact same
operation. Therefore, caching can tremendously help to in-
crease the number of pipelines a system can evaluate in a
given timeframe. Moreover, Alpine Meadow incrementally in-
creases the sample size over time for all promising pipelines.
As a result, similar to caching, incremental computation of
operations can also significantly increase the number of pipe-
lines the system can test. However, both caching as well as
incremental computation is not possible with the standard
Scikit-learn operations and without changes to the runtime
environment, making it very hard to achieve fair compari-
son against other AutoML tools. We therefore decided to not
evaluate the effect of caching and incremental computation
when comparing our system against other baselines.

However, as our system does support both, caching and in-
cremental computation, we want to give at least a high-level
overview on how these techniques work in Alpine Meadow
and how they compare to alternative approaches, such as
[28].

Alpine Meadow supports two main types of caching:

Inter-Pipeline Caching: Alpine Meadow caches interme-
diate results of each primitive, such that other pipelines can
directly use them without re-computation. For example, if
feature-scaling was performed or we use a pre-trained neural
net to add additional features, we cache the output such that
we don’t need to run it again for the same input data. While
we only found a moderate impact for operations like feature
scaling, it can have a huge impact for neural networks, which
we for example use for image classification problems.

Intra-Pipeline Caching Since we train pipelines on in-
creasingly larger samples in Algorithm 4, and smaller sam-
ples are always covered by bigger samples, we can utilize
this by doing training in an incremental way. Here, we dis-
tinguish two cases:

(1) Incremental operator: If we know that an operator
is incremental we simple continue the training based on
the previous model state if all previous operations are also
incremental. Even in cases where the previous operations in
the pipeline are not incremental, we might reuse the model
state with the assumption that it converges faster from that
state. For example, with most gradient descent-based training
algorithms this is often the case. However, this requires that
the system has access to the internal state of an algorithm.

1188

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

We support this with our own algorithms, but not with the
scikit-learn default algorithms.

(2) Non-Incremental operator: For non-incremental
operators we observe the state-change over the increasing
sample-sizes and based on it decide if we re-use a result. For

example, a min-max feature scaler requires to determine the
minimum and maximum. If it changes, the entire feature

needs to be reprocessed. If not, it can be made incremen-
tal. However, after a certain data-size even a change in the
minimum or maximum rarely changes the overall of per-
formance of an pipeline. This observation allows us to do
“approximate”-caching; re-use results even if the data would
slightly change. In our current implementation, we manually
tag operations if they are incremental and/or allow for strict
or “approximate” caching.

Note, that none of these techniques were used as part of the
experiments in Section 8. Also note, that our techniques do re-
use on the operator level, which have to be annotated, rather
than the more advanced caching/re-use, which is possible
on the algebra level [28].

Initial results To evaluate how inter and intra-pipeline
caching can improve the performance, we conducted a small
experiment with an image classification pipeline. This pipeline
uses a pre-trained neural network, i.e., an NN operator, to ex-
tract high-level features, which are then used by a traditional
classifier. Here, the NN operator allows for intra-pipeline
caching as well as inter-pipleine cachine as it is an incre-
mental operator. More precisely, every time the sample is
increased, we reuse the feature for data items, which were
already included in the previous sample; recall that every in-
creased sample contains all items from the previous smaller
sample. Figure 14 shows that for this pipeline intra-caching
helps to reduce the training time by up to 33% when increas-
ing the sample size.

Besides expensive primitives or primitives that support
incremental training by nature, we also did experiments for
encoding operations (e.g., label encoding and one-hot en-
coding) and non-Incremental operator caching, e.g., scaling
functions, and found that the performance improvement
with caching is rather small. The reason is, that compared to
the actual training of the model, those operations are often
relatively fast.

In the future, we plan to further develop our caching and
incremental computation techniques. Especially, we believe
that there is a lot of potential for non-incremental caching
for more complex operations.





